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UCL Queen Square Institute of Neurology, Univer§igllege London, London, UK

Abstract

In obstacle-filled media, such as extracellulaintracellular lumen of brain tissue, effective
ion diffusion permeability is a key determinantetéctrogenic reactions. Although this
diffusion permeability is thought to depend entireh structural features of the medium,
such as porosity and tortuosity, brain tissue shawwminent non-ohmic properties, the
origins of which remain poorly understood. Here,axplore Monte Carlo simulations of ion
diffusion in a space filled with overlapping spher® predict that diffusion permeability of
such media decreases with stronger external eldthils. This dependence increases with
lower medium porosity while decreasing with radib or 3D) compared to homogenous
(1D) fields. We test our predictions empiricallyan electrolyte chamber filled with
microscopic glass spheres and find good correspmedaith our predictions. A theoretical
insight relates this phenomenon to a disproportepancreased dwell time of diffusing ions
at potential barriers (or traps) representing gedomebstacles, when the field strength
increases. The dependence of medium ion-diffusesmpability on electric field could be
important for understanding conductivity propertdégorous materials, in particular for the

accurate interpretation of electric activity redogs in brain tissue.
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SIGNIFICANCE STATEMENT

From nanomaterials to animal tissues, diffusionm@sbility of porous media has been
attributed entirely to their structure, which isesf summarised as porosity and tortuosity.
Here we simulate a sphere-filled space to find itisatonductance decreases with stronger
electric fields, and confirmed this in a physicgberiment, with a theoretical treatment
highlighting its key parameters. This finding Isasne potentially fundamental implications
for our understanding of electricity in porous needtor instance, it suggests that routinely
recorded brain field potentials may not necessauble linearly with the strength of current
sources inside the brain tissue. On the microscaqate, it predicts retarded diffusion of
charged molecules, heterogeneous charge accunmjlatid possibly supra-linear heat

dissipation with increased electrical activity.



INTRODUCTION

Physiological signalling in animal tissue reliesrapid diffusion of electrolyte ions in the
extracellular (or intracellular) space filled witklatively immobile obstacles, from
macromolecules to microscopic cellular structuésmpared to a free medium, diffusion in
obstacle-filled, or porous, media is retarded. Adowy to the classical Nernst—Einstein

eqguation, electrolyte conductivity scales with ion diffusivity so that

F2 i
D g’C 1
RT; L0-C, (1)

G=

whereq,, C,, andD, are respectively, the valence, concentration,diifigisivity of thenth

ion speciesk is Faraday's constam,is gas constant, aridis absolute temperature (Table
1). Thus, at constant ion concentratid@ss proportional to diffusivity (which may not be
the case when ion concentrations vary or are slyati@an-uniform). Generally, retardation of
ion diffusion by obstacles corresponds to increadeckrical resistance, which in turn affects
the scale and dynamics of electric events crifmatell function, particularly in the brain,
both on the scale of tissue (1) and the nanos2al@&(umerous studies have focused on the
brain extracellular space to establish that itsdiféision retardation effect is determined by
the medium porosity (space volume fraction available for diffusionfaortuosity/, which
corresponds to the apparent diffusion coefficl@gyy= Diree / 4? (Dpree is free-medium
diffusivity) (1, 3), or otherwise diffusion permebity 6 = Dapp/ Dree = 472 (4). The values of
a, A, or @ in brain tissue have been evaluated on the st¢aeveral microns and above (3, 5,
6). Recently, advances in live super-resolutiongimg has extended this quest to the
nanoscale (7, 8), whereas molecular mobility ingkiacellular and intracellular lumen on
the nanoscale has been evaluated using time-resahisotropy-FLIM (9). In this context, it
has routinely been assumed that the architecteaéiifes of porous media (suchiag, o, or
more complex shape variables) principally defirartbffective conductivity (10, 11).

When electric field is present, ion movement foldotive classical Nernst-Plank relationship

dC
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whereC is ion concentrationJ, =-DUC and J; = - Dq% CLI Vare, respectively,

diffusion and electric drift (migration) componentsis field potential (gradient]V is
equivalent to field strength). Egs. 1-2 are key to the traditional interpretatof
electrophysiological recordings: it assumes cornsthattrolyte conductivitys which
depends simply on the bulk concentration of iondekd, in the case of the mammalian
brain, the common assumption has been that thesNBfank formulism of electrodiffusion

applies to the tortuous extracellular space witfusivity corrected foi (12-14).

More recently, however, it has been shown thankiiasue shows prominent non-ohmic
properties that might affect interpretation of lbitald potentials (15-18) whereas physical
tests in porous ceramics indicated that permittigitsuch media could depend on the electric
field strength (19). There has been a significaogpess in advancing theoretical work that
focuses on electrodiffusion in porous media (@ligcussed in (20, 21), including brain tissue
(22). On the nanoscale, anomalous diffusion aridumgto diffusion obstacles and electric
field interactions in cell membranes and neuromaldiites has also been explored (23, 24).
However, the influence of external electric fietsion diffusion permeability of such

obstacle-filled media remains poorly understood.

Here, we focus on this particular issue as a fiiristciple, without attempting to address or
generalise evaluation of apparent diffusivity ormpitivity for porous media of various
types. To understand the basic phenomenon, wefdherexplore Monte Carlo (MC)
simulations mimicking electrodiffusion of chargeakicles across the space filled, to a
varied degree, with inert, partly overlapped spt@robstacles. While not critical for
establishing theoretical principles, our simulatgarameters were chosen to roughly
replicate the movement of small ions, on the mioops: scale, in the interstitial (or
intracellular) brain tissue lumen filled with maarolecules and other nanoscopic obstacles.
Our simulations predict that increasing the extified strength lowers porous medium
diffusion permeability, thus deviating from the sd&cal Nernst-Plank theory. We test this
prediction by using voltammetry measurements intedéyte filled with non-polarizing
dielectric (glass), microscopic spheres, and suggésst-approximation theoretical insight

into the underlying principles.



MATERIALSAND METHODS
Monte Carlo ssimulations: Electrodiffusion

MC simulation algorithms were designed and rungi$itATLAB, based on the classical
Nernst-Plank relationship (Equation 2), as detadled tested against experimental recordings
earlier (25, 26). The standard random walk procedarindividual particles (ions) was thus
implemented, in which the electric field drift (m&gion) was calculated from the particle

speed as((jj—rt = —uE where mobility ¢ = Dq%, vectorE =[1V is the field strength, and

is the coordinate vector {s radial co-ordinate). Thus, ion particles posigd at time at

point r (X, y, 2 weremoved to pointr,(x,, y,, Z)over time incremenit so that, in the case

of 1D fleld, X = X+ AX* J+ At eEDx
KT r

, With E = 0 for particle displacement inyoandz

directions 4x corresponds to the mean square displacement thitiséein's diffusion

equation for 1D Brownian motioAx® = 2DAt, ddenotes a ‘delta-correlated' (independently
seeded, uncorrelated) uniform random number fra(+th, 1) range to reflect that Brownian
particles are equally likely to move into eitheredition,e is elementary charge, akds the
Boltzmann constant (Table 1). In the case of the&lal field (inside a flat and narrow 2D
slab), this expression h&d= 0 forz direction; in the 3D radial field (3D open spaca),
directions had the field term. As the drift componeas added at every diffusion step, the
diffusion coefficient calculation was dealing witme and distance in a fixed co-ordinate

system.

To avoid occasional numerical deadlocks for patictapped near the space dead-ends
formed by aggregated overlapped spheres (Fig. SidBnplemented the duty-cycle
translational movements in a contiguous 3D spager, all directions, rather than over the
rectangular 3D-lattice vertices used by us and nudingrs previously. The duty cycle time
stepAt (usually < 0.1 us) was set to be small enoughdagnt particles from ‘tunnelling’

through the smallest, 6 nm wide obstacles.

The basic 'reference value' field strenBghwas set at 0v/m, which roughly corresponds to
the field generated by a synaptic current of 1@AQowards the centre of the 10-15 nm
thick, 0.5um wide synaptic cleft, with the medium resistante 0 Ohm cm (9, 27, 28).

Accordingly, for stronger electric field& & 2E,) we adoptedt < 0.01 pys. For the sake of
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simplicity, and to separate the effect of field gtry per se, we have assumed constant field
strengthE for both uniform (1D) and radial (2D and 3D) fisldhereas under the common

2D and 3D scenarios, field is attenuated with ofacfr'* andr?, respectively whereis the
distance to the infinitesimal central source. ladtef incorporating these factors in our
calculations, we considered the 1D case as thepfinsciples scenario, and addressed the

effect of weakening the field separately, by explgE values over an order of magnitude.

The particle-wall interaction was simulated as lastec collision, and electrostatic
interactions with the obstacle surfaces were ighosa the assumption that the dimensions of

the free diffusion space were much larger tharetbetrolyte double-layer.

The initial conditiongoutinelyincluded2000 particles injected instantaneously in the aren
centre (within a 10 nm sphere at the coordinatgimroutside any obstacle). This reflected
the case when ions flowing through the open chageeérate the field in which they and
other ions diffuse, such as inside the synaptiit (28). We also ran arena-size trials for each
new condition using 200 diffusing particles (sei. Ten full trials with 2000 particles
each were carried out for the statistical estimates/erage diffusion permeability values,
with the sphere distributions generated anew etrgly In addition, we systematically ran
single control trials involving 2000 particles,werify the computational stability for the

diffusion steps, sphere distributions, and theradgons between particles and obstacles.

Monte Carlo simulations: Sphere-filled space

The main parameter controlling the distributiorspheres is the volume fracti@roccupied

by them. TheB value was calculated by (a) scattering 58t points uniformly randomly
across the entire space, and (b) calculating thegption of the point falling outside the
spheres. We verified that increasing the numbeuoh test points to f@ltereds by <1%,
suggesting asymptotic accuracy. The space (arem&ndions were set large enough to reach
a stationary value for the apparent diffusion dcefht under the strongest electrical field
(fluctuation was less than 1% for the last 20%hef simulated diffusion time). As noted
above, the arena size was routinely trialled atabéished using ad hoc simulations with 200

particles, under the strongest tested electrid,fiwithout spheres.



To fill the space with overlapping spheres thatehawistributed size, the following

algorithm was adopted. First, we prohibited sph&vesccupy a 3 nm wide space around the
co-ordinate origin where the particles start th@irdom walk. Second, in each duty cycle, we
generated a random sphere location (set of co-aeshwith the arena space, and the
random radius value (distributed in accord withdlesignated density function) for the
sphere. Third, we repeated the cycle yhaibproaches the required value with ~5%

accuracy.

To replicate our empirical arrangement with glgdseses, we attempted an algorithm filling
the space with equally sized non-overlapping sghdétandom packing of equal spheres has
a theoretical density maximum of ~64%, assumingtti@arena size is much larger than that
of spheres (29). In computational practice, howeagithe volume fractiop occupied by the
simulated spheres reaches ~50%, it becomes proggsdifficult to insert further spheres.

In the majority of cases, the algorithm stalls tuéhe lack of available space. It turns out
that a similar deadlock occurs when the spheres hawre-defined distribution of their size,

at least in the case of even distribution. Themfare asked whether the cases of overlapping
versus non-overlapping spheres differ significamtlyerms of the apparent diffusion
coefficient, and found little difference, at leéstf < 0.5 (see Fig. S1D). This was consistent
with the observation that the overlaps occupieg ardmall fraction (<4% fgf = 0.5) of the
arena volume, thus suggesting little effect overallich also applies to enhanced trapping

due to the electric field.

The overall size (cut-off distance) of the diffusiarena was determined by the condition that
it should be large enough to contain >99% partidi@sng at least 0.5 ms post-release in the
strongest-field casé = 5&y and withg = 0 (free space, no obstacles). At the same tinee,
arena had to be sufficiently small to allow teclaticfeasible computation times, which

increased supra-linearly with greafeor with the number of spheres introduced as olestac
Computing environment

Simulations were carried out on a dedicated, adduilt 8-node BEOWULF-style diskless
PC cluster running under the Gentoo LINUX operasggtem (kernel 4.12.12), an upgraded
version of the cluster described earlier (5). lidlinal nodes comprised an HP ProLiant
DL120 G6 Server containing a quad-core Intel Xe®430 processor and 8GB of DDR3

RAM. Nodes were connected through a NetGear Gidgahiernet switch to a master



computer that distributes programs and collectsekalts on its hard disk. Optimization and

parallelization routines were implemented by AMGdge LLC (Waltham, MA).
Calculating the apparent diffusion coefficient
The apparent diffusion coefficient for the partictehort, averaged over tilhgin any of the
N
three directions, was calculated B§:%Z(>f /1) (similar fory andz) whereN is the
i=1
number of diffusing particles, angf reports the particle's mean square displacemett ov
timet. The diffusion coefficient values were calculatestinuously during simulation runs
as long as all original diffusing particles remaivethin the simulation arena. Normally,

once a single particle has left the open boundatiyeosimulation area, computations
stopped.

Analytical solutions of the Nernst Planck electrodiffusion equations

In analytical estimates of the particle concentraprofiles, we solved the Nernst-Plank
eqguation using the built-in MATLAB functiopdepe This function enables solving initial-

boundary value problems for the parabolic-ellipyioe of partial differential equations.
Conductance measur ements

Electrolyte conductance was measured using a cisdiunt resistor method (e.g., p. 175 in
(30)). Various voltages supplied by a constantagd source with maximum current limited
to 2A (TTi EX4210R 42V 10A model) were applied tpre-sterilised, industry-standard
electroporation chamber (Molecular BioProducts, MEB20; WxLxH: 2 mm x 10 mm x 25
mm; Fig. 4A). Because of large current passingufgh the circuit at high voltage steps, a
shunt resistor of 10 A/V (RS257-391) was conneateskries to the chamber, from which a
small voltage drop across the resistor was measisiad a national instrument analogue to
digital converter (NI BNC-2090). To deal with aresistive heating effects in the chamber
under high currents, we applied short (10 ms) geltaulses, with a high current reed relay
(Cynergy3 S8-0504) connected in series prior tccti@nber. The short 10 ms pulse applied
to the circuit had no resistive heating effect: tenitored solution temperature in the
chamber was 23-24°C throughout tests. Signal timiag gated by a pulse generator (AMPI
Master 8), which was triggered from the same natiorstrument board using acquisition

control software WinWCP (University of Strathclyde)



Three different solutions were made: deionised n@igO, Elgar Purelab machine,
resistivity 15 MOhm / cm at 25°C), sodium chlori@&aCl, Sigma S7653, 153 mM solution
in deionised water solution), and ACSF. The ACSEtsmn composition was as follows:
NaCl (Sigma S7653) 126mM, KCI (Sigma P9333) 2.5migS04- 7H20 (Sigma M1880)
1.3mM, NaH2PO4 (Sigma S0751) 1.25mM, glucose (SiG@82a70) 10mM, NaHCO3
(Sigma S6014) 26mM, CaCl2-2H20 (Sigma C3881) 2mi @lectrolyte strength was thus
chosen to be in the physiological range, belowékels (>0.2M) at which, classically, ion-
ion interactions could affect conductivity (31).

DC Voltages were applied to the opposite electradéise chamber (Fig. 4A), and small
voltages across the shunt resistor were measucedaaverted to currents. The procedure
was carried out in a free solution and then regkaith 13-45 um lime soda glass spherical
microbeads (MO-SCI Speciality Products 201-002-008g beads were slowly (to avoid
void formations) loaded into a ~150 pL freshly @ega solution until the chamber was full
(Fig. 4B). The electrolyte volume required to file chamber volume occupied by the

spheres provided an estimated valuefl 8f30 + 2%.

Because electrical conductance depends on the tatopeit was also important to avoid
temperature rises. This was achieved by using dioms voltage steps, with 60 s resting
periods: the solution temperature thus held at£2&2The short electrical pulse also
minimises electrode polarisation, which might impiple lead to an accumulation of ionic
species near the surface hence unwarranted cheneéeions. Special care was taken to
avoid bubble formation and accumulation in the 8otuduring electric pulses: tests were
terminated upon detection of any microscopic bubflisually after several trials). To avoid
such and further time-dependent concomitants optige application, we used only the first

3 ms of the pulse, and no more than five trialsqueette.
Data availability

The datasets generated during and/or analysedgdilnencurrent study are available from the

corresponding authors upon request.
Sour ce code availability

The datasets source codes used in the current atadyailable from the corresponding

authors.



RESULTS
Electrodiffusion in uniform 1D dectric field

We first asked to what extent geometric obstacleslaevaffect ion movements along a
narrow long cylinder (diameter << length), a basise of 1D diffusion. We note that,
although in this case the overall diffusion fluxLi3, on the scale compatible with cylinder
diameter diffusion trajectories and obstacle geoegtire essentially 3D. For the sake of
simplicity, we set the free-medium diffusion coeiiint atDee = 1 um%ms, which is typical
for small ions in agueous solutions, and the c@mtiameter at 0.fim, to roughly represent
extra- or intracellular lumen of brain tissue. Zsipe diffusing particles were released in the
cylinder centroid and allowed to move freely (M&kr and Methods, Fig. 1A, Fig. S1A),
with the cylinder walls providing a reflecting balary. To mimic macromolecular
hindrance, small spheres with an evenly distribai@dheter over the 3-33 nm range, were
scattered uniformly, with overlap, throughout tipase (Materials and Methods).
Overlapping spheres could sometimes form dead-femdsffusing particles (Fig. S1B)
reflecting non-convex geometries of real microscastacles. The Monte-Carlo algorithm
incorporating Brownian movement and electric figtdt (Materials and Methods)
stochastically directed the particle flow aroundtalles, roughly following the field lines
around dielectric spheres (Fig. S1C). Although®arulations adopted a uniform field
throughout the space, and thus ignored its distoriear dielectric spheres, the comparison
of limiting cases (uniform versus zero-field nephares) indicated that the related diffusivity
error was fairly negligible (~6% at the strongestd, Fig. S1D). We have also found that
changing the non-overlapping to overlapping spipeteern altere@®,p, values only within
~7% atp ~ 0.4, and within ~4% &t ~0.3 (Fig. S1E), thus projecting a smaller sfiiet at

smallerp.

Equipped with these settings, we sought to tessfecenarios, fgf taking four values

between 0-0.5, to reflect diffusion retardationtb@ nanoscale assessed with time-resolved

fluorescence anisotropy imaging (9). The time-agedsapparent diffusion coefficieDpp

showed significant variability in the initial stagyef the test, reflecting anomalous diffusion

(Fig. 1B, zero-field), as discussed previously (3Reassuringly, in a free mediugh=0)

Dapp Was converging t®see (Fig. 1B, black dotted line; Fig. S1B). Simulatgoalso showed
10



thatDapp decreased monotonously with gregi€Fig. 1B), consistent with earlier

assessments of macroscopic diffusion in porousihissue (4, 33, 34).

We next introduced uniform electric field that wamdlinear with the cylinder axis (Materials
and Methods). To mimic the case of an ion chanaekat that generates voltage gradient for
the current-carrying and other ions in the neaudnydn, we considered the outward field
direction that would force particles away from th#usion source (Fig. 1A, arrows). We
explored a range of field strendfrcentredaroundE, = 16° V/m, which roughly represents
the field generated by a synaptic current carriaihiy by N& ions towards the synaptic cleft
centre at small excitatory synapses (MaterialsMathods). The simulation outcome was
somewhat unexpected. Introducing geometric hindraetarded particle diffusion to a
greater degree under electric field if comparedhhie zero-field scenario in the same setting
(Fig. 1B and Fig. 1C). The effect depended monatshoon bothE andp (single-run
simulation examples in Fig. 1C-D, further detaiFig. S2A-E).

Repeating simulations runs 10 times with 2000 pladieach, for each scenario, provided a
robust summary (Fig. 1E and Fig. S2F), suggeshagih obstacle-filled media the
relationship between field strength and ion tran@&farrent) is sub-linear. It appears therefore
that the obstacles decelerate ion movement topaagisrtionately greater degree in stronger
fields. Reassuringly, in these simulations Ehg, / Drree ratios representing diffusion

diffusion permeabilityy were, undeE = 0, in good correspondence with the Maxwell's

free

relationship for porous media (35),,, =

where porositya =1- £ (Fig. 1E, open

circles). However, unddf > 0, our data suggest that porous-medium eleasistance, or
ion diffusion permeability, depends on the fielceagth, rather than on the medium
properties alone, thus deviating from the Ohm's law

Electrodiffusion in radial 2D and 3D €electric fields

Molecular diffusion inside narrow 2D clefts witHacal current point-source is a common
scenario in the brain neuropil where inter-cellid@gnal exchange occurs in an electrolyte
medium between the opposing cell membranes pojplgta ion channels. Our next test

was therefore to release diffusing particles inZ8enm wide (characteristic interstitial width)

11



flat cleft, with an accelerating radial field (F@A-B). For simplicity, field strengtk was
maintained uniform: we have previously shown thahie 2D synaptic cleft, with a spatially
uniform distribution of postsynaptic channels, fiedd is closer to uniform than to the
classicar™ decay for radial field with cylindrical symmetryi6 the distance from the
centre). Furthermore, when the diffusion distarfo@terest is much smaller than the
distance from the field source, uniform field pre$ canonical linear approximation. An
additional reason for keeping unifofwas to try and separate the effects of field gepme
and field strength on diffusion permeability. Qtlsenulation parameters were similar to the
1D case shown above (Fig. 1). Again, the simulatiottome suggested that the electric
fields, while accelerating overall diffusion escajjeharged molecules compared to the
zero-field case, reduced medium diffusion permdégl#lifor ions, as reported by the
decrease,pp / Drree ratios in stronger fields (Fig. 2C; Fig. S3).

Finally, we explored a similar scenario in thremensions. For the sake of generality, we
expanded the simulation arena to 10 um and inadgasediameter of diffusion-hindering
spheres to the range of 0.1-1 um (uniformly distiell; snapshot in Fig. 2D, Fig. S4A) and
time stepdt = 0.1pus. Similar to the cases considered above, herewelfa clear, albeit less
strong, reduction in thBapp / Diree ratios, hence diffusion permeability either with stronger

electric fields or with greater valuesf{Fig. 2E, Fig. S4B-F).

We note that in these simulations the actual dimo@ssare mainly for illustration purposes:
the dependence between field strength and medifiosidin permeability remains
unchanged when the arena geometry, diffusion coeffi, and electric field are scaled by the
same time and space factor. Our data also sudgedhe effect of field on medium diffusion
permeability is progressively weaker under radeltis with higher dimensions, at least in
the vicinity of the source, as modelled here (Biy), even when the field strength is kept the
same throughout the space. As mentioned abovarg tlistances from the source one

would expect the local field to be well approxinthtey the 1D case.

Geometric obstacles and classical electrodiffusion theory

It was important to assess how our MC simulaticults are related to the classical Nernst-

Plank (NP) theory. First, for the sake of geneyalite tested whether positioning the field

12



source near the diffusion source, or away frormatipced the same time-averaged apparent
diffusion coefficient in our settings. Control MGrrs confirmed that this was the case:
particles showed a characteristic wave-like scatteay from the field source, showing the
convergence dD,p, for varied distance between the field and theudifin sources (Fig. 3B).

Next, we systematically compared the particle catregion profiles computed using MC
simulations with those obtained using analyticdisons of the canonical NP equation

(Equation 2) which could be written in the form:

%%—?:D[émc—%az} 3)
wheree is elementary unit charge, akds the Boltzmann constant. For several cas@s>00
andE values, we thus calculated an analytical solutiotn® NP equation at certain time
point ¢ = 100us), first for diffusivityDe-o estimated by MC simulations under= 0. This
solution was compared with the analytical solutafculated for diffusivityD,,, estimated
from MC simulations under the correspondihg O value. These cases were also compared
with the concentration profile obtained directly ¢ simulations under the same

conditions.

As expected, in all cases undier 0 the concentration profiles showed a charasttenvave
that was spreading away from the diffusion souksg. (3C-F). Reassuringly, in a free
medium g = 0), MC simulations provided an excellent matathwhe analytical NP solution
for a givenkE (Fig. 3C and 3E). In contrast, in an obstacledilmedium £ > 0), the classical
NP theory overestimated the effective diffusiviglues, with the discrepancy increasing with
stronger fields (Fig. 3D and 3F). In other wordhe butcome of MC simulations could be
satisfactorily described using the analytical N€otly, but with a diffusion coefficient

corrected for the field-dependent transfer retaodat

Physical testing of electrodiffusion in a porous medium

To test our theoretical prediction that the ionawetance of porous media is field-dependent,
we designed and implemented a simple physical erpet. We measured electrolyte

currents between the opposite sides (flat panathdls serving as electrodes) of a narrow

13



rectangular chamber filled with microscopic glagbeses (Fig. 4A-B; Methods), a design
somewhat similar to that explored previously (38)e space fractiop occupied by the
spheres was evaluated by monitoring electrolytplacement in the chamber upon sphere
filling, £ =0.30 £ 0.02. We used 10 guarevoltage pulses over a range of voltages that
would generate inside the chamber electric fietwamatible with those in the brain tissue
(Fig. 4C; Materials and Methods). The three sohgitested were water, NaCl (153 mM),
and standard artificial cerebrospinal fluid (AC®Hterials and Methods).

As expected, these measurements showed monotoaisi-lonear dependencies between
voltage (electric field) and electrolyte currenteither free-space or sphere-filled chambers
(Fig. 5A; water provided control measurements). eeer, because physical properties of
electrolytes could be affected by electric fietdyas important to compare these
measurements directly between free and obstatdelthses under the same field strength:
the ratio between the corresponding current densityes (porous-to-free) should represgént
= Dapp/ Diree We thus found that decreased with greater strengths of the eledéid, footh

for ACSF and NaCl solutions (Fig. 5B, data pointd)is dependence was similar to that
obtained in MC simulations of 1D electrodiffusiar f values roughly between 0.3 and 0.4
(Fig. 5B, dotted lines), which was a remarkableespondence given that the volume
fraction occupied by glass spheres in these expatsnvag ~ 0.3. The slight shift of
theoretical curves towards higher valueg ¢fFig. 5B) was likely because simulated spheres
were allowed to overlap thus leading to somewhgltén space tortuosity. It appeared
therefore that the electrical resistance of testedtrolytes in a porous space depended on the

external electric field, in good correspondencénwitir theoretical predictions.

Theoretical insight

Given the unlimited variety of porous medium geamest it would not seem feasible to
generalise our findings as a fully-fledged eledifffadion theory. However, we sought to
explore the first principles, by considering georgatbstacles as barriers in the field
potential profile that drives ion diffusion transf&or one-dimensional diffusion (which is

3D diffusion in a long narrow cylinder), the meamniare displacement of a free Brownian

particle increases linearly with tirm;e<x2> ~t, plus an additional drift when electric field is

present (Fig. 5G;ii; red lines illustrate potential profiles for strongad weaker field).
14



When the diffusing particle encounters an obstacketrap, it takes additional timeo

escape it, so that particle displacement over timeeduced t<)x2> ~ 17 where 0 <a(7) <

1. The obstacle-imposed additional dwell tirgdepends on the characteristic height of the
potential barrier (or tragl (Fig. 5C,iii). Generally, for diffusion under electric field
(electrodiffusion)H scales with field strength (Fig. 5C,iii; red lines illustrate how the
potential barrier scales with the field strength)has long been established that 1D
stochastic diffusion in fielE can be described by the canonical Dynkin's operato

p-UDFEd o &
RT dx  dX (p. 241 in (37)) in which the first and second terefine electric
drift and free diffusion, respectivelRR is the gas constari,is the temperaturé; is the

Faraday constant. When fielitlis directed against particle's escape over aindstarier, the

mean exit (dwell) time is given by the boundary value probIeTHJT =1 with the Dirichlet
boundary condition. This leads to the steady-sgteation (38):

2
DL},EE -1 (4)
ox RT 0X

with the boundary conditions
r(x=0)=0, ﬂ(x: H)=2C
0X

wherex in this case denotes the initial particle's camaitk (between 0 ard). Its solution for

Tis

e(_KEH)(l_ é(Ex+ éEHK EX
(kE)°D

r(x) =

(5)

wherex = RT/F. Forx = H (displacement to the edge of the barHgrEq. 5 becomes

KEH -1+ &
(kE)’D

7 (H)= (6)

Eq. 6 thus describes the average barrier-imposedl thme z- (Fig. 5C,iii). This time
defines diffusion deceleration (time delay) whevagticle faces an obstacle so that figld
hinders its diffusion escape. In this case, partittsplacement is reduced compared to free

diffusion. On the same space-time scale, when dnigcfe is behind the trap in the direction
15



of E, or otherwise if the field is reversed (), it gains an additional drift alortg, because
any stochastic movement in the opposite direcsgorévented by the barrier (Fig. 5@,

This increase in drift, when compared to free-meddiffusion, translates into time gain:

_ —KEH -1+ ¢*®
(kE)’D

r,(H) (7)
Then, relative medium conductivity estima&tander fieldE could be estimated by the

expression

r_(H) _, KEH-1+¢™

6(H) =6 =
(H) “r,(H) 7 -KkEH-1+¢&*"

(8)

whered, is the relative medium conductance (porous verbstacle-free) under zero-field
(E =0). In our experimental settings (Fig. 4), thealue is estimated between 0.4 and 0.5
(Fig. 5B), so that Eq. 8 has one free paramdtdt turns out that, with thel values set
between 5 and 10 um, Eq. 8 provides a reasonaisg @rediction of the experimental

dependence between relative conductivignd field strength (Fig. 5D).

What could be the meaning Hfvalues in our experimental test (Fig. 4)? Sevetadies
suggest that the space tortuosity for a sphereguaciedium with = 0.3-0.4 ranges between
1.3-1.5 (39-41). This implies a 30-50% increasthapatrticle's diffusing path compared to
an obstacle-free medium. With the characteristiesp radius in our tests of ~15 um (Fig.
4C), this increase corresponds to ~5-7 um additjoain per obstacle, which falls within the
range of 'best-fitH values of 5 and 10 um. Whether Eq. 8, and the mgariH, hold in

more general cases remains an open and intriguiastion.

DISCUSSION

The main finding of the present study is that diffun permeability of porous (obstacle-filled)
media for charged patrticles could depend on the@saopic electric field. MC simulations
predicted that the apparent diffusion coefficiemtelectrical conductivity, in such media
decreases with stronger electric fields which otheg accelerate diffusion transfer. This

16



dependence is enhanced with increased geometdecahnice, or decreased porosity. Our data
also suggest that the additional diffusion hindeadae to the electric field effect is weaker in
radial compared to uniform field, even when thédfrength remains the same throughout
the space. The latter observation might help erglanclusions of an earlier study (42), in
which geometric considerations suggested a loniffeistbn path for ‘1D diffusion' compared
to point-source diffusion in 2D or 3D: in fact, #eeconclusions should have referred to ion
diffusion in a strong uniform (1D) field comparemradial fields. One could also consider a
limiting case when the electric field drift dwaggy stochastic Brownian effects: in that case,

space dead-ends in the porous media (4, 43, 44d eatirely prevent particle transfer.

Modelling electrodiffusion

The MC algorithms for diffusion and electrodiffusiemployed here have previously been
tested and validated systematically against exparial recordings, including sub-
millisecond fast-exchange receptor probing in a@é&siut and nucleated (whole-cell)
membrane patches (25, 26). In the present studgowgared the MC simulation outcome
with the analytical solutions of the Nernst-Plargjfuation, in several key settings, and found
good correspondence. Throughout our analyses, sugreesl no interactions between
diffusing particles and the spherical obstacleshsas any electrostatic or electroosmotic
influence: we tried to focus on the case of snmaibidiffusing, on the microscopic scale, in
the weak (fully-dissociated) electrolyte filled witnacromolecules and other inert
nanoscopic obstacles. This may not necessarilfidedse when particles diffuse in
sufficiently narrow clefts between charged surfaggsch may give rise to further
interference with their transfer (20, 22). In thantext, our MC algorithms enabled diffusing
particles to navigate individual obstacles, roughlgorrespondence with the distortions of
electric field near the surface of dielectric (Iparmittivity) spheres. Whilst it would be
important to have a more rigorous assessment titfgalbehaviour in the vicinity of
obstacles, the particle concentration profiles gatiee by our MC simulations appeared in
good agreement with the Nernst-Planck solutionsrimarating the apparent diffusion

coefficient.

We tested our theoretical predictions using a senmblysical experiment in which the
relationship between electric current and extefiedd was measured in controlled conditions
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involving glass sphere-filled electrolyte solutiofi$ie electrolyte strength was sufficiently
low (much below 0.2 M) to assume free ion mobi(fiyll dissociation) without ion-ion
interactions whereas and the porosity value wals érpugh (~0.7) to ignore electrostatic
interactions with the sphere walls. The shape hadrtaterial of obstacles can also affect
interpretation of the results. In our tests, sodagmicrobeads were selected for the several
reasons. First, we aimed to match the geometnpofikize) of obstacles in our MC
simulations. Second, solid glass material has brgbh strength which makes it suitable for
high-density packing. Third, soda glass helpedvtmdapolarisation effects in the spheres if
compared with other materials like polystyrene @ated metals. Although the experiment
did not replicate the dimensions of the MC simolatsettings, we considered it suitable
enough to address the underlying principle. In talali our control MC simulations
suggested that having either overlapping sphesew¢adid throughout our tests) or non-
overlapping spheres (in the experiment) had inaystishably similar effects on the apparent

diffusion coefficient, at least fg¥ < 0.5.

Potential implicationsfor electrophysiology

Across the areas of biology (and other sciencespys media come with highly variable
geometries and electrodiffusion scenarios. Thisenakdifficult to suggest a generalised
theory, although significant progress has been nratlee description of ion flows in media
consisting of tightly packed obstacles separateddsyow pores (such as porous rocks,
sediments, ceramics, etc.) (20, 21). Recently legaat study has introducedachhoff-
Nernst-Planck formulism, in order to model macrgscelectrodiffusion in the interstitial
space surrounding nerve cells (22). On the nanescdhe brain, a better understanding of
electrodiffusion phenomena is beginning to eme®§e 45), reflecting a present gap in our
knowledge (2, 46). In this context, much less aitbenhas been paid to the potential
influence of electric fields on the conductive pedpes of obstacle-filled electrolytes in
biological tissues. The potential importance o$ tissue stems from the clear dependence
between extracellular ion current (both diffusivelaesistive components) and the external
field frequency in brain tissue (15, 17). Such mdmic properties of the brain extracellular
medium can be related to the local structural inbgemeities, so that the time scale of

changes in the field strength and/or directionaffdocal ion flow differently, depending on
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the size of local obstacles (16). This appearsistarg, in principle, with our present

conclusions that relate field strength (#do medium diffusion permeability.

One potentially important consequence of havinglloon-ohmic properties of the brain
tissue is the quantitative interpretation of electrrticography of field-potential recordings.
Such recordings reflect the strength, spatial ithistion, and preferred orientation of local
current sources and sinks inside the tissue voltonductor: estimating these parameters
from the (multi-point) field-potential readout caitstes the classical inverse problem of
brain electrophysiology (18). Introducing non-ohrmigsue properties that might arise from
our present findings might therefore lead to sonewdiffering estimates pertaining to the
arrangement and strength of active current sowcesss the frequency spectrum (16, 18).
This could in turn affect our understanding of &lieal neural network activity based on the

current-source reconstruction from electrophysimlalgrecordings.

Here, we have attempted a first-principle theoatticcatment in which geometrical obstacles
are considered potential barriers in the homogeptadric field. It appears that, under
plausible assumptions, and within the tested raf@xperimental parameters, the theory
provides a reasonable prediction of the dependeetveeen electric field strength and
relative reduction in conductivity observed expemtally. Clearly, further tests should

answer the question how general these theoreiradihfys are.
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FIGURE LEGEND

Figure 1. lon diffusion per meability of obstacle-filled mediain uniform electricfield
dependson field strength.

(A) MC simulationssnapshot of the scatter of diffusing particles ¢hdiots) in a 0.1 um
wide - 10 um long cylinder (fragment; two differestiales as shown; actual simulation data
rendered by OriginPro), at 0.1 ms post-release ftwercentroid (dotted line), with= 0.2
volume fraction occupied by obstacles (yellow speeB-33 nm diameter), and electric field
strengthE = 0; blue arrows, field direction.

(B) Example of a MC simulation run: time course of agmt diffusivityDapp (along the
cylinder as in A) for different values @fas indicated.

(C) Example of a MC simulation run: time course ofuBfon permeability) = Dapp/ Diree,
under electric fieldE = Eo (10* V/m), over the range ¢f values as shown; see Materials and
Methods for model parameters.

(D) Example of a MC simulation run: time course&/dbr a medium with fop = 0.5, over
the range oE as indicated.

(E) Statistical summary of simulation experiments degul in B-D (additional examples of
individual MC runs are shown in Fig. S2); dots toembars, diffusion permeability = Dapp/
Dtee (Mmean = s.e.myaluesfor n = 10 runs completed for each sep@ndE values, as
indicated; the overall effect of either factoffour levels) ol (four levels) o is at p <
0.001, two-way ANOVA (E = 79.0, i = 1366).

Figure 2. lon diffusion per meability of obstacle-filled mediain radial electric fields..

(A) Simulation examplea scatter of diffusing particles (blue dots) inGar@Zn flat cleft
extending 6 um wide (fragment; two different scaleshown; actual simulation data
rendered by OriginPro); snapshot at 0.1 ms postse at the central point (dotted line), with
B = 0.2 anck = 0; blue arrows, radial field.

(B) Snapshots of single-particle particle trajectoaethree time points, as indicated, wWith
=0 (red) ang = 0.2 (black), under no fiel&(= 0); blue dot, diffusion starting point.

(C) Statistical summary of simulationsAaB (examples of individual MC runs are shown in
Fig. S3); dots, diffusion permeability= Dapp/ Diree (Mean + s.e.myaluesfor n = 10 runs
completed for each set pfandE values, as indicated; the overall effect of eiflaetorE

(four levels) o (four levels) org is at p < 0.001, two-way ANOVA @= 45.3, i = 906).

(D) Simulation examplea scatter of diffusing particles (blue dots) irneet-dimensional
space (fragment; actual simulation data rendere@ryinPro); snapshot at 0.1 ms post-
release at the central point (dotted line), vith 0.2 of space occupied by spherical obstacles
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(yellow spheres), electric field strendthe O; radial electric field is centred at the calioate
origin.
(E) Statistical summary of simulation experiments degal in C (examples of individual MC

runs are shown in Fig. S3); the overall effectitier factorE (four levels) oy (four levels)
ondis at p <0.001, two-way ANOVA @= 24.4, Iz = 31.3); other notation as @.

Figure 3. Classical electrodiffusion theory may over estimate apparent diffusivity when
applied to a porous medium.

(A) A summary of MC simulations (as in Figs. 1-2) shagvihe dependence between field
strength and diffusion permeabiliy= Dapp/ Diree (NOrmalised to the value Et= 0), for two
B values, in 1D uniform, and 2D and 3D radial eliedields, as indicated. The strongest
dependence corresponds to 1D filed at the hifher

(B) Image panelilustration of a MC test in which diffusing pariés are released either at
the field source (open circle, blue arrow, bluesjlar at a distance of 200 nm from it (red
arrow, red dots), undé = Eo (10* V/m); a snapshot 10@s post-release. Graph: tests
showing the time course Bf;p,/ DieeValues for particle cohorts released at different
distances from the field source, as indicatedpimd@ion as above.

(C) Black line, analytical solution of the NP equatgirowing a particle concentration profile
(normalised to maximum) against distance to thiusiibn source for 2D radial field with no
obstaclesf{ = 0,D = Dse), underkE = Ey, at time point = 0.1 msyed, outcome of MC
simulations in similar conditions.

(D) Similar toC, butwith g = 0.5; blue, analytical solution of the NP equatio which
apparent diffusivityDe= is derived by MC simulations f& = 0 (3 = 0.5); black, a similar
solution but withDap, calculated from MC simulations incorporating etictield E = Eq (as
in Fig. 2C graph, foE = 1 xEp B = 0.5); red, outcome of MC simulations, as indcat

(E) Similar toC, but for 3D radial field witl = 0.2 ancE = 5, as indicated. Other
notations are as i@.

(F) Similar toD, but for 3D radial field wittg = 0.2 ance = 5. Other notations as iD;
blue, analytical solution of the NP equation in @¥tDe- is derived by MC simulations fd&
=0 (B = 0.2); black, a similar solution but wiby,, derived by MC simulations undgr=
5E, (as in Fig. 2E data point Bt= 1 x 3 3 = 0.2).

Figure 4. Experimental testing afbstacle-filled medium conductivity under variedatic
fields.

(A) Experiment schematic. The test solution, with ahaut glass beads, is placed in a
cuvette equipped with flat side electrodes (Metho@sntrolled application oV voltage
steps to the electrodes induces electric curreasnred digitally, as depicted.

25



(B) Electrolyte solution (NacCl) filled with denselygad microscopic glass beads, shown in
transmitted light (800 nm) at the top layer (Isftale bar 50 um), and as fluorescent image
(right; solution containing Alexa Fluor 488, twogqibn excitation 800 nm; scale bar 20 um).

(C) Time course of voltage pulse application (an eplantop), and the current response in a
fee-medium (middle) and sphere-filled NaCl solut{fbottom). Grey shade, sampled
response area (first 3 ms after the pulse artefact)

Figure5. Electric conductivity of porous tissue decr eases with stronger electric fields.

(A) Recorded current density plotted against ele@izid in ACSF and NaCl solutions, with
and without densely packed microscopic glass bé&mslm Fig. 4), as indicated; control
recordings with deionised water shown.

(B) Relative porous-medium condictivity (ratio betwgmrous- and free-medium
conductivity values) for ACSF and NaCl electrolytpotted against electric field. Dotted
lines, theoretical dependencies calculated for aiffasing in 1D uniform electric field (as in
Fig. 1), forp = 0.4 and3 = 0.3 (experimental value in Fig. 4 tests), asdatdd.

(C) Schematic illustrating (not to scale) a theoreétapproach (Equations 4-8); blue shade,
probability density for particle occurrence (dagréing point) under no electric field)(
under uniform fielcE (ii; dotted arrow, average drift), facing the baragéradiusH (iii ; z-,
maximum dwell time ‘lost' to navigate the barri@nd behind the barriei( green dotted
arrow, no-obstacle particle drift, asiinblack arrow, average drift increased becaushef t
‘gained' timez,); red lines illustrate profiles of field potenti(x) in 1D space, for weaker
(E1) and strongerl)) fields, with orange dots representing partickesrfg (ii) or past i)

the potential barrier.

(D) Experimental data as in B, but with the theosdtdependencies (dashed and dotted-
dashed lines) calculated from the analytical solu{Eq. 8), for several values idfandé,, as
indicated.
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