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Abstract

This chapter discusses the importance of efficient wave propagation models
for generating boundary conditions for CFD models of wave-structure in-
teraction or as elements of hybrid models. We give a brief review of fully
nonlinear wave models based on potential flow theory (FNPT), which are the
main candidates for such applications. We then suggest a Lagrangian wave
model as an alternative to classical FNPT models. We present a mathemati-
cal and numerical formulation of the model, its validation and application to
propagation of steep wave groups and to wave groups on sheared currents.

1. Introduction

Most wave-structure interaction models are based on a numerical solution
of boundary value problems for partial differential equations. For such mod-
els the solution accuracy depends not only on the quality of the numerical
approximation of the equations, but also on the accuracy of the boundary
conditions. Apart from defining the physical boundaries of a fluid domain,
they are used to specify the incoming wave conditions. A common numer-
ical tool for modelling wave-structure interaction is a numerical wave tank
(NWT), where the fluid domain is bounded and waves are generated by a
numerical wavemaker, e.g. by specifying wave kinematics and elevation at
the incoming boundary. Difficulties experienced by NWT users are very sim-
ilar to difficulties of wave generation in experimental wave facilities. These
include the accuracy of incoming wave generation and reflections from the
boundaries of the fluid domain.

Effective absorption of reflected waves normally requires large absorbing
zones and thus larger computational domains. At the same time, a sufficient
distance from the wavemaker to the test section is recommended to allow the
natural development of the waves. Depending on the absorption method and
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type of a wavemaker, this can lead to a considerable increase in the size of the
NWT. On the other hand, to achieve higher computational efficiency, it is
necessary to minimise the size of the computational domain around a struc-
ture. This is particularly important because of the high demands of modern
computational fluid dynamics (CFD) models for computing resources. Fur-
thermore, for the direct comparison between experiments and calculations
and for the execution of computer-assisted experiments, it is useful to model
an entire experimental wave tank with the exact replication of the wavemaker
shape and the position of the model. This again leads to a much larger do-
main size than the region of interest around the structure. Often, the optimal
NWT size for accurate wave input is impractical for CFD models in terms of
computational efficiency. As can be seen, a numerical wave-structure inter-
action model should satisfy conflicting requirements and it would be natural
to apply different models in different regions of a computational domain or to
simulate different aspects of the process. For example, a simpler and faster
model can be used to simulate wave evolution in the far field, and the region
close to the structure can be modelled by a more sophisticated, but slower,
CFD model.

The idea of hybrid models recently received considerable attention and
numerous hybrid models have been developed. The most popular couple for
creating a hybrid model are a boundary element model (BEM) as a com-
putationally efficient component and volume of fluid (VoF) as an advanced
component (e.g. Lachaume et al., 2003; Kim et al., 2010; Guo et al., 2012).
However, coupling of other models has also been attempted, for example
BEM with SPH (Landrini et al., 2012) and a finite element method (FEM)
with a meshless Navier-Stokes solver (Sriram et al., 2014). More examples
can be found in the introduction to Sriram et al. (2014). The hybrid meth-
ods revive simple but computationally efficient wave propagation models as
important elements of wave-structure interaction modelling tools. Over the
years, many numerical models of nonlinear water waves have been developed.
Descriptions of numerical methods for water wave modelling and reviews of
numerical simulation of water waves can be found in Tsai and Yue (1996);
Fenton (1999); Kim et al. (1999); Dias and Bridges (2006); Lin (2008); Ma
(2010).

In this chapter we consider inviscid models and we start with a brief
historical review of models based on the fully nonlinear potential flow the-
ory (FNPT) given in Section 2. In comparison with CFD models, based
on solving Reynolds Averaged Navier-Stokes equations, these methods use



much simpler governing equations with smaller number of variables. As a
result, FNPT models are more efficient computationally. At the same time,
they are able to reproduce the principal physical phenomena important for
wave propagation, namely non-linearity and dispersion. As a result, such
models describe propagation of highly nonlinear waves up to breaking with
good accuracy, as demonstrated by multiple comparisons with experiments
(e.g. Dommermuth et al., 1988; Skyner, 1996; Seiffert et al., 2017). We will
not consider models based on further simplifications, such as depth-averaged
models (shallow water and Boussinesq equations) or models of spectral evolu-
tion (nonlinear Schrodinger equation, Zakharov equation). Since we consider
the wave propagation problem, we will not review literature related to ap-
plication of FNPT models to interaction with structures, floating bodies,
etc.

FNPT models differ by particular methods of solving Laplace equation
for velocity potential in the fluid domain and by methods of specifying a
fully nonlinear boundary condition on a moving free surface. There are three
main classes of numerical methods used to solve wave problems in poten-
tial formulation: boundary element methods (BEM), finite element methods
(FEM) and high-order spectral methods (HOS). They are discussed in sepa-
rate parts of Section 2. We do not consider various finite difference methods,
which use a wide range of approaches to discretise a moving domain, including
boundary-fitted coordinates and o-transform. They can not be considered
the mainstream for inviscid models and an interested reader is referred to the
reviews of Tsai and Yue (1996); Fenton (1999) and Kim et al. (1999). Sec-
tion 2 concludes with a brief review of Lagrangian wave models, which offer
certain advantages and can be considered as an alternative to conventional
FNPT models.

The rest of the chapter discusses a wave propagation model based on
Lagrangian description of fluid motion and is organised as follows. Sec-
tion 3 gives a detailed description of the Lagrangian wave model. The section
presents the mathematical and numerical formulation of the model. Then,
it introduces a method of numerical treatment of breaking waves, discusses
the computational efficiency of the model and validates the model with ex-
perimental results. In Section 4 the model is applied to evolution of steep
breaking wave groups in a wave flume. In Section 5 the model formulation
for waves over sheared currents is introduced and a numerical wave-current
flume is constructed and applied to simulate wave groups over following and
opposing currents. Both Section 4 and 5 include a comparison between ex-



perimental and numerical results. Finally, brief concluding remarks are given
in Section 6, where model coupling for wave-structure interaction problems
is discussed.

2. Historical development

2.1. BEM models

Boundary element methods can be traced back to the work of Longuet-
Higgins and Cokelet (1976) who considered the evolution of two-dimension
space-periodic waves in deep water. They work in complex variables and
use conformal mapping to transform a semi-infinite periodic domain into
internals of a closed contour representing the mapped free surface. The ma-
terial time derivatives of surface coordinates and of surface potential are
then expressed via the normal derivative of the potential. To find the normal
derivative the Dirichlet problem of finding the normal gradient of a harmonic
function from its values on a closed contour is formulated and solved by us-
ing Green’s theorem. This leads to an integral equation relating the normal
gradient of the potential with its values at the mapped free surface. The
integral equation is solved numerically and the normal derivative of the po-
tential is used to calculate the time derivatives. Then material coordinates
of the free surface and the surface potential at the incremented time are cal-
culated by using a fourth-order finite difference technique. The numerical
scheme demonstrated a week saw-toothed instability which was suppressed
by applying polynomial smoothing. The method was applied to simulate
the evolution of high periodic waves and development of overturning profiles
at initial stages of wave breaking. Since the method uses the Lagrangian
approach to track the evolution of the free surface, it is referred to as a
mixed Eulerian-Lagrangian method (MEL). This becomes a common feature
of boundary-element methods. Later, the method was extended to the case
of constant finite depth (New et al., 1985). Vinje and Brevig (1981) suggested
an alternative method where Cauchy’s integral theorem is applied to a com-
plex flow potential in physical space. Working in physical variables allowed
to construct solutions with vertical solid boundaries (fixed or moving) and
to simulate waves in a wave flume with a piston wavemaker (Dommermuth
et al., 1988).

Using complex variables restricts the application of the boundary inte-
gral formulation to 2D problems. A more flexible formulation was therefore
developed with Green’s theorem applied in physical space. Apart from being
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applicable to both 2D and 3D problems, such formulation also allows flex-
ible treatment of fixed and moving solid boundaries of arbitrary shape and
is suitable for development of efficient numerical wave tanks. Examples of
BEM-based 2D numerical wave tanks, which differ by details of numerical
realisation and methods of wave generation and absorption can be found in
Grilli et al. (1989); Ohyama and Nadaoka (1991); Wang et al. (1995). Though
the first works on application of BEM to 3D waves appeared relatively early
(e.g Isaacson, 1982), it took long time to develop robust and flexible mod-
els suitable for wide range of applications. Apart from the more difficult
formulation for 3D geometry, this was caused by the drastic increase of com-
putational cost for such models. Simplified formulations were often suggested
to deal with these problems, which restricted models applicability. For ex-
ample, Isaacson (1982) used a Green function that assumes the symmetry of
the solution about the flat sea bed (method of images). This restricts the
application of the method to constant depth. Xue et al. (2001) considered
deep water waves periodic in both horizontal directions. This simplification
allowed to perform high-resolution simulations and to obtain valuable re-
sults on dynamics and evolution of 3D breaking waves. Considerable efforts
have finally resulted in the development of 3D numerical wave tanks capable
of simulating general highly nonlinear waves on arbitrary bathymetry Grilli
et al. (2001).

The solution method used by the models mentioned above and in fact by
most contemporary BEM models can be briefly summarised as follows. By
applying Green’s theorem with an appropriate selection of the Green func-
tion, the Laplace equation can be reduced to an integral equation defined
on a boundary of the computational domain. The equation relates the val-
ues of the potential and its normal derivative at the boundary. The free
surface boundary conditions are written in the mixed Eulerian-Lagrangian
form and connect the material time derivatives of the surface potential and
of the surface position with the gradient of the potential (velocity) at the
free surface. If both the potential and the normal derivative are known,
the time derivatives can be calculated. The boundary conditions on solid
surfaces specify the normal derivatives of the potential at these boundaries
(Neumann boundary condition). For the free surface, the surface potential is
known either from the initial conditions or from a previous calculation step
(Cauchy boundary condition). Then, the boundary integral equation can be
used to calculate the normal derivatives at the free surface and the potential
at the solid boundary. After discretisation of the integral equation, a sys-



tem of linear algebraic equations is solved to find the unknown values of the
potential and the normal derivative at the surface nodes. The free surface
boundary conditions can then be used to update the free surface position and
the surface potential by applying an appropriate time stepping technique.
Major improvements had been made in terms of the method accuracy
and stability (e.g. Grilli and Svendsen, 1990). More recently, considerable
efforts are concentrated on improving computational efficiency of BEM mod-
els (Fochesato and Dias, 2006; Yan and Liu, 2011; Jiang et al., 2012) and to
the adaptation of the method for parallel computing (Nimmala et al., 2013).
Over the years BEM models have been applied to a wide range of water
wave problems including problems of propagation of extreme waves directly
relevant to this chapter (e.g. Fochesato et al., 2007; Ning et al., 2009). For
further reference, the up-to-date formulation for a 3D BEM numerical wave

tank with a review of earlier work and examples of applications can be found
in Grilli et al. (2010).

2.2. FEM models

Finite Element Methods (FEM) are extensively used for a wide variety
of fluid mechanics problems (e.g. Zienkiewicz et al., 2005). They are more
universal than BEM and can be applied to solving nonlinear equations in
domains of complex shapes using unstructured meshes. Realisation of a
numerical wave tank by FEM within the FNPT approach seems relatively
straightforward by the discretisation of a bounded fluids domain with Neu-
mann boundary conditions on solid boundaries. The first known FEM model
for nonlinear waves represents a fully developed 2D numerical wave tank (Wu
and Eatock Taylor, 1994).

Most FEM implementations for water waves treat the moving surface us-
ing the MEL approach described above for BEM models. A typical FEM
solution for a water wave problem includes the following steps. The free sur-
face boundary conditions are represented in the mixed Eulerian-Lagrangian
form, as previously described. The velocity potential in the computational
domain is known from the initial conditions or from the previous step of the
solution. The velocity at the free surface can then be recovered and the free
surface conditions can be used to update the position of the free surface and
the value of the surface potential using a suitable time stepping technique.
This leads to the formulation of a mixed boundary value problem for the
Laplace equation at the next time step with the Cauchy boundary condi-
tions on the free surface and the Neumann boundary conditions on fixed or
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moving solid surfaces. The boundary value problem is then solved using a
finite element approach, e.g. the Galerkin method. This approach was suc-
cessfully applied for constructing both 2D (Wu and Eatock Taylor, 1994) and
3D (Ma et al., 2001; Wu and Hu, 2004) numerical wave tanks.

The FEM formulation requires the discretisation of the entire fluid do-
main. This leads to a much larger number of unknowns compared to BEM,
where only the domain boundary is discretised. However, the discretisation
for BEM is based on surface integrals, which leads to linear systems with
dense non-symmetric matrices On the other hand, FEM discretisation pro-
cedure leads to sparse linear systems because of the local nature of discrete
differential operators, which include only a few spatially close nodes. As a
result, the number of non-zero matrix elements for FEM is much smaller. In
addition, for regular meshes, the resulting matrix has a diagonal structure.
If a typical number of discrete elements in one of the spatial dimensions is
N, then for a 3D problem the number of nodes for FEM is ~ N3 and for
BEM it is ~ N2. The corresponding numbers of matrix elements are ~ N°
and ~N? and the number of non-zero elements being receptively ~ N3 and
~ N%. This implies higher computational efficiency of FEM compared to
BEM. Wu and Eatock Taylor (1995) compared BEM and FEM models for a
2D wave problem and reported that in many cases the finite element method
may be more efficient but admitted that this conclusion is based on limited
experience. A discussion of numerical efficiency of FEM in comparison to
BEM can also be found in Cai et al. (1998). Complementary advantages of
BEM discretisation of moving domains near bodies and higher efficiency of
FEM far from the body were used in coupled BEM-FEM models by Wu and
Eatock Taylor (2003) in 2D and by Eatock Taylor et al. (2008) in 3D.

Although FEM models rely on the MEL formulation for updating the
free surface, the difficulties in generating a computational mesh in highly
deformed domains did not allow the application of early FEM models to
overturning waves. Another serious disadvantage of these models is that the
generation of an unstructured mesh is required at each time step. The re-
peated generation of such a mesh considerably increases the computational
time. To overcome this difficulty, a moving mesh method was developed by
Ma and Yan (2006). In this method the mesh is generated only once. Af-
ter that, the mesh is deformed at each step with a simple algorithm. The
original idea of mobile mesh came from the arbitrary Lagrangian-Eulerian
(ALE) formulation for Navier-Stokes equations. However, a different mesh
deformation algorithm is used, which does not use fluid velocities to move
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mesh nodes. The method is therefore called the quasi-arbitrary Lagrangian-
Eulerian finite element method (QALE-FEM). The new positions of the free
surface nodes are found by following the surface particles and then relocat-
ing the nodes. Relocation distributes the nodes more evenly over the free
surface and does not allow them to move too close or too far apart. Then,
the positions of the internal nodes are calculated using the spring analogy
method. Further development of the QALE-FEM model allowed simulating
overturning waves (Yan and Ma, 2010).

There is ongoing work on improving numerical implementations of FEM
for water wave models to achieve better accuracy, stability, and computa-
tional efficiency. This, for example, includes using different types of a finite
element method, for example the method of spectral elements (Robertson
and Sherwin, 1999; Engsig-Karup et al., 2016). The reader can find details
of FEM water wave formulation and application examples in Ma and Yan
(2010) and Wang and Wu (2011).

2.3. Spectral models

High-order spectral methods are undeniably the most computationally
efficient methods for modelling nonlinear waves, being capable of simulating
3D random sea states at linear scales of tens of wavelengths during tens of
wave periods (Ducrozet et al., 2007).

In an early application of a spectral method, Fenton and Rienecker (1982)
represented the potential and surface elevation in a 2D periodic domain
of constant depth via Fourier expansion by basic functions satisfying the
Laplace equation and boundary conditions. If the initial values of the Fourier
coefficients are known, the kinematic free-surface condition can be used to
advance the surface elevation using a finite difference approximation of the
time derivative. All spatial derivatives are computed in the Fourier space.
Inverse Fourier transforms are then used to perform a time step in the physi-
cal space. This simple approach, however, can not be applied to advance the
potential. Instead, the dynamic free surface condition is used to calculate the
time derivatives of each Fourier coefficient, which are then used to find the
values of the coefficients at the next time step. Calculating derivatives re-
quires solving a large system of simultaneous equations, which is responsible
for the low computational efficiency of the method.

This problem was solved in high-order spectral methods (Dommermuth
and Yue, 1987a; West et al., 1987). In this method, the potential is expressed
as an asymptotic expansion by a small parameter. In addition, the free
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surface potential is expanded in a Taylor series around the mean water level,
and a double expansion is used to represent the surface potential. The known
initial values of surface potential and surface elevation define a Dirichlet
boundary value problem for each term of the expansion in the domain below
the mean water level. The solution of these problems is sought in the form of
a Fourier expansion by modal functions satisfying the Laplace equation and
the boundary conditions at side boundaries and the bottom. This makes it
possible to express the components of the vertical velocity at the free surface
via modal coefficients, which themselves are defined by the surface elevation
and the surface potential. This closes the evolution equations provided by
the free surface conditions and allows to update the surface values. Fast
Fourier Transforms are used to switch between spectral and physical spaces.
The shape of the domain should be selected to define a simple spectral basis
to expand the velocity potential. Therefore, either periodic domains in both
horizontal dimensions or rectangular tanks are usually used.

An alternative approach uses the Dirichlet-Neumann (DN) operator, which
expresses the normal surface velocity in terms of velocity potential at the sur-
face. If such an operator is defined, the water wave problem is reduced to
the integration over time of free-surface boundary conditions with unknown
functions evaluated only at the free surface. The nonlinear DN operator is
expanded in terms of a convergent Taylor expansion about the mean water
level. This method was introduced by Craig and Sulem (1993) for 2D waves
and extended by Bateman et al. (2001) to 3D cases. Schéffer (2008) demon-
strated that different variants of HOS methods and methods that used DN
operator are either identical or have only minor differences. The use of the
additional potential allowed the modelling of a wavemaker (Ducrozet et al.,
2012b) and a variable bathymetry (Gouin et al., 2016). This makes the HOS
approach acceptable for numerical wave tanks. High efficiency and accuracy
of spectral methods compare to other methods for wave propagation was
demonstrated by Olmez and Milgram (1995) and Ducrozet et al. (2012a).

One of the drawbacks of the spectral methods is that they can not model
the overturning waves. However, this can not be considered as a serious
disadvantage compared to the BEM and FEM models, if we consider their
application to wave propagation. Neither of the models considered here is
able to continue calculations after wave breaking. However, to model severe
sea states and extreme waves, a model should continue calculations after
waves break and provide a reasonable prediction of energy dissipation due to
breaking. Seiffert and Ducrozet (2018) solved this problem by introducing
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eddy viscosity as a diffusive term to the free surface boundary conditions to
simulate breaking waves in a HOS model. Breaking onset is determined by a
breaking criterion. The model demonstrated an impressive comparison with
experiments on the propagation of surging wave groups.

More details on formulation and application of HOS models can be found
in Bonnefoy et al. (2010).

2.4. Fully Lagrangian models

Another method to describe water waves is to use equations of fluid mo-
tion in the Lagrangian formulation. These equations are written in coordi-
nates moving with the fluid. Each material point of the fluid continuum is
labelled with a specific label, and the labels in the fluid-occupied domain
create a continuous set of coordinates. These are Lagrangian coordinates or
Lagrangian labels. Equations of fluid motion are solved in a fixed Lagrangian
domain with the free surface represented by a fixed domain boundary. Some
numerical methods use elements of the Lagrangian description. For example
MEL free surface treatment by BEM and FEM described above. The SPH
approach can be considered as fully Lagrangian. In this method, the fluid
domain is represented by a set of material particles which serve as physical
carriers of fluid properties. An integral operator with a compact smoothing
kernel is used to represent the average properties of the fluid at a certain lo-
cation, which are used to satisfy the equations of fluid motion. Each particle
interacts with nearby particles from a domain specified by the smoothing ker-
nel (e.g. Gomez-Gesteira et al., 2010; Violeau and Rogers, 2016). However,
SPH does not directly refer to the equations of fluid motion in Lagrangian
coordinates and should be distinguished from the methods where Lagrangian
equations are directly applied to solve water wave problems.

The initial works on discrete approximation of equations of fluid motion in
Lagrangian formulation with applications to water wave problems appeared
in the early 70s. Brennen and Whitney (1970) used kinematic equations of
mass and vorticity conservation for internal points of a domain occupied by
an ideal fluid. Flow dynamics were determined by a free-surface dynamic con-
dition. According to Fenton (1999) this approach apparently had not been
followed and there are just a few works in which it was used (e.g. Nishimura
and Takewaka, 1988). An alternative approach was developed by Hirt et al.
(1970) who applied the equations of motion of viscous fluid in material co-
ordinates moving together with fluid. The next step was the development
of an Arbitrary Lagrangian-Eulerian (ALE) formulation (Chan, 1975). ALE
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formulation uses a computational mesh moving arbitrarily within a compu-
tational domain to optimise the shape of computational elements and the
problem is formulated in moving coordinates connected to the mesh. At cer-
tain regions of a computational domain the formulation can be reduced either
to Eulerian (fixed mesh) or to fully Lagrangian (mesh moving with fluid) de-
pending on the problem requirements. The Lagrangian models mentioned
so far use quadrangular numerical cells. These models are subject to “al-
ternating errors” and “even-odd” instability (Hirt et al., 1970; Chan, 1975),
which is similar to the saw-tooth instability of the ALE approach. Moreover,
application of fully-Lagrangian models to viscous problems has serious lim-
itations. Boundary layers, wakes, vortices and other viscous effects lead to
complicated deformations of fluid elements and large variations of physical
coordinates over cells of a Lagrangian computational mesh. To address these
problems the method was generalised for irregular triangular meshes (Fritts
and Boris, 1979) and used for development of finite element models (e.g. Ra-
maswamy and Kawahara, 1987). This method however remains out of the
mainstream and only occasionally appears in the literature (e.g. Kawahara
and Anjyu, 1988; Radovitzky and Ortiz, 1998; Staroszczyk, 2009). Imple-
mentation of a finite element approach with irregular triangular meshes for
ALE formulation (Braess and Wriggers, 2000) led to the development of a so-
phisticated method capable of solving complicated problems with interfaces
including surface waves and fluid-structure interaction. A detailed descrip-
tion of the ALE method, examples of application and comprehensive bibliog-
raphy can be found in Souli and Benson (2013). Finite element Lagrangian
models and especially ALE models are complicated in both formulation and
numerical realisation and are missing the main advantage expected from a
Lagrangian method: simplicity of representing computational domains with
moving boundaries. For many problems solved within the framework of ideal
fluid deformation of the fluid domain remains comparatively simple. These
problems can be efficiently approached by much simpler Lagrangian models
similar to the original model of Brennen and Whitney (1970). Recent exam-
ples of application of such a model include tsunami waves in a wave flume
(Buldakov, 2013), violent sloshing in a moving tank (Buldakov, 2014) and
evolution of breaking wave groups (Buldakov et al., 2019).

A particular advantage of the Lagrangian models compared to the FNPT
models is the ability to model vortical flows and therefore waves over sheared
currents. Potential formulation assumes an irrotational flow and can there-
fore only be applied to a uniform current (Ryu et al., 2003; Chen et al., 2017).
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Potential low methods can also be generalised to flows with constant vortic-
ity, which preserves the linearity of the problem. This allows the modelling
of currents with linear profiles (e.g. Da Silva and Peregrine, 1988). On the
other hand, in the inviscid Lagrangian formulation, vorticity does not change
over time and can be generally defined as a function of Lagrangian labels.
This allows a simple application to waves on arbitrary sheared currents. An
example of such application can be found in Buldakov et al. (2015) and Chen
et al. (2019). This feature of the Lagrangian formulation can also be useful
for simulation of wave behaviour after breaking, which generates intensive
vortical motion beneath the surface.

3. Lagrangian numerical wave model

Later in this chapter we consider a two-dimensional fully Lagrangian
finite-difference wave model. The model follows the approach of the early La-
grangian models originally introduced by Brennen and Whitney (1970) and
was further developed in Buldakov (2013, 2014) and Buldakov et al. (2019).
Before continuing, let us first examine some aspects of the Lagrangian de-
scription that affect the application of discrete numerical methods, such as
finite differences.

One of the main advantages of the Lagrangian approach is that the do-
main occupied by the fluid in Lagrangian coordinates remains the same dur-
ing the fluid motion. The form of the Lagrangian domain is arbitrary. The
only restriction is that mapping from Lagrangian to physical coordinates
should not be singular. Therefore, the computational domain can be cho-
sen by considering the convenience of numerical analysis. For example, a
rectangular Lagrangian domain with sides parallel to the axes of the La-
grangian coordinate system can be selected. This greatly simplifies a numer-
ical formulation since the finite difference approximation does not include
cross terms. On the other hand, other aspects of the Lagrangian approach
make its implementation more difficult, For example, there are situations
where the boundary conditions of a part of the boundary change. This is the
case for the self-contact of the different parts of the free surface during wave
breaking, for the problems of entry and exit of solid bodies, the impacts of
wave peaks with high structures, etc. However, for a large class of flows, a
particle originally on a specific type of boundary (e.g. a free surface or a
solid surface) remains on that boundary and the type of boundary condition
does not change. This assumption provides a significant simplification in the
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formulation of the problem and is used in the Lagrangian formulation consid-
ered in this work. In physical coordinates, the fluid domain can significantly
change its original form. While strong local deformations, e.g. at the peaks
of high waves, do not present a problem for a Lagrangian model, the con-
tinuous deformation of the entire volume of the fluid can present significant
difficulties in the practical realisation of a Lagrangian formulation. This can
be the case for domains with open boundaries. Examples are the Stokes’
drift of a regular wave train or waves propagating over sheared currents. To
overcome this problem one can apply relabelling, when a physical domain of
a suitable shape is mapped into a new space of Lagrangian labels. A prac-
tical realisation of this approach is demonstrated later in this chapter, when
we consider the application of the Lagrangian model to wave over sheared
currents. For a compact travelling wave group the total deformation of the
initial fluid volume is finite and such problems are ideal for application of
Lagrangian wave formulation.

3.1. Mathematical formulation

Fluid motion in Lagrangian method is described by tracing marked fluid
particles. For two-dimensional motion we have

r=2zxz(a,c,t); z=z(a,ct),

where (z, z) are Cartesian coordinates of a particle marked by Lagrangian
labels (a, ¢) at time t. Due to volume conservation for incompressible fluid the
Jacobian J of a mapping (x, z) — (a,c¢) is a motion invariant: 9.J/0t = 0.
This leads to the following Lagrangian form of the continuity equation:

= J(a,c), (1)

where J(a,c) is a given function of Lagrangian coordinates.

Equations of motion of inviscid incompressible fluid in Lagrangian co-
ordinates (a,c) can be obtained using Hamilton’s variational principle (e.g.
Herivel, 1955). Let us represent the density of the Lagrangian in the following
form

L=T—-U+pP(a,c,t)(J—J(a,c)),

where the kinematic continuity condition (1) is enforced by the Lagrange
multiplier P, and p is fluid density. The densities of the kinetic and potential
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energies of the fluid are
T=pai+2)/2; U=pgz.

According to Hamilton’s principle, the variation of the action integral

to
6[—5/ dt//ﬁdadc—O
t1 D

is zero, where the integration takes place in the Lagrangian space over a
domain D occupied by the fluid. Taking the variation leads to the following
equations describing dynamics of the fluid inside D

I(P, z)
d(a,c)

d(z, P)
=0; zu+—-——+9g=0.
T 5 (a,0) g
The Lagrange multiplier P can be recognised as the ratio of pressure over
density and the boundary condition on the free surface ¢ = 0 is P = 0. These
equations can be resolved with respect to the spatial pressure derivatives and
rewritten in the following form (Lamb, 1932)

Ttt +

oP n oP n 2)
— 2o = —Tuloq — ZtZa; o Ze = —Tyule — ZiZe.
a g tt tt e g tt tt
The terms on the left hand sides of (2) are gradient components of a certain
scalar function in the label space. Taking the curl of both sides of (2) we

find that the value
Q0 =V, X (0424 + 2120, T1Te + 212¢)

is a motion invariant: 9€2/0t = 0, where V,x is the curl operator in (a, c)-
space. This gives the second kinematic condition in addition to (1)

(x4, x) n (2, 2)

= da,c) ' da,c)

= Q(a, c), (3)

where (2(a,c) is a given function. This is the Lagrangian form of vorticity
conservation and for irrotational flows 2 = 0. Functions J(a,c) and €(a, c)
from (1) and (3) are defined by the initial conditions. J(a,c) is defined by
the initial positions of fluid particles associated with labels (a, ¢) and Q(a, ¢)
by the velocity field at ¢t = 0.
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The Lagrangian formulation does not require a kinematic free-surface
condition, which is satisfied by specifying a fixed boundary of Lagrangian
fluid domain corresponding to a free surface, e.g. ¢ = 0. The dynamics
of the flow is described by a dynamic free-surface condition which can be
obtained from the first equation in (2). For a case of constant pressure on
the free surface ¢ = 0 we have

Tl + 2tt2a + G Za |C:0 =0. (4)
This condition has a simple physical meaning. The left-hand side of (4)
can be written as a dot product of two vectors a = (x4, 2y + g) and t =
(Zay 2a). The first vector is the acceleration of a fluid particle with subtracted
gravity acceleration, and the second vector is tangential to the free surface.
Therefore, the condition a -t = 0 means that part of the acceleration of a
fluid particle on the free surface produced by other fluid particles is normal to
the free surface. The general formulation of the problem consists, therefore,
of the continuity equation (1), the vorticity conservation equation (3), the
free-surface condition (4) with suitable conditions on the bottom and side
boundaries. Positions and velocities of fluid particles must be supplied as
initial conditions.

One of the advantages of Lagrangian formulation is that the Lagrangian
domain and the original correspondence between the physical and Lagrangian
coordinates is arbitrary and can be chosen from convenience of numerical or
analytical analysis. The only restriction is that the Jacobian J of the original
mapping from Lagrangian to physical coordinates (a,c) — (z, 2)|=o is not
singular. It is convenient to use a rectangular Lagrangian domain

min < 0@ < Umax; —h <c <0

where ¢ = —h corresponds to the bed, ¢ = 0 to the free surface, a,;, and
amax tO the side boundaries (finite or infinite) of a physical domain and h is
a characteristic depth, for example the mean still water depth.

A specific problem within the general formulation (1, 3, 4) is defined by
the boundary and initial conditions specified for the Lagrangian domain. For
a wave propagation problem, the boundary and initial conditions are used
for wave generation. It is, for example, possible to specify the initial shape of
a physical fluid domain and initial velocities corresponding to the kinematics
of a periodic wave or other suitable boundary conditions on side boundaries.
This, however, requires knowledge of wave kinematics, which in case of non-
linear waves is not normally known and generating such kinematics is one
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of the primary aims of solving the Lagrangian wave propagation problem.
It is more convenient to solve a problem of wave evolution in a wave tank.
Though this approach may have problems with reflections from boundaries of
a finite domain similar to those of physical wave tanks, its numerical realisa-
tion is relatively simple and direct modelling of physical wave flumes makes
it possible to have direct comparison between numerical and experimental
results. The initial conditions in such approach can be still water conditions
and waves can be generated by moving boundaries.

The boundary conditions for a wave tank problem can be formulated as
follows. The known shape of the bottom provides the condition on the lower
boundary ¢ = —h of the Lagrangian domain

F(z(a,—h,t),z(a,—h,t)) =0, (5)

where F' is a given function. If we consider waves in a wave tank, conditions
on the left and right boundaries of the Lagrangian domain a = @, and
a = amin specify the shape of the basin walls

Z(Amin, ¢, t) = Xr(2(amin, ¢, 1), )

x(amaxv C, t) = XR( Z<amaX7 C, t)a t )7

(6)

where X and Xy are given functions of z and t. The dependence from =z
can be used to define the shape and the dependence from ¢ the motion of a
wavemaker.

3.2. Numerical scheme

For convenience of numerical realisation, we modify the original problem
(1, 3 ,4) and write it in the following form

a(Gaa) = (G ae) = @)

where the operator A; denotes the change between time steps. From the
point of view of a numerical realisation, equations (7) mean that values in
brackets at two time steps are equal to one another. This formulation does
not require explicit specification of functions J(a,c) and €2(a, ¢), which are
specified implicitly by initial conditions. We also modify the dynamic free
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surface condition by adding various supplementary artificial and physical
terms on the right-hand side

TpuZa + 212a + 924 = —RHS(a,t) . (8)

We use the following set of additional terms
RHS(a,t) =k (vi x4+ 2120) + 0 =— — + 7 =— + Pau(a,t). 9)
a a

where x is the surface curvature. The first term in (9) introduces damping
of displacement of surface particles with the damping coefficient k(a). This
term is used for absorbing waves approaching a boundary of a numerical
wave tank opposite to a wavemaker and minimising reflections. The second
term represents damping of surface curvature and o(a) is the corresponding
damping coefficient. As described later in this chapter, it is used to simulate
the dissipative effects of wave breaking. The third term represents surface
tension. The coefficient ~ is the ratio of the surface tension over density. In
calculations presented in this work we use the value of v = 0.00073 m?/s?
corresponding to fresh water at 20°C. The last term is the prescribed surface
pressure gradient, which can be used to create a pneumatic wave genera-
tor. The set of equations (7) with boundary conditions (8, 5, 6) is solved
numerically using a finite-difference technique described below.

Since equations (7) for internal points of a computational domain include
only first order spatial derivatives, a compact four-point Keller box scheme
(Keller, 1971) can be used for finite-difference approximation of these equa-
tions. For our selection of the Lagrangian computational domain the stencil
box can be chosen with sides parallel to the axes of the Lagrangian coordi-
nate system, which significantly simplifies the final numerical scheme. The
values of the unknown functions x and z on the sides of the stencil box
are calculated as averages of values at adjacent points and then used to
approximate the derivatives across the box by first-order differences. The
scheme provides the second-order approximation for the box central point.
Time derivatives in the second equation in (7) are approximated by second-
order backward differences. It should be noted that the same scheme can be
constructed by applying conservation of volume and circulation to elemen-
tary rectangular contours with linear approximation of unknown functions
on boundaries of elementary volumes. Spatial derivatives in the free-surface
boundary condition (8) are approximated by second-order central differences
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and second-order backward differences are used to approximate time deriva-
tives. As demonstrated below, this leads to a stable numerical scheme with
weak dissipation. The overall numerical scheme is of second order accuracy
in both time and space.

For finite-difference approximation of a boundary-value problem the num-
ber of algebraic mesh equations must be equal to the number of unknown
values of functions at grid nodes. Let us consider a finite-difference approxi-
mation of the problem (7, 8, 5, 6) on a rectangular N x M mesh, where N
and M are the numbers of mesh points in a and ¢ directions. We are required
to calculate values of unknown functions x and z at each mesh point. This
gives 2 x N x M unknowns which should be determined by solving the same
number of finite difference equations. Keller-box approximation of (7) gives
two equations for every mesh cell or 2x (N —1) x (M —1) equations. Approx-
imation of boundary conditions (8, 5, 6) at internal points of corresponding
boundaries results in 2 x (N — 2) + 2 x (M — 2) equations. Numerical tests
demonstrated that both bottom condition (5) and vertical wall conditions
(6) should be satisfied at lower corner points to provide their stability (4
equations). The last two equations are provided by vertical boundary con-
ditions (6) at upper corner points. Altogether this adds up to the required
2 x N x M equations.

A fully-implicit time marching is applied, and Newton method is used
on each time step to solve the nonlinear algebraic difference equations. It is
important to note that the scheme uses only 4 mesh points in the corners
of the box for internal points of the fluid domain. Therefore, the resulting
Jacobi matrix used by nonlinear Newton iterations has a sparse 4-diagonal
structure and can be effectively inverted using algorithms which are faster
and less demanding for computational memory than general algorithms of
matrix inversion. The current version of the solver uses a standard routine
for inversion of general sparse matrices (NAG, 2016). To reduce calculation
time, the inversion of a Jacobi matrix is performed at a first step of Newton
iterations and if iterations start to diverge. Otherwise, a previously calcu-
lated inverse Jacobi matrix is used. Usually only one matrix inversion per
time step is required. To start time marching, positions of fluid particles at
three initial time steps should be provided, which specifies initial conditions
for both particle positions and velocities. An adaptive mesh is used in the
horizontal direction with an algorithm based on the shape of the free surface
in Lagrangian coordinates z(a,0,t) to refine the mesh at each time step in
regions of high surface gradients and curvatures. Constant mesh refinement
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near the free surface is used in the vertical direction.

Since the finite-difference approximation presented above uses quadran-
gular mesh cells, it may be subjected to the so called alternating errors caused
by non-physical deformations of cells (Hirt et al., 1970; Chan, 1975). This
deformation preserves the overall volume (area) of a cell, as prescribed by
finite difference approximation of the Lagrangian continuity equation. How-
ever, volumes of triangles build on cell vertexes can change. The area of one
of the triangles increases while the area of the second triangle decreases by
the same value. For a cell which is originally rectangular, this corresponds to
trapezoidal deformation. This effect finally leads to alternating trapezoidal
distortions of neighbouring cells occupying the whole domain, resulting in
instability of short-wave disturbances with a wavelength equal to two cell
spacing. In earlier models was usual to implement artificial smoothing to
suppress this instability (e.g Chan, 1975). For the current model, efficient
suppression of the instability caused by alternating errors is provided by an
adaptive mesh. After several time steps the solution is transferred to a new
mesh using quadratic interpolation. The effect of this procedure is similar
to regridding used by Dommermuth and Yue (1987b). It reduces short-wave
disturbances and does not produce unwanted damping. Alternating errors
still remains the main reason for calculations breakdown. However, this hap-
pens for a large deformation of the computational domain associated with
continuity breakdown of a physical domain caused, for example, by wave
breaking. Otherwise, the numerical scheme proves to be stable with respect
to this type of instability.

3.3. Numerical dispersion relation and dispersion correction

Special attention must be paid to approximation of second time deriva-
tives in the free surface condition (4) since it defines the form of the numerical
dispersion relation and is crucial for the overall stability of the scheme. For
simplicity let us first consider a case of continuous spatial field in (1, 3, 4)
combined with implicit discrete time approximation in (4). Let us approx-
imate second derivatives by 3-point backward differences and expand this
approximation to Taylor series with respect to a small time step 7. We get

fit=27)—2f(t—7)+ f(t)

72

=f't) - ") +0*).  (10)

As can be seen, the approximation is of the first order with the leading
term of the error proportional to the third derivative of a function, which
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gives the main contribution to the error of the dispersion relation. Under an
assumption of small perturbations of original particle positions we represent
unknown functions in the form

r=a+¢eé(a,ct); z=c+el(a,ct)

and keep only linear terms of expansions with respect to the small displace-
ment amplitude € — 0. Introducing a displacement potential ¢

§=0¢/0a; (= 0¢/0c

we satisfy the vorticity conservation (3) to the first order as ¢ — 0 and the
corresponding approximation of the continuity equation (1) is the Laplace
equation for ¢. The dynamic surface condition (4) becomes

¢g+g¢ac_7_¢am = O(Tg)a (11)

where primes denote time derivatives and only the leading term of the ap-
proximation error from (10) is taken into account. To derive the numerical
dispersion relation we are looking for a solution in the form of a regular wave
in deep water:
¢ — eikaekceiwt7

which satisfies the Laplace equation. The dynamic condition (11) is satisfied
when w and k are related by a dispersion relation. Similar analysis can be
performed for higher orders of approximation of the derivatives. Below is the
summary of dispersion relations obtained for orders n =1...4:

1
w/\/g k:il+§z‘%+0(%2); (12a)
11 1

w/\/ gk =+1 F ﬁ72+§¢%3+0(%4); (12b)
w/\/g —:|:1——z' S0 (12¢)

137 19
k=414 — 7t — —i7P 7). 12d
w/\/ g w607 " a1t + O(7°) (12d)
We use a nondimensional expansion parameter 7 = +/gk 7, which is the

measure of the problem discretisation representing the ratio of the time step
to a typical problem period. As can be seen, the first-order scheme (12a)
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introduces numerical viscosity proportional to 7 which leads to fast non-
physical decay of perturbations. The higher-order schemes (12¢,12d) include
terms proportional to —i, leading to growth of perturbations, making the
numerical scheme unstable. We therefore use the second-order scheme (12b),
which incorporates a numerical error to dispersion at the second order 72
and a weak third order (73) dissipation term.

Let us now include spatial discretisation according to the numerical scheme
described above with discretisation steps (da;dc). As before, we consider a
linearised approximation for a regular travelling wave in deep water. How-
ever, differential approximation of the discretised field equations (1,3) in-
cludes higher spatial derivatives and the solution can not be represented in
the form of the displacement potential. A suitable form of the solution is

gzieikae%ceiwt; C:eikae%ceiwt’
where the constant for the exponential decay of displacement with depth s
is not equal to the wavenumber. The expression for s to satisfy the dis-
crete versions of (1) and (3) can be found as an expansion by discretisation
parameters. As before, the expansion for w defines the numerical dispersion
relation and is used to satisfy the free-surface condition (4). The correspond-
ing expansions are found to be

1
w/k=1-— i (0a* + 5¢*) + O(da*; o¢t) (13)

and
1 1
w/\/ gk = +1F 21 (11 72 4 2(5&2) + 3 P73+ O(%4; (5&4) ,

where the nondimensional discretisation steps 7 = /gk7, da = kda and
0¢ = kdc are used. It is interesting to note that the dispersive error is affected
only by horizontal discretisation step, while the vertical discretisation affects
wave kinematics. Therefore, if we are interested in the evolution of the
waveform alone, we can use relatively few vertical mesh points.

Validation tests presented later in this section show that the dispersion
error is crucial for travelling wave and the achieved convergence rate for
the second-order dispersion approximation is not sufficient. To increase the
approximation order for the dispersion relation we introduce dispersion cor-
rection terms to the free surface boundary condition. These terms should
satisfy the following conditions: (i) to have the order of O(72;da?); (ii) to be
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linear; (iii) not to include high derivatives; (iv) to use the same stencil as the
original scheme and (v) to reduce the order of the dispersion error. It has
been found that the free surface boundary condition (4) with the dispersion
correction term satisfying these conditions can be written as follows

11

1
TpZa + Zet2a + 9 20 + (E&LQ Taa,tt — Eg TQZa,tt) =0

IR

where the dispersion correction term is given in parentheses. The term z,,
with the second-order spatial derivative leads to high-wavenumber nonlinear
instability for large wave amplitudes. To suppress this instability, we apply
5-point quadratic smoothing to the function z(a) before applying the finite-
difference operator. The smoothing is applied only to this term in (14). It
is applied at the future time layer to ensure that the scheme remains fully
implicit. It can be shown that the numerical dispersion relation becomes
361 , 1 P 13

L.
w/\/ gk = +14+ =i+ ( T

2
We now have weak numerical dissipation at 3-rd order and the dispersion
error at 4-th order. A term with weak negative dissipation at 5-th order
should also be noted. This term can potentially lead to solution instability
for large time steps.

3.4. Numerical treatment of breaking

A disadvantage of numerical models of wave propagation considered in
this chapter is their inability to model spilling breakers. The discontinuity
of the free surface that develops at the spilling crest leads to a singularity
in a numerical solution leading to a breakdown of the calculations. Mod-
els based on Lagrangian representation of the free surface (MEL and fully
Lagrangian) can simulate overturning waves and, therefore, with sufficient
spatial and temporal resolution they can resolve micro-plungers originating
at wave crests during initial stages of spilling breaking. However, they are
unable to continue the calculations after self-contact of the free surface oc-
curs and the resulting solution becomes non-physical. This makes impossible
applying such models to steep travelling waves and severe sea states.

Removing a singularity in the vicinity of the breaking crest can help
in continuing calculations with only a minor effect on the overall wave be-
haviour. This can be achieved by implementing artificial local dissipation
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in the vicinity of a wave crest prior to breaking. With this approach all
small-scale local features would disappear from the solution, but the overall
behaviour of the wave would still be represented with good accuracy. Prac-
tical implementation of the method includes using of a breaking criterion to
initiate dissipation right before breaking occurs. The dissipation is usually
enforced by including damping terms in the free-surface boundary conditions
(Haussling and Coleman, 1979; Subramani et al., 1998; Guignard and Grilli,
2001). Recently, a breaking model based on an advanced breaking criterion
and an eddy viscosity dissipation model was developed by Tian et al. (2012)
and implemented in a spectral model of wave evolution (Tian et al., 2012;
Seiffert and Ducrozet, 2018). The method demonstrates a good compari-
son with the experiments and allows to apply spectral models to simulate
evolution of severe sea states with breaking.

In this chapter we use a method of treatment of spilling breaking which
uses the same basic concept but differs in the details of realisation. The
method includes dissipative suppression of the breaker and correction of crest
shape to provide accurate post-breaking behaviour of the wave. There are
several conditions such a method should satisfy: (i) to act locally in the
close vicinity of a developing singularity without affecting the rest of the
flow; (ii) to simulate energy dissipation caused by breaking; (iii) to be mesh-
independent, that is the change of the effect with changing mesh resolution
should be within the accuracy of the overall numerical approximation and
(iv) to be naturally included into a problem formulation representing an ac-
tual or artificial physical phenomenon. The development of a spilling breaker
is associated with a rapid growth of surface curvature. Therefore, the local
dissipation effect satisfying these conditions can be created by adding a term
—0 0/0a (0k/0t) to the right hand side of the free surface dynamic condition
(8,9). This term with a small coefficient o introduces artificial dissipation
due to the change of surface curvature x which acts locally at around the
region of fast curvature changes and suppresses breaker development without
affecting the rest of the wave. To minimise the undesirable effect of dissipa-
tion, the action of the damping term is limited both in time and in space.
Breaking dissipation is triggered when the maximal acceleration of fluid par-
ticles at the crest exceeds a specified threshold a,, and is turned off when the
maximum acceleration falls below a second lower value a.g. Spatially, the
action of the breaking model is limited by the half-wavelength between the
ascending and descending zero-crossing points delimiting a breaking wave
crest.
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Activation of the damping term makes it possible to continue the calcu-
lation beyond the breaking event. However, the resulting shape of the wave
crest is different from the actual crest after the breaking. Since local dissi-
pation suppresses breaking, the local behaviour of the wave crest is different
from the real one. Overturning of the crest does not occur, and for a suf-
ficiently intense breaking, it can significantly affect the shape of the entire
wave around the crest. To account for this difference, we apply additional
surface tension around the crest. Numerical tests show that large surface
tension produces an effect similar to that of the peak overturning. It changes
the shape of the crest and reduces the error in the profile of the post-breaking
wave. This effect is achieved by the surface tension term in the right side
of the free surface boundary condition (8,9) with an appropriately selected
coefficient 1, added to the natural value of v. It should be emphasised that
the desired effect is only possible for values of the 73, much larger than the
actual ones and it is used only in the regions and during the periods when
the breaking model operates.

To summarise, the intensity of the dissipation (¢), the acceleration thresh-
olds to activate and deactivate the dissipation (ae, and aqg) and the strength
of the surface tension for the correction of the shape of the crest (y1,) con-
stitute the four parameters of the breaking model. The functions of the
parameters of the model are as follows. Parameter a,, defines the beginning
of the breaking process, o regulates the rate of energy dissipation, a.g con-
trols the duration of the breaking and the total amount of energy dissipated
and 7y, corrects the shape of the breaking crest. It should be noted that be-
ing a heuristic model, the breaking model requires calibration of parameters
to achieve optimal performance for each particular case. For this paper, the
parameters were selected by running a small number of numerical cases for
different parameters values. The following values of the parameters are se-
lected for calculations presented below: ao, = g, aog = g/2, ¢ = 0.0002 m? /s
and 7y, = 0.01 m3/s%. Additional work is required for systematic study of the
effects of the parameters on model performance and to establish a rational
procedure of selecting parameters for different breaking conditions.

3.5. Numerical efficiency

An important question is the computational efficiency of the model. In
the implicit time marching scheme implemented in the Lagrangian solver,
the most time consuming element is the inversion of a Jacobi matrix used by
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Figure 1: Computation time for modelling of 20 sec of wave propagation by the Lagrangian
solver on a single 2.4 GHz CPU for different mesh size: N, = 11 (solid); N, = 16 (dashed);
N, = 21 (dash-dotted).

the Newton iterations for solving nonlinear grid equations. The required cal-
culation time grows fast with increasing the matrix dimension, which equals
to the number of mesh equations and is proportional to the product of the
dimensions of a numerical mesh. For a matrix inversion algorithm used in
this work, the inversion time is approximately proportional to the square of
the dimension of the matrix. For a 2D problem with a constant value of
N, much smaller than N,, the matrix dimension is proportional to N,. To
provide a uniform discretisation error in space and time, the value of time
step should be proportional to dx which implies that the number of steps
is proportional to N,. Thus, the overall calculation time grows with a rate
proportional to N3, as illustrated by Figure 1 for the numerical presented in
Table 1.

High demand for computational resources for large scale problems is a
well recognised disadvantage of implicit schemes, which often outweighs their
advantages in numerical stability. The radical method of increasing compu-
tational efficiency is using parallel computing. Implicit solvers have a single
standard time-consuming operation and are therefore suitable for efficient
parallelisation. A parallel version of an implicit solver can be created with
minimal changes to the original code by replacing a matrix inversion subrou-
tine with a parallel analogue. This feature is particularly useful in light of
recent advances in GPU-based matrix inversion algorithms, which are much
faster than conventional parallelisation using multiple CPUs (e.g. Sharma
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N, N, 0t, sec || N, N, ot, sec
101 | 11 | 16 | 21 | 0.010 | 251 | 11 | 16 | 21 | 0.004
126 | 11 | 16 | 21 | 0.008 || 401 | 11 | 16 0.0025
201 | 11 | 16 | 21 | 0.005 || 501 | 11 0.002

Table 1: Numerical cases for convergence and validation tests of the Lagrangian model.

et al., 2013).

3.6. Model validation

We validate numerical results against a set of experimental data on prop-
agation of focussed wave groups obtained in a wave flume of the Civil En-
gineering department at UCL. The flume has the width of 45cm and the
length of the working section between two piston wavemakers is 12.5m (see
Figure 2). A paddle on the right end of the flume is used as a wave generator
and the opposite paddle as an absorber. Water depth over the horizontal
bed of the flume was set to h = 40 cm. We use the centre of the flume as the
origin of the coordinate system with the x-axis directed towards the wave
generator positioned at x = 6.25m. The vertical z-axis with the origin at
the mean water surface is directed upwards. The wavemaker uses a control
system with force feedback operating in a frequency domain, which allows
precise control and partial absorption of incident waves to reduce reflections.
The input of the control system is the desired linear amplitude spectrum of
the target wave at the centre of the flume. The control system uses discrete
spectrum and generates periodic paddle motions. For our experiments we
used an overall return period of 128 sec, which is the time between repeating
identical events produced by the paddle. This means that the wavemaker
generates the discrete spectrum with frequencies n/128 Hz, where n is the
integer. We use n = 1...512 to generate 512 frequency components in the
range from 1/128 to 4Hz. Generated waves were monitored by a series of
resistance wave probes measuring surface elevation, and an ultrasonic sensor
was used to record paddle motion.

We apply an iterative procedure (Buldakov et al., 2017) to generate a
Gaussian wave group with peak frequency of f, = 1 Hz focussed at the cen-
tre of the flume with the linear focus amplitude of 2.5 cm. Then, we use the
resulting input spectrum to generate higher amplitude waves by multiplying
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Figure 2: Wave flume layout and positions of wave probes.
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Figure 3: Linearised spectra of experimental wave groups at the focus point (z = 0).
Amplitude (left) and phase (right). Solid— A = 2.5 cm; dashed— A = 5cm; dash-dotted—
A ="75cm.

the input by factors 2 and 3 without further focussing or spectrum correc-
tions. We therefore obtain waves with linear focus amplitudes A = 5cm and
A = T7.5cm. The linearised spectra of generated waves at x = 0 are shown
in Figure 3. As can be expected, non-linear defocussing and transformation
of the spectrum can be observed for higher amplitude waves. The linearisa-
tion is done using the spectral decomposition method described in (Buldakov
et al., 2017), which requires generation of waves with 4 constant phase shifts
A¢p = 0, 7/2, w, 3n/2. In this section we are using results with A¢ = 0,
which corresponds to a peak-focussed linear wave. The resulting waves are
of tree distinct qualitative types. The small amplitude wave (A = 2.5cm)
has weakly non-linear features. The wave with A = 5cm can be described
as a strongly nonlinear non-breaking wave. And the high amplitude wave
(A = 7.5cm) exhibits two intensive breaking events, while it travels along
the flume.

We reconstruct the experimental setup using a numerical wave tank based
on the previously described Lagrangian numerical model. The dimensions of
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Figure 4: Lo-norm of difference between amplitude (left) and phase (right) spectra of a
wave group at x = 0 measured in experiment and calculated by the Lagrangian solver.
Top — A = 5cm; without (solid) and with (dashed) dispersion correction. Bottom —
A = 7.5 cm; breaking control without (solid) and with (dashed) crest correction. N, = 11.

the NWT are the same as the dimensions of the experimental tank. The
wave is generated by implementing the boundary condition (6) on the right
boundary of the computational domain with Xg(z,t) specified by the paddle
displacement recorded in the experiment. To account for gaps between the
paddle and walls and bottom of the experimental wave tank and for frictional
losses at the wavemaker the amplitude of the numerical wave generator is re-
duced by 18.5%. The surface displacement damping term in (9) is activated
near the tank wall opposite the wavemaker to absorb the reflections. Calcu-
lations are performed for all experimental cases, including 3 amplitude values
and 4 phase shifts, and repeated with different time steps and horizontal and
vertical numbers of mesh points. The time step has been reduced with an in-
creasing number of horizontal mesh points to maintain the dispersion errors
due to temporal and spatial discretisation as given by (15), approximately
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Figure 5: Convergence of time history of surface elevation for a wave group at = = 0.
Experiment (thick dashed) and Lagrangian solver: N, = 101 (dashed); N, = 201 (dash-
dotted); N, = 401 (solid); N, = 11. Top — A = 5c¢m without (left) and with (right)
dispersion correction. Bottom — A = 7.5¢m, breaking control without (left) and with
(right) crest correction.

equal to each other. This provides uniform convergence by both parameters.

The summary of parameters for the numerical cases is given in Table 1.
The convergence is tested using an L, norm of the difference between the

experimental and calculated spectral components of the surface elevation at

the linear focus point x = 0. The norms for spectral amplitudes and phases
are calculated as

IB(@)] = \/Zxai — i) 1B = \/Zm ~ G

where the sum is taken over discrete spectral components in the range 0.5 Hz <
f < 1.5Hz from the set generated by the wavemaker (n = 64...192), where
the amplitude components are large enough not to be affected by experimen-
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Figure 6: Convergence of the normalised total energy for the Lagrangian solver with
dispersion correction. A = 5cm. Left — increasing horizontal mesh resolution: N, = 101
(dashed); N, = 201 (dash-dotted); N, = 401 (solid); N, = 11. Right — increasing vertical
mesh resolution: N, = 11 (dashed); N, = 16 (dash-dotted); N, = 21 (solid); N, = 251.

tal errors. It should be noted that full convergence of the calculated results to
the experimental measurements can not be expected. The numerical model
is based on a set of assumptions that are satisfied with limited precision.
In addition, the measurements include some experimental errors. Therefore,
the difference between the experimental and numerical results converges to
a certain small value and does not change with an additional increase in the
resolution of the numerical model.

The selected results of the convergence tests are presented in Figures 4-6.
As can be seen in the top row of Figure 4, the results with and without dis-
persion correction converge to the same solution. However, the introduction
of a dispersion correction considerably increases the speed of convergence
for both amplitudes and phases. The experimental results can be repro-
duced with sufficient accuracy for a relatively small number of horizontal
mesh points and a relatively large time step. For a breaking wave (Figure 4,
bottom row), the shape correction of the crest introduces a new physical pro-
cess. For this reason, the numerical results with and without crest correction
converge to different solutions, and the numerical result with the correction
shows a much better comparison with the experiment. A general impression
of convergence and accuracy of the different versions of the numerical model
can be obtained from the graphs of the time history of surface elevation
presented in Figure 5.

Figure 6 shows the behaviour of the total wave energy in the wave tank
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calculated for different temporal and horizontal resolutions and different res-
olutions of the vertical mesh. Wave absorption is disabled for energy tests.
The energy is normalised by the energy of one wave length A of a linear reg-
ular wave with the frequency and the amplitude equal to the peak spectral
frequency the linear focus amplitude of the wave group. The kinetic energy
is calculated by numerical integration over the entire Lagrangian fluid do-
main using a bi-linear interpolation of the velocities of the fluid particles
inside mesh cells. This provides the second order approximation of the in-
tegral with respect to the mesh resolution. According to (13), the error of
the velocity profiles within the fluid domain, and thus the kinetic energy, is
determined by the horizontal and vertical resolution of the mesh. The poten-
tial energy is calculated as an integral of the potential energy density at the
free surface and is not directly affected by the discretisation of the vertical
mesh. As can be seen in Figure 6, the total energy in the tank increases
up to t &~ 4sec seconds due to the energy generated by the wave paddle.
For low horizontal mesh resolution, the dissipative term in the numerical
dispersion relation leads to the reduction of the energy of the propagating
wave. For higher resolutions, energy conservation is satisfied with high ac-
curacy. The right graph of Figure 6 shows the rapid convergence of energy
with increased vertical resolution. This includes both the convergence of the
numerical integral used to calculate kinetic energy and the convergence of
the numerical solution for wave kinematics, as indicated by expansion (13).
Overall, the convergence tests show that the numerical results converge to-
wards a solution, which approximates the experiment with a good accuracy.
The implementation of the dispersion correction term greatly increases the
convergence rate and provides accurate results with a smaller number of mesh
points and a larger time step.

4. Model application to the evolution of extreme wave groups

After validation of the model in the previous section, this section considers
the performance of the model on the simulation of extreme wave groups with
a focus on modelling the wave breaking process. All results presented in this
section are calculated using a 401 x 16 mesh and the time step 6t = 0.0025 sec.
Figure 7 shows the evolution of the total wave energy for different wave
amplitudes and phase shifts A¢ = 0 and A¢ = m, which correspond to
opposite wavemaker input signals. The wave energy increases from the initial
zero level starting at t ~ —14sec, when the wavemaker begins to operate.
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Figure 7: Normalised total wave energy for different wave amplitudes: A = 2.5cm
(dashed); A = 5cm (dash-dotted) and A = 7.5cm (solid). Left — phase shift A¢ = 0.
Right — phase shift A¢ = 7.

After the wavemaker stops at ¢t ~ —3sec, the total energy remains constant
until wave breaking occurs for high amplitude waves. As expected, the energy
of non-breaking waves is the same for both phase shifts. It can be seen that
for A¢ = 0 there are two breaking events of similar intensity which are
symmetrical with respect to t = 0 and with respect to the centre of the tank
x = 0. For A¢p = m, an intensive breaking event occurs near the centre of
the tank close to t = 0 and a much smaller event later. This is confirmed by
wave observations during the experiments. Later in this section, we will limit
our attention to the large breaking event at the tank centre and consider the
wave with A = 7.5cm and A¢ = .

Figure 8 shows the time history of wave crest elevation at three locations
along the tank. The corresponding wave profiles can be seen in Figure 9.
The difference between measured and calculated wave crests can be observed
in Figure 8 near the top of the crest. It should be noted that for high wave
peaks experimental measurements by wave probes are unreliable. High speed
flow at the crest creates a cavity around the wave probe wires, which gen-
erates an error that reduces the recorded crest elevation. However, for the
main part of the crest, the calculated and experimental results are compared
with good accuracy. The rounded end of the overturning wave observed in
Figure 9 is explained by the surface tension which produces a considerable
effect on the relatively small experimental scale. At x = 0.2m the breaking
model is not yet operational and the Lagrangian solutions with and without
the breaking model are identical. At z = 0, the top of the wave crest begins
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Figure 8: Time histories of wave crest evolution at different positions along the flume,
A =75cm, Ap = w. Experiment (solid); Lagrangian model (dash-dotted); Lagrangian
model with breaking model (dashed).

to deform. It moves faster than the main body of the crest and eventually
overturns. At this stage, the breaking model turns on the damping, and the
shape of the crest with and without the breaking model becomes different.
Farther along the tank, at x = —0.2m, the top of the crest begins to over-
turn and forms a vertical front. The shape of the crest with the operating
breaking model differs considerably from the shape of the crest that evolves
freely. However, the difference is located near the top of the crest and the
rest of the wave is unaffected by the breaking model. Examples of horizon-
tal and vertical velocity profiles at the wave crest and on the front and rear
slopes are given in Figure 10. The profiles are presented at the moment when
surface elevation reaches its maximum at x = 0 and when the overturning
crest begins to develop. The difference between calculated velocities with
and without breaking model can be observed near the top of the wave crest
but quickly disappears everywhere else. Calculations without the breaking
model are continued until the self contact of the overturning wave occurs at
t = —0.36sec (Figure 9). After that, the results produced by the Lagrangian
model without the breaking model cease to be physically meaningful. The
breaking model allows continuing calculations beyond this point. As can
be seen in Figure 9, the solution with the breaking model reproduces rela-
tively well the shape of the self-contacting wave crest, which provides a good
starting point for further simulation of the post-breaking wave.
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Figure 10: Horizontal (left) and vertical (right) velocity component profiles at ¢t =
—0.665 sec and different positions along the flume. Lagrangian model (solid); Lagrangian
model with breaking model (dashed). The time corresponds to the maximal surface ele-
vation at z = 0.

5. Model application to waves on sheared currents

One of the advantages of the Lagrangian formulation is that it offers a
simple treatment of flows with vorticity and is therefore suitable for modelling
waves on sheared currents. A sheared current can be defined by specifying
the vorticity that depends solely on the vertical Lagrangian coordinate c. For
our choice of the Lagrangian labels the parallel current can be specified as
x=a+V(c)t; z = c, where V(c) = V(%) is the current profile. Substitution
to (3) gives

Qa,c) =Qc) =V'(c) . (16)

Therefore, the waves on a sheared current with an undisturbed profile V'(z)
are described by equations (1, 3) with the free surface boundary condition
(4), the bottom condition (5) and the vorticity distribution given by (16).
As before, the numerical implementation is based on a form of the governing
equations given by (7) and the free surface boundary condition with the
dispersive correction (14) with additional terms in the right-hand side. For
wave-current calculations we use the following additional terms

RHS =k(a) ((z: —V(c)) g + 2t2a) + Pr(x,t) 24 - (17)
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Figure 11: Schematic representation of the Lagrangian numerical wave-current flume.
The upper graph demonstrates the shapes of distributions for the surface pressure P and
the dissipation coefficient k from equation (17). Wave and current directions and wave
generation and absorption zones are indicated.

The first term of (17) is the modified dissipation term and the second term is
the time varying surface pressure gradient that is used for wave generation.
The breaking model is not implemented in the wave-current version of the
solver.

The numerical wave-current flume is created by specifying inlet and outlet
boundary conditions, distribution of the surface dissipation k(a) and the
surface pressure gradient P,(z,t). The NWT design should provide free
current inflow and outflow to and from the computational domain, wave
generation on the current, and absorption of waves incident to the domain
boundaries to eliminate reflections. The dissipation coefficient is set to zero in
the working section of the flume. It gradually increases to a large value near
the input and output boundaries to ensure a stable horizontal free surface
that remains at the initial position z = 0. This provides parallel input and
output flows and serves a double purpose. Firstly, the reflections from the
boundaries are significantly reduced. Secondly, the inlet and outlet boundary
conditions can be specified as the undisturbed velocity profile at the inlet and
as a parallel flow at the outlet

(@i, e, t) =V (e);  za(aou,c,t) =0.

The wave is generated by creating an area in front of one of the wave absorp-
tion zones where the pressure distribution of a prescribed shape is defined.
The time varying amplitude of the pressure disturbance is used as the con-
trol input for this pneumatic wave generator. It should be noted that the
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Figure 12: Diagram of the procedure of deformation and re-labelling of the Lagrangian
mesh.

generated waves propagate in both directions, but the waves propagating
backwards are damped by the first absorption zone. Figure 11 illustrates the
setup of the Lagrangian numerical wave-current flume.

An additional difficulty with the numerical realisation of the Lagrangian
formulation on sheared currents is the continuous deformation of the origi-
nal physical domain. The accuracy of the calculations for highly deformed
meshes decreases considerably. If the deformation is too strong, this can lead
to calculations breakdown. To avoid these difficulties, we carry out shear de-
formation of the Lagrangian domain to compensate for the deformation of the
physical domain. The deformation takes place after several time steps and
brings the boundaries of the physical domain back to the vertical lines. After
that, we re-label the fluid particles with new values of Lagrangian coordinates
in order to preserve the rectangular shape of the Lagrangian computational
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Figure 13: Horizontal velocity profiles for following (left) and opposing (right) currents.
PIV measurements (grey dots) and profiles used as the input to the Lagrangian model
(solid).

domain with the vertical and horizontal lines of the computational grid. The
procedure is illustrated in Figure 12.

We use the numerical wave-current flume to reproduce the results of an
experimental study of focused wave groups over sheared currents. The exper-
imental flume is 1.2 m wide and the distance between two piston wavemakers
is about 16 m. The depth for all tests is h = 0.5m. A recirculation system
with three parallel pumps and vertical inlets 13 m apart is used to create a
current. A paddle on the right end of the flume is used as a wave generator
and the opposite paddle as an absorber. Trapezoidal wire mesh blocks are
installed above the inlet and outlet to condition the flow and create a desired
current profile. The surface elevation at selected points along the flume is
measured by resistance wave probes and a PIV system is used to measure
flow kinematics. An iterative procedure (Buldakov et al., 2017) is used to
focus the wave group at a prescribed time and place. We use the same coor-
dinate system as previously with the origin on the water surface at the centre
of the flume, the z-axes directed towards the wave generator and the z-axis
directed upwards. The wave probe at position = 4.7 m is used to match the
linearised amplitude spectrum with the target spectrum, and the wave probe
at x = 0 for focussing the phase of the generated wave group. A broadband
Gaussian spectrum with peak frequency f, = 0.6 Hz is used as the target
spectrum. Wave groups having different linearised focus amplitudes A on
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Figure 14: Time history of surface elevation for a wave group at = 4.7m (left) and 2 = 0
(right) over a following (top) and opposing (bottom) currents. Experiment (dashed) and
Lagrangian solver (solid).

opposing and following sheared currents with different surface velocities V}
are generated in the experimental study. We use a moderately steep wave
with A = 7cm propagating on currents with V) ~ 0.2m/s as a test case for
comparison with numerical results. More details of the experimental setup
and methodology can be found in Stagonas et al. (2018a).

Since the experimental and numerical wave flumes have different wave
generators and the flow conditioner can not be modelled adequately, direct
replication of the experiment in the numerical flume is not possible. We
therefore apply in the numerical flume the same iterative wave generation
procedure as in the experimental flume using the linearised experimental
spectrum as a target. This makes it possible to generate the wave which re-
produces the linearised experimental wave with the accuracy of the iterative
procedure. This also ensures that the higher order bound wave components
are also modelled with the corresponding accuracy. However, the higher or-
der spurious components generated by the experimental and numerical wave-
makers are different. This is one of the main sources of difference between
experimental and numerical results. The current profiles applied in the La-
grangian model are obtained from PIV measurements of the current velocity,
as shown in Figure 13. PIV data only cover the upper part of the water
depth (z > —0.3m). The shape of the lower part of the profiles is recon-
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structed from the ADV measurements available for currents with a slightly
higher discharge.

The comparison of the numerical results with the experiment is shown in
Figures 14 and 15. Both the surface elevation (Figure 14) and the combined
wave and current velocity profiles (Figure 15) demonstrate good agreement.
The contribution of spurious free components to the difference between the
measured and calculated surface elevation is clearly visible in Figure 14. For
the opposing current, one can also observe the effect of the dispersive error on
the phase difference of the results at x = 4.7 m. Because the wave is focused
at the centre of the flume both in the experiment and in the calculations, the
dispersive error increases with the increasing distance from the focus position
x = 0. This error is higher for the opposite current due to the longer effective
path of the wave travelling against the current.

6. Concluding remarks

As brief conclusions, we would like to offer reflections on the practical
application of wave propagation models to generate incoming waves in wave-
structure interaction calculations. It is obvious that the application of a fast
but accurate numerical model in a large domain to generate a wave input
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for a CFD wave-structure interaction solver operating in a much smaller
domain offers considerable savings in computational resources. There are
two ways to implement this approach. The first involves modelling a random
sea state over a large area and a large period of time. Surface elevation and
kinematics of selected events, e.g. extreme waves, is then used as input for a
CFD solver. HOS models have a clear advantage for such an approach. The
benefits of this method are recognised by the industry. See for example the
recent feature article from DNV-GL where an application of a HOS model
is reported to provide a realistic nonlinear wave input for the CFD wave-
structure interaction code (Bitner-Gregersen, 2017).

In the second approach, a NWT is used in a manner similar to an exper-
imental wave tank for generating a preselected wave event or for replicating
a physical wave tank experiment. Any computationally efficient NWT based
on an appropriate wave model can be used for this purpose, including the
models described in this chapter. None of them seems to have obvious ad-
vantages except for the Lagrangian model in the case of waves on sheared
currents. For this method, accurate generation of a desired wave event or
reconstruction of experimental conditions is important because errors due to
incorrect wave input may be larger than errors of a numerical scheme. The
application of an iterative wave generation technique may be recommended
as an effective solution to this problem. Such techniques are common in wave
tank experiments and can be similarly applied in numerical wave tanks (e.g.
Fernandez et al., 2014; Buldakov et al., 2017; Stagonas et al., 2018b). An ex-
ample of an accurate reconstruction of the experimental wave conditions by
an advanced iterative technique in a Lagrangian NWT with an application
as input to a wave-structure interaction CFD model can be found in Higuera
et al. (2018).

The methods described above use the so called one-way coupling between
the wave-propagation and CFD models. This means that the wave propaga-
tion model is used independently and is not influenced by the CFD model.
We believe that for wave-structure interaction problems, this method of com-
munication between models is preferable to real-time two-way coupling, espe-
cially when iterative wave generation is used. The computationally demand-
ing CFD component is not executed during the iterative wave generation
phase, and the wave propagation component is not executed when the wave
interaction with a structure is simulated. Moreover, once generated, wave
input can be used in different CFD models using different numerical meth-
ods and applied to different structures. One of the technical problems to
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be solved when applying the one-way coupling approach is to not allow the
waves reflected by the structure to be reflected back to the domain by exter-
nal domain boundaries. At the same time, the precise transition of the wave
kinematics generated by the propagation model to the CFD domain must be
ensured. This can be done in different ways.

For example, Higuera et al. (2018) used Lagrangian kinematics and sur-
face elevation to specify the boundary condition for velocity on a front bound-
ary of a rectangular CFD domain. Active dissipation was applied at the
rear boundary and passive dissipation at the side boundaries of the domain.
Another approach is using a cylindrical grid with a ring-shaped relaxation
zone. This mesh type provides better resolution around a structure. The
equations within the relaxation zone are modified to introduce a dissipation
of disturbances of the incoming wave solution with a dissipation coefficient
gradually increasing from zero on the inner edge of the relaxation zone to
a high value on its outer edge. In this way, the incoming wave is imple-
mented on an outer boundary of the computational domain and propagates
freely into the domain interior. At the same time, the waves reflected by the
structure propagates freely in the field and dissipates inside the relaxation
zone without being reflected back. The size of the computational domain
is proportional to the wavelength of the incoming wave and the width of
the relaxation zone to the length of the wave reflected or radiated by the
structure. Normally, the reflected wave has the same length as the incoming
wave, but in certain situations, e.g. for slender structures, the peak of the
reflected spectrum is shifted towards higher frequencies. For such structures
the width of the relaxation zone can be reduced. This is also the case for
waves radiated by ringing structures. The optimal sizes of the main com-
putation domain and the relaxation zone depend on a particular wave and
structure. Practical recommendations on their selection for different types
of structures and waves should be developed as a result of the convergence
study with respect to these parameters.
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