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Fig. 1. Differentiable compositing. We present a differentiable function F to composite a set of discrete elements into a pattern image. This directly connects
vector graphics to image-based losses (e.g., 𝐿2 loss, style loss) and allows us to optimize discrete elements to minimize losses on the composited image.
Minimizing an 𝐿2 loss gives us a decomposition of an existing flat pattern image into a set of depth-ordered discrete elements that can be edited individually.
Minimizing a style loss allows us to make a pattern tileable or expand a pattern image into a larger pattern composed of discrete elements.

Patterns, which are collections of elements arranged in regular or near-
regular arrangements, are an important graphic art form and widely used
due to their elegant simplicity and aesthetic appeal. When a pattern is en-
coded as a flat image without the underlying structure, manually editing the
pattern is tedious and challenging as one has to both preserve the individual
element shapes and their original relative arrangements. State-of-the-art
deep learning frameworks that operate at the pixel level are unsuitable for
manipulating such patterns. Specifically, these methods can easily disturb
the shapes of the individual elements or their arrangement, and thus fail
to preserve the latent structures of the input patterns. We present a novel
differentiable compositing operator using pattern elements and use it to dis-
cover structures, in the form of a layered representation of graphical objects,
directly from raw pattern images. This operator allows us to adapt current
deep learning based image methods to effectively handle patterns. We eval-
uate our method on a range of patterns and demonstrate superiority in the
context of pattern manipulations when compared against state-of-the-art
pixel- or point-based alternatives.

Authors’ addresses: Pradyumna Reddy, University College London; Paul Guerrero,
Adobe Research; Matt Fisher, Adobe Research; Wilmot Li, Adobe Research; Niloy J.
Mitra, Adobe Research, University College London.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/12-ART262 $15.00
https://doi.org/10.1145/3414685.3417830

CCS Concepts: •Computingmethodologies→Motif discovery; Image
processing; Shape analysis.

Additional Key Words and Phrases: patterns, unsupervised learning, pattern
editing, auto correct and completion, space of patterns

ACM Reference Format:
Pradyumna Reddy, Paul Guerrero, Matt Fisher, Wilmot Li, and Niloy J.
Mitra. 2020. Discovering Pattern Structure Using Differentiable Compositing.
ACM Trans. Graph. 39, 6, Article 262 (December 2020), 15 pages. https:
//doi.org/10.1145/3414685.3417830

1 INTRODUCTION
Advances in deep learning, both in terms of network-based opti-
mization as well as generative adversarial networks, have resulted
in unprecedented advances in many classical image manipulation
tasks. For example, deep learning is now the state-of-the-art in
image denoising [Guo et al. 2019; Lehtinen et al. 2018], image styl-
ization [Gatys et al. 2016; Jing et al. 2019; Karras et al. 2019], image
completion [Yu et al. 2018, 2019], texture expansion [Shaham et al.
2019; Zhou et al. 2018] to name only a few. Generally, these methods
directly operate on pixels and learn to optimize for image-space
perceptual features or match kernel response statistics to produce
compelling results.

Complementary to photographs and paintings, a dominant form
of creative content is graphic patterns or simply patterns. Such
patterns are created by artists as collections of discrete numbers
of elements, often structured in regular or near-regular arrange-
ments. The aesthetics of such patterns are dictated by both the
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input oursNSTSSinGAN

Fig. 2. Image-based DL methods can break elements in patterns. Image-
based pattern expansion methods like SinGAN [Shaham et al. 2019] or
NSTS [Zhou et al. 2018] do not preserve element shapes. Our method is
based on discrete elements and guarantees shape preservation. Here we
show crops from expansions of the input pattern on the left.

arrangement of the discrete elements as well as the shape of the
individual elements. Given a pattern, the user may may want to
perform several manipulations: collectively edit the appearance of
similar elements, replace the current set of elements with a different
set, change the depth ordering of the elements, or redistribute the
elements to match the style of a target pattern.
The common theme across the above applications is that they

require the ability to synthesize the pattern according to some user-
defined specifications while preserving the original pattern struc-
ture, i.e., the global arrangement of elements and the appearance
of individual elements. In most real-world examples, patterns are
expressed as flat pixel images and such structures are not explicitly
encoded.
Without direct access to the underlying pattern structure, lim-

ited options exist to effectively manipulate the patterns. One can
treat an input pattern as an image, and use state-of-the-art image
manipulation methods. These methods, being oblivious of the un-
derlying elements and their arrangements, operate directly on the
pixels and can easily destroy the original element shapes and their
arrangements (see Figure 2). Alternately, one can manually select
each individual element, arrange them into a layered structure, and
then adjust the elements using image editing software. While such a
workflow retains the shape of the respective elements, individually
selecting and moving each element is both tedious and challenging
especially when elements overlap, and the global arrangement of
the elements must be manually preserved.

In this paper, we develop a pattern manipulation framework that
preserves both the shape of the elements and their global arrange-
ments. We achieve this by directly working with the individual
elements, explicitly optimizing for element placements (i.e., loca-
tions, depth order, and orientations), while simultaneously assessing
the quality of the arrangement of the manipulated pattern using
image-domain statistics. Specifically, we optimize explicitly over
the space of element placements while assessing the quality of the
resultant pattern directly in the image domain using deep image
features. Our main contribution is a novel differentiable composi-
tor (DC) that links, in a smooth and differentiable fashion, changes
in the selection and placement of the the pattern elements to vari-
ations in features in the resultant pattern image. For example, in
Figure 1, starting from a flat pattern image with access to the differ-
ent element types, the proposed DC can not only solve the inverse
problem of disentangling the image into a layered representation of

graphical objects (i.e., location, orientation, type, and depth order)
along with the background image, but also be used to manipulate
the patterns while keeping their original style. We further general-
ize the proposed DC to handle multiple element types and increase
robustness and convergence via a multiscale framework.
We evaluate our method on a variety of pattern designs of dif-

ferent complexity. Specifically, we compare against a state-of-the-
art image space method [Zhou et al. 2018], a point-based synthe-
sis method [?], as well as a single-image similarity maximizing
GAN [Shaham et al. 2019]. Our result shows the advantage of oper-
ating concurrently in the pixel domain and the structured elements
domain via the proposed differentiable compositor.

In summary, we introduce a novel differentiable compositing op-
erator and use it to extend deep learning based image manipulation
methods to directly operate on input patterns while preserving both
the geometry of the individual elements and the image-domain sim-
ilarity of the resultant patterns with respect to the original input.
We will make our code publicly available upon publication.

2 RELATED WORK
In our experiments, we focus on two applications of our differen-
tiable compositing method: pattern decomposition, where a pattern
image is decomposed into its constituent elements that con subse-
quently be edited, and pattern expansion, where a pattern image is
used to synthesize a layout of discrete elements on a larger canvas
that mimics the style of the original pattern. In this section, we
briefly describe work relevant to these applications.

2.1 Template matching
Given a set of distinct elements that are used in a pattern, pattern
decomposition can be approached as a template matching problem,
where parameters of each element instance, such as its position and
orientation, are found in the pattern image. A large body of prior
work exists in template matching. Here we present a subset that is
relevant to our approach. Existing approaches differ mainly in their
search strategies and similarity metrics. In the absence of gradients
to guide the search for matches, the main employed strategies are
variants of a grid search [Briechle and Hanebeck 2001; Cheng et al.
2010; Korman et al. 2013; Wei and Lai 2008], which can get prohib-
itively expensive as the number of element parameters increases,
and frequency domain matching [Hel-Or and Hel-Or 2005; Lewis
1995; Mattoccia et al. 2008], which can only handle a limited set of
element parameters. The similarity between the template and an
image patch is measured with a variety of hand-crafted metrics in
earlier methods. Ouyang et al. [2011] present an overview of search
strategies and early similarity metrics. PatchMatch [Barnes et al.
2009] is probably the most established of the non-learning based im-
age matching methods that uses a random search strategy followed
by iterative growing of initial matches. We include a comparison to
our differentiable approach in Section 7.

More recent methods use data-driven features [Dekel et al. 2015;
Talmi et al. 2017] or data-driven similarity metrics [Bai et al. 2016;
Han et al. 2015; Hanif 2019; Luo et al. 2016; Melekhov et al. 2016;
Rocco et al. 2017; Tang et al. 2016; Thewlis et al. 2016; Wu et al.
2017] that typically learn a prior from large datasets. This results
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in improved robustness to conditions such as illumination changes
and certain deformations, but may come at the cost of reduced gen-
eralization to templates that differ significantly from the examples
in the training set. A Siamese network is typically trained with
pairs of matched and unmatched patches to estimate the similar-
ity, which can further be improved by carefully selecting training
pairs [Simo-Serra et al. 2015] or re-weighting matches based on
their uniqueness [Cheng et al. 2019].
Our method is orthogonal to these approaches. For the types

of images we are investigating, our method can provide gradients
for the matching problem. These gradients can be used with any
existing (differentiable) template similarity metric to make searching
in a high-dimensional space of element parameters feasible.
Inverse procedural modeling systems [Št’ava et al. 2010; Talton

et al. 2011] share our goal of recovering a set of parameter values for
a parametric model that generate a given output, although they use
parametric formulations that are not differentiable, unlike ours, and
typically work in different outputs domains (3D models or vector
graphics).

2.2 Image-based texture synthesis
In this section we briefly describe image-based texture synthesis
methods that are relevant to our pattern expansion application.
Note that during synthesis, image-based methods do not distinguish
between individual elements, making them less useful for down-
stream editing. Various deep learning based strategies have been
successfully developed for this problem. These methods differ in
the controls that they provide and there is a trade-off between the
quality and the diversity of the generated output.
An early line of work synthesizes texture by optimally tiling

patches from an exemplar over a an image region [Barnes et al.
2009; Efros and Freeman 2001; Hertzmann et al. 2001; Kwatra et al.
2003; Liang et al. 2001; Rosenberger et al. 2009]. The results can
be used to expand exemplars into larger textures, fill holes, or to
stylize and manipulate images. In their influential work, Gatys et
al. [2016] proposed a style loss for the synthesis of stylized images.
They observed that the statistical correlation between certain deep
features can be used as a measure of texture or stylistic similar-
ity, where the correlation can be measured by the Gram matrix
of the features computed with a pre-trained VGG-19 network [Si-
monyan and Zisserman 2015]. Using this loss, texture or style can
be transferred from one image to another via direct pixel-level op-
timization. Subsequently, Ulyanov et al. [2016] proposed a variant
of this approach that does not require optimization at inference
time, by training a network to generate stylized images in a single
feed-forward step. Since these methods have no notion of individ-
ual pattern elements, they cannot preserve the integrity of pattern
elements, when directly applied to pattern images (see Section 7).

Zhou et al. [2018] proposed a framework to expand non-stationary
textures to span larger canvases. Themain idea is to combine a Gram
matrix based texture similarity score, comparing random crops of the
generated images to crops from the source image, and a GAN-based
adversarial loss term. While the method works impressively on
texture images, it also has no notion of individual elements, and can
therefore not preserve the shape of the original elements. Further,

the results lack any diversity in the output. Similar ideas [Shaham
et al. 2019; Shocher et al. 2019] have been proposed to learn from
a single image to generate a diverse set of similar looking images.
Both of the approaches train a CNN in an adversarial setup to
progressively generate images. While these techniques are able to
synthesis diverse set of images, the generated images lose global
structure, and can destroy characteristic arrangements in patterns.
Also the generated images do not maintain the integrity of the
elements in the training image.

Differentiable renderers [Liu et al. 2018, 2019; Loubet et al. 2019]
have been used to find deformations of 3D shapes that produce
output images with a given style. These methods also rely on a
differentiable image generation approach. However, in our work,
we do not aim at moving triangles with small offsets, but rather
at moving large elements with complex shapes and textures over
relatively long distances to reach their target positions, while also
optimizing for the number and types of elements.

2.3 Point-based pattern synthesis
Several methods represent pattern elements as points in a high-
dimensional parameter space, like the space of positions and orien-
tations. Unlike the image-based representation, this representation
takes into account the discrete nature of pattern elements, but loses
the notion of element shape and appearance, both of which may
influence the element layout in real-world patterns. Some methods
had success in synthesising textures with discrete elements [Hurtut
et al. 2009; Landes et al. 2013; Ma et al. 2011; Roveri et al. 2015], but
are handcrafted for specific types of patterns and do not general-
ize well to other types of patterns, or require manually arranging
the discrete elements into an exemplar texture. More general meth-
ods [Heck et al. 2013; Illian 2008; Öztireli and Grossy 2012; Roveri
et al. 2017; Zhou et al. 2012] produce point patterns by matching
spectral statistics, but cannot capture the local structure of elements
due to the use of statistics. Patterns with discrete elements can also
be manipulated efficiently by considering the shared geometric re-
lationships between elements [Guerrero et al. 2016], but require
these relationships to be given, and cannot synthesize patterns from
scratch.

More recently, deep learning methods for point cloud generation
have been proposed [Achlioptas et al. 2018; Li et al. 2018; Sun et al.
2018], but thesemethods treat point clouds as 3D surfaces so they are
not particularly suitable for point pattern synthesis out of the box.
Other recent methods [Leimkühler et al. 2019; Müller et al. 2018]
deal with points from a sampling perspective, so the distribution
of the points is taken into consideration. Recently, Tu et al. [2019]
present a method for expanding point patterns using a style loss.
They represent points in the form of an image and use this exemplar
as reference to optimize pixel values on larger canvas using style
loss, histogram loss and correlation loss. While their results are
compelling they do not account for the shape or appearance of the
element. Also extending their method to deal with elements that
are not interchangeable is not straight forward.

3 OVERVIEW
The prevalent approach to create illustrations and patterns is to com-
posite an image from a set of discrete elements. Specifically, a set of
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Fig. 3. Overview of the image compositing process. Given a set of elements, each describing an instance of a small image patch at a position 𝑐𝑖 , orientation 𝜃𝑖 ,
and depth 𝑧𝑖 , we first place each element in a separate image layer with the function 𝑓𝑡 and then combine the layers into the final image according to the
element depth with function 𝑓𝑐 , where layers with higher depth occlude layers with lower depth. We describe the traditional non-differentiable formulation of
𝑓𝑡 and 𝑓𝑐 in Section 4, and our new differentiable formulation in Section 5.

discrete elements, with each element having its own properties (i.e.,
type and its placement), are arranged on a canvas and combined
into a single image. Our goal is to create a differentiable compositing
function for such discrete elements. Enabling the differentiability
of the function, with respect to the element properties, allows us
to leverage image-space loss on the composited image to directly
drive the optimization of the discrete elements, both the choice of
elements as well as their placements. This directly connects vec-
torized patterns to a range of losses available for images, such as
L2 image loss or perceptual style loss, and in turn, enables vector
graphics to benefit from advances in deep image processing.

In this work, we will focus on pattern images that are composed
from a small set of atomic image patches that are instanced multiple
times and arranged, possibly as overlapping layers, over a back-
ground canvas to form a pattern. We call the instances of these
patches pattern elements. Each element is defined by a set of param-
eters, such as its position, orientation, and depth.

A compositing function that takes these elements and outputs a
composited image is illustrated in Figure 3 and can be described in
two main steps: first, a layer is created for each element that has
the same size as the output image and contains the image patch cor-
responding to the element, at the position and orientation given by
the element parameters; second, the layers are combined according
to the depth given by the element parameters, where elements in
layers with higher depth occlude layers with lower depth.
In Section 4, we present the traditional formulation F t of this

compositing function, as it is often used in software such as Photo-
shop, Illustrator, and Powerpoint. Due to discrete quantities such
as the number of elements and their visibility, this formulation is
not differentiable. In Section 5, we show, as our core contribution,
that this formulation can be generalized as a differentiable image
composition function F . In Section 6, we describe our approach to
optimize image compositions w.r.t. the element parameters using
our differentiable formulation (see Table 1 for notations).

4 TRADITIONAL IMAGE COMPOSITING
In a forward process, we create an RGB image 𝐼 t by compositing a
given set of 𝑛 discrete elements Et B {𝐸t0 . . 𝐸

t
𝑛} with a function F t

to produce image value at 2D image coordinate x as,

𝐼 t (x) B F t (x, Et) . (1)

Each element 𝐸t
𝑖
is defined as a translated and rotated instance of

an 𝑅𝐺𝐵𝑀 image patch 𝐻 𝑗 selected from a small library of image
patchesH = {𝐻1 . . 𝐻𝑚}, where𝑀 is a binary coverage mask that
defines the region of the image patch covered by the element. An
image patch represents the appearance of an element and is typically
much smaller than the image 𝐼 . Each element consists of a property
tuple 𝐸t

𝑖
B (𝜏𝑖 , 𝑐𝑖 , 𝜃𝑖 , 𝑧𝑖 ), where 𝜏𝑖 ∈ {1 . .𝑚} is an index intoH that

denotes the element type, 𝑐𝑖 ∈ R2 denotes the coordinates of the
element center, 𝜃𝑖 ∈ [0, 2𝜋) denotes the orientation of the element,

Table 1. Notation table.

symbol description
𝐼 RGB image
x image location

E B {𝐸0 . . 𝐸𝑛} set of elements
F (differentiable) compositing function

H B {𝐻0 . . 𝐻𝑚} library of image patches
𝐸𝑖 B (𝜏𝑖 , 𝑐𝑖 , 𝜃𝑖 , 𝑧𝑖 ) element properties

𝜏𝑖 type of element 𝑖
𝑐𝑖 center location of element 𝑖
𝜃𝑖 orientation of element 𝑖
𝑧𝑖 layer depth of element 𝑖
𝑓𝑡 element transformation function
𝑓𝑐 element compositing function

J B {𝐽0 . . 𝐽𝑛} layers
𝑇𝑖 element transformation matrix
𝜅 interpolation kernel

𝑣𝑖 (𝑥) visibility function of layer 𝑖
𝑡𝑖 = (𝑡0

𝑖
. . 𝑡𝑚

𝑖
) type probability vector of element 𝑖
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and 𝑧𝑖 ∈ Z+ defines the occlusion order of the elements. In regions of
overlap, elementswith higher 𝑧 occlude elementswith lower 𝑧. In the
case of patterns, we typically have a small set of element types (e.g.,
𝑚 ≤ 5) each of which appears multiple times in the pattern image
(i.e.,𝑚 ≪ 𝑛). We treat the background 𝐻0 as a special element with
a fixed set of parameters 𝐸𝑡0 B (𝜏0 = 0, 𝑐0 = (0, 0), 𝜃0 = 0, 𝑧0 = 0).
Given this collection of ingredients, we create an image in two

steps. First, the function 𝑓 t𝑡 transforms the image patch of each
element according to its property vector, and then re-samples the
transformed image patch at the pixels of the image 𝐼 to obtain one
image layer 𝐽 t

𝑖
per element. Second, the function 𝑓 t𝑐 combines the

occlusion-ordered individual layers into a single image:

𝐼 t (x) B F t (x, Et) = 𝑓 t𝑐
({
𝑓 t𝑡 (x, 𝐸t𝑖 )

}
𝑖=0:𝑛

)
. (2)

Transforming elements. In the first step, we rasterize each ele-
ment on its separate image layer, resulting in a set of layers J 𝑡 =

{𝐽 t0 . . 𝐽
t
𝑛} as 𝐽 t𝑖 (x) = 𝑓 t𝑡 (x, 𝐸t𝑖 ). We initialize the 𝑅𝐺𝐵𝑀 channels of

each layer to zero and then place the image patch of the correspond-
ing element by translating it to its center position 𝑐𝑖 and orienting
it according to 𝜃𝑖 . For layer 𝑖 , we transform the image coordinates x
into the local coordinate frame of the element using the element’s
inverse transform, and then sample the image patch of the element
with the local coordinates as:

𝑓 t𝑡 (x, 𝐸t𝑖 ) B 𝐻𝜏𝑖

(
⌊𝑅−1

𝜃𝑖
(x − 𝑐𝑖 )⌉

)
, (3)

where 𝑅𝜃 denotes a 2 × 2 matrix encoding rotation by angle 𝜃 and
⌊⌉ indicates rounding to the nearest pixel location.

Combining occlusion-ordered element layers. In the second step,
we combine the layers J to get the composited image 𝐼 t (x) =

𝑓 t𝑐 ({𝐽 t𝑖 (x)}𝑖=0:𝑛) by stacking layers on top of each other according
to the occlusion order of their elements, where layers with a higher
𝑧-value occlude layers with with lower 𝑧. This gives the following
definition for the composited image:

𝐼 t (x) =
𝑛∑︁
𝑖=0

𝐽 t𝑖 (x)𝑣𝑖 (x) (4)

where 𝑣 t
𝑖
(x) ∈ {0, 1} is the visibility of layer 𝑖 at each image location

x. Only the layerwith non-zeromask𝑀 and highest 𝑧-value is visible
at each image location, i.e.,

𝑣 t𝑖 (x) =
{

1 if 𝑖 ∈ argmax𝑗 𝑧 𝑗𝑀
t
𝑗
(x)

0 otherwise, (5)

where𝑀 t
𝑗
is the coverage mask of the layer 𝐽 𝑡

𝑗
.

5 DIFFERENTIABLE IMAGE COMPOSITING
Given a composited image, the inverse problem is to recover a set
of elements, both their count and individual properties. Solving
this problem requires differentiating the compositing function with
respect to the (unknown) element properties. However, doing so
with the traditional compositing function, introduced above, is dif-
ficult due to several factors: (i) the nearest neighbor rounding, see
Equation 3, prevents taking gradients with respect to element loca-
tion and/or orientation; (ii) the discrete visibility 𝑣 t

𝑖
, see Equation 5,

prevents taking gradients with respect to the element occlusion

order; (iii) the count 𝑛 of elements and (iv) their types 𝜏𝑖 are discrete
variables preventing us from taking their derivatives.

We introduce a differentiable image compositing function F that
addresses these challenges by generalizing the traditional composit-
ing functionF t. In particular, we replace the nearest neighbor round-
ing with a differentiable interpolation kernel for sampling image
patches, and convert the discrete variables in F t into soft, continu-
ous variables in F , and use a multi-resolution pyramid to smooth
the composite spatially. While the basic image formation process
remains similar, these generalizations require some important ad-
justments to the compositing formulation.

Similar to before, we create an RGB image 𝐼 by compositing a set
of 𝑛 discrete elements E B {𝐸0 . . 𝐸𝑛} with a differentiable function
F as,

𝐼 (x) B F (x, E), (6)

where x are 2D image coordinates. We also assume availability of a
library of 𝑅𝐺𝐵𝑀 image patchesH B {𝐻1 . . , 𝐻𝑚}. Each element is
given a tuple of variables 𝐸t

𝑖
B (𝑡𝑖 , 𝑐𝑖 , 𝜃𝑖 , 𝑧𝑖 ), where 𝑡𝑖 = (𝑡1

𝑖
. . , 𝑡𝑚

𝑖
)

softens the element type 𝜏𝑖 into a vector of logits 𝑡 𝑗
𝑖
of the prob-

ability that element 𝐸𝑖 is of type 𝑗 , 𝑐𝑖 ∈ R2 denotes the coordi-
nates of the element center, 𝜃𝑖 ∈ R denotes the orientation of
the element in radians, and 𝑧𝑖 ∈ R defines the occlusion order
of the elements, where elements with higher 𝑧 occlude elements
with lower 𝑧. The background 𝐻0 is represented with the element
𝐸0 B (𝑐0 = (0, 0), 𝜃0 = 0, 𝑧0) that does not have type logits 𝑡0 and
is placed at a fixed depth 𝑧0. Unlike in traditional compositing, the
depth 𝑧𝑖 of any element can be smaller than the background depth
𝑧0, making it invisible in the final composite, due to being fully
occluded by the background. This provides a simple mechanism to
make the number of elements differentiable without introducing
additional parameters. We set 𝑛 to a large number (between 100
and 1024 in our experiments), and remove any elements in the final
composite that end up hidden below the background (i.e., 𝑧𝑖 < 𝑧0).

Similar to the earlier formulation, we define the composited image
in two steps. First, the function 𝑓𝑡 transforms the image patches
of each element according to the element properties, and then re-
samples the transformed image patch at the pixels of the image 𝐼
to obtain one image layer 𝐽𝑖 per element. Second, the function 𝑓𝑐
combines the layers according to the occlusion order into a single
image:

𝐼 (x) := F (x, E) = 𝑓𝑐

({
𝑓𝑡 (x, 𝐸𝑖 )

}
𝑖=0:𝑛

)
. (7)

Our goal is to define a function F that is differentiable with respect
to the properties 𝐸𝑖 of all elements. Later, we show how the dif-
ferentiable function allows computing the gradients 𝜕𝐿 (𝐼 )

𝜕𝐸𝑖
of any

differentiable image loss 𝐿(𝐼 ) with respect to the properties 𝐸𝑖 .

Transforming elements. In the first step, we place each element
on a separate image layer, resulting in a set of layers J := {𝐽1 . . 𝐽𝑛}
as 𝐽𝑖 (x) := 𝑓𝑡 (x, 𝐸𝑖 ). We set 𝐽0 with depth 𝑧0 = 𝛾 with a (unknown)
constant color 𝐽0 (x) = 𝑏 and alpha = 1. We initialize the 𝑅𝐺𝐵𝑀
channels of each layer to zero and then place the image patch of
the corresponding element by translating it to its center position 𝑐𝑖
and orienting it according to 𝜃𝑖 . For layer 𝑖 , we transform the image
coordinates x into the local coordinate frame of the element using
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Fig. 4. Differentiable element position. Nearest-neighbor sampling of an
element results in an image 𝐼 that is not differentiable w.r.t. the element
position 𝑐𝑖 . Using bilinear sampling improves differentiability, but gradients
at 𝐼 (x) only have a small region of influence. Using an image pyramid
further improves differetiability and increases the region of influence.

the element’s inverse transform, and then sample the image patch
of the element with the local coordinates as:

ℎ𝜏𝑖
(
𝑅−1
𝜃𝑖

(x − 𝑐𝑖 )
)
, (8)

where 𝑅𝜃 denotes a 2×2matrix encoding rotation by angle 𝜃 and ℎ 𝑗
is an interpolation of image patch 𝐻 𝑗 to give a continuous function:

ℎ 𝑗 (x) =
∑︁
𝑘

(𝐻 𝑗 )𝑘 𝜅 (x − x𝑘 ), (9)

where (𝐻 𝑗 )𝑘 is pixel 𝑘 of the image patch𝐻 𝑗 , x𝑘 are the coordinates
of the same pixel, and 𝜅 is a differentiable interpolation kernel.
We create a differentiable function 𝑓𝑡 (x, 𝐸𝑖 ) using the expected

value over type probabilities:

𝐽𝑖 (x) := 𝑓𝑡 (x, 𝐸𝑖 ) =
1∑𝑚

𝑘=1
𝑒𝑡

𝑘
𝑖

𝑚∑︁
𝑗=1

𝑒𝑡
𝑗

𝑖 ℎ 𝑗
(
𝑅−1
𝜃𝑖

(x − 𝑐𝑖 )
)
, (10)

where the softmax 𝑒𝑡
𝑗

𝑖 / ∑𝑚
𝑘=1

𝑒𝑡
𝑘
𝑖 over type logits define the type

probabilities. In this formulation, the gradients with respect to the
element type probabilities 𝑡 𝑗

𝑖
arewell-defined. Note that the expected

value is over all four𝑅𝐺𝐵𝑀 channels of the interpolated image patch
ℎ 𝑗 , and thus the coverage mask𝑀𝑖 can take on non-binary values,
effectively giving us a map of the coverage probability in layer 𝐽𝑖 .
The background layer is computed as 𝐽0 (x) := ℎ0

(
𝑅−1
𝜃0

(x − 𝑐0)
)
.

Empirically, we found that the choice of interpolation kernel
𝜅 is important to get good gradients with respect to the location
and orientation of the elements. We choose a bilinear interpolation
kernel (cf., [Jaderberg et al. 2015]):

𝜅 (x) = 1

𝑟𝑥𝑟𝑦
max(0, 𝑟𝑥 − |x𝑥 |)max(0, 𝑟𝑦 − |x𝑦 |), (11)

where 𝑟𝑥 and 𝑟𝑦 is the sample spacing along the 𝑥 and 𝑦 axes of
the image patch 𝐻𝑖 , which makes 𝑓𝑡 piecewise differentiable with
respect to the position and orientation of the elements, see Figure 4
for an illustration.

Combining element layers. In the second step, we combine the
layers J to get the composited image 𝐼 (x) = 𝑓𝑐 ({𝐽𝑖 (x)}𝑖=0:𝑛). Lay-
ers are stacked on top of each other according to the occlusion order
of their elements, where layers with a higher 𝑧-value occlude layers

I
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J₂
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0 1
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Fig. 5. Differentiable visibility. The traditional visibility function is not dif-
ferentiable due to𝐶0 discontinuities at disocclusions. In our differentiable
formulation, each layer contributes to the final image with a weight that
decreases exponentially with distance from the top-most layer.

with lower 𝑧. The final composited image is defined as:

𝐼 (x) := 𝑓𝑐 ({𝐽𝑖 (x)}𝑖 ) =
𝑛∑︁
𝑖=0

𝐽𝑖 (x)𝑣𝑖 (x), (12)

where the visibility 𝑣𝑖 (x) determines which layer is visible at each
image location x. We make this visibility differentiable with respect
to the last remaining element property: the z-value 𝑧𝑖 . We use a
differentiable version of the visibility using a softmax function as:

𝑣𝑖 (x) := 𝑒𝑧𝑖𝑀𝑖 (x)/
𝑛∑︁

𝑘=0

𝑒𝑧𝑘𝑀𝑘 (x). (13)

In this softer version of the visibility, all elements with non-zero
alpha have some contribution to the image, even if they are occluded,
but their contribution decreases exponentially with distance from
the top-most element, see Figure 5 for an illustration. Recall from
Eq.10 that𝑀𝑖 is the coverage probability in layer 𝐽𝑖 . By multiplying
with 𝑀𝑖 , regions of the layer that are likely to be occupied are
placed near the depth 𝑧𝑖 of the element, while regions that are less
likely to be occupied are placed at lower depth, making them less
likely to occlude other elements. Due to our continuous formulation,
variables that are discrete in the traditional formulation, like the
probabilities for element types, can take on non-integer values.
This results in artifacts like ghosted semi-transparent elements. In
Section 6, we describe how we project the continuous variables to
integer values.

Multi-resolution pyramid. The bilinear interpolation kernel makes
the composited image 𝐼 differentiable w.r.t. the element positions 𝑐𝑖
and orientations 𝜃𝑖 . However, the gradients 𝜕𝐼

𝜕𝑐𝑖
and 𝜕𝐼

𝜕𝜃𝑖
have a small

region of influence: they are non-zero only at image locations 𝑥 that
are close to the coverage mask of the element, at a distance smaller
than the bilinear kernel’s radius 𝑟 , see Figure 4 for an illustration.
This adversely affects convergence if the initial pose of an element
is not already very close to its target region, since gradients of the
target region w.r.t the element parameters are zero. Additionally,
high spatial frequencies in the image 𝐼 result in unstable gradients.
To improve convergence, we compute the gradients at each level of
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a multi-resolution pyramid:
𝐼1 = 𝐼 , and

𝐼𝑘+1 = 𝐼𝑘 ⊛ 𝐺 (0, 𝜎𝑘 ), (14)
where𝐺 (0, 𝜎𝑘 ) is a Gaussian kernel with standard deviation 𝜎𝑘 =

𝑟2𝑘−1, and 𝑟 is the radius of the bilinear kernel. To improve perfor-
mance, we successively down-sample the image to half its resolution
in each iteration. At coarser levels, the gradients 𝜕𝐼𝑘

𝜕𝑐𝑖
and 𝜕𝐼𝑘

𝜕𝜃𝑖
are

both more stable and have a larger region of influence, at the cost
of spatial accuracy. In our experiments, we use gradients from four
pyramid levels (𝑖 = 1 . . 4).

Differentiable element colors. It is straight-forward to add other
element properties to our differentiable formulation. As an example,
we can add an element color 𝑜𝑖 ∈ R3 by simply re-defining the
element layers in Eq. 10 as 𝐽 ′

𝑖
(𝑥) = 𝐽𝑖 (𝑥) · 𝜈 (𝑜𝑖 ), where 𝜈 is a leaky

hard sigmoid, and · denotes a multiplication of each RGB channel
in 𝐽𝑖 with the corresponding scalar color value in 𝜈 (𝑜𝑖 ). We chose a
leaky hard sigmoid 𝜈 (𝑜𝑖 ) = max(min(𝑜𝑖 , 0.001𝑜𝑖 + 0.99), 0.001𝑜𝑖 )
instead of the regular sigmoid to make it easer for the optimization
to reach fully saturated colors. We will show several composited
images with optimized color parameters 𝑜𝑖 in our results.

6 OPTIMIZING IMAGE COMPOSITIONS
Given our differentiable formulation of image compositing, we can
optimize the element parameters to minimize any loss function 𝐿(𝐼 )
defined on the composited image 𝐼 . In our experiments, we use the
Adam [Kingma and Ba 2014] optimizer, with a learning rate of 1e−6
and parameters (𝛽1, 𝛽2) = (0.9, 0.9). Since each parameter has a
different value range, we adjust the learning rates for each type of
parameter. Empirically, we multiply the learning rate for parameters
(𝑡𝑖 , 𝑐𝑖 , 𝜃𝑖 , 𝑧𝑖 , 𝑜𝑖 ) with the factors (1, 0.01, 2.25, 0.0016, 0.0025) in all
our experiments. A straight-forward optimization with a random
initialization is difficult due to several factors: (i) as described earlier,
gradients have a limited region of influence, which limits the basin
of attraction for the optimal position and orientation of an element,
and (ii) multiple elements may be attracted to the same optimum in
position and orientation, potentially giving us duplicate elements.
To overcome these problems, we carefully initialize the element
parameters, and periodically seed additional elements and remove
elements that are no longer visible or identified as duplicates.

Initialization. We start by choosing an estimated upper bound for
the number of elements we are going to need, between 100 and 1024
elements in our experiments. The centers 𝑐𝑖 of these elements are
initialized in a regular grid over the image canvas, with orientation
𝜃𝑖 = 0. The element types logits are initialized to 𝑡

𝑗
𝑖
= 1 for all

types 𝑗 and the depth of the background and the other elements is
initialized empirically to 𝑧0 = 3.3 and 𝑧𝑖 = 9, respectively. The grid
initialization for element positions makes it less likely to miss the
basin of attraction of a position optimum. A grid initialization for
both positions and orientations would result in too many elements,
so we handle missing orientations when seeding additional elements
during the optimization.

Removing elements and seeding additional elements. We alternate
between removing and re-seeding elements periodically during

the optimization. Elements are removed at iterations 4k, 12k, and
every 8k iterations thereafter, and re-seeded three times at itera-
tions 8k, 16k, and 24k. We remove elements that are no longer
visible because they are below the background 𝑧𝑖 < 𝑧0, and du-
plicate elements. Specifically, we identify pairs of duplicates ele-
ments as having the same type 𝜏𝑖 = argmax(𝑡𝑖 ) and a distance
∥𝑐𝑖 − 𝑐 𝑗 ∥2 < 0.5min

(
𝑙 (𝑀𝑖 ), 𝑙 (𝑀𝑗 )

)
where 𝑙 (𝑀) is the largest ex-

tent of an element’s mask along the 𝑥 and 𝑦 axis. We remove the
element with smaller depth in such a duplicate pair.
In the re-seeding steps, we sample the space of element orienta-

tions with a regular grid. For each existing element, we place three
additional copies with the same parameters, but with orientation
offsets of 90, 180, and 270 degrees. Note that, after subsequent opti-
mization, wrongly oriented elements end up below the𝐻0 layer, and
hence are later removed. This allows us to escape local minima in
the space of element orientations, which are especially pronounced
if elements are close to rotationally symmetric. Additionally, we
place a new grid of elements, with the same parameters as in the ini-
tialization. These additional elements allow convergence to position
optima that were missed with the previous set of elements.

Discretization. After optimization, we perform a final discretiza-
tion step that removes any residual transparencies or ghosting in-
troduced by our continuous parameters. We generate a discretized
image by running our optimized element parameters through the
traditional compositing pipeline, using discrete element type proba-
bilities 𝜏𝑖 = argmax(𝑡𝑖 ).

7 RESULTS AND DISCUSSION
Pattern images are ubiquitous on the web, but are difficult to edit for
several reasons. The constituent elements of a pattern are difficult
to extract manually from the image, due to their number and the
frequency of occlusions. Additionally, editing individual elements
may compromise the style of a pattern, and restoring the style might
require (manually) modifying all pattern elements. Below we evalu-
ate our differentiable compositing function on two applications that
are targeted at simplifying the editing workflow for pattern images:
in Section 7.1, we experiment with decomposing patterns images
into a set of discrete elements that are editable individually, and in
Section 7.2, we experiment with pattern expansion, where, given a
pattern image, a new pattern with discrete elements and the same
style as the input image is synthesized. Each of the two applications
corresponds to a minimization of a different loss function. Addi-
tionally, we show the versatility of our differentiable compositing
function with a few additional applications in Section 7.3.

7.1 Pattern Decomposition
In this application, our aim is to decompose a given pattern image𝐴
into a set of elements E. The image composited from these elements
𝐼 = F (E) should reconstruct the input image𝐴 as closely as possible.
We use the 𝐿2 distance to measure the decomposition error:

𝐿𝑑 (𝐴, 𝐼 ) :=
1

𝑃

𝑃∑︁
𝑝=1

∥𝐴(𝑥𝑝 ) − 𝐼 (𝑥𝑝 )∥22, (15)
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where the sum is over pixels and 𝑃 is the number of pixels in the
image. The optimal elements E∗ are found by minimizing this loss:

E∗ := argmin
E

𝐿𝑑 (𝐴, F (E)) . (16)

Note that the compositing function F also depends implicitly on
the set of image patches H , corresponding to the different types
of elements in the pattern. These are are selected by the user from
the input image in the simple pattern decomposition workflow
described below.

Workflow. A typical workflow is illustrated in Figure 6. The user
starts by selecting one example of each element type in the pattern
image. This can usually be done efficiently using existing meth-
ods [Cheng et al. 2010; Rother et al. 2004] or image editing software
such as Photoshop or GIMP and is significantly easier than selecting
all instances of each element type in the pattern image. Together
with the input image, these form the input of our optimization,
which finds the set of discrete elements in the pattern. The discrete
elements can now be edited by the user. We show a few examples of
possible edits in Figure 1. See the accompanying video for additional
edits.

Results. Pattern decomposition results are shown in Figure 7.
We apply the pattern decomposition workflow to pattern images
downloaded from the web and two manually created pattern images
(patterns #4 and #7). We only optimize over necessary parameters in
each example. These include all parameters in examples #1, #3 and
#5, and all parameters except the orientation in the other examples.
The pattern image and the element types extracted by the user

are given in the first row, and in rows 2 and 3, we show both the out-
put of our optimization before the discretization step described in
Section 6 (continous result), and after the discretization (discretized
result). Please note the slight transparency or ghosting in some
elements of the continuous result. This is due to the soft approxima-
tions of the visibility and element type we use in our differentiable
composting function. Running our optimized element parameters
through the non-differentiable compositor removes these artifacts
and gives us the discretized results. A map of the 𝐿2 error between
the discretized result and the input image is given in the last row.

…

…
F

1 element type selection 2 decomposition 3 editing

Fig. 6. Pattern decomposition workflow. Starting from a pattern image, the
user selects one example of each element type. Here, we only select a single
element since we optimize over element colors. The input image and the
element types form the input to our differentiable compositor, resulting in
discrete elements that we can edit directly or use in down-stream tasks.

Note that our composited image closely resembles the original, with
errors concentrated at boundaries, due to slight inaccuracies in the
optimized element parameters. Apart from these inaccuracies, er-
rors occur only very sparsely; for example, orientation errors in
cases where objects are close to rotationally symmetric (column 5),
or errors in the depth or type of an element if the shapes and colors
of different element types are similar. We believe that most of these
errors could be avoided with a larger number of optimization steps,
or an improved optimization setup, such as a learning rate sched-
ule. Overall, we can see that our optimization can successfully find
the type, position, orientation, and layering of elements that form
a given pattern image, even in the presence of severe occlusions
between elements.

In Figure 8, we show additional decomposition results where we
also optimize over the color 𝑜𝑖 of each element. All pattern images
were downloaded from the web. The first pattern shows a simple
element in large number of color variations that would be infeasible
to handle without optimizing for colors, since we would need one
element type per color. In the second pattern image, we show an
example of elements with some amount of texture. Since wemultiply
the layer of each element with its color parameter, we can effectively
also handle some amount of texture when optimizing for colors.
Finally, in the third column, we optimize for color in a pattern
with complex layering and occlusions. As we can see in the last
row, the performance of our optimization with color is on par with
the optimization without color, showing that we can successfully
optimize for element color as well.

Baseline comparison. We compare our method to two baselines
that do not benefit from our gradients. A brute-force grid search
over element parameters and PatchMatch [Barnes et al. 2009]. We
describe each baseline shortly before presenting comparison results.

As a first baseline, a brute force grid search over element parame-
ters is solved greedily, one element at a time. We create a grid over
all element parameters that are relevant for a given input image,
except for the depth, which is handled with a greedy approach. We
set the resolution of this grid to (𝑚, 1282, 36, 33) for the parameters
𝐸 ′
𝑘
= (𝜏𝑘 , 𝑐𝑘 , 𝜃𝑘 , 𝑜𝑘 ), where𝑚 is the number of element types. As

a distance measure between an element and the input image, we
define an 𝐿2 distance that is normalized by the occupancy masks𝑀
of both the element and the input image:

𝐿𝑚 (𝐴, 𝐽 ′
𝑘
) =

∑𝑃
𝑝=1𝑀𝐴 (𝑥𝑝 )𝑀𝐽 ′

𝑘
(𝑥𝑝 ) ∥ 𝐽 ′𝑘 (𝑥𝑝 ) −𝐴(𝑥𝑝 )∥22∑𝑃

𝑝=1𝑀𝐴 (𝑥𝑝 )𝑀𝐽 ′
𝑘
(𝑥𝑝 )

, (17)

where 𝐴 is the input image, 𝐽 ′
𝑘
(x) = 𝑓 t𝑡 (x, 𝐸 ′𝑘 ) is a layer contain-

ing the element transformed to grid location 𝑘 (see Equation 3 for
details), and 𝐸 ′

𝑘
are the element parameters at a grid location 𝑘 .

This distance effectively ignores background pixels that are not
occupied by the element. The image starts with full occupancy, but
we successively remove matched regions from its occupancy mask,
which are then ignored in subsequent matches. We first compute
𝐿𝑚 at each grid location and greedily pick the best match. Then,
we remove the matched region from the image by subtracting the
occupancy mask of the matched element from the occupancy mask
of the image and update 𝐿𝑚 at all affected grid locations. This pro-
cedure is iterated until 𝐿𝑚 falls below a threshold. We manually
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Fig. 7. Inverse Pattern decompositions. Given the flat pattern images and the elements in the top row, we optimize for elements that reconstruct the pattern
image using our differentiable compositing function. The result of the continuous optimization is shown in the second row, and the discretized result (inferred
layering information is not shown here) in the third row. In the last row, we show the 𝐿2 error between the discretized result and the input image for colors in
[0, 1]3. The majority of the errors are evident near the boundaries due to small position inaccuracies of the elements.

select the best threshold for each image. In practice, we compute
the sum only over the non-zero pixels of the element’s occupancy
mask and ignore matches where the number of non-zero pixels in
the product of the occupancy masks is smaller than a threshold. In
our experiments, we set this threshold to 10% of the total number
of non-zero pixels in the element’s occupancy mask.

Figure 9 compares our results to this baseline. As we can expect,
in patterns without element rotations (first example), the baseline
performs comparable to our approach. In the second example, we
also need to optimize over element orientations. However, as we add
more parameters, the dimension of the grid increases, making it in-
feasible to sample the new dimensions densely. Due to inaccuracies
in the orientations, we see several errors in the result, including both
false positive and false negative matches. This problem worsens
as we increase the dimension of the parameter space. In the third
example, we optimize over element colors. This adds three dimen-
sions to the parameter space that can only be sampled sparsely to
maintain a feasible number of grid points. As a result, we see an
increased number of false positives and negatives.

The gradients obtained from our differentiable compositing func-
tion, on the other hand, allow for a much sparser sampling of the

parameter space, and enable a non-greedy approach where all ele-
ments are optimized concurrently.

As second baseline, we compare to the well-known PatchMatch.
We match regions in the pattern image 𝐼 to the image patches in
H . More specifically, we run PatchMatch once per image patch
𝐻 ∈ H , giving us a set of candidate regions in 𝐼 that each par-
tially match one of the image patches inH . PatchMatch finds these
matching regions starting with a random search strategy, by picking
random initial correspondences for each pixel in 𝐼 to the pixels in 𝐻 .
Pixel correspondences are scored based on an L2 distance between
small rectangular neigborhoods centered at the corresponding pix-
els. Good matches are grown into regions. From the resulting set
of candidate regions, we filter out regions that have an average
matching score below a threshold. For the remaining regions, we
obtain the element type 𝜏𝑖 from image patch𝐻 the region is matched
to, and the element location 𝑐𝑖 from the known correspondences
between pixels in the region and pixels in 𝐻 . Since PatchMatch has
no notion of layering, we use the matching score of the regions as
depth order (highest score is top-most).
Figure 10 compares our results to PatchMatch. We use patterns

without element rotations or color changes, since these would be
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Fig. 8. Additional inverse pattern decompositions. In these decompositions,
we also optimize for the color (scaling) of the elements.

non-trivial to implement in PatchMatch. PatchMatch works reason-
ably well on a pattern with simple elements that do not overlap, but
fails on more complex patterns with overlapping elements.

7.2 Pattern Expansion
In our second application, our goal is to synthesize a new discrete
element pattern that has the same style as a pattern given in an
input image, but is generated on a canvas of different size, usually
a larger canvas. We measure the difference in style between the
composited image 𝐼 = F (E) and the input image using a style loss
that was originally introduced by Gatys et al. [2016]:

𝐿𝑠 (𝐴, 𝐼 ) :=
∑︁
𝑙

𝑤𝑙

𝑛𝑙𝑚𝑙

∥𝐺𝑙
𝐴 −𝐺𝑙

𝐼 ∥
2
𝐹 , (18)

where 𝐺𝑙
𝐴

∈ R𝑛𝑙×𝑚𝑙 is the Gram matrix of the features in layer
𝑙 of a pre-trained VGG network [Simonyan and Zisserman 2015]
that was applied to image 𝐴 and𝑤𝑙 are per-layer weights. See the
original work of Gatys et al. for details. We use layers 2, 5, 10, and
15 of a pre-trained VGG-19 network with all weights 𝑤𝑙 = 0.2.
Note that the Gram matrices represent feature statistics that remain
comparable across different image sizes. The optimal elements E∗
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Fig. 9. Comparison to a template matching baseline. On the left, the results
of the baseline are comparable to our approach. When adding more element
parameters like orientations in the center, or colors on the right, a dense
grid search becomes infeasible, resulting in several false positive and false
negative matches. The gradients provided by our compositing function allow
optimizing the element positions without requiring a dense grid.

ACM Trans. Graph., Vol. 39, No. 6, Article 262. Publication date: December 2020.



Discovering Pattern Structure Using Differentiable Compositing • 262:11
ou

rs
 c

on
tin

uo
us

Pa
tc

hM
at

ch
ou

rs
 d

is
cr

et
iz

ed
L2

 e
rr

or

0

1.31

L2
 e

rr
or

0

1.31

in
pu

t

Fig. 10. Comparison to PatchMatch. PatchMatch [Barnes et al. 2009] uses
a random initialization of image-to-patch correspondences, followed by an
iterative propagation of good matches. The random search strategy makes
finding exact element locations hard, and occlusions further degrade results.
Our decomposition uses gradients as guidance, instead of a random search,
and explicitly models occlusions, resulting in a more stable decomposition.
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Fig. 11. Pattern expansion. We expand the pattern image in the top row
to twice its size (four times its area) using our differentiable compositor
and compare to two state-of-the-art image-based expansion methods, Sin-
GAN [Shaham et al. 2019] and NSTS [Zhou et al. 2018]. By construction,
our results better preserve the integrity of the elements, resulting in a more
appealing expansion. Also note that, unlike the image-based methods, the
individual elements in our expansion results can be selected and edited.

are the minimum of this loss:

E∗ := argmin
E

𝐿𝑠 (𝐴, F (E)) . (19)

Workflow. Similar to pattern decomposition, the user first selects
one example of each element type from the input image. Then, a
canvas size can be chosen that determines the size of the expanded
pattern. After optimization, the user obtains a pattern in the chosen
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PPS oursinput

Fig. 12. Comparison to point-based pattern synthesis. We compare a point-
based pattern synthesis method to our approach. Note how the baseline
preserves the layout of the input pattern less accurately than our method.
Unlike the point-basedmethod, ourmethod can take into account properties
of the pattern that depend on the shape of the elements, such as amounts
of overlap or gap sizes between elements.

canvas that has a style similar to the input image and is composed
of discrete elements.

Baselines. To show the advantages of generating a pattern with
discrete elements, we compare against two state-of-the-art image-
based pattern synthesis methods. SinGAN [Shaham et al. 2019]
trains a GAN on a single image. Their model learns to generate im-
ages with similar patch statistics as the input image. This is enabled
by a loss similar to the style loss we are using, but replaces the Gram
matrix with a manually defined feature statistic with a learned dis-
criminator. As a second baseline, we use the Non-stationary Texture
Synthesis (NSTS) method by Zhou et al. [2018]. This method also
trains a generator with an adversarial loss on a single input image
and additionally uses the style loss from Gatys et al. [2016].
While the style losses are slightly more advanced in these base-

lines, we focus on comparing our use of discrete elements to the
baselines’ approach of directly generating an image. An interesting
direction for future work lies in using our differentiable function F
as a differentiable component in a network like SinGAN or NSTS to
output a set of discrete elements instead of an image.

Additionally, we compare to a recent Point Pattern Synthesis (PPS)
method by Tu et al. [2019]. This method aims at expanding patterns
of 2d points in a plane to a larger canvas. The points are rendered
as small Gaussian hats to an image, where an image-based style
loss is optimized to get an expanded image. The expanded image is
then converted back to points. The authors use a histogram- and
correlation-based loss in addition to a style loss similar to 𝐿𝑠 . The
baseline supports multiple point types by coloring the rendered
Gaussians, but does not support orientations or layering. We use the
centers of our elements as points, color them by element type using
well-separated colors, use a random occlusion order, and random
orientations if the pattern has elements with multiple orientations.

Results. Figure 11 compares our expansion results to the two
image-based baselines. We show a simple example with a single
element type and no overlaps to clearly illustrate typical errors of
the image-based methods, and two more complex examples with
multiple elements and overlaps. In all examples, we can see that
the image-based methods cannot preserve the integrity of elements,

input continuous result discretized result

Fig. 13. Generating mosaics. By decomposing a non-pattern image and
adding a loss that penalizes overlaps between elements, we can create
mosaics. Here we create a mosaic of the Siggraph Asia logo.

since they do not have a notion of discrete elements. Separate ele-
ments are merged together and the shapes of individual elements
are not maintained. Even though the style loss we are using for
our experiments is less advanced than the baselines, we still obtain
more appealing results, due to our use of discrete elements.

We compare with an expansion result of the PPS baseline in Fig-
ure 12. We can see that the method struggles to synthesize a pattern
with a similar layout as the input pattern. This baseline is designed
for tightly packed patterns of points and performance drops on
our larger, more spread out elements. In our patterns, knowledge
about the shape of the elements is necessary to obtain cues about
important properties of the pattern like amounts of overlap and
typical gap sizes between neighboring elements. Additionally, this
baseline does not support layering. The output of our method, on
the other hand, does take into account the shape of elements, giving
the style loss more to work with, and allowing us to synthesize a
stylistically correct layering.

7.3 Additional Applications
Our differentiable compositing function can be used as a component
in a large range of applications. Here we show a few additional
examples.

Making patterns tileable. By combining the 𝐿2 loss and the style
loss, we can make an existing pattern image tileable, as shown in
Figure 1. We first decompose the pattern as described in Section 7.1.
This gives us discrete elements that can be edited manually. To
make the pattern tileable horizontally, we can, for example, delete
the elements that are clipped on the right border, select the elements
that are clipped on left border and copy them over to the right border
(i.e., translate the copies in x direction by the width of the image). A
similar approach can be used to make the pattern tileable vertically.
This manual operation however, might compromise the style of the
pattern; it could, for example, create incorrect overlaps between
elements, create holes, or introduce incorrect spacing. To restore the
style of the pattern, we optimize the elements in the edited pattern
to have the same style as the original pattern image using the loss
𝐿𝑠 . We initialize the elements to their current positions and keep
the elements near the border that ensure editability fixed during the
optimization. This results in a tileable pattern with the same style
as the input pattern.

Generating mosaics. While our compositing function can only
obtain an exact reconstruction of images that are composed of a few
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element types, there is nothing stopping us from minimizing the
loss 𝐿𝑑 on arbitrary images. This creates a mosaic that reconstructs
the input image with the given set of element types. Since mosaics
typically have non-overlapping elements, we introduce an auxiliary
loss that penalizes overlaps: 𝐿𝑜 = 1

𝑃

∑𝑃
𝑝=1max

(
0,−1+∑𝑘 𝑀𝑘 (𝑥𝑝 )

)
,

where we sum the occupancy masks𝑀𝑘 of all layers, and any values
larger than 1, indicating overlaps, are penalized. The outer sum takes
the average over all pixels in the occupancy masks. An example is
shown in Figure 13, where create a mosaic of the Siggraph Asia logo
with small Siggraph Asia logos.

7.4 Limitations
One limitation of our method is that the output domain of our com-
positing function is restricted to patterns that are composed from
multiple instances of a small set of atomic image patches. This in-
cludes many types of patterns found on the web, but also excludes
some types, like patterns with continuously changing shapes, for
example a pattern containing of continuous deformations between a
circle and a rectangle. A second limitation is that users have to mark
one instance of each element type in advance. This is still far easier
than marking all elements, but requires some manual work. Also op-
timizing over the image patches H would remove the need for this
manual input and is an interesting avenue for future work. Finally,
our optimization is not always guaranteed to find the global opti-
mum. A few typical failure modes of our optimizations are shown
in Figure 14, columns 1 and 2. Faint elements, or elements very
only few pixels are visible give small gradient magnitudes resulting
in missed elements (column 1). Elements that close to rotationally
symmetric (column 2) cause strong local minima in the space of
orientations, resulting in elements with incorrect orientations.

ta
rg

et
re

su
lt

Fig. 14. Failure Cases. Optimization results can be deteriorated by faint
elements (column 1) or elements that are close to rotationally symmetric
(column 2).

8 CONCLUSION AND FUTURE WORK
We presented a differentiable composting function for discrete ele-
ment patterns. We have shown that the gradients provided by this
function can benefit pattern editing workflows in several applica-
tions. First, our differentiable compositor can be used to decompose

a pattern image into its discrete elements. Unlike existing template
matching approaches, our gradients allow us to handle a higher-
dimensional parameter space for elements, such as element orienta-
tions and colors. Second, we can use our compositor to expand an
existing pattern on a larger canvas by minimizing a style loss. Unlike
current image-based approaches, our focus on discrete elements
guarantees the integrity of elements in the expanded pattern and
leads to more appealing expansion results. In addition to these two
main applications, we demonstrate the versatility of our method on
two more specialized applications.
In future work we would like to incorporate our differentiable

element compositor as a component in generative modeling ap-
proaches. For example, using our compositor in the generator of
a GAN would give us the benefits in quality that a GAN provides,
while our compositor would guarantee the integrity of individual
elements, and make the resulting pattern editable by producing
individual elements and their layering as output.

There are also several avenues to improve the differentiable func-
tion itself. First, it would be interesting to solve for the image patches
H in addition to element properties E. This would remove the need
to manually specify the element types and open up a wider range
of new applications. Second, defining a depth value per pixel of
an element’s occupancy mask instead of per element would allow
handling non-planar element surfaces and enable local-layering
among elements (cf., [McCann and Pollard 2009]). Finally, since our
gradients allow us to handle high-dimensional element parameters,
the range of patterns our approach can handle could be extended by
adding additional element parameters, such as scale or transparency.
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