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Abstract

We present genet IC, a new code for generating initial conditions for cosmological N-body simulations. The code
allows precise, user-specified alterations to be made to arbitrary regions of the simulation (while maintaining
consistency with the statistical ensemble). These “genetic modifications” allow, for example, the history, mass, or
environment of a target halo to be altered in order to study the effect on their evolution. The code natively supports
initial conditions with nested zoom regions at progressively increasing resolution. Modifications in the high-
resolution region must propagate self-consistently onto the lower-resolution grids; to enable this while maintaining
a small memory footprint, we introduce a Fourier-space filtering approach to generating fields at variable
resolution. Due to a close correspondence with modifications, constrained initial conditions can also be produced
by genetIC (for example, with the aim of matching structures in the local universe). We test the accuracy of
modifications performed within zoom initial conditions. The code achieves subpercent precision, which is easily

sufficient for current applications in galaxy formation.

Unified Astronomy Thesaurus concepts: N-body simulations (1083)

1. Introduction

The generation of initial conditions is a crucial step in
simulations of cosmological structure and galaxy formation.
Simulation codes require as input the positions and velocities of
dark matter and baryons at an early time in the universe’s
development, when deviations from homogeneity are approxi-
mately linear. The basic task is to generate a Gaussian random
field, with a specific power spectrum, on a discrete grid that
samples the continuous density-contrast field. This in turn can
be used to generate velocity and displacement fields for a set of
particles, and for mesh codes, fluid variables for each grid cell.
Starting from Gaussian white noise, all these fields can be
generated via a suitable series of convolutions.

A significant complication in performing these convolutions
arises if we wish to work with zoomed initial conditions, where
the grid spacing differs from one region of the simulation to
another. Zoom simulations are attractive because they focus
computational effort on a single object, allowing it to be
modeled with far greater fidelity than is possible for a
population; however, for initial condition generation, efficient
convolution algorithms typically require a fixed grid resolution.
One possibility is to generate the field at uniformly high
resolution and downsample within the unzoomed majority of
the domain (e.g., Katz et al. 1994; Navarro & White 1994;
Tormen et al. 1997, Prunet et al. 2008). However, this becomes
prohibitively wasteful of memory and processing resources
as the desired dynamic range between zoom and volume
increases. As a solution to this problem, GRAFIC2 (Bertschinger
2001) introduced an algorithm that generates fields directly on a
nested grid structure, albeit with the need to pad out the high-
resolution region to twice its final side length. A refined
implementation of the same basic algorithm is provided by the
widely used generator MUSIC (Hahn & Abel 2011).

These initial conditions generators have helped zooms
become a standard technique for high-resolution galaxy
formation studies. However, we often want to understand
how a galaxy’s observable properties have been affected by its
history and local environment. This is impossible with a single
object or even a small sample from a typical cosmological
volume, given that each galaxy differs from its counterparts in
multiple distinct respects. A “brute force” approach of
generating many different random realizations of the field
until we find one that looks sufficiently similar—yet with the
desired differences—would be exceptionally time-consuming
and imprecise. Consequently, an attractive alternative is to
generate systematic variations in the accretion history,
environment, or other aspect of a single object that one then
resimulates several times. In this paper, we will describe a code
(available at https://github.com/pynbody/genetIC) which
generates and then minimally modifies initial conditions to
make such “genetic modifications,” while maximizing the
likelihood for the field to have arisen as a random Gaussian
draw from the ACDM power spectrum (Roth et al. 2016;
Pontzen et al. 2017; Rey et al. 2019b).

Operationally, such modifications closely resemble the
Hoffman—Ribak procedure for generating constrained initial
conditions (Hoffman & Ribak 1991). Existing initial conditions
codes that have the ability to perform Hoffman—Ribak
constraints therefore can, in principle, be used for simple
modifications as well. However, in existing implementations,
the algorithm can only be applied to a single grid at once; when
applied to a zoom simulation, modifications do not propagate
correctly out of the high-resolution region, leading to
discontinuities and errors in the correlation function. Moreover,
an effective modification algorithm needs to target the field
value averaged in regions of arbitrary shape, as determined by
tracing the material in halos or their environment back to the
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initial conditions (Roth et al. 2016). To our knowledge, no
public algorithm for performing such multiresolution or
arbitrary shape manipulations currently exists.

In this paper, we present genetIC, a new code that
implements solutions to these issues and so is suitable for
generating zoomed, genetically modified initial conditions. As
a fortuitous side effect of implementing multiresolution
modifications, genetIC also drastically reduces the memory
footprint for realizations on a given zoom geometry, due to
near-elimination of the need for padding. At present, output can
be made to GADGET, TIPSY, or GRAFIC formats (the latter
being suitable for use with RAMSES). While not its primary
focus, genetIC can also perform global field manipulations
such as inversion and power spectrum fixing, which enable
insights into the growth of large scale structure (e.g., Angulo &
Pontzen 2016; Pontzen et al. 2016; Anderson et al. 2019). The
code is modular and extensible so that additional manipulations
or output formats can easily be added at a later date.

We review the generation of multiresolution initial condi-
tions and explain the new implementation in genetIC in
Section 2, with supporting mathematical derivations given in
Appendix A. The core algorithm used for applying constraints
consistently across resolution boundaries is described in
Section 3, with the full details in Appendix A.4. We discuss
the accuracy of genetIC with examples in Section 4.
Section 5 then gives an overview of the structure of the code.
A short summary is provided in Section 6.

2. Description of genetIC
2.1. Review of Generating Initial Conditions

At its heart, the problem that any initial conditions generator
aims to solve is generating a set of N particles that approximate
a smooth density field described by an initial density contrast,
6(x). Genetic modification, which we will describe in Section 3,
seeks to manipulate this field in a manner consistent with a
draw from the same Gaussian ensemble, as specified by the
cosmological power spectrum.

The typical procedure is first to generate a discrete vector, d,
that samples d(x) at a set of points x; on a regular lattice. The
vector § should be a random draw from a distribution with a
covariance determined by the cosmology, i.e.,

(667) = C, ey

where C is a discrete version of the cosmological covariance
matrix. To create § we start from a unit-variance, uncorrelated
white noise field n, and then multiply by c'2,

Once generated, each element of the vector & gives the
density contrast averaged over a particular grid cell of the
simulation. The next task is to translate this into a corresp-
onding set of particles with positions and velocities. This
can be achieved using Lagrangian perturbation theory (see
Buchert 1993; Buchert & Ehlers 1993). In this prescription,
particles are labeled by their initial grid positions, ¢, and their
evolution is tracked using a displacement field, ¥(7, q), that
gives their position at some later time; the dynamics of ¥(7, q)
can be solved perturbatively. The lowest-order terms constitute
the Zel’dovich (1970) approximation, which links velocities
and displacements directly to gradients of the potential.
Provided that we start at sufficiently high redshift (typically
z > 100), the Zel’dovich approximation is adequate for galaxy
formation questions for which genetIC is principally
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Figure 1. Illustration in 1D of zoom simulation initial conditions, as
implemented by genetIC. A high-resolution grid is inserted as a “zoom
region” into a low-resolution grid. (a) Both grids are initially seeded
independently, but this generates long-wavelength modes in the high-resolution
grid that are inconsistent with the low-resolution field. To solve this problem,
we (b) split modes in Fourier space, as described in Section 2.3. Only high-
frequency modes (wavenumber above ko) are retained on the new grid. (c) We
then replace the missing long-wavelength modes with an appropriately filtered
version of those in the low-resolution grid.

designed; however, the modular nature of genetIC allows
the method used to be extended to higher order if required—see
Section 5 for further discussion.

2.2. Zoom Initial Conditions

The prescription described in Section 2.1 is complete for a
uniform grid. However, most applications of genetic modifica-
tions will make use of zoom simulations incorporating the high
resolution needed to simulate individual galaxies and halos,
while accurately retaining the gravitational effects of a large-
scale environment (e.g., Katz et al. 1994; Navarro & White
1994). This setup is illustrated in the bottom panel of Figure 1.
The upper two panels show the field generation process in
genetIC, which we will now motivate before describing
in detail in Section 2.3. In the depicted example, there are
two grids; a low-resolution grid covering the full simulation
domain, and a high-resolution grid that covers the “zoom”
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region. Any approach to generating zoom initial conditions
must solve the problem of how to relate random fields on the
two grids in order to obtain the correct correlation structure
between the two regions.

One possible way to generate a zoom simulation is to
calculate the entire cosmological volume at high resolution,
then degrade the sampling outside the target region. This is
inefficient, however, and entirely infeasible for some applica-
tions; for example, in the EDGE suite (Rey et al. 2019a; Agertz
et al. 2020), the initial conditions resolution corresponds to an
effective grid of 32768>. Storing a single such grid at double
precision requires 32 terabytes; manipulating it is entirely out
of reach. To obtain the high effective resolution of EDGE, a
1024° grid is instead nested inside two 512* grids. Each level
has a physical extent four times smaller than the one above. A
single field in this hierarchy requires only ten gigabytes to
store, despite reaching the required effective resolution in the
region of interest.

As stated above, the challenge is to ensure that the final,
multiresolution field has the correct correlations despite being
represented in a piecemeal manner. Specifically, we need the
long-wavelength modes of the fine grid to match those of the
low-resolution grid in the region where they overlap, and for
the finite box size of the fine grid and the boundary between the
two grids to have minimal impact.

The only solution to this problem currently described in the
literature is presented by Bertschinger (2001) and Hahn & Abel
(2011). It involves nesting a large buffer region around the
section of the high-resolution grid before applying convolu-
tions, in order to create the correct boundary conditions for the
small grid, thus allowing long-wavelength convolutions to be
carried out safely. These “ghost” regions expand the total
storage requirements to 73 gigabytes per field (in the EDGE
example given above). Note that the components of the output
displacement field, ¥(r, q), each count as a field, making the
minimal memory requirements of such an algorithm almost 300
gigabytes for this scenario. While sufficiently powerful
computer resources are available, once modifications are
introduced (each one with their own associated field), the
computational demands spiral further upward. Moreover, there
is no existing algorithm describing how ghost regions should
correctly interact with modifications to the field. This poses a
problem since, to maintain continuity and consistency with the
cosmological power spectrum, it is essential that the long-
wavelength behavior of the modification propagates correctly
outside the zoom region.

The two considerations above motivate finding a solution to
multiresolution convolution and field modification that does
not involve ghost regions. Our approach is to view the
fundamental problem as one of band limiting: we wish to
supplant the original low-resolution information with addi-
tional modes above the original Nyquist frequency.” From this
perspective, the solution is to combine modes in Fourier space.
Figure 1 outlines how this procedure starts from two
independent random fields on the separate grids and combines
them into a consistent multiresolution realization. The Fourier
perspective also leads to an algorithm for applying field
modifications across resolution boundaries that will be
discussed in more detail in Section 3.

5 The Nyquist frequency, kpnyq, is defined to be half the sampling rate, i.e.,

knyq = Nm/L, where N is the number of grid points along one edge of the
simulation box.
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The MUSIC code (Hahn & Abel 2011) has an option to use
Fourier-space filtering, blending modes between low- and high-
resolution grids during convolution with the correlation
function (Hahn, private communication). This has not been
explicitly documented in the scientific literature, but was first
implemented for the AGORA code comparison project (Kim
et al. 2016) and is now switched on by default. The MUSIC
scheme is not designed to reduce memory requirements, and
so, compared to our approach, it has a different set of design
considerations for its Fourier filters. We will describe below
how genetIC filters are band-limited in Fourier space, but
unlike in MUSIC, they also remain compact in real space.

2.3. The Fourier-space Approach

We will now describe in more detail how the procedure
motivated above works in practice. We continue to focus on
the case of two levels; nesting multiple subgrids requires
recursively applying this two-level case.

The initial aim is to construct §;, a vector containing a low-
resolution sampling of the density field on a coarsely pixelized
grid, and dy, a high-resolution vector that stores information
only in the zoom region. The challenge is to generate these
starting from two independent white noise fields, n; and ny, on
the low-resolution and high-resolution grids, respectively.

In our Fourier-space approach, we think of this problem as
being closely related to constructing filtered versions of an
underlying high-resolution field d for the whole grid to which
we do not have access. Such filtered fields would take the form

op = Fé, 2)

oy = Fyé, 3

where Fy and F; are filters preserving high-frequency and low-
frequency Fourier modes, respectively. By itself, this does not
lead to a practical algorithm, since 6, and 8y consume the same
space in memory as the original vector, 4. Instead, we want §;,
to be a pixelized version of 5L, defined on the low-resolution
grid, and 0y to be a version of 3H, which is confined to the
high-resolution region only. By choosing F; appropriately, oL
is band-limited even on the coarse pixelization and therefore
can be losslessly “compressed” to low resolution. Storing &y
only in the zoom region can also be regarded as a compression,
albeit one that explicitly destroys information which we do not
require.

This Fourier-space decomposition suggests a practical three-
step algorithm for generating §; and &y:

1. Draw independent white noise fields for n; and ny, and
convolve with the theoretical cosmological correlation
function independently on both grids to produce d; and
Om;

2. Apply the high-pass filter to §y and the low-pass filter to

L

3. Sum the two fields to produce the final field in the high-

resolution region.

S The current version of genetIC uses independent white noise on each

grid. An alternative would be to start from realizations that are already strongly
correlated, so that the phase of high-frequency modes is not dependent on the
placement of the zoom region. This can be arranged, for example, by producing
white noise relative to an octree basis function (Jenkins 2013; Jenkins &
Booth 2013).
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Figure 2. Top: ratio of the filtered to the unfiltered real-space correlation function, &gyerea(r), using the Fermi filter, Equation (4), in Fourier space. Axes are
logarithmic, so we show the absolute value of the ratio. The contribution from the high-resolution correlations dies away quickly (within a few low-resolution pixels),
meaning the low-resolution field carries most of the correlation structure. However, over the decaying region, there are some oscillations due to the trade-off required
between the sharpness of the filter in Fourier space and real space (see Section 2.3 for further discussion). Bottom: ratio of the filtered to unfiltered power spectrum for
the same scenario. Wavelength 27/k is used so that scales always increase from left to right. The filter is chosen to ensure we exclude small-scale modes above the
Nyquist frequency of the low-resolution grid, while simultaneously ensuring the fine-grid, real-space correlation function rapidly decays outside the high-resolution
region. Vertical gray lines show the low-resolution pixel size (top panel) and equivalently, the Nyquist frequency (bottom panel) and its integer multiples.

This process is illustrated in Figure 1. We will discuss precisely
how the fields from the two grids are combined in Appendix A.
Note that, in step (a), convolving with the correlation function
entails a trade-off between real-space and Fourier space
accuracy (Pen 1997; Sirko 2005). For uniform-resolution
volumes, this is a matter of preference (Orban 2013), but
zoom regions generated with the Bertschinger (2001) algorithm
are only self-consistent when using a real-space transfer
function (Hahn & Abel 2011). The genetIC algorithm
computes all long-wavelength correlations on the base grid,
which permits self-consistent convolution with either a real-
space or Fourier-space transfer function, as desired.

We now turn to the specific choice of filter. The filters F,
and F need to be designed such that §; can be stored at the
low pixel resolution without aliasing, while  can be stored in
the high-resolution region and contains no large-scale correla-
tions (so that the finite size of the high-resolution region does
not impinge on any manipulations). These requirements are in
tension but can be satisfied approximately with an appropriate
Fourier space filter.

To balance these requirements genetIC uses a Fourier-
space Fermi—Dirac distribution, as illustrated in Figure 2:

FL(k) = (exp[(k — ko) /(koT)] + 1)7". 4)
The high-resolution filter, F, is then related to this by
Fl+Fh =1, )

which is required in order to recover § from the sum of the
filtered fields FLSL + FHSH, or equivalently, to obtain the
correct power spectrum in the high-resolution region (see
Appendix A.2). The wavelength at which the cutoff in the filter
must occur should be larger than the Nyquist length, but
smaller than the zoom region length scale. There will inevitably
be some trade-off in the choice of the “temperature,” T: the
filter must remain sufficiently smooth in Fourier space that
oscillations in the real-space filter die away rapidly, but an
excessively smooth filter will attempt to retain information at or
above the Nyquist frequency, leading to inaccurate small-scale
correlations; see Figure 2.

The default code choices are T=0.1 and ko = 0.5 kyyq,
where k,q is the Nyquist frequency of the low-resolution grid.
These were selected based on experimentation with the
practical performance of the algorithm in a 1D test setting
where exact covariances can be computed. The cosmological
power spectrum is red on small scales (k > 0.22 Mpc ') but
blue on large scales (k < 0.2k Mpc_l); therefore, we tested a
range of power laws and the actual dimensionless cosmological
spectrum (i.e., maintaining the total power per unit log
wavenumber when moving from the 3D to the 1D setting).
With our choice above, we found that fractional errors on
covariances of the final field are always smaller than ~2%
(Figure 3). In Figure 3, we compare with the “traditional”
approach, which involves using a large padding region around
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Figure 3. Errors on the covariance matrix of zoom initial conditions for a 1D toy example of genetic modification. The base grid here is defined on a line between 0
and 1, and each panel shows the error in covariance between different pixels as a matrix. Two example 1D power spectra, P(k) o< k'3 (top panels) and P(k) o ke
(lower panels), are tested. Errors for traditional (left panels) and Fourier filtering (right panels) approaches are shown relative to the idealized covariance matrix
obtained by making realizations at high resolution across the whole box and then degrading the low-resolution region. We have fixed the computational demands,
meaning that only half the high-resolution box is available for use in a traditional approach (the remainder being required as padding). Inset panels show the
covariance error in the region around the transition from low-resolution to high-resolution pixelization. In both cases, the largest errors are found throughout the low-
resolution box, due to power above the band limit. This error is present and unavoidable in all cosmological simulations. All other errors are small (of order 1%),
making either approach acceptable for practical application to galaxy formation simulations.

the outside of the high-resolution box (resulting in a smaller
usable high-resolution volume for the same computational
effort compared to genetIC).

The dominant error term is aliasing on the low-resolution
grid, which reflects the existence of power above the Nyquist
limit. This error is irreducible and present in all cosmological
simulations, although the reddening of the spectrum at high k
means it rapidly becomes smaller at higher resolutions. Other
errors are comparable to (or smaller than) this dominant term,
and are similar in magnitude between the Fourier space and
traditional approaches. For this reason, we have not explored
alternative filtering methods, although we note that (should
increased accuracy ever be required) a multiresolution wavelet
(e.g., Daubechies 1992) approach to combining information
from different zoom levels may be worth investigating.

3. Modifications for Zoom Simulations

The most important feature of genetIC is the generation of
modified initial conditions. Fundamentally, we wish to map an

existing field, d, onto a new field, ¢’, that satisfies a chosen
condition but is otherwise minimally altered. If the density field
is stored at a single resolution for the whole simulation and the
condition is described by a linear function of the density field,
then the solution is provided by the Hoffman—Ribak algorithm
(Hoffman & Ribak 1991).

In Hoffman—Ribak applications, the original, unconstrained
field typically is treated as an intermediate object and not used
for any computation. In modifications, on the other hand, the
unconstrained field is treated as physically meaningful; we
must simulate the unmodified galaxy as well as a series of
modified versions in order to probe how galaxies react to their
surroundings or cosmological history. For modifications
described by linear maps of the original density field, the
resulting procedure is otherwise equivalent to the Hoffman—
Ribak procedure. However, nonlinear modifications result in a
different procedure (Rey & Pontzen 2018).

In the case of a zoom simulation, it is not immediately clear
how one should make modifications that are consistent across
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the boundaries between different resolution grids. We will next
discuss broadly how this problem is solved in genetIC, and
give full details of the algorithm and its derivation in
Appendix A.4.

3.1. Linear Modifications

To provide the starting point for modifications in zoom
simulations, let us first describe more fully the approach for a
uniform-resolution grid. In the simplest possible scenario, we
want to change the average value of the field over some region,
either multiplying it by a constant or setting it to a given value.
Supposing the region corresponds to N elements of the density
field, ;, 6;, ..., 0;,, the constraint can be expressed as

in>

l(éil + bt ... +6,) = 0, (6)

N
where 6 is the target average density contrast we wish to
impose. Because such modifications are defined in terms of a
linear sum of elements of the density-contrast vector, §, we
refer to them as linear modifications. Because the potential and
velocity fields are themselves linearly related to the density,
any linear modification can be expressed as a constraint on the
density field. In the general case, the constraint would be
described by a vector u and the target value d, and we aim to
achieve

u-6=d. @)

In the average-density example, u is a vector with components
1 /N for elements of &’ that lie in the region to be modified, and
zero outside it, and d = 6.

The Hoffman—Ribak algorithm uses u# and d to create a map
from the unmodified field, 8, to the modified field, &:

_6+(d—u-6)Cu.

o' = ®)

u - Cu

One can verify that ¢’ satisfies Equation (7) by applying the dot
product with u to both sides. However, this is not the only way
of satisfying the constraint—Equation (8) is a special choice
because it can be regarded as finding the solution ' that
minimizes (8’ — 6)'C~!(8’ — &), subject to the constraint of
Equation (7). Consequently, modifications made this way are
minimal and are the most likely way of satisfying the constraint
that could have arisen from a Gaussian random field with
correlation matrix C. This disfavors, for example, unphysical
modifications such as sharp discontinuities in the density field.
See Roth et al. (2016) and Rey & Pontzen (2018) for further
discussion.

The method can be used to force extreme modifications to
the field; for example, two neighboring individual pixels might
be set by the user to take wildly different values, violating the
expected continuity. In this case, the solution to Equation (8)
will be equally extreme: for example, a power spectrum
estimate based on the single resulting field may differ
significantly from the ACDM ensemble mean, and non-
Gaussianity null tests may fail. Such rare deviations are always
present in any Gaussian ensemble, but have a large x>
reflecting their rarity. GenetIC helps users understand
whether they are generating outliers by outputting the x>
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change between the modified and unmodified fields. Provided
the change is of order unity or less, the new realization can be
considered a similarly likely draw from the Gaussian random
ensemble as the original unmodified field.

The procedure leading to Equation (8) is suitable for a
simulation with a uniform resolution over the whole simulation
grid. We now explain how the procedure generalizes to the case
of multiple resolutions combined using the filters from
Section 2.3. We may assume that the modification is specified
on the highest-resolution grid, since by construction this grid
will contain the galaxy that we wish to alter. However, it is
incorrect to apply the modification only on this high-
resolution grid.

To understand why, consider a modification that changes the
average value in some region I' that lies entirely within the
highest-resolution grid. First note that I', the set of particles that
define a modification, is not the same as the set of particles that
will be modified by it. We might imagine changing only the
field within this region in order to match the constraint, but
doing so would either be impossible in the overdensity due to
mass conservation, or for any other quantity, would produce a
discontinuity at the edge of I'. Accordingly, it cannot be a
minimal modification: a field with sharp discontinuities is
highly unlikely to arise from a random draw from a Gaussian
distribution.

As discussed above, one of the outcomes achieved by the
Hoffman—Ribak algorithm is that the modification avoids such
unphysical realizations by choosing a form that maximizes the
likelihood for the modification to have been drawn from a
Gaussian distribution. However, the result is that the field
outside of the initially specified region I' is also modified, and
in particular, the necessary changes in the field § will propagate
out to regions outside the highest-resolution grid even if the set
of particles that defined the modification lie entirely within it. If
we only modify the highest-resolution grid, then there will be a
discontinuity at the grid’s edge—which again would be
unphysical, or at the very least, highly unlikely within the
ACDM ensemble. Making the high-resolution grid sufficiently
large that the modification is negligible outside of it is
infeasible for the computational performance reasons discussed
in Section 2.2. The modification must instead simultaneously
alter the high- and low-resolution grids in a way that is self-
consistent.

Our approach is to return to the idealized defining relations
of &, and dy, Equations (2) and (3), and their compressed
versions d; and dy. The defining relations can be used to
deduce the required operations on §; and & that are equivalent
to applying the Hoffman—Ribak procedure to the underlying
high-resolution field 8. To achieve this, we concatenate §; and
Oy into a single compressed vector &, (Z here standing
for “zoom”).

Modifications form a map § — 4’ taking the underlying
uncompressed density field into its modified counterpart. An
ideal solution for the compressed modified field, &, would be
obtained by first modifying the field § — ¢, then compressing
8’ — 8. For a practical algorithm, we are searching for a
single operation that modifies §; — &, in an equivalent way.
In other words, we want the operations of modification and
compression to a zoom simulation to commute, at least
approximately.
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Given this principle, we can derive the required operation on
the zoom vector by regarding the operation of compression,
mapping & — &, as a coordinate transformation.” Then, the
Hoffman—Ribak algorithm, whose application is straightfor-
ward for a fixed-resolution vector 8, can be transformed into an
operation defined in this “zoom basis” by the standard rules for
performing coordinate transformations on linear operators. This
results in a well-defined map from J to a new vector 8%, which
satisfies the required constraint as if it had been performed at
high resolution everywhere and then degraded to the zoom
simulation (to the level of precision that a given zoom setup
can describe). Having established this approach of demanding
consistency with the original algorithm, the modifications can
be applied at almost any stage of the initial conditions
generation process (see Section 2.3). In the final code, we
choose to apply the modifications as early as possible, prior
even to convolution with the transfer function. The full details
are derived and explained in Appendix A.4.

3.2. Other Types of Linear Modification

The prescription for modifying density contrasts is easily
extended to modifying other quantities linearly related to the
density contrast, such as velocity and the gravitational
potential. For example, the first-order gravitational potential,
®, satisfies the Poisson equation, which in Fourier space,
assuming matter domination, is

 3QuHy & (k)

Py (k) = P

, ©)

where the subscript k& denotes Fourier space quantities,
O,y = pm/Peric 18 the current matter density relative to the
critical density, Hy is the Hubble constant, and a is the scale
factor when the initial conditions are generated. Because the
potential perturbation is linearly related to the density contrast,
we can represent a constraint on the potential as a different
constraint on the density contrast in the case of uniform
resolution. One starts by constructing the vector describing the
region in which the potential is to be modified, just as in the
density case; see Equation (6). Next, the Poisson Equation (9)
is applied to u, allowing the Hoffman—Ribak algorithm to
modify the potential while still operating on the overdensity
field (van de Weygaert & Bertschinger 1996). In the case of
zoom simulations, one cannot perform this operation directly,
since solving the Poisson equation implies a convolution that
leaks information from the high-resolution into the low-
resolution region; instead, we again use the uniform-resolution
case as an idealized limit and thus derive the correct procedure
for zooms as described above in Section 3.1.

Velocity modifications are implemented starting from the
linear relationship between velocity and density contrast in the
Zel’dovich approximation. Specifically, velocity perturbations
are proportional to the gradient of the potential; during matter
domination, the Fourier space relationship is given by
ko (k)

—

vi(k) = _mi,{zHoak— (10)

7 Strictly speaking this transformation is not invertible—we address how to
deal with this in Appendix A.4.
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Once more, the uniform-resolution algorithm is obtained by
applying the velocity transformation to the u vector; the
variable-resolution case is again derived by requiring agree-
ment with the idealized limit.

3.3. Quadratic Modifications

All of the modifications we have discussed up to this point
are linear. Another type of modification consists of quadratic
modifications to the field. These were first discussed by Rey &
Pontzen (2018) and amount to modifying the density-contrast
vectors to satisfy

67'Qd’ = ¢, (11)

where Q is a matrix. The simplest example of such a
modification is altering the variance of an arbitrary region
within the simulated density field. This can be useful, for
example, in altering the smoothness of an overall halo merger
history. The solution for uniform-resolution fields is already
described in Rey & Pontzen (2018), and consists of a gradient
descent approximation involving a local linearization of the
problem. Because each step in the gradient descent is
approximated by a Hoffman—Ribak update, no extra work is
required to implement the algorithm in zoom simulations. The
genetIC code allows variance modifications to be requested
by the user, and internally transforms these into an appropriate
sequence of linear modifications. Constructing an appropriate
Q operator allows other types of quadratic modifications to also
be computed in the future, and genetIC is modularized to
allow for these to be added easily.

4. Accuracy and Examples

To illustrate the accuracy of genetIC in performing
convolutions across resolution boundaries, we will now verify
the accuracy of its output when modifying zoom initial
conditions. This can be accomplished by comparing to an
ideal equivalent set of initial conditions that are realized at
uniformly high resolution (and then degraded outside the zoom
region). Studying the accuracy of these modifications comple-
ments our earlier investigation of the real-space correlation
function generated when using the code’s Fourier-split
approach (Figure 3).

4.1. Accuracy of the Initial Conditions

The setup is as follows: we generate a 200 Mpc 2~ cubic
box at z =99 and resolution Ny, = 5123, as the “high-
resolution everywhere” initial conditions. These play the role of
the “ideal” case, which for higher-resolution zoom simulations
would be infeasible to run—at this relatively low resolution,
however, we can compare the “ideal” and zoom simulations
directly. The zoom simulation is defined on the same size of
box, but with a 128° low-resolution grid and a zoom window
consisting of a 50 Mpc h~! cube of resolution Nyjngow = 128°
centered on x = (50, 50, 50) Mpc h~!. Note that its spatial
resolution therefore matches that of the original 512° box. Both
sets of initial conditions are seeded with the same random seed
in Fourier space. Because the low-resolution modes are seeded
first, they match between the simulations; however, we caution
that, because the Fourier modes have different meanings
between the idealized and the zoom case, there is no way to
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Figure 4. Density slices illustrating the modification of a halo’s Lagrangian volume in a zoom simulation (128%, 50 Mpc A~ high-resolution grid embedded within a
subvolume of a 128° low-resolution grid that is 200 Mpc 4" on a side; here, only the central 100 Mpc i~ region is shown). We change the average density contrast
in the region indicated by the loop, while the dotted square represents the boundary of the high-resolution region. Middle left plot shows the difference between
modified and unmodified fields, which is smooth across the resolution boundary (for a clearer example of this continuity, see Figure 5). In the middle right panel, we
compare the difference field to that which is obtained in the idealized case where the whole volume is realized at high resolution, plotting the difference defined in
Equation (13) exaggerated by a factor of 100. We obtain percent-level accuracy relative to the idealized case. Bottom panels are the same as the middle panels, but for

the x component of the displacement field instead of the density field.

make the high-resolution modes match exactly in this test. This
will necessitate a scaling in the comparison, which we will
describe in due course.

An example slice through initial conditions on this grid is
shown in the top left panel of Figure 4. The set of particles to
be modified, T, is the Lagrangian region of a particular halo,
chosen by evolving forward the unmodified zoom initial

conditions, selecting a halo in the zoom window, and tracking
its particles back to the initial conditions (see Roth et al. (2016)
and Section 5.4 for a description of this process, which is
unique to genetIC). A density-contrast modification then
makes minimal alterations to the field in order to change the
density contrast averaged over those particles. For the purposes
of this example, we will choose the constraint on the modified
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field, &', to be
(6"\r = 0.1. (12)

This describes a particularly large modification, comparable
to the rms of the entire field, for the purposes of illustration.
The effect on the zoom initial conditions is shown in the top
right panel of Figure 4. In the middle left panel, we show the
difference between the modified and unmodified fields (with
the same color scale as the overdensity field itself). To
characterize the error in this modification relative to the “ideal”
case, we subtract the difference between the zoom simulation
modification and a rescaled ideal modification

A(x) = [6/Zoom(x) - 5Zoom(x)] - Of[(s/ldeal(x) - 5Ideal(x)]s
(13)

where Ogea(®) and 670m(x) represent the field as computed in
the idealized and zoom cases, respectively, and primes indicate
modified fields. The factor « rescales the ideal modification
field. This is needed to make a proper comparison because the
premodification average of the density-contrast field in any
given region is not the same for idealized and zoom fields, that
i8, (0zoom)r #= (O1dear) T the fields unavoidably have different
high-resolution modes simply due to the way that random noise
is seeded. Consequently, the modification fields Ojgeas — O1deal
and 6zoom — Ozoom that enforce Equation (12) have different
amplitudes. The rescaling factor needed to compare them is just
the ratio of these modification amplitudes:
o = <5~Zoom>l“ - <6Zoom>1“ ) (14)
(Ordea)r — (Ordeal)T
The final result of computing the error, Equation (13), is
plotted in the middle right panel of Figure 4, exaggerated in
scale by a factor of 100 relative to the fields and modifications
themselves, showing that the error in modifications is vastly
smaller than the modifications themselves. Since modifications
in practical scenarios will generally be much smaller than the
example presented here, this small error on already small
modifications will be negligible. Crucially, the modification
field (defined as the difference between the modified and
unmodified fields) is smooth across both the boundary of the
set of particles defining the modification and the grid
boundaries (middle left panel of Figure 4). We also show, in
the bottom panels of Figure 4, the difference between the
modified and unmodified displacement field (x component,
bottom left), and the error in the same displacement field
magnified by a factor of 100 (bottom right). This illustrates the
smoothness of the actual velocities and particle displacements
that will affect the resulting particle distribution directly.
The continuity across the boundary is better seen by making
a longer-wavelength, high-amplitude modification. In Figure 5,
we consider a modification to the velocity field, obtained by
constraining the average over I' of the x component of the
velocity to be 100kms™'. Because of the additional k'
weighting of Equation (10), the corresponding modification
affects wavelengths up to the fundamental mode of the box.
(Velocity correlations in cosmological simulations extend up
~1 Gpc if the box size is sufficiently large.) The modification is
accurately propagated outside the zoom window, with only
small errors compared to performing the same modification on
a higher-resolution grid. It should be noted that the errors in the
top and bottom right panels are again magnified by a factor of
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one hundred—although these highlight discontinuity in the
errors, the overall modification field is still accurate and
continuous to better than percent level.

4.2. Accuracy of Evolved Examples

The discussion in Section 4.1 demonstrates the accuracy of
genetIC’s approach to convolutions that transfer information
from small to large scales. However, it is also important to
establish that large-scale information is correctly propagated
into zoom regions; of particular concern is the persistence of
structure when creating zoom simulations and modifyinfg them.
To demonstrate this persistence, we ran a 100 Mpch™ ", 5123,
dark-matter-only “base” simulation with ,, = 0.3156, h =
0.6726, 03 = 0.830 (Planck Collaboration et al. 2016). We
then generated a second set of “zoomed” initial conditions that
introduced eight times higher mass resolution within a
20Mpc A" cube at the center. Because both simulations are
generated with the same random seed, the low-resolution
modes of both match. Both base and zoomed simulations were
evolved with GADGET2 (Springel 2005).

We show in Figure 6 the evolved state at z = 0 in the
selected region; the left panel shows a projection of a 5 Mpc
slice through the original simulation, and the center panel
shows the zoomed simulation, with the dashed line showing the
approximate boundary of the zoom region in projection. The
large-scale structure and locations of resolved satellite halos are
preserved, while additional small-scale structure is introduced
as expected. The mass of individual resolved structures
changes by less than 1%.

We then selected a halo in the zoom region and increased the
density contrast of its constituent particles in the initial
conditions by 20%. This increased the mass of the final halo
from 0.88 x 10 M. h~'to 1.78 x 10" M_ h™', as expected
(Roth et al. 2016). The evolved, modified density field is shown
in the rightmost panel of Figure 6. The modifications to the
halo result in small changes to its surrounding structures,
maintaining consistency with the ACDM power spectrum.
These changes include small shifts in the location of structures,
some of which are perpendicular to the projected slice (which
means structures can disappear from the figure). However, the
overall large-scale structure is maintained, as expected.

5. Code Overview and Core Features

We now give a technical overview of the genetIC code.
There are three main stages involved in a typical scenario when
using genetIC: (1) grid creation and white noise generation;
(2) modification; and (3) particle generation. These stages are
illustrated in Figures 7 and 8, together with the code classes
involved listed underneath each step of the stages. We do not
describe the user syntax for controlling these stages through a
parameter file, since these are detailed in a separate manual.
The code is implemented in C++4-, with parallelization via
OpenMP. It relies on the GNU Scientific Library (Gough 2009)
for random number generation and FFTW for Fourier trans-
forms (e.g., Frigo 1999).

5.1. Stage 1—Grid Setup and White Noise Generation

In the first stage (see Figure 7), the parameters are used to
construct a Grid object that stores properties of the simulation,
such as the cell size, particle mass, and dimensions. To enable
zoom simulations, refinement grids are set up according to the
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Figure 5. Top left: difference between modified and unmodified density-contrast field after a velocity modification on the same grid as Figure 4 (128 low-resolution
200 Mpc A" grid, 128* high-resolution 50 Mpc A~ ' region, indicated by the dotted square). As with density-contrast modifications, the difference between modified
and unmodified fields (left) is smooth across the boundary of the grids; this is now more clearly demonstrated, because velocities are correlated on larger scales. Top
right: error in this difference compared with the same modification on a higher, fixed-resolution grid (512> across the full 200 Mpc &' box), exaggerated by a factor of
100. This exaggeration highlights a small discontinuity at the boundary between grids with different resolutions, but we emphasize that the error remains below
percent-level. Bottom left: changes to the displacement field (which, in the Zel’dovich approximation, is directly proportional to the velocity). Bottom right: error in
these changes compared with the same modification on the higher, fixed-resolution grid, exaggerated by a factor of 100. The magnitude of the errors in this case are

too small to be visible.

specification in the parameter file and organized into a
MultiLevelGrid class that encapsulates the relationship
between different grids. It stores data about each level’s size,
grid layout, and position, as well as various functions for
accessing and manipulating these grids. Any part of the code
needing access to the relationship between different grids uses
this object.

At the same time, a ParticleMapper object is set up to
track how the grids are related to particles: for example, if the
user specifies that a sphere around some point of the simulation
should be stored at higher resolution, then a grid is set up that
contains this sphere and the ParticleMapper keeps track of
which particles in that sphere were requested and should be
included at the particle generation stage (see Section 5.3). The
ParticleMapper is able to map bidirectionally between
grid cells to particles, an essential facility in the modification
stage below. Performing this mapping can be expensive in
complicated geometries, but is parallelized for maximum
efficiency.

Once the grids are initialized, the code constructs a
MultiLevelField object that contains Field objects,
each of which stores the overdensity field on a single Grid. A
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RandomFieldGenerator uses the random seed specified
in the parameter file to generate unit variance white noise
within each Field. The RandomFieldGenerator makes
use of GNU Scientific Library’s Ziggurat algorithm (Gough
2009) to draw uncorrelated Gaussian samples, starting from a
user-supplied seed integer (this allows the same set of random
numbers to be drawn, irrespective of system architecture).
Separating this module into its own object allows the random
number generator back end to be easily changed, and there are
several options for how the random components of the fields
can be generated. In particular, the random draws can be
performed both in Fourier and real space, and either in series or
in parallel, according to the user’s requirements. When drawing
in parallel, the work is segmented into Fourier-space shells that
can be drawn independently, so the final result is independent
of the number of threads available.

Note that it is also possible to import pre-existing white noise
fields, such as those that might have been generated by other
initial conditions generators, instead of drawing random noise.
These must be in numpy format, and must be of the correct
size to fit the grids to be generated. This allows the possibility
of applying genetic modifications to existing simulation suites.



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 252:28 (18pp), 2021 February

Original simulation —————— Zoom

T

1!\; LY
RS

<«—— 25 Mpc comoving ——>

Stopyra et al.

IOM

1013

M, Mpc?

10”3

Density

IOH

Figure 6. Example of genet IC in use. Left: density in a 5 Mpc-thick slice through a 100 Mpc &~ uniform-resolution simulation, evolved to z = 0 using GADGET?2.
Center: same density slice taken through a simulation in which we have created a large cubic “zoom” region with eight times better mass resolution. (Zoom region
deforms away from a cube due to nonlinear evolution, and its boundaries are shown as a dashed line.) Large-scale structures persist between the unzoomed and
zoomed simulation, and increased detail can be seen in the zoomed version. Right: halo (circled) within the zoom region is selected and genetically modified to
increase its initial density by 20%, and the simulation is performed once again. The result is to increase the halo’s z = 0 mass from 8.73 x 10> M, h~' to
1.78 x 10" M k™" (over a factor of two increase) while making minimal changes to the surrounding structure. Note that, due to small movements perpendicular to
the page, small halos can move in and out of our slice—and thus spuriously appear or disappear in the right panel.

5.2. Stage 2—Modifications

In the second stage (see Figure 7), modifications are applied.
These are specified in the parameter file and can be a linear or
quadratic function of a set of particles (such as the average
density). The ParticleMapper is used to trace the target
particles into appropriate cells within the MultiLevelGrid
structure. The specified modifications are used to construct
LinearModification and QuadraticModification
objects as appropriate, which are stored by the Modifica-
tionManager—this object is the heart of the genetIC
algorithm. It implements all modification algorithms, and
applies them to the white noise field.

The linear modifications currently implemented are density,
potential, and velocity in three Cartesian directions. They are
each represented by LinearModification subclasses, thus
allowing future expansion or custom modifications to be
defined. For quadratic modifications, only variance is currently
implemented, and it is in a subclass of QuadraticModifi-
cation so that future expansion should be straightforward.

5.3. Stage 3—Particle Generation

In the final stage, the modified white noise fields are
converted into particle positions and velocities. This step is
illustrated in Figure 8. First, the power spectrum is applied to
the white noise field on each grid; however, this does not result
in the final overdensity, since the filtering and mode
combination step (Section 2.3 and Appendix A.2) has not yet
been undertaken. The MultilLevelParticleGenerator
object takes responsibility for the required steps, as well as
producing the displacement and velocity fields that are required
for the simulation initialization. The latter are generated by
applying the appropriate convolution, such as Equation (10), on
the individual grids independently, and then filtering and
combining the modes in the fields just as for the overdensity
field. While the code currently assumes the Zel’dovich
approximation during these manipulations, other methods,
such as higher-order Lagrangian perturbation theory, could be
implemented in the future by adding subclasses.

Finally, the code must map the fields as stored on the grids
onto output particles. There are two interrelated aspects of this:
(1) the correspondence between particles and grid cells of the
field, and (2) the selection of a resolution for each region. To
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output particles while taking account of these considerations
requires bringing together information in the MultilLevel-
ParticleGenerator and the ParticleMapper. For
example, consider selecting a sphere of a given radius around a
specific point (or a more abstract region, such as the particles
surrounding a particular halo). If we want to output these
particles at high resolution, the code internally creates a cubic
grid around them and generates a white noise field for the
whole cube. However, for efficiency in the final simulation, we
only want to output those particles explicitly selected for high
resolution. We might also wish to insert a thin layer of
“intermediary” particles that interpolate between the high and
low resolution, or embed further zoom grids hierarchically. The
ParticleMapper keeps track of this information and
determines for each point whether we should output a low-
resolution particle or a group of high-resolution particles,
allowing genetIC to handle detailed nested geometries
seamlessly while shielding other parts of the code from these
complexities.

Additionally, a ParticleEvaluator object takes
responsibility for outputting the appropriate fields for each
grid. Depending on the precise simulation being used, as well
as the options specified, different derived classes of the
ParticleEvaluator are used. In particular, the code can
generate particles at lower resolution than the underlying
random fields (subsampling), or at higher resolution via
interpolation (supersampling). These facilities are used when
generating intermediary regions (see above) and are also
available for explicit invocation by advanced users who wish to
fine-tune the performance of a simulation. Further details can
be found in the code and its documentation.

In summary, the MultilevelParticleGenerator
takes the field and turns it into the raw information for
particles, by default using the Zel’dovich approximation. The
ParticleMapper keeps track of particles to be generated as
output, while the ParticleEvaluator keeps track of how
the particles are related to the underlying density fields. To
generate output, the ParticleMapper iterates over the
particles to be generated, accessing the relevant density fields
via an intermediary ParticleEvaluator. The mapper is
also used to identify and trace cells corresponding to a list of
particles from a previous output, as we now describe.
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Figure 7. To provide an overview of the initial conditions generation process within genetIC, we break it down into three stages; here, the first two are illustrated.
Control passes from left to right. Names of the classes involved at each step are given below each stage, and inputs flow from above. In step one, information specified
by the user in a parameter file is used to construct a set of grid objects. If zoom levels are required, refinement grids are constructed. White noise fields are then
generated for each grid. The second step only occurs if modifications are required, using information in the parameter file to construct and apply these to the white

noise. Step three is illustrated in Figure 8.

5.4. Tracing Particles

A key feature of genetIC is its ability to map particles
from a simulation back to an initial conditions grid cell. In
some cases, this is a straightforward operation: if we perform a
single unzoomed simulation, the mapping from the final
particle index to the original grid position is simple. This can
be used, for example, to select which grid cells will be refined
when constructing a zoom simulation. However, if we then
wish to generate a third set of initial conditions, in which we
modify a region of the zoom simulation, the mapping is now
considerably more complex, since only a fraction of the high-
resolution grid is represented as particles. Additional complex-
ities arise if baryon particles are added in a subregion; if a
second zoom level is opened; if intermediate-resolution
“padding” particles are added around a high-resolution region;
or if genetic modifications change the set of particles that
ultimately fall into the target galaxy.

One simple way around the mapping problem is to require
that the simulation code associates an ID with each particle,
with the ID uniquely identifying the origin grid cell, regardless
of which cells are represented in the particle output. However,
some codes do not offer this option; moreover, this kind of
noncontiguous particle labeling can pose significant challenges
for simulation post-processing and analysis routines.

The genetIC code can instead map from sequential particle
IDs back to the original grid squares, when used with
Lagrangian codes such as GADGET and ChaNGa. The user is
required to specify the original parameter file that details how
the original simulation was set up. By creating a second
ParticleMapper object to process the input particles IDs,
the code is then able to trace the relationship between particles
and grid cells.

5.5. Baryon Transfer Functions

In N-body simulations, it is often assumed that, because dark
matter is the dominant matter component, the difference
between the baryon and dark matter transfer functions can be
neglected and the total matter transfer function used for both.
At late times, this is a good approximation (see Peebles 1980;
Lyth & Stewart 1990). However, at early times, the baryon
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transfer function contains features not present in the dark matter
power spectrum—most importantly, the effect of baryon
acoustic oscillations. As cosmological parameters become
determined more and more precisely, there may be a need in
the future to take this difference into account.

For this reason, genetIC includes an option to take into
account both the baryon and dark matter transfer functions in
generating the initial conditions. This is accomplished by
taking a copy of the white noise field after modifications but
before applying the transfer function, and thus requires
additional memory. However, the use of separate transfer
functions is optional, and the user must explicitly enable it;
otherwise, by default, the initial conditions use only the dark
matter transfer function even for gas particles.

5.6. Paired and Fixed Initial Conditions

It is also possible to generate paired and fixed initial
conditions. Paired fields have opposite phase in Fourier space,
and so some correlations cancel between them, reducing
sample variance while retaining Gaussianity. The effect is to
swap overdensities and underdensities, which in itself may be
useful for contrasting the growth of halos and voids (Pontzen
et al. 2016). Fixed fields, on the other hand, set the power
spectrum to the exact theoretical mean—and thus destroy
Gaussianity in a controlled way (Angulo & Pontzen 2016);
their properties are discussed further in Villaescusa-Navarro
et al. (2018).

6. Discussion

We have presented genet IC, an initial conditions generator
for cosmological simulations. The code generates multilevel
zoomed initial conditions and is specifically designed to
perform modifications to these initial conditions in a controlled
manner.

GenetIC uses a new Fourier-space filtering approach to
combine information from different resolution regions of the
initial conditions (Section 2). This avoids the need for large
ghost regions around each level of the simulation, enabling
deeper and higher-resolution zooms; it also allows the code to
self-consistently propagate information about modifications
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Figure 8. Stage three of genetIC. As in Figure 7, classes for each step are indicated below, and inputs above. The (modified) white noise on each level has the power
spectrum applied in Fourier space and is used to construct displacement fields for the particles. At this stage, the short-wavelength behavior of zoom grids is incorrect,
i.e., the zoom regions do not match the long-wavelength modes of the base grid. This is corrected by filtering and combining the displacement fields on each level to
give the correct long- and short-wavelength behavior in all zoom regions. Finally, the displacement fields are converted into particles or gridded output, ready for use

with a simulation code.

made on the highest-resolution grid up to the lower-resolution
grids.

The algorithms also by construction implement minimal
modifications (Section 3), i.e., modifications that satisfy given
constraints while minimizing changes and maximizing the
likelihood of a given realization to have arisen from a Gaussian
distribution. This prevents modifications from possessing
unphysical features, such as sharp discontinuities at the
boundary of regions that are modified. We verified that our
implementation of multiresolution initial conditions produces
correlation functions and modifications that are in close
agreement with idealized uniform high-resolution equivalents
(Section 4).

The code implements these concepts in an efficient
parallelized manner (Section 5). In order to enable the
specification of complex geometries for zoom regions and
modifications, it has a sophisticated mapping system that
ingests lists of particle IDs from prior simulations and identifies
the associated grid cells for further manipulation (Section 5.1).
The code has a variety of useful additional features, such as
generating gas with the correct baryon transfer function
(Section 5.5) and generating reversed initial conditions for
the same initial seed (Section 5.6). One of its strongest features,
however, is its modular, object-oriented design, which allows
for easy extensibility to apply the code to different situations. A
test suite accompanies the code to verify installations and
ensure code quality. Support for the code and download links
can be found at https://github.com/pynbody/genetIC. An
extensive user manual is available from the github site, and the
code is documented with Doxygen.
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Appendix A
Mathematical Description of the GenetIC Algorithm

In Sections 2.3 and 3, we qualitatively described the
approach implemented by genetIC to obtain and manipulate
initial conditions for zoom simulations. We now provide a full
analytic description, including further justification and deriva-
tions where appropriate.


https://github.com/pynbody/genetIC
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We start by laying out some notation in Appendix A.l.
Appendix A.2 then describes the relationship between white
noise that is “compressed” (i.e., realized at variable resolution)
and a uniform-resolution density-contrast field. Approxima-
tions required to build a practical algorithm are outlined in
Appendix A.3. Finally, Appendix A.4 describes how we apply
modifications. For completeness, Appendix B provides further
technical insight into approximations.

As in the main paper, we assume throughout these
appendices that there is a single zoom region, allowing us to
make the notation as clear as possible. The code does, in fact,
support nested regions where the resolution increases on each
successive level, but this general multilevel case follows from
recursion on the two-level approach.

A.l. Notation: Pixelization and Windowing

To express our construction of zoom initial conditions as
accurately as possible, it is useful to introduce some notation. We
will consider two key operations: pixelization and windowing.
Conceptually, these both start from a field sampled at uniformly
high resolution across the simulation domain, and respectively
downsample to low resolution or extract the zoom region.

We start in each case from the vector &, which contains a list
of N field values for each pixel in the simulation when sampled
at uniformly high resolution. In practice, we never generate
fields in this way, since the goal is to avoid storing or
manipulating such a prohibitively large vector (Section 2.1).
However, the operators are nonetheless needed for describing
and justifying the algorithm in the remainder of the Appendix.

The first operation, pixelization, will be denoted by P. It
downsamples ¢ to a low-resolution vector dp of length Np, i.c.,

5 = P&. (A1)

Explicitly, P can be represented by an Np x N rectangular
matrix. The simplest resampling scheme is to create each low-
resolution pixel by averaging over m = N/Np high-resolution
pixels. For example, in the case of m = 3, we can visualize the
P matrix as

1110000
_1fooo1110
P730000001 (A2)

The other key operation is windowing, which selects a
subset of the & vector corresponding to the region in which we
wish to retain high-resolution initial conditions:

Sy = W4. (A3)

The matrix W has dimensions Ny, x N. The simplest explicit
example in this case is given when the pixels in the zoom
region are already located at the beginning of the original
vector & (which, in fact, we may assume without loss of
generality). Taking Ny, = 3 for illustrative purposes, one would

have
1000 -
W=]0100 -} (A4)

0010 --
Pixelization and windowing both destroy information, and so

cannot be inverted, but we will make use of their pseudo-inverses
P* and W?". These respectively upsample low-resolution
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field vectors to high resolution (in a specific way to be
described shortly), and place the zoom region back into a full-
sized simulation using zero-padding. They are defined to
satisfy

PP+ =1y, and WWT =TIy, (AS)

where I, is the n x n identity matrix. In other words,
upsampling then downsampling or zero-padding then removing
the zero padding must have no effect.

From this requirement, one may derive explicit expressions
for P™ and W™ . In the latter case, we have simply wt =wr,
since WWT = T; this is most easily verified by inspection of the
example (A4), which generalizes to any Ny.

Deriving Pt takes a little more care; recall that the
pixelization P forms each low-resolution pixel from averaging
over m high-resolution pixels. The pseudoinverse simply places
that mean value back into each high-resolution pixel, leading to
the expression P* = mP". One may verify by inspection that,
for the example given in (A2), mPP' = Iy, as required; this
generalizes to any value of m.

Finally, we note that the operators P*P and W*W, describe
respectively downsampling then upsampling the field and
extracting the zoom region then zero-padding. These are both
destructive operations but satisfy the projection relations

(PTP)? = (P*P) and (WTW)? = (W*W). (A6)

Thus, there is no additional effect from repeated upsampling
and downsampling or windowing and zero-padding. All the
above relations are used routinely in derivations.

One can also construct operators that pixelize only in the
window region, denoted Py, or window the pixelized field,
denoted Wp (as well as their pseudo-inverses, Py, and W}).
The order between pixelizing and windowing does not matter,
SO

PwW = WpP. (A7)

Unlike P and W, which are introduced as derivation tools
rather than for practical computation, Py, and Wp can actually
be implemented in practice. Operations that are performed by
genetIC include upsampling the low-resolution information
into the high-resolution (which can be notated as Pj,Wp) and
downsampling the high-resolution region into a zero-padded
low-resolution full volume (W7Py).

According to the description above, P}, can be thought of as
a zero-order or “nearest neighbor” interpolation from low to
high resolution. For some purposes, we will wish to use higher-
order interpolation to form smoother fields from the underlying
coarse pixelization. For brevity, we do not make a heavy
distinction between different orders of interpolation in this
appendix, but we do note that genetIC in practice uses a
tricubic interpolation scheme, similar to that outlined by Lekien
& Marsden (2005). For consistency, genetIC also imple-
ments downsampling Py, using an interpolation scheme that
maintains Py Py =

A.2. Relationship between Variable-resolution and Uniform-
resolution Fields

Existing algorithms for performing modifications, including
the Hoffman & Ribak (1991) algorithm resulting from the
formulation in Roth et al. (2016), are framed in terms of a
uniform pixelization. We therefore need to derive a robust but
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computationally tractable algorithm for modifying zoom initial
conditions. To start, we require an explicit analytic form for the
map from white noise at varying resolution to a density-
contrast field sampled at high resolution across the full
simulation domain. This map can be regarded as a definition
from which all algorithms derive, and is given for genetIC
by

J= C1/2FHW+I’!H + mil/ZCI/ZFLpﬂknL. (AS)

In words, to obtain a density-contrast field at high resolution
throughout the box, we would (i) place or resample the separate
white noise fields into high resolution across the full volume
(W* and m~'/?P™, respectively); (ii) apply the appropriate
high-pass Fj or low-pass F filters®; and (iii) convolve with
C2 1o finally obtain an appropriate covariance.’

For compact notation, one can concatenate the two noise
vectors n;, and ny into a single vector n; (where Z stands for
“zoom”), and write

6 =Tny, whereT = (C'/2FypW+  m~1/2C1/2F, P™).
(A9)

Thus, the transformation matrix T is an N X (Np + Ny)
matrix. We never explicitly calculate 9, or indeed, T, since
these are prohibitively large in realistic simulations; its form is
required only in the derivation of algorithms.

Given any matrix transformation M that can be applied to a
uniform resolution volume &, we would ideally wish to find an
equivalent matrix M that applies to the variable-resolution
white noise, such that

MTnZ = TMZ nz, (AIO)

for any vector nz. In general, there is not an exact solution to
this problem, because T is noninvertible, meaning that M is
overdetermined. However, a uniquely well-motivated approx-
imation is obtained by taking

Mz = T*MT, (Al1)

where TV is the pseudoinverse of T. The motivation for this
expression can be understood at three levels of detail:

1. It is the most obvious generalization of the standard
matrix transformation M, = T~!MT to the case where T
is noninvertible.

2. In the case that T'T is invertible, expression (A11) can be
derived exactly from (A10), using the pseudoinverse
identity T+ = (TTT)~IT".

3. In the case of interest, where neither T nor T'T are
expected to be invertible, the expression can instead be
derived using a maximum likelihood principle. This is
shown in Appendix B.1.

In order to compute Mz from M and hence formulate a
practical implementation of modifications in zoom simulations,

8 In actual practice, we want to retain the high-frequency modes outside the

zoom region rather than cutting them off entirely, so we actually use a modified
low-pass filter F, = (I — WTW) + WTWF;, where F; is the original Fermi
filter. This is equivalent to applying the low-pass filter only in the zoom region,
and does not significantly affect how the filters operate.

In general, the covariance of § as obtained from ny and n, is not precisely
C, because outside the zoom region, high-frequency modes contributing to C
cannot be represented. The exact covariance C is only obtained in the limit that
the zoom region occupies the entire space, WTW = I, and that the F; band
limits the signal in the coarse pixelization, P"PF, = F,.
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we will need an explicit expression for T'. It is easiest to
understand its form by bearing in mind that, practically
speaking, T+ maps from the uniform resolution § back onto
varying-resolution white noise fields nz. With this in mind, one
can guess at an approximate solution,

(A12)

~1/2
ny; =T%6, whereT" = (WFHC )

m!/2PF C71/2

The C~'/2 operators deconvolve and thus restore the white
noise property of the original noise fields. Then, for the high-
resolution grid, a high-pass filter is applied (Fy) and the
appropriate region is extracted (W). For the low-resolution
grid, the low-pass filter is applied (F;) and the entire domain
downsampled (m'/?P, with the m'/? factor serving to preserve
the unit variance of the white noise). Further discussion and
motivation of this approximate pseudoinverse is given in
Appendix B.2.

A.3. Practical Implementation: Generating Zoom Initial
Conditions

We next describe how the defining relation (A9) relates to
the practical computation of dy at high resolution in the zoom
window and d; at low resolution across the full box. For
consistency, we should expect that d; = W4, i.e., that the
high-resolution portion of our final overdensity field is given by
extracting the relevant part of 4. However, as previously
discussed, a direct computation of § is prohibitive, so we are
forced to make some approximations. First, let Fy; be the
high-pass filter defined on the windowed region only. The filter
is chosen to remove modes near the fundamental mode of the
zoom window, as discussed in Section 2.3. Consequently, we
may assume that

WFy ~ FyuW, (A13)

i.e., high-pass filtering and extraction of the zoom window
approximately commute. Additionally, we assume

FLP+ ~ P+FPL, (A14)

where Fp;, is the low-pass filter acting on the pixelized grid.
This approximation corresponds to the assumption that the low-
pass filter band-limits signals sufficiently far below the Nyquist
mode of the pixelized grid, again discussed in Section 2.3.
With these two assumptions, the field in the high-resolution
region, dy, can be approximated as

Oy = WTny ~ FygWC2Wny + m~'/2WC/2PtFp. ;..
(A15)

This expression is not suitable for practical computations,
however, because FyuWC!/?W™ still involves a high-resolu-
tion, full-volume convolution. We approximate this operation
by applying the covariance matrix evaluated at high resolution
but only in the zoom region:

Fwear WC!/2W =~ Fyypy Clf 2. (A16)

Because of the filter Fyyy, only high-k modes (far above the
fundamental frequency of the zoom region) are retained after
the convolution; consequently, the approximation should be
excellent.
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Similarly, the operation WC'/?P* must be replaced: naively,
it would involve resampling the volume to high resolution
(P™), convolving, then extracting only the high-resolution part
(W). Instead, we use the approximation

WC!/2P* ~ P}, WpC}/2, (A17)

which describes convolving at low resolution (CIL/ 2), extracting
the zoom region (Wp), and resampling only that region to high
resolution (Pi}).

As all of these operations are now tractable (i.e., either they
are sampled at low resolution or only encompass the zoom
region), they can be efficiently implemented. We thus arrive at
the practical estimator used by genetIC,

(s].] = FWHCIH/2"H + mil/ZPWWpFPLCIL/an, (Alg)

which was illustrated in Figure 1. The coarsely pixelated field
for the rest of the simulation, d;, is obtained by ignoring the
irrelevant high-k modes in ny:

5L = ClL/an, (A19)

where C; is the covariance matrix evaluated at low resolution.
At the time that the overdensity field is computed, we also
calculate the velocity field and hence Zel’dovich displace-
ments, which are required for generating particle output. These
are obtained using precisely the algorithm above, but using the
appropriate covariance matrix, as described in Section 3.2.

AA4. Practical Implementation: Performing Modifications

We are now in a position to derive the algorithm for making
modifications to zoom initial conditions. In Section 3.1, we
described how, in cases where the uniform high-resolution
overdensity d is available, modifications are defined via a
covector u and a target value d. The aim is to generate §’, which
is statistically as close as possible to §, but which satisfies

u-90 =d (A20)
For these constant-resolution vectors, the appropriate linear
transformation is given by the Hoffman—Ribak algorithm,

_ 5 d-u-8Cu

8 = (A21)

u - Cu
To produce an implementation that works at variable resolu-
tion, we first need to find a covector uy satisfying

(A22)
for the variable-resolution white noise n, which generates the

overdensity field §. A general solution can be found by
substituting Equation (A9), yielding

U; - nzy=u-o,

u; = Thu. (A23)

This will, however, be difficult to compute, since it starts from
the full high-resolution vector u, which by assumption cannot
be stored. To simplify, we choose to consider only modifica-
tions where the objective is specified within the high-resolution
region.'® For scientific applications, this is naturally the case—
the highest resolution is, by construction, centered around the
objects of interest.

19 The resulting modifications will still affect the low-resolution region, as we
continue to include the covariance across the entire simulation domain. This is
clear, for example, in Figure 5.
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Such covectors will satisfy W Wu = u because they are
zero outside the high-resolution region. This means that we can
replace (A23) with a feasible computation,

uy; = (WT) (Wa), (A24)

where we start from W, which is the u covector calculated only
within the high-resolution region. We previously described the
approximations used for calculating 6z = WTng, and by using
the same approximations, we can write (WT)' in a tractable form:

WT) ~ (F c (A25)

1/2
HY%w
m'/2FPLc}D/2w,th+VT]'
We must also transform the covariance matrix C appearing in
Equation (A21) to obtain C, according to the approximate
solution (A9), where T is specified by Equation (A12). This
leads to the result

WFZ,W+

C, = (A26)
’ (m1/2PFLFHW+

m~1/2WFy F P*
PFIF+
Once again, this cannot be implemented directly, because it
involves operations defined at high resolution over the whole
simulation. Applying the same approximations used in
obtaining (A25), so that all operations are either performed in
the zoom window or at low resolution, we find the appropriate

covariance matrix to be

m= ' 2Fyy Py WpPy,

2
F PL

2
FWH

x| . X . (A27)
m'/ “Fpp Fpy PwWp

For completeness, we now write the updated Hoffman—Ribak
transformation as

(d —uz -nz)Czuz

né =nz + (A28)

uzCzuz
When applying multiple modifications, as explained by Roth
et al. (2016), we apply Gram—Schmidt orthogonalization and
then are able to treat each as independent. The orthogonaliza-
tion process makes use of the covariance C, which must be
replaced by C; in the case of zoom simulations. Constraints on
the potential or velocity fields can be implemented by replacing
all instances of the covariance matrix C with the appropriately
reweighted matrix and rederiving Cz as described in
Section 3.2. Because the case of quadratic modifications (Rey
& Pontzen 2018) is linearized and turned into an iterative set of
linear modifications, they too can be handled naturally using

the updated transformation law (A28).

Appendix B
Technical Details of Approximations

B.1. A Maximum Likelihood Derivation of the Pseudoinverse

In Appendix A.2, we discussed how modifying the initial
conditions for zoom simulations requires us to find matrices M,
that satisfy MTnr, = TM_n_. In general, there is no exact solution
to the equation MT = TM, because T is noninvertible and
because careful analysis shows that T'T is also noninvertible.

Note that this is a generalized version of the problem
considered by Penrose (1956), where a solution is sought for
the vector v in the equation Ty = u; in that case, v ~ Tuisa
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uniquely motivated approximate solution. We can similarly argue
that there is a uniquely motivated choice for obtaining an
approximate solution for M. We start by considering the residual
error for any candidate M. Since we are describing modifications
to 4, which is Gaussian-distributed with covariance C, the error
can most naturally be quantified in terms of a y* measure:

X2 = %(MTnZ — TMznz) C'(MTn; — TMznz).  (B1)
We now take the expectation value across the ensemble of n,
(which has unit variance), yielding

(x? = %Tr{C*l(MT — TMz)(MT — TMz)'}. (B2)

We wish to minimize this expected error—or in other words,
maximize the likelihood. We guard against poorly conditioned
matrices M, by introducing a penalty term Tr {M;M},} with a
weighting « (this procedure is sometimes known as Tikhonov
regularization; see Tikhonov et al. (2013)). The problem is then
to find the elements of M that minimize

F = Tr{C {(MT — TMz)(MT — TMz)'} + a Tr {MzM}}.
(B3)

This is achieved by solving 0F/0Mz; = 0, leading to the
expression

Mz = (TIC™IT 4 al)~'TTC-IMT. (B4)

We now make a temporary substitution, T = C1/2T, to obtain
the simplified expression

My = (T + o) 'Tic-1/2MT. (B5)

Finally, we take the result in the limit that our penalty term is
always subdominant, i.e., @ — 0. Using the formal definition
of the Moore—Penrose pseudoinverse (Penrose 1955) for T,
namely

T = lim (F'7 + a7 (B6)
a—0+
one obtains the solution,
My, = TTC-1/2MT = T*MT, (B7)

where we have used T = T+C!/2. This concludes the
demonstration that Equation (A11) is the minimum error, i.e.,
maximum likelihood solution. A similar argument also shows
that the maximum likelihood reconstruction of n starting from
a given § is given by ny, = T*4.

B.2. Properties of our Approximate Pseudoinverse

In Appendix A.2, we commented that it was not possible to
find an exact expression for T*. We instead motivated the
approximate solution (A12). We now provide further informa-
tion about this approximation and its properties.

First, we note that an exact pseudoinverse satisfies the
relations

THTTH=T" and TTTT=T, (BY)
and hence
TTH2 =TT+

and (T*T)> = T*T. (B9)
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This result shows that TT™ and T'T should both act as
projection matrices. The projections can be interpreted as
follows: TT"4 takes a general overdensity field § and projects
out those modes that cannot be represented in our compressed
scheme (i.e., high-frequency modes lying outside the zoom
region). Conversely, T Tn, takes any realization of the white
noise ny and projects out those modes that are not used in
constructing the physical overdensity field 9.

One way to test our approximation for T* is to check how
closely the projection properties (B9) are adhered to. To start, we
show that both requirements are exact in an artificial limit where
the zoom region covers the entire volume; in this case, the
genetIC algorithm continues to split information into high-
frequency and low-frequency components, but without any
compression. In other words, no pixel downsampling takes place
and the high-frequency components are retained across the entire
simulation. We thus take W = P = I and m = 1, finding that

T4T — F4, FuFL
FFy F2

The latter follows from the defining relation between the low-
pass and high-pass filters, F% + F%I = I, previously stated in
Equation (5). From these results, the requirements (B9) follow
immediately, confirming that our claimed pseudoinverse is
exactly correct.

Let us now consider the more realistic case, where W and P
are restored, i.e., high-frequency information is retained only
within the zoom region. We now find our approximate
pseudoinverse yields

TT+ = C'/2(FyW*WFy + F.P*PF,)C1/2,

] and TT+H=1 (B10)

(B11)

By using the filter relation (5) and factorizing the resulting
terms, we find

(TTH2 =TT+ + C/2(Fy W*WF, — F,P*PFy)

x (F,WHWFy — FyPTPF,)C1/2, (B12)

To obtain an exact projection, it is therefore sufficient that
FLWHYWFy — FgP*PF, = 0. (B13)

Although this equation will not hold in general, there are a
number of reasons why it holds to sufficient accuracy for our
purposes. First, it involves products of the low-pass and high-
pass filters, which when composed produce a narrow bandpass
effect. Thus, only a small fraction of modes will be affected by
the approximation.

More technically, we can study the properties of overdensity

fields & for which the operator does obey the desired relation
(TTH)286 = (TTH)4. By expanding, one finds that § must satisfy

PtPF,C~1/2§ = F,C1/28, (B14)
WHWF,C~1/2§ = FyC~1/26. (B15)

The first of these relations, (B14), is always approximately
satisfied because, by assumption, P*PF, ~ F,; that is, the
entire point of the low-pass filter is to band-limit such that the
coarse pixelization becomes irrelevant. The second relation,
Equation (B15), states that we must start with overdensity
fields that have high-frequency information only within the
zoom region. These are precisely the properties we would
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expect of fields that can be represented accurately in zoom
initial conditions.

The operator T*T, on the other hand, acts on nyz and takes
the form

WFZ, W+
ml/ZPFL FHW+

mil/ZWFH FL P+

TT = )
PF?P*

(B16)

We find that the conditions for this to be a projection operator
are the same as for TT™, i.e., they are given by Equation (B13).
Thus, for fields that are of interest to genetIC, we expect the
approximation to be excellent, as borne out by the tests in
Section 4.
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