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Abstract

The majority of research studies the resource constrained multi-project scheduling prob-
lem in a deterministic environment, regardless of the uncertainty nature of the environ-
ment. In this paper, we assume that the activity duration is a stochastic variable, and
propose two new robustness measures to analyse the performance of priority rules under
a stochastic environment. A full factorial experiment is designed to solve the problem
and investigate the relationship between project characteristics and the performance of
priority rules. Furthermore, a trade-off relationship between the quality and robustness
is investigated and the best priority rules are recommended from both a project and
portfolio manager’s perspective.

Keywords: Multi-projects scheduling; Priority rules; Stochastic duration;
Robustness

1. Introduction

The resource-constrained multi-project scheduling problem (RCMPSP) has been a
research topic for decades, emerging in a wide variety of problem types and solution
procedures. In a deterministic environment, the RCMPSP generates a baseline schedule
with the aim of optimizing the performance of a set of projects under the constraints of
precedences and resources. However, due to the dynamic nature of the real-world envi-
ronment, project scheduling may be subject to considerable uncertainties. For example,
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activities may take longer or shorter than initially expected, resources may become tem-
porarily unavailable, new activities may have to be included or dropped, etc. These
disruptions cause the deviation of the actual execution from the original planned sched-
ule and may lead to undesirable side-effects, such as having to change agreements with
subcontractors, accumulating inventory costs, dealing with employee malcontent, etc.
Furthermore, in contrast with single project scheduling, resources are shared by mul-
tiple projects in a portfolio, and a small disruption in one activity may result severe
impacts on the performance of the entire portfolio.almost 95% of the time is spent on
revising baseline schedules due to uncertainty changes. Therefore, effectively dealing
with these uncertainties is becoming an important challenge for project and portfolio
managers. Based on the survey of [17], almost 95% of the time is spent on revising
baseline schedules due to uncertainty changes. According to [37], up to 90%, by value,
of all projects are carried out in the multi-projects context, that even a small improve-
ment in management would bring enormous benefits. Although there has been a lot of
research on uncertainty in single project scheduling, for the multi-project case, however,
it is rather scarce. Thus, in this paper, we concentrate on the stochastic version of the
RCMPSP and assume activity duration as a random variable following certain proba-
bility distribution.

Generally, two basic strategies are classified to solve the RCMPSP. Firstly, all sub-
projects can be aggregated into a single large project with a single start and finish node,
effectively reducing the problem to the traditional RCPSP [18]. This method, however,
possess obvious drawbacks [10]. The major disadvantage is that a lot of detail regarding
the individual projects is lost. Moreover, the method implicitly assumes that the delay
penalties are identical for all projects in the portfolio which is rather unrealistic [25].
Alternatively, the sub-projects can be considered separately, each having a distinct start
and finish node that we call it the multi-project (MP) method. It has been noted that
the MP method has a lot more potential for improvement [19]. Hence, the MP approach
will be used in this research.

For the MP method, exact and heuristic approaches are two general methods used to
solve the problem. Because of the NP-hard property of the RCMPSP [29], exact methods
are limited to solving small problem instances [9, 13, 38, 45, 19]. Meta-heuristics, such
as, genetic algorithms [18, 24], simulated annealing [7], tabu search [14], particle swarm
optimisation [30] as well as combinations of traditional meta-heuristics [8], improve the
efficiency of the performance, but often need a huge computational efforts to solve prob-
lems. Therefore, priority rule based heuristics are thus frequently suggested, which are
also the focus of this research. These techniques have a number of advantages when com-
pared to the meta-heuristic solution techniques. Firstly, these techniques are generally
computationally inexpensive [22], and can therefore be applied to large scale scheduling
problems. Because of this, they are frequently used in commercial scheduling software
[19]. Secondly, priority rules do not require an explicit schedule to be formulated and
adhered to, and only a preference ordering of the activities is required in combination
with a mechanism that iterates over the activities [4]. Thirdly, these priority rules add
little to no overhead when applied in stochastic environments since they do not require
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explicit rescheduling and are able to cope with changes in the expected durations.
Taking advantage of the successful application of the robustness concept in resource-

constrained project scheduling problem to address uncertainty [20], we utilize this ro-
bustness concept in this paper and measure the stability of the baseline when encoun-
tering uncertain events. 20 priority rules taken from [4] are adopted and testified for
the stochastic version of the RCMPSP under two kinds of objectives: quality measures
and robustness measures. Each measure is classified to project lateness and portfolio
lateness. An extensive simulation based experiment is designed to demonstrate the per-
formance of the 20 priority rules. Based on the results, we analyse the influence of
project characteristics and the relationship between the two kinds of objectives. Recom-
mendations are given for both project and portfolio managers based on different project
characteristics and uncertainty levels.

The remainder of this paper is organized as follows. In the next section, we pro-
vide an overview of the origin and state of the solution methodologies for the RCMPSP.
Section 3 presents the basic RCMPSP model and the two kinds of objective functions.
In section 4, solution procedures are given. Computational experiment and results are
presented in section 5 and 6. Section 7 concludes the paper and offers some suggestions
for future research.

2. Literature review

In this section, the literature is reviewed first for a deterministic environment and
then from an uncertainty perspective.

2.1. Priority rules for deterministic scheduling

There is abundant of literature on priority rules for deterministic environment, how-
ever, none of a single priority rule performs the best under every instances. Therefore,
researches are mainly focusing on investigating the relationship between priority rules
and problem characteristics, including resource utilization, precedence constraints, due
date setup and objective measures [36, 12]. [16] was the first discussing the modelling
of a complete multi-project scheduling system and proposing methods for assigning due
dates to incoming projects and priority rules for sequencing individual jobs. Three ef-
ficiency measurements, project slippage, resource utilization and in-process inventory
are considered to minimize the total project delay. The most important conclusion of
this work is that the priority rule Minimum Slack (MINSLK) obtains the best efficiency
with the three response variables. [28] study the multi-resource problem and develop
an efficient resource price based priority rule that obtain good performance with the
objective of minimising weighted tardiness cost. [31] develop a multi-criteria heuristic
to improve resource allocation for both time-related and time-unrelated criteria. [23]
extend the classical RCMPSP to a joint resource-constraint case. A resource transfer
cost is incurred when resource is removed from one project and reassigned to another,
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or from one job to another within the same project. The objective is minimising the
multi-project duration for the single-project approach or the mean project duration for
the multi-project approach. A priority rule based solution procedure is proposed and
obtain good results, especially the rule based on resources, for example, the Maximum
Total Work Content (MAXTWK).

Some authors generate new priority rules through the combination between existing
ones in literature. [41] propose two new rules, the minimum Critical Ratio first (CR)
and the minimum weighted Latest Start time and Scheduling Activity time first (LSSA),
where LSSA is formed by combining the Minimum Latest Start Time (MINLST) [35]
and the Shortest Activity from Shortest Project (SASP) [26]. Through comparison with
15 existing rules, the results show that the LSSA and CR rules rank first and second,
respectively. [32] divide the MAXTWK rule into two parts according to project and
activity sorting criteria, and by varying the activity part with other rules thus obtaining
a new two-phase priority rule. The new proposed rules outperform the classical ones
such as the MAXTWK and the SASP. [33] combine the two activity costing methods of
[28] with resource pricing schemes, obtaining three Bottleneck Dynamic (BD) priority
rules, BD with Myopic activity costing (BD-MC), BD with Global activity costing and
Uniform resource pricing (BD-GC-U) and BD with Global activity costing and Dynamic
resource pricing (BD-GC-D).

It should be noted that the rules used in above literature are mostly based on single
projects. They are, however, somewhat unsuitable for multi-projects. Therefore, some
authors propose new measures that can better reflect the nature of the multi-project
characteristics. For example, [26] provide a categorisation process for existing heuristic
rules using two measures including the Average Resource Load Factor (ARLF ) and the
Average Utilisation Factor (AUF ). 6 new priority rules are proposed and the SASP and
the MAXTWK rule show to be the best ones in minimizing the project delays. Further-
more, [27] and [25] extend the objective to include unequal project delay penalties and
devise four new penalty related rules, namely the Maximum Duration and the Penalty
(DURPEN), the Maximum Penalty (MAXPEN), the Maximum Total Duration Penalty
(MAXTOP), and the Slack and Penalty (SLKPEN). They conclude that the priority
rule MAXPEN performs best for minimizing the sum of the project weighted delays.

[3, 4] analyse the drawback of the parameters for a significant different case and pro-
pose two new measures named the Normalized ARLF (NARLF ) and the Modified AUF
(MAUF ) to better reflect the resources distribution among activities. Based on the new
problem characteristics, a comprehensive experiment involving 12,320 test problems is
conducted to investigate the performance of 20 priority rules. Recommendations for
the best priority rules are given from both project and portfolio managers’ perspective.
The priority rules Minimum Worst Case Slack (MINWCS) and the priority rule that
combines the MAXTWK and the MINLST rules in a two-phased Total Work Content
& Latest Start Time (TWK-LST) rule show their superiority to other rules in general.
[5] extend the problem to highly iterative (cyclical) projects. Experimental results show
that the best priority rules for iterative project portfolios differ significantly from those
for acyclical ones, and that the best priority rules at the project level differ from those at
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the portfolio level. The best rule depends on project and portfolio characteristics such
as network density, iteration intensity, resource loading profile, and amount of resource
contention. In particular, by amplifying the effects of iteration, high-density networks
hold dramatically different implications for iterative projects. However, only small in-
stances with 20 activities are reported.

[44] propose an easy and quick learning process to determine the best priority rule
for each instance regardless of previous knowledge about the instance types and applied
for any instance size. The analysis was carried out with 34 popular priority rules in 26
benchmarking problems. It is demonstrated that the selection of the most appropriate
priority rule is extremely relevant to the instance, even when any meta-heuristic is used
to solve the problem. However, it consumes a lot of computational time. [6] incorporate
ten different priority rules to variable neighbourhood search algorithm. The experiment
shows that the widely advocated rules such as MINSLK, SASP and LST do not perform
well, while the Random Selection Rule (RSR) emerges the best.

2.2. Priority rules for stochastic scheduling

In contrast with the research in deterministic environment, the literature on stochas-
tic RCMPSP is relatively scarce. [48] examines the performance of 13 dispatching rules
for executing a resource-constrained project whose estimated activity durations may dif-
fer from the actual activity durations. The dispatching rules are tested in environments
characterized by three factors, namely, the order strength of the precedence relationship,
the level of resource availability and the level of estimation errors in the activity dura-
tions. The results show that project environment affects only the performance differences
but not the grouping of the best dispatching rules. Taking from actual firm data, [42]
develop a heuristic scheduling and control model for the RCMPSP. The method in [26] is
used to select the appropriate priority rules and an update routine is proposed to moni-
toring the activities during execution. The method can be applied to any multi-project
scheduling problem.

Besides activity duration, some other types of uncertainties are also studied, for
example, dynamic arrival of project. [49, 50] study the synthetic impact of resource
allocation rules, resource transfer rules and activity scheduling rules on the performance
of project mean flow time, tardiness, and lateness within a dual-level management struc-
ture. A central resource pool manager assigns resources to projects, whereas each project
manager schedules jobs within his/her project using the allocated resources. [15] exam-
ined the performance of five resource allocation heuristics and four strategies to assign
due dates to the projects with dynamic project arrival. The computational experience
shows that the priority rule First Come First Served (FCFS) with the strategy Sched-
uled Finish Time Due Date (SFTDD) rule is the best algorithm for minimising the mean
completion time, the mean lateness, the standard deviation of lateness and the total tar-
diness. [11] also prove its effectiveness by comparing it with a pre-emption priority rule
derived based on the critical chain approach. [2] design a computational experiment
based on the work of [15]. Their purpose is to find the combination of due date rule,
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scheduling heuristic, and pre-emption policy that performs best in minimizing mean flow
time, mean absolute lateness, and weighted lateness. This work shows that the priority
rules FCFS and MINSLK with the Due Date (DD) rule obtain the best performance.
[1] extend the situation further by examining the impact of the Learning, Forgetting,
and Relearning (LFR) on project completion time when pre-emption is allowed. Dif-
ferent scheduling, pre-emption and resource reassignment rules are tested. The results
show that the worst performing rules are those that attempt to maintain high resource
utilization and the best performing rules are based on activity criticality and resource
learning. [34] develop a nonlinear mixed-integer programming model for simultaneously
planning, scheduling and managing multiple projects where activity duration and re-
source requirements are uncertain. To solve the problem, the Earliest Start Time (EST)
and Most Total Successors (MTS) rules are used to optimize the resources and schedules
respectively.

By utilizing the priority rule in heuristic algorithms, [46] propose a strategy utilising
existing efficient priority rules to reduce the solution space for the stochastic RCMPSP.
A Markov decision processes model is constructed to represent the uncertainty of avail-
able resources and dynamic programming is used to find the suboptimal strategy to
minimise the expected total tardiness penalty. The results show that the Cost Over
Time (COVERT) and the Apparent Tardiness Cost (ATC) rules generate good perfor-
mance in most cases, and COVERT performs better in large scale case. [51] discuss the
RCMPSP with project priorities and schedule robustness under uncertain activity du-
rations. A discrete bi-objective decision model is formulated to solve the problem. The
results show that the problem parameters indeed have evident impacts on the robustness
and makespan of projects. However, all project characteristics that are used are taken
from single project scheduling field.

3. Problem definition

3.1. Basic RCMPSP model

The basic RCMPSP consists of a set of projects l, (l=1,2,. . . ,L), each of which has
a set of activities i, (i=1,2,. . . ,Nl) that is constrained by precedence relations within its
own project and renewable resources within multi-projects. Pre-emption is not allowed.
We assume the presence of a set of renewable resource types Kl with availability Rk in
project l (k=1,2,. . . ,Kl), and activity i in project l requires a per-period amount rilk of
resource type k. The duration of activity i is characterised by dil. A feasible schedule
operating within this environment has to satisfy a number of constraints:

sil + dil ≤ sjl,∀j ∈ Sil,∀i ∈ Nl,∀l ∈ L (1)

s0l = 0, ∀l ∈ L (2)∑
∀l∈L

∑
∀i∈At

rilk ≥ Rk, ∀k ∈ Kl,∀t ∈ T (3)
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where sil represents the starting time of activity i of project l, Sil represents the set of
successors for activity i of project l, At the set of activities in progress at time t and T
represents the maximum time horizon. Equations 1 and 2 ensure that the precedence
relationships of the projects are respected (the first activity of a project is always a
dummy activity). The resource limitations in time t are enforced by Equation 3, which
aggregates the resource demands of the various activities and projects.

3.2. Stochastic activity duration

One of the key objectives of this research is to compare the robustness of priority
rules in a stochastic environment. Hence, the duration of activities is specified as a
stochastic distribution rather than a deterministic estimation. As common practice in
stochastic project scheduling, triangular distributions were used to represent the activity
duration: dil ∼ Triangular(a, b, c), where a is the shortest (optimistic) duration, b is the
longest (pessimistic) duration and c is the most likely duration [47]. The parameters
of the triangular distributions used for the activity durations are summarised in Table
1 and visualised in Figure 1. Five different risk levels are used to represent different
degrees of uncertainty with a maximum deviation (DEVmax) ranging from 10% to 50%.
All the distributions are skewed to the right to represent the generally higher potential
of delays rather than decreases in activity duration. To make sure that activity duration
do not deviate too much, we have multiplied DEVmax by 0.5 and 1.5, respectively. The
optimistic and pessimistic duration (a and b) are thus calculated based on the following
two equations:

a = c− 0.5 · c ·DEVmax (4)

b = c+ 1.5 · c ·DEVmax (5)

Table 1: Risk levels for the triangular distribution

RL DEVmax a c b
1 10% 0.95c c 1.15c
2 20% 0.90c c 1.30c
3 30% 0.85c c 1.45c
4 40% 0.80c c 1.60c
5 50% 0.75c c 1.75c

3.3. Optimization objectives

Two optimisation objectives are taken into account: quality and robustness. Con-
ceptually, quality is a measure of the time needed to complete the (sub-)project(s).
Robustness on the other hand is a measure of how consistent the performance of a solu-
tion method is when faced with stochastic activity durations.

Two metrics are defined for each of the objectives in order to take into account
different perspectives when optimising multi-projects. The first perspective is typically
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Figure 1: Probability density function for triangular distributions

that of the project manager who is responsible for a single project within this portfolio
and wants to ensure that individual projects can perform adequately. The alternative
perspective is that of the portfolio manager accountable for the complete portfolio who
is more concerned with the performance and robustness of the complete set of projects
and who is perhaps more willing to sacrifice the performance of individual projects in
order to improve the performance of the portfolio.

3.3.1. Schedule quality

Similar to the approach taken by [4], the critical path duration of the subprojects
(CPl) is used as a point of reference to calculate the quality metrics. This critical path
duration is compared to the actual duration (ADl) of the subprojects. Two quality
measures Q1 and Q2 are defined as follows:

Q1 =
1

|L|
∑
l∈L

ADl − CPl

CPl
(6)

Q2 =
maxl∈LADl −maxl∈LCPl

maxl∈LCPl
(7)

The first metric (Q1) measures the average relative delay of the individual sub-projects,
weighing the importance of each project’s delay equally. The second metric (Q2) on the
other hand focusses on the performance of the aggregated multi-project by measuring
only the longest critical path (i.e. the shortest possible duration of the multi-project)
versus the actual duration of the execution of all projects.
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3.3.2. Robustness

Analogously to the quality metrics, two robustness metrics are introduced. These
metrics compare the deterministic performance (using the c value of the triangular dis-
tribution as the activity duration) to the performance as observed when simulating
stochastic activity durations. For each project, ADl represents the deterministic project
duration and SADl represents the average project duration derived from Monte Carlo
simulations with random activity durations. Using these two quantities R1 and R2 are
introduced as robustness metrics:

R1 =
1

|L|
∑
l∈L

SADl −ADl

ADl
(8)

R2 =
maxl∈L SADl −maxl∈LADl

maxl∈LADl
(9)

The first metric (R1) measures the average relative deviation of the simulated subproject
duration compared to the expected project duration when using deterministic estimates
for the duration of the activities. Again, each of the subprojects is weighted equally. The
second robustness metric (R2) focusses on the robustness of the complete multi-project,
rather than the robustness of the individual subprojects. This measure examines how
the multi-project duration evolves with stochastic activity duration.

4. Solution procedure

Priority-rule-based heuristics are made up of two components, a schedule generation
scheme (SGS) and a priority rule. In this section, we first describe how priority rules
are used in order to obtain a scheduling solution (section 4.1) and then give an overview
of all the priority rules tested in this research (section 4.2).

4.1. Schedule generation scheme

[21] has proposed two methods for creating schedules based on priority lists: the
serial and parallel schedule generation scheme. The former calculates activity priorities
and then iterates over the activities allocating the activity with the highest priority at
the earliest possible time. The parallel schedule generation scheme on the other hand
iterates over the time periods and if necessary recalculates the priorities of the activities
as the scheduling progresses.

In line with the majority of proceeding research on the multi-project scheduling
problem [4], this research uses the parallel schedule generation scheme. The reason for
this is that this approach generally outperforms the serial schedule generation scheme
or the combination of the serial and parallel scheduling schemes when used in multi-
projects, especially when activity scales are beyond 300 on average [32]. Moreover, this
technique is also better adjusted for operational use in a stochastic setting where the
actual schedule is created organically as the project progresses and it may be more
important to update the respective activity priorities as the project progresses.
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4.2. Priority rules

A lot of priority rules for both single and multi-project scheduling have been pro-
posed in literature. For this research, we use the same set of twenty priority rules as was
used in the research by [4]. For the reader’s convenience these priority rules are listed
in Table 2. The second column takes advantage of the α/β/χ/δ classification of the pri-
ority rules in [22]. But differently, α has the value S or M for a single- or multi-project
respectively. β indicates whether the information used to calculate the priority is linked
to the activity (A), project (P ) or resources (R). χ represents the use of static or (S)
or dynamic (D) priority rules. Finally, δ indicate if a priority rule is local (L) or global
(G).

Table 2: Priority rules designed for the stochastic RCMPSP

Priority Rule Classification Description
1.MINSLK: Minimum slack S,M/A/D/G min(SLKil) with SLKil = LSil -

max(ESil, t). Where ESil and
LSil represent the earliest and lat-
est start time respectively and t is
the current time period

2.MAXSLK: Maximum
slack

S,M/A/D/G max(SLKil)

3.SASP: Shortest activity
from shortest project

S,M/A,P/S/G min(fil), with fil = CPl + dil.

4.LALP: Longest activity
from longest project

S,M/A,P/S/G max(fil)

5.MINTWK: Minimum to-
tal work content

S,M/A,R/D/G min (
∑K
k=1

∑
i∈ASl

dilrilk +

dil
∑K
k=1 rilk) with ASl the set

of already planned activities of
project l

6.MAXTWK: Maximum
total work content

S,M/A,R/D/G max(
∑K
k=1

∑
i∈ASl

dilrilk +

dil
∑K
k=1 rilk)

7.TWK-LST: MAXTWK
& earliest late start time (2
phase rule)

S,M/A,R/D/G Use min (LSil) as a tie breaker for
the MAXTWK rule.

8.TWK-EST: MAXTWK
& earliest early start time
(2 phase rule)

S,M/A,R/D/G Use min (ESil) as a tie breaker for
the MAXTWK rule.

9.FCFS: First come first
serve

S/A/S/G min(ESil)

10.SOF: Shortest operation
first

S/A/S/L min(dil)

11.MOF: Maximum
(longest) operation first

S/A/S/L max(dil)

12.RAN: Random Random selection of activities
13.EDDF: Earliest due date
first

S/A/S/G min(LSil)
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Table 2: (continued)

Priority Rule Classification Description
14.LCFS: Last come first
serve

S/A/S/G max(ESil)

15.MAXSP:Maximum
schedule pressure

S/A/D/G max ( t−LFil

dilWil
) with Wil equal to

the fraction of the duration of ac-
tivity i of project l still remaining.

16.MINLFT: Minimum late
finish time

S/A/S/G min(LFil)

17.MINWCS: Minimum
worst case slack

S/A,R/D/G min(LSi − max[E(i,j)|(i, j) ∈
APt]) where E(i,j) is the earliest
time to schedule activity j if
activity i is started at time t, and
APt is the set of eligible activities
at time t [22]

18.WACRU: Weighted ac-
tivity criticality & resource
utilization

S/A,R/S/G max (w
∑Ni

q=1(1+SLKiq)
−α+(1−

w)
∑K
k=1

rik
RMax,k

) where Ni is the

number of immediate successors of
the ith activity, SLKiq is the slack
of the qth immediate successors of
the ith activity and both w and α
are weights set to 0.5.

19.MS: Maximum total suc-
cessors

S/A/S/G max (TSil) with TSil the total
number of successors of the ith ac-
tivity of project l.

20.MCS: Maximum critical
successors

S/A/S/G Max (CSil) with CSil the number
of critical successors of the ith ac-
tivity of project l

5. Dataset

To test the performance of the various priority rules described in section 4.2, a
new dataset has been constructed. This section gives an overview of the nature of this
dataset, as well as the manner in which this dataset has been created. Table 3 gives an
overview of the parameters which have been used to create the dataset.

The dataset consists of 1,260 projects which are combined into 420 project port-
folios (i.e. 3 projects per portfolio: |L| = 3). Each of these projects contains 30 ac-
tivities (|Nl| = 30), and 4 different resource types are used in all of the portfolios
(|K| = 4). The first step in the data generation procedure is the creation of network
structures. This is done by using the RanGen2 tool created by [43], which uses the
serial/parallel (SP ) indicator [39, 40] in order to create topologically diverse network
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Table 3: Parameters setup

Variable Meaning Value(s)
|L| Projects in portfolio 3
|Nl| Activities per project 30
|K| Resource types 4
SP Serial-Parallel indicator {S,M,P}
NARLF Resource loading factor -3,-2,-1,0,1,2,3
MAUF Resource conflicts factor 0.6,1.0,1.4
δ2MAUF Difference in degree of resource conflicts 0,0.25
c Most likely activity duration U [1, 9]
rilk Resource usage of activity i in project l for

resource type k
U [1, 9]

structures. This indicator is defined as (m − 1)/(Nl − 1) with m the maximal pro-
gressive level of the project network. With SP = 1 (m = Nl), the activities of the
generated network are all in series and with SP = 0 (m = 1), all activities are in
parallel. Three different ranges have been specified: P ∈ [0.1, 0.3], M ∈ [0.35, 0.65]
and S ∈ [0.7, 1.0]. These ranges indicate projects that are relatively parallel (P ), se-
rial (S) or which have an intermediate structure (M). Next, the individual projects
are combined into project portfolios, each consisting of three individual projects. To
do this, all possible combinations of the SP -categories of the projects are taken into
account: {SSS, PPP,MMM,SSP, SSM,PPS, PPM,MMS,MMP,SMP}, resulting
in 42 portfolios in each of these categories. Once the structure of the portfolios has
been determined, the most likely activity duration c and resource requirement rilk are
iteratively generated from a uniform distribution between 1 and 9 to satisfy specified
project characteristics. For generating resources, two indicators have been used. The
first parameter is the NARLF , that measures possible peaks in resource demand, and
the second parameter is the MAUF (two versions are used), which compares the re-
source demand to resource availability [4].

The NARLF gives insight in how (un)evenly resource demand is spread over the
duration of the project. A value of zero indicates that the resource demand is perfectly
spread across the duration of the project. A negative value of the NARLF indicates a
relative high resource demand at the start of the project, whereas a positive value of the
NARLF indicates a relatively high resource demand at the end of the project. Equation
10 shows how the value of the NARLF is calculated.

NARLF =
1

L · CPmax

L∑
l=1

CPl∑
t=1

Kl∑
k=1

Nl∑
i=1

ZiltXilt
rilk
Kil

(10)

with
CPmax = max{CP1, CP2, . . . , CPL} (11)

Zilt =

{
−1 t ≤ CPl/2
1 t > CPl/2

(12)
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Xilt =

{
1 if activity i of project l is executed at time t
0 otherwise

(13)

Whereas the NARLF only indicates how evenly the resources are spread over the
duration of the project, the MAUF is an indication of the scarcity of a specific resource.
To obtain the MAUF value for the project, the utilisation is first calculated for each
individual resource (Equation 14). The resource utilisation of the complete project is
then simply calculated as the maximum MAUFk for the individual resources (Equation
15).

MAUFk =
1

|T |

|L|∑
l=1

|T |∑
t=1

Nl∑
i=1

rilk ·Xilt

Rk
(14)

MAUF = Max(MAUF1,MAUF2, . . . ,MAUFK) (15)

Because only the maximal utilization factor is taken into account in order to deter-
mine the MAUF for the project, some information is lost. To mitigate this, [3] have
proposed a new metric which measures to what degree the MAUFk of the individual
resources deviates from the MAUF . The metric is denoted as and is calculated as
δ2MAUF shown in Equation 16.

δ2MAUF =

∑K
k=1(MAUF −MAUFk)2

|K|
(16)

A value of zero for the indicator signifies that all the resources are equally scarce.
As the value of this metric increases, it indicates that some resources are substantially
less restricted than the most restricted resource. Ceteres paribus, this scenario should
result in a lower or equal problem delay.

These three parameters (NARLF , MAUF and δ2MAUF ) are used to define the
nature of the resources within the portfolio. As shown in table 4 these parameters can
take seven, three and two different possible values respectively. This results in a total of
42 possible combinations (7 ·3 ·2) of these parameters. As mentioned above there are 42
portfolios for each possible combination of serial-parallel indicators for the sub-projects.
Hence, for each of these projects one of these 42 unique combinations of the resource
parameters is randomly assigned.

6. Computational experiments

6.1. General results for quality and robustness

Considering the five uncertainty levels in Table 1, we divide them into two categories
for their similar variation tendency, i.e., the lower case with DEVmax varying from 10%
to 20% and the higher case with DEVmax varying from 30% to 50%. Based on this
classification, we deliver the quality and robustness trade-off performance of the 20
priority rules from (a) the project manager perspective (Q1&R1) and (b) the portfolio
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manager perspective (Q2&R2) under the two uncertainty cases, shown in Figure 2 and
Figure 3. In each Figure, the x-axis represents the quality measure and the y-axis denotes
the robustness measure. The graph is divided into four quadrants by the average value
depicted in dashed line. Ideally, the priority rules in the third quadrant near to the origin
as close as possible are the best on both criteria. Rules in the first quadrant located far
away from the origin are the worst and the remaining ones are preferable to either the
quality or the robustness measure.

Comparing Figure 2 and Figure 3, the performance of the priority rules for the
higher uncertainty case is more concentrated near the average value than the lower case,
and this is especially true for the portfolio plot where most priority rules are located near
the cross point of the quality and robustness average lines and with almost no rule in
the third quadrant. This suggests that the beneficial effect of priority rules decrease for
portfolio managers when the uncertainty is high. Moreover, it is much easier for project
managers to make decisions without the consideration of the uncertain environment and
the objective preference. In addition, with the increase of uncertainty levels, the quality
improves slightly but the robustness deteriorates to a much larger extent.

For a clear representation, we depict the two Pareto frontiers in Figure 4 based on
the lower case, i.e. the DEVmax equal to 10% or 20%. Similar results can be obtained
for the higher case. The figure shows that priority rules SASP, MINLFT, MINSLK,
EDDF, MINWCS and FCFS constitute the Pareto set for the project managers while
MS, MCS, LALP, EDDF, MINSLK, MAXSP, MINWCS, MINLFT, FCFS and SASP for
the portfolio managers. For both project and portfolio managers, the quality measures
are more sensitive than the robustness measures. For example, in case ofQ1 andR1, from
the quality best rule (SASP) to the robustness best rule (FCFS), the quality decrease
of 27.1% leads to an improvement of 16.2% for the robustness. But for Q2&R2, the MS
decreases 62.8% on quality and delivers an improvement of only 14.6% on robustness
for the SASP. Therefore, it is advantageous to choose the priority rule based on quality
measures.

For the Q1 measure in Figure 2(a), it can be seen that the priority rule SASP
performs the best among all other rules. The worst rules are MS and MCS. However,
the results are the opposite for the quality measure Q2. In this case, the MC, MCS
dominate other priority rules with obvious distinction. The performance of the best rule
SASP now declines sharply and stands for the worst priority rule.

For robustness measure R1 in Figure 2(a), the best priority rule is FCFS, and the
LCFS performs the worst. For R2 in Figure 2(b), the FCFS is ranked as second best
and the SASP emerges to be the best priority rule. The MS delivers the worst results.

The superiority of SASP confirms the recommendations of [26], but conflict with
the results in [4]. [26] strongly recommend the priority rule SASP and MINSLK, while
[4] found that the TWK-LST priority rule performs significantly well. The underlying
reason for the conflict may stem from two aspects. First is the uncertainty environment.
Since activity durations are random variables, arranging activities as early as possible
can avoid the impact of project delays to a certain extent. Therefore, those priority rules
that involve early finish time are more appropriate, for example, the SASP, MINLFT
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and the EDDF. In the above two papers, however, no uncertainty has been incorporated.
Second, different data sets are used. Different from the experimental setups in [4], we
generated the multi-projects through the combination of single projects based on the
problem indicator SP . Therefore, it is reasonable to have different results.
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Figure 4: Pareto frontier for the quality and robustness: (a) Q1&R1 and (b) Q2&R2

6.2. Sensitivity analysis

Figure 5 shows the main effects of the project parameters DEVmax, SP , NARLF ,
MAUF and δ2MAUF on the performance of the priority rules for both the quality and
robustness measures. The y-axis on the left are used to measure the quality values, and
the right y-axis are used for the robustness values. Since the 20 priority rules show a
similar variation tendency, we merely take the average as an illustration.

First, the DEVmax plot in Figure5(a) indicates that the quality measures (Q1, Q2)
are not very sensitive to uncertainty levels. For increasing DEVmax, the performance
improves but with only a slight difference. Contrarily, the performance of the robustness
measures deteriorates almost linearly. Since the robustness measures describe the differ-
ence between the stochastic and deterministic performance, the higher the uncertainty
is, the longer the activity prolongs, and thus a higher project delays.

Second, Figure 5(b) shows the impact of SP . It is noteworthy that the smallest
Q1 is observed for a multi-project that consists of three projects with the same network
type. The results deteriorate when two of the three projects are of the same type and
the other of a different type. The peak is reached when the two different networks are
the most divergent, for example, SSP and PPS. This phenomenon can be explained by
the following. For a serial network, precedence constraints play a major role, few activ-
ities are executed simultaneously and less delay is caused. However, including parallel
network types in multi-projects, activities cannot be operated concurrently due to the
resource constraints and thus more delayed activities will emerge. Moreover, the critical
path for a parallel project is remarkably shorter than that for a serial project. Therefore,
including a parallel network actually increases the chance of activity delay for the orig-
inal multi-project and deteriorates the performance of the quality measure. This effect
is even more obvious when two absolutely different networks exist in the multi-project.

For Q2, however, a completely different pattern can be observed. The best results,
interestingly, are obtained with multi-project that consists of at least one parallel net-
work and no serial network, for example, PPP , PPM and MMP , and the worst all
contains at least one type of serial network, such as SSS, SSP ,SSM and MMS. Since
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Q2 is particularly focused on the longest project, once there is one type of serial net-
work in a multi-project, the maximum actual duration ADl will be longer than that
without serial network, leading to a higher project delay. However, if there are mainly
parallel projects in the portfolio, the precedence constraints are relatively relaxed and
delays caused by resource constraints will distribute equally over all activities and thus
no extremely longer project appear. In addition, the delay of longer projects will be
compensated by shorter projects, making the maximum ADl deviate not too much and
deliver better results.

For the robustness measure R1 and R2, their behaviour is similar to each other, al-
though the effect is more outspoken for R1 than for R2. However, it is interesting to see
that the plots of R1 and R2 are totally contrary to that of Q2. For different levels of SP ,
Q2 needs parallel networks to absorb the project delay in longer projects and decrease
the longest project duration as much as possible, while R1 and R2 need to decrease the
number of parallel networks in order to avoid the impacts of delay to more succeeding
activities caused by parallel networks. Therefore, the plot for Q2 will be opposite to the
plot for R1 and R2. In addition, compared with the quality measures that are calculated
based on the critical path, the elements SADl and ADl in the robustness measures are
both constrained by precedences and resources. Therefore, the influence of resources
and precedence constraints is largely weakened and the difference is merely impacted by
the uncertainty of activity durations. That is why the variation in robustness is lower
than that in the quality measures. Similarly, the same phenomenon can also be found
in parameters NARLF and MAUF in Figure 5(c)∼(d).

Third, from the NARLF interaction plot in Figure 5(c), for the quality measures in
general, multi-projects with a negative NARLF deliver inferior results to multi-projects
with a positive NARLF , and Q1 improves significantly than Q2. Since a negative
NARLF indicates that most of the resources are consumed at the front of the project,
which will induce more downstream activities to be delayed due to the snowball effect.
This finding confirms the observation of [4]. The insensible variation in Q2 can be ex-
plained by the fact that most delays are absorbed by shorter projects, making the delay
in the longest project negligible, for example, a multi-project with two shorter projects
and one long project. For the robustness measures, however, there is no obvious dis-
tinction found among different levels of NARLF . The robustness seems to increase first
with a much smaller distinction and then decrease when NARLF is more than 2.

Fourth, Figure 5(d) illustrates the MAUF interaction plot. For both quality mea-
sures Q1 and Q2, a higher MAUF is always accompanied by a poor performance, and the
increasing slope become steep when MAUF grows. Comparatively for robustness mea-
sures R1 and R2, although the performance deteriorates likewise for increasing MAUF ,
the slope is decreasing gradually. It is easy to understand that the highly constrained
resources lead to more activities to be delayed and therefore, the worse the performance
of the priority rules.

Finally, we compare the two levels of δ2MAUF shown in Figure 5(e). It is observed
that with the increase of δ2MAUF , the performance of the quality and the robustness
measures improves but robustness measures change little, and the shapes of Q1 and Q2,
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R1 and R2 are the same. This is logical since a higher MAUF variability indicates that
problems are constrained by fewer types of resources, decreasing the impact of delays
caused by resource constraints. Therefore, the results will become better.
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Figure 5: Analysis of parameters on quality and robustness measures

6.3. Best recommendation

When choosing an appropriate priority rule, project and portfolio managers should
pay more attention on a priority rule that performs well on both the quality and the
robustness criteria. In the first section, we have given the set of rules shown on Pareto
frontier, but a decision for which one to choose is still a question that needs to be an-
swered. For this reason, we sequence the 20 priority rules based on the average of the
four objective measures, shown in Table 4. First, we standardize the original objective
value of the priority rule to an integer ranged from 1 to 20 based on its position among
the 20 priority rules and then calculate its mean value over all instances, and the results
are listed from the second to the fifth column. The column “Avg.” and “Std.” are ob-
tained by averaging the mean and variance of the four measures with equal weight. The
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column labelled “Global Ranking” sequences the 20 priority rules from the best to the
worst according to the value in the column “Avg.”. In order to compare the difference
between project managers and portfolio managers, we also give the ranking separately,
shown in the columns “Project” and “Portfolio”.

From the values under each measure, it can be concluded that no priority rule per-
forms always the best or the worst. This stems from the fact that different characteristic
of projects will benefit from different rules. However, sometimes we cannot specifically
tell the detailed characteristics of the environment. Therefore, a rule that performs well
under most cases is recommended. Comparing the general results with the lower and
higher cases in first section, although uncertainty influences the value of objectives, the
rank of the best priority rules remain unchanged. In conclusion, the EDDF is the best
to recommend on average and it is also performs the best for project managers. For
portfolio managers, it is ranked as the fourth best, while the MS is here the clear win-
ner. Since MS performs distinctly better for the Q2 (=2.98), it makes the R2 (=11.97)
insensible when calculating the average of the two measures. However, the SASP rule,
although lying on the Pareto frontier, it is ranked the last for the portfolio managers,
even worse than the RAN rule. In order to compare the performance of the priority
rules statistically, a Tukey’s HSD test have been performed to compare the 20 priority
rules in a pairwise way in order to find out if significant difference exists between each
other (hence, all pairwise comparisons are made). The significance level is set at 5% and
the 20 rules are classified into different clusters separated by horizontal lines in Table
4. The priority rules in the same cluster have a similar performance (i.e. no significant
differences between them) while the priority rules between clusters have a different per-
formance. As an example, the priority rules in the first cluster (EDDF, MINSLK and
MINLFT) for the global ranking index all perform equally well, and perform better than
all the other rules belonging to other clusters. Hence, priority rules in the first cluster
perform better than rules in the second cluster, and the rules of the second cluster per-
form better than rules in the third cluster, and so on, but with each cluster, each rules
performs equally well.

6.4. Additional experiments

In the previous experiments, the results were obtained by experiments using trian-
gular distributions with 5 levels of risk, as shown in Table 1. In this section, a short
summary is given why these 5 risk levels and triangular distributions have been used by
extending the set of experiments and conclude that the results do not vary significantly.

6.4.1. More risk levels

It should be noted that the 5 risk levels have been chosen after some initial ex-
periments with more extensive DEVmax values, ranging from 10% to 180% in steps of
10% (i.e. 18 levels of risk rather than 5). However, our experiments showed that the
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Table 4: Average sequence of the 20 priority rules

Rule Q1 Q2 R1 R2 Avg. Std. Global Rank-
ing

Project Portfolio

FCFS 11.51 12.55 6.61∗ 9.18 9.96 4.57 EDDF EDDF MS

SOF 12.78 12.11 13.26 10.98 12.28 5.36 MINSLK MINLFT MCS

MOF 12.58 12.93 11.94 10.25 11.92 5.42 MINLFT MINSLK LALP

MINSLK 6.55 7.54 8.48 10.12 8.17 4.36 MINWCS SASP EDDF

MAXSLK 12.13 15.31 13.42 10.23 12.77 6.09 MAXSP MINWCS MINSLK

SASP 4.84∗ 18.52 10.41 8.75∗ 10.63 4.74 MS FCFS MINLFT

LALP 13.64 6.28 10.99 11.03 10.48 5.61 MCS TWK-LST MINWCS

MINTWK 13.37 13.15 12.21 10.49 12.31 5.45 FCFS MAXSP MAXSP

MAXTWK 11.86 12.18 11.15 10.14 11.33 5.31 LALP TWK-EST WACRU

RAN 13.07 12.76 13.78 11.49 12.77 3.05∗∗ TWK-LST MS FCFS

EDDF 6.31 7.34 8.37 10.13 8.04∗∗ 4.34 SASP MAXTWK MAXTWK

LCFS 10.35 12.43 14.07 10.70 11.89 6.23 WACRU WACRU SOF

MAXSP 8.33 8.76 9.82 10.20 9.28 4.73 TWK-EST MCS LCFS

MINLFT 5.98 7.94 8.75 10.10 8.19 4.38 MAXTWK LCFS MOF

WACRU 13.68 7.59 9.60 11.69 10.64 5.28 LCFS MOF MINTWK

TWK-LST 7.30 13.50 10.84 10.42 10.51 5.31 MOF LALP TWK-LST

TWK-EST 8.89 14.70 9.68 9.86 10.78 5.24 SOF MAXSLK RAN

MS 14.32 2.98∗ 8.67 11.97 9.49 4.56 MINTWK MINTWK TWK-EST

MCS 14.40 3.18 9.19 11.79 9.64 4.80 MAXSLK SOF MAXSLK

MINWCS 8.13 8.25 8.78 10.49 8.91 4.66 RAN RAN SASP

Note:∗ means the best value under each measure; ∗∗ means the best value on average;
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differences between the results from 10% to 50% were much more significant than for
the experiments with DEVmax above 60%. Table 5 displays the ranking comparison
between the two cases for each priority rule. ”Case1” is the benchmark results with
the original 5 uncertainty levels, and the ”Case2” is obtained with above mentioned 18
uncertainty levels. The table shows that only minor changes occur, and we therefore
conclude that under increasing uncertainty levels, the best performing rules remain the
same. As an example, the cluster of EDDF, MINLFT and MINSLK, or the cluster of
MS and MCS is the same for both cases. For some other priority rules that perform less
good, their ranking differs a little bit, but no fundamental changes could be detected (no
major changes). We therefore believe that using the five uncertainty levels is sufficient
to explain the relative ranking of priority rules for the problem under study.

Table 5: Comparison between the two cases for rules ranking

Global Ranking Project Portfolio

Case1 Case2 Case1 Case2 Case1 Case2

EDDF EDDF EDDF MINLFT MS MCS

MINSLK MINSLK MINLFT EDDF MCS MS

MINLFT MINLFT MINSLK MINSLK LALP EDDF

MINWCS MAXSP SASP SASP EDDF MINSLK

MAXSP MINWCS MINWCS MAXSP MINSLK LALP

MS MCS FCFS TWK-LST MINLFT MINLFT

MCS MS TWK-LST FCFS MINWCS MAXSP

FCFS FCFS MAXSP MINWCS MAXSP WACRU

LALP WACRU TWK-EST TWK-EST WACRU MINWCS

TWK-LST TWK-LST MS MAXTWK FCFS FCFS

SASP LALP MAXTWK WACRU MAXTWK MAXTWK

WACRU TWK-EST WACRU MOF SOF LCFS

TWK-EST SASP MCS SOF LCFS SOF

MAXTWK MAXTWK LCFS MCS MOF MOF

LCFS MOF MOF MINTWK MINTWK RAN

MOF SOF LALP MS TWK-LST MINTWK

SOF RAN MAXSLK RAN RAN TWK-LST

MINTWK MINTWK MINTWK LALP TWK-EST TWK-EST

MAXSLK LCFS SOF LCFS MAXSLK MAXSLK

RAN MAXSLK RAN MAXSLK SASP SASP

6.4.2. Other distributions

The previous experiments all made use of the triangular distributions to model
uncertainty under a left-skewed, symmetrical and right-skewed mode, each with two ad-
ditional parameters with values equal to 0.5 and 1.5 (cf. equations 4 and 5). These
parameters have been used to guarantee that the activity durations are generated with-
out substantially exceeding the mode c. Any two parameters that satisfy b − c > c − a
could have been used. In order to investigate the impact of the two parameters on the
performance of the 20 priority rules, we have additional experiments on other values,
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as shown in Table 6, in which the second and third rows represent the values of the
two parameters. In addition, we have also experimented with the beta and uniform
distribution to model uncertainty, where the minimum and maximum durations are the
same with that of the benchmark triangular distribution, shown in the last two columns,
labelled by ”Beta” and ”Uniform”. The table shows that for various set of parameter
combination and even for the beta or uniform distribution, the global ranking of rules
differs only a little bit, and especially for the best performing set of rules, there almost
no changes. But for some worse-performing rules, for example LCFS, it deteriorates and
becomes even worse than the rule RAN, but the variation range is still acceptable (i.e.
they go from the sixth cluster to the seventh or at most the eighth cluster). Since we
are more interested in the best and robust priority rules rather than the worse ones, we
believe that the use of these parameters is satisfactory to present our results.

7. Conclusion

In this paper, we mainly explore the performance of priority rules for the resource
constrained multi-project scheduling problem with uncertain activity durations. Besides
quality measures used in existing literature, new robustness criteria are also proposed
to measure the performance distinction between deterministic and stochastic environ-
ment from both project and portfolio perspectives. Five uncertainty levels are used to
illustrate the impact of uncertainty on the performance of priority rules. A full factorial
experiment is conducted on 1,260 projects and results are given.

First, the overall performance of the priority rules are analysed, and based on the
trade-off relationship between the quality and the robustness measures, we obtain the
corresponding Pareto frontiers for project and portfolio managers. Generally, the per-
formance of the higher uncertainty levels is much concentrated to the average value
than the lower case. Moreover, project managers can choose the appropriate priority
rules among the SASP, MINLFT, EDDF, MINWCS, MINSLK and FCFS. While port-
folio managers have a much wider set of options, including MS, MCS, LALP, EDDF,
MINSLK, MINLFT, MINWCS, MAXSP, FCFS and SASP. Separately for each measure,
SASP wins for Q1 while MS and MCS dominates for Q2. For robustness measures, FCFS
performs well for R1, whereas SASP delivers the best for R2. These results show that
the performance of priority rules differs significantly according to the objectives used.
Therefore, one can hardly tell which priority rule is the best for all cases. Second, the
influence of problem characteristics is examined on the average performance of the pri-
ority rules. Interestingly for SP , NARLF and MAUF , the multi-projects that obtain
the best results for R1 and R2 are almost the same and opposite with that for qual-
ity measure Q2. Finally, the best recommendation is given considering the four types
of measures and the results are compared with that for separate project and portfolio
managers. In conclusion, EDDF is the best rule for the average of the four objectives
and also the best for project managers. MS is the best for portfolio managers.

In future research, more priority rules that perform well in uncertainty environment
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should be studied and compared with current results. Moreover, other types of uncer-
tain factors can be considered, for example, dynamic project arrival, stochastic resource
availability and etc. Moreover, all the results in the research are obtained based on the
simulation with self-generated multi-project instances. It is therefore significant to com-
pare the results with real-life multi-projects to investigate the effects of the best priority
rules for both quality and robustness measures.
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