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Abstract—A number of methods based on deep learning
have been applied to medical image segmentation and have
achieved state-of-the-art performance. Due to the importance
of chest x-ray data in studying COVID-19, there is a demand
for state-of-the-art models capable of precisely segmenting soft
tissue on the chest x-rays. The dataset for exploring best
segmentation model is from Montgomery and Shenzhen hospital
which had opened in 2014. The most famous technique is U-
Net which has been used to many medical datasets including
the Chest X-rays. However, most variant U-Nets mainly focus
on extraction of contextual information and skip connections.
There is still a large space for improving extraction of spatial
features. In this paper, we propose a dual encoder fusion U-Net
framework for Chest X-rays based on Inception Convolutional
Neural Network with dilation, Densely Connected Recurrent
Convolutional Neural Network, which is named DEFU-Net. The
densely connected recurrent path extends the network deeper
for facilitating contextual feature extraction. In order to increase
the width of network and enrich representation of features,
the inception blocks with dilation are adopted. The inception
blocks can capture globally and locally spatial information from
various receptive fields. At the same time, the two paths are
fused by summing features, thus preserving the contextual and
spatial information for decoding part. This multi-learning-scale
model is benefiting in Chest X-ray dataset from two different
manufacturers (Montgomery and Shenzhen hospital). The DEFU-
Net achieves the better performance than basic U-Net, residual
U-Net, BCDU-Net, R2U-Net and attention R2U-Net. This model
has proved the feasibility for mixed dataset and approaches state-
of-the-art. The source code for this proposed framework is public
https://github.com/uceclz0/DEFU-Net.

Index Terms—Medical Imaging, Lung Segmentation, Convo-
lutional Neural Network, U-Net, DEFU-Net

I. INTRODUCTION

In the era of pneumonia epidemic in COVID-19, the au-
tomatic segmentation of medical images, especially the auto-
matic segmentation of chest X-ray images, has become a key
step in the automatic identification and analysis of abnormali-
ties. Accurate and high-performance segmentation models can
speed up the clinical workflow and help doctors make more
rational decisions for patients. Deep learning is driving the
development of medical image segmentation. Compared with
the traditional models of computer vision, the deep learning
method transcends the limitations of scope of applications
[15]. This near-radiologist level achievement of deep learning
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can also be attributed to the rise to convolutional neural net-
work (CNN). Filter transformation and efficient representation
learning are crucial characteristics. Ever since AlexNet [14]
has gained huge improvement on the classification on the
ImageNet dataset [6], various convolutional structures have
been proposed, such as residual block [8], densely connected
block [9] and inception block [22]. The networks are able to
reach deeper and wider range, which is helpful for extraction
of low-dimensional and high-dimensional features. In addition,
some useful activation functions are helpful for the network
to simulate the results generated by human brain, such as
ReLU, LeakyReLU, Sigmoid and Softmax. Some efficient
optimization algorithms update parameters and accelerate the
convergence. For example, stochastic gradient descent (SGD)
and Adam optimizer are used in most of the training.

Back to the medical image segmentation, many networks
based on CNN make performance approaching the judgement
of radiologists. The ground-breaking segmenting network is
Fully convolutional network (FCN) [17]. After that, more
researchers proposed complex frameworks for improving ef-
ficiency of the encoder and decoder. For most medical image
datasets, the images are highly similar, unlike the images
in ImageNet, which have obvious differences in the edge or
shape. For example, the chest X-ray has fuzzy edges and sim-
ilar areas between normal and abnormal scans. Occasionally,
a dataset may be from different X-ray machines or include
a small number of images with low quality caused by low
contrast, lack of costophrenic angle and biased annotations
[24]. Therefore, the limited receptive fields and insufficient
context information extracted from FCN may lead to poor per-
formance in some medical datasets. Many more complicated
networks have been proposed such as PSPNet [27], U-Net [20]
and DeepLab [4]. They have more sufficient receptive fields
and greater ability to obtain richer contextual information,
thus obtaining better performance. U-Net is the most classic
network in medical image segmentation [21] which is applied
widely due to its ability to concatenate contextual information
by skipping connections between encoder and decoder. In
order to improve the efficiency and accuracy of the network,
a number of extensions on U-Net have been proposed. Deep
Residual U-Net [26], which employs residual block into each
layer of encoder and decoder, made the network deeper and
improved the performance metrics. Recurrent Convolutional
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layers (RCNN) and Recurrent Residual Convolutional layers
(R2CNN) were proposed by Alom et al. [1], which utilize
feature accumulation with the recurrent mechanism. BCDU-
Net used bi-directional ConvLSTM instead of skip connection
and block of dense convolutions was applied into the bottom
encoding layer [2]. Attention mechanism was introduced in
skip connections of U-Net [18]. In addition to modifying
the network structures, the kernel size has been discussed
and explored [19] as well. These models focus on modifying
context feature extraction in one path and connection between
encoder and decoder. They perform the-state-of-art in some
tasks of medical image segmentation. However, they do not
focus on the extraction of spatial and contextual informa-
tion simultaneously, which may cause mis-classification on
the pixel of nearby-border. In addition, the different source
datasets may lead to the uncertainty of segmentation, and this
influence had been discussed in optical coherence tomography
[7]. Most networks use a single 3 × 3 convolution kernel
convolution kernel, which can not adjust the diversity of object
and domain-shifts across manufacturers. Therefore, the model,
that can adjust the different device source, deserves to be
studied.

In this paper, we propose a novel extension of U-Net called
DEFU-Net to address these problems. A dual-path encoder
is constructed to improve the performance of the model.
The dual path encoder comprises densely connected recurrent
encoding blocks as well as inception encoding blocks with
dilation. Some researchers used an inception block to replace
the convolution block on each layer in some segmentation task
[3]. We employ inception blocks with dilation as the second
path to scale up the width of the network. The input features
of the second densely connected recurrent block and the first
inception block with dilation are shared. The inception block
with dilation can adjust both global and local distributions
and extract multiple spatial features [22]. It avoids spatial
information loss resulted by max-pooling as well. The densely
connected recurrent convolution block (DCRC) can facilitate
network to extract high-level information and avoid gradient
vanishing problem as well [1]. Before concatenation, the
extracted information from current DCRC block and inception
block with dilation will be fused by summation at each stage.
Meanwhile, the fused information will be transferred to the
next inception block with dilation to extract spatial features.
These processes help the network to obtain more accurate
result than other U-Net extensions on the cross-manufacturers
dataset from Montgomery and Shenzhen hospital, since our
model is able to reduce the influences of the variance among
datasets.

II. METHOD
A. Dual Encoder Fusion U-Net

Inspired by the advantages of U-Net [21], inception block
[22], DenseNet [9] and recurrent structure [1], the dual encoder
fusion U-Net is proposed, as shown in Fig. 1. This new
framework follows the classic encoding and decoding structure
of U-Net. The blue boxes represent the group of feature maps

in each layer and the grey boxed are the set of feature maps
from inception extracting path. On each stage of the encoder,
we apply two recurrent blocks with densely connections and
max-pooling (grey arrow). After feature maps extracted by first
DCRC blocks (blue arrow), they will be copied to inception
extractor with dilation (black arrow). In first stage of inception
extractor, X1 = Y1 and output Y2 will be equal to E1(Y1),
where En indicates the process of feature extraction from
inception block with dilation. Xn and Yn denote input feature
maps from feature encoder and inception extractor in nth

stage, respectively. The information extracted by DCRC block
and inception block will be fused by pixel-wisely summation
(adding (+)) in the rest of the encoder. Each set of fused
features will serve as an input to the next inception block
with dilation. Dn represents the process of feature extraction
from DCRC. This process can be formulated:

Xn+1 = Dn(Xn)

Yn+1 = En(Xn + Yn)
(1)

These operations can enrich spatial and context features.
The fused feature maps (Xn + Yn) are prepared for con-
catenating to decoder stages accordingly. The concatenations
encourages the information reused in decoder. In order to avoid
increasing parameters, Up-sampling is adopted in decoding
part. The green arrow indicates DCRC block + Up-sampling.
The up-sampling is beneficial to recover boundaries location
from low-dimensional features. Moreover, we modified the
number of filters in the bottom layer, as same as 4th layer.
This modification can reduce computational budget and avoid
yielding useless feature maps.

B. Densely Connected Recurrent Block
The densely connected recurrent convolution block (DCRC

block) in our network is inspired by R2 block proposed by
Altom et al. [1] and DenseNet [9]. The unfolded structure is
shown in Fig. 2. The recurrent unit can help feature accumu-
lation and extract useful information precisely. The multiple
kernels will extract information from accumulated feature
maps. The structure of recurrent convolutional unit is illus-
trated in Fig. 3. In order to improve the stability of training,
batch normalization is used in the block [10]. Meanwhile, the
block includes the densely connected mechanism. After each
recurrent unit, the number of channels will be increased with
densely connection mechanism because the output and all of
previous features are concatenated. With limited computational
resource, we choose Conv(1× 1)-LeakyReLU for recover the
number of channels, which is similar to the bottleneck layers
used in DenseNet [9] to reduce the number of channels. The
multi-connections can enforce individual layer obtain deep
supervision additionally from loss function [16]. The network
can become deeper and the convergence is faster in the training
process.

C. Inception extractor with dilation
In our network, we take the classical Inception V2 and V3

[23] as a reference. In X-ray scanning, the height of lungs



Fig. 1. DEFU-Net with Inception dilation Convolution Blocks and Densely Connected Recurrent convolution (DCRC) Blocks

Fig. 2. Densely Connected Recurrent convolution (DCRC) Block

Fig. 3. Unfolded Recurrent Convolutional Unit

is usually greater than the width. Inspired by the success of
atrous/dilated convolution [5] in medical image segmentation
[28], Conv(3 × 3) with dilation rate (3, 1) and (1, 2) are
introduced in this block for expand receptive fields on height
and width respectively. The details of structure are shown in
Fig. 4. This structure uses three ways to decrease dimension,
including 1 × 1 convolution, 3 × 3 convolution with stride 2
and 3 × 3 average-pooling. In order to contain convolutional
continuity and realize down-sampling, the 3 × 3 kernel with
stride 2 can help preserve spatial characteristics and avoid
information loss directly caused by max-pooling. The 1 × 1
kernel with stride 2 can enhance the non-linear capacity [23].
Especially, two branches include dilated convolutions. Based
on the equations Hdilated/Wdilated = (DilationRate− 1)×

Fig. 4. Inception block with dilation

(KernelSize − 1) + KernelSize, the new kernel size will
be 7× 3 and 3× 5 respectively. Thus, dilated receptive fields
on height is larger than dilated receptive fields on width for
adjusting difference of learning on shape. The correlation and
continuity of high-level semantic features in height or width
will be learned. By combining with other kernels and average-
pooling, this modified inception can aggregate multi-scale
contextual information for dense prediction architectures, thus
improving the performance [25]. From the second layer to the
bottom of encoder, the feature extracted by the last inception
block and the feature extracted by DCRC block will be fused
by summation and they will be concatenated to the decoder.



Fig. 5. Comparison between Prediction and Ground Truth of Shenzhen X-Ray in Variant U-Nets. Grey color: ground truth. Red color: prediction. The model
trained in mixed dataset is used here.

Fig. 6. Comparison between Prediction and Ground Truth of Montegomery X-Ray in Variant U-Nets. Grey color: ground truth. Red color: prediction. The
model trained in mixed dataset is used here.

The summation on the element-wise feature has been proved to
have a great performance outside U-Net [12]. The rich spatial
and context features are integrated into the decoding part.

III. EXPERIMENTS

A. Dataset

We mainly evaluated the DEFU-Net on chest X-ray from
Montgomery and Shenzhen hospital which opened in 2014
[11]. This dataset contains many diagnoses such as infiltration,
fibrosis, pneumonia and tuberculosis. These diseases have
similar radiogram and we mainly focus on segmenting lung
soft tissue. Therefore, we use this dataset to investigate a
state-of-the-art pre-trained model. This dataset includes chest
X-ray scans from two manufacturers. 138 patient’s images
from Montgomery and 566 patient’s images from Shenzhen
are applied in this segmentation task respectively. The total
number of normal lung was 359, while the number of ab-
normal lung was 345. The size of X-ray from Montgomery
Country is either with 4020 × 4892 or 4892 × 4020 pixels.
The size of Shenzhen chest X-ray is 3K × 3K. The pixel-
wise lung mask annotations are offered in the two datasets.
Specially, X-ray scans from Montgomery are annotated in left
and right lung respectively. Thus, we combined left and right
lung segmentation masks from Montgomery and resized all the
X-ray scans from two dataset to 512 × 512 pixels. All scans
were transformed to a single channel as grey-scale. All masks
were dilated to gain more information on the edge of lungs
for training. After pre-processing, the data set was mixed and
divided into 528 training set, 76 images for validation set and
100 for testing set randomly. To further explore the robustness
of the proposed model, we trained models from one hospital
and tested it in another hospital. (1. Training on Montgomery
(M) and testing on shenzhen (S); 2. Training on Shenzhen (S)
and testing on Montgomery (M)). In the training process, the
training data were augmented by rotation, shifting, shearing,
zooming and flipping in order to avoid over-fitting [14].

B. Training of the neural network

The training environment was based on Keras 2.2.4 with
Tensorflow 1.13 backend. GPU was 1080Ti. The batch size
was set to 2. The input and output were 512×512×1. We used
classic dice loss Eq.2 for semantic segmentation and Adam
optimizer [13] with default parameters.

Ldice = −
2

N∑
i=1

gipi + 1

N∑
i=1

g2i +
N∑
i=1

p2i + 1

(2)

Where gi ∈ 0, 1 represents the ground truth on the pixel level.
pi ∈ [0, 1] refers to the probability value of the prediction on
each pixel. N is the total number of the pixel. Adding 1 is for
preventing divided by zero.

The “reduce learning rate on plateau” with initial learning
rate 1 × 10−5, factor = 0.2 and patience = 5) and ”Early
Stopping” (patience = 5) were applied in training. The total
training epochs was set to 175. Meanwhile, In order to
understand the capacity of inception extractor with dilation,
we combine it with Res-U-Net. The U-Net [20], Residual
U-Net (Res-U-Net) [26], Incept-Res-U-Net, BCDU-Net [2],
R2U-Net and R2-Att-U-Net, DEFU-Net had all been trained
on our dataset.

C. Evaluation approaches

We used 7 evaluation metrics for our training and testing
predictions, including binary accuracy (AC), dice coefficient
(Dice Coef = -dice loss), intersection over union (IOU), preci-
sion, recall, F1-score and area under curve (AUC). The Dice
Coef and IOU can be expressed in the following equations,
where GT represent the ground truth and PR refers to the
prediction result.

dice =
2× |GT |

⋂
PR|+ 1

|GT |+ |PR|+ 1
(3)



TABLE I
TRAINING RESULT

Training Dice AC IOU Precision Recall F1 Score AUC

U-Net 0.9039 0.9403 0.9695 0.9063 0.9032 0.9043 0.8757
Res-U-Net 0.9688 0.9807 0.9902 0.9744 0.9641 0.9689 0.9748
BCDU-Net 0.9707 0.9816 0.9908 0.9761 0.9665 0.9707 0.9719
Incep-Res-U-Net 0.9740 0.9837 0.9917 0.9785 0.9704 0.9741 0.9785
R2-UNet 0.9793 0.9868 0.9932 0.9823 0.9771 0.9795 0.9800
Att-R2U-Net 0.9791 0.9867 0.9931 0.9825 0.9766 0.9793 0.9807
DEFU-Net 0.9858 0.9910 0.9954 0.9871 0.9848 0.9859 0.9828

TABLE II
VALIDATION RESULT

Validation Dice AC IOU Precision Recall F1 Score AUC

U-Net 0.7751 0.8801 0.9396 0.8210 0.7350 0.7753 0.8763
Res-U-Net 0.9167 0.9541 0.9769 0.9336 0.9016 0.9168 0.9748
BCDU-Net 0.9482 0.9720 0.9860 0.9617 0.9370 0.9482 0.9720
Incep-Res-U-Net 0.9495 0.9722 0.9860 0.9730 0.9298 0.9496 0.9788
R2U-Net 0.9530 0.9750 0.9874 0.9721 0.9365 0.9532 0.9800
Att-R2U-Net 0.9497 0.9747 0.9872 0.9706 0.9339 0.9498 0.9809
DEFU-Net 0.9578 0.9765 0.9882 0.9739 0.9440 0.9579 0.9826

TABLE III
TESTING RESULT

Testing Dice AC IOU Precision Recall F1 Score AUC

U-Net 0.9190 0.9539 0.9764 0.9445 0.9013 0.9194 0.9556
Res-U-Net 0.9602 0.9767 0.9880 0.9690 0.9541 0.9605 0.9804
BCDU-Net 0.9658 0.9795 0.9897 0.9645 0.9684 0.9658 0.9813
Incep-Res-U-Net 0.9616 0.9775 0.9885 0.9714 0.9545 0.9620 0.9802
R2U-Net 0.9647 0.9794 0.9896 0.9748 0.9568 0.9648 0.9815
Att-R2U-Net 0.9644 0.9793 0.9895 0.9732 0.9579 0.9645 0.9823
DEFU-Net 0.9667 0.9804 0.9901 0.9731 0.9619 0.9667 0.9816

TABLE IV
TEST RESULT WITHOUT MIXED DATASET. 1. TRAINING ON MONTGOMERY (M) AND TESTING ON SHENZHEN (S); 2. TRAINING ON SHENZHEN (S) AND

TESTING ON MONTGOMERY (M)

Test Dice/F1 Score U-Net Res-U-Net BCDU-Net Incep-Res-U-Net R2U-Net Att-R2U-Net DEFU-Net

Train: M/Test: S 0.8556/0.8568 0.6642/0.6653 0.9088/0.9089 0.8896/0.8918 0.9122/0.9141 0.9069/0.9097 0.9154/0.9158
Train: S/Test: M 0.7706/0.7739 0.8162/0.8191 0.7671/0.9082 0.8984/0.9022 0.8659/0.8713 0.8659/0.8713 0.9227/0.9231

JS(IOU) =
|GT

⋂
PR|+ 1

|GT
⋃
PR|+ 1

(4)

In order to calculate AC, precision, recall, F1-score, we need to
employ True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). The metrics can be obtain by
following equations. The AUC can be calculated by receiver
operating characteristic curve.

AC =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2× Precision×Recall

Precision+Recall
(8)

IV. RESULTS

For comparison, the evaluation metrics of training, vali-
dation and testing are shown in Tables 1, 2 and 3. DEFU-
Net generates the highest Dice, AC, IOU, precision, recall,
F1-score and AUC in training, validation dataset. In testing
dataset, the DEFU-Net still outperforms most of the other
metrics. Meanwhile, under the ”Early Stopping’ mechanism,



U-Net, Res-U-Net, BCDU-Net and Incep-Res-U-Net stop
training at 70th epoch, 50th epoch, 72th and 60th respectively.
The R2U-Net and Att-R2U-Net stop at 100th. Our model can
train 145 epochs with higher metrics. The AC of our model
can reach 0.9776 after two epochs. They demonstrate that our
model has fast convergence and fits our cross-manufacturer
data better in training. Moreover, we can see that the inception
path with dilation can boost performance beyond U-Net, Res-
U-Net and BCDU-Net. It is shown that this path are actually
effective for our cross-manufacturer segmentation task. After
combining the inception blocks with dilation and densely
connection recurrent blocks as dual path encoder, the dataset
can be fit with the best performance.

In the experiments of training and testing without mixed
dataset, the performance of models is mainly compared by
testing dice and F1 Score. In Table 4, the proposed DEFU-Net
have highest metrics in the both processes of Train: M/Test: S
and Train: S/Test: M. The DEFU-Net is robust and convincing
for segmentation task of data across manufacturers.

We visualise the difference between prediction and ground
truth of Montgomery and Shenzhen dataset in Fig. 5 and Fig.
6. The grey region indicates the ground truth and red color
represents predicted pixel. The model trained in mixed dataset
is used here. From left to right, the predictions fit the ground
truth gradually. In order to solve to the adaptability problem on
diversity of lung size, shape and position, the model needs to
learn these differences. From the comparison diagrams, they
show the advantages of inception with dilation and DCRC
block clearly. This extractor path improves classification on
the pixel of nearby-border and the DCRC blocks helps reduce
the rate of True Negative and the False Positive. The DEFU-
Net achieves superior performance.

V. DISCUSSION AND CONCLUSION

Against the backdrop of COVID-19, the state-of-the-art
pre-trained model about segmentation is significant for the
future COVID-19 chest X-ray to diagnose pneumonia. In this
paper, we proposed an innovative network structure called
DEFU-Net to segment the opened cross-manufacturer chest
X-ray dataset with great performance. We applied a dual
path framework to enrich the features extracted from the
encoder. The inception path with dilation can help the model
to capture spatial information with multi-scale kernels and
increase the width of the network. The densely connected
recurrent block increases the depth of the network. Information
from low-level to high-level can be captured. The pixel-
wise summations of features from two paths preserve more
optimal information during decoding. Meanwhile, we change
the number of feature maps in bottom layer, which is same
with 4th level. The demand for computational space will be
halved. On this combination of two public datasets, the DEFU-
Net have better fitting ability on the segmentation of edges and
small areas. We observe our model performing state-of-the-
art compared to the aforementioned model. In the future, our
model may carry out experiments of segmentation tasks under
cross-manufacturer COVID-19 pneumonia X-ray, and we may

explore the feasibility of expanding to 3D images for more
complex segmentation.
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