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Housing is a major source of inequality in England, but most house price variation studies 
are conducted at national or regional scale or, conversely, in a specific city. Detailed 
research at sub- regional level is missing, especially for the period after the global financial 
crisis. This research addresses this gap with an analysis of variation at local authority level 
across England between 2009 and 2016. A novel house price per square meter (HPM) 
dataset is used to control for property size effects in transaction price variation. The effects 
of two spatial levels (local authority (LA)— and Middle Layer Super Output) together with 
three time categorizations (quarterly, half- yearly, and yearly) is systematically explored 
using multilevel models. Results show that the time categorization effects are essentially 
identical and extremely small, in comparison with the LA effects. As annual effects provide 
the best model fit, LA annual house price trajectories are explored further. Overall higher 
HPM LAs grew faster over the 80- year period than lower HPM LAs. More locally the 
spatial pattern shows some variation in the overall pattern, with some LAs near London or 
Bristol exhibiting higher relative percentage HPM increases with a relatively lower initial 
HPM compared with their neighbors.

Introduction

A house is an immovable asset and aside from its physical attributes, its location is regarded as 
the most important determinant of its value (Kiel and Zabel 2008; Downes 2018). House prices 
in desirable locations are frequently too high to be affordable for people on average salaries and, 
in countries such as the United Kingdom, exhibit large spatial disparities (Hamnett and Reades 
2019). However, commentary on this spatial heterogeneity in the UK is often fairly crudely ex-
pressed through observations such as the “North- South divide.” The modeling of English house 
price changes dates back to the 1970s (Ball 1973; McAvinchey and Maclennan 1982). This 
research explored the variation at coarse scales such as regions or, conversely, in a specific city. 
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The city- based research mainly focused on exploring the determinants of the spatial and temporal 
variation of property prices rather than the house price trends themselves. Regional house price 
spatio- temporal patterns and fluctuations have been well explored and historically conceptual-
ized as a ripple effect spreading out from London and the South East across England since 1969 
(Meen 1999; Cook 2003; Stevenson 2004; Cook and Watson 2016; Hamnett and Reades 2019), 
but little sub- regional analysis in the UK has appeared in the literature (Jones and Leishman 
2006). This is a particular issue given that housing regulation and delivery in England has been 
carried out by local authorities (LAs) since the 1880s. Although local authorities have played an 
increasingly marginalized role in housing markets through a dwindling of social stock after the 
introduction of the “Right to Buy” in 1980 (Morphet and Clifford 2020), they still play a crucial 
role in planning policy and decisions and thus make them a scale of analysis highly relevant to 
any research with relevance to local housing policy. Currently there is a growing move for local 
authorities to develop housing for sale and rent to bolster their revenues in the face of dwindling 
government support (Morphet and Clifford 2020). Further, our understanding of house price het-
erogeneity in England has been limited to the time period after the Global Financial Crisis (GFC) 
of 2008 whereas most regional house price analyses explore periods before the GFC.

House price data deficiencies in England limit research on house price variation at local 
level. Much house price research in England has been based on mortgage datasets (e.g., 5% 
sample survey of Building Society Mortgages or the Nationwide Building Society mortgage 
data), but this data is just a small sample of the total number of transactions and has potential 
biases in representing the whole market (Hamnett 1983; Jones and Bullen 1993). Local estate 
agent survey data avoid this bias but is not widely available across England (Orford 2000). Land 
Registry Price Paid Data (PPD), published as open data in 2013, narrow this data gap as it offers 
the most comprehensive set of transaction price records at address level in England; however, 
it lacks detail on property characteristics. For example, floor area is not available in the PPD 
which limits its usefulness for price variation analysis where stock characteristics vary so much 
suggesting it requires enrichment from other data sources (Orford 2010; Powell-Smith 2017; Chi 
et al. 2019; Lewis 2020). Linking the PPD to other attribute- rich datasets such as the Ministry 
for Housing, Communities and Local Government’s Energy Performance Certificates (EPCs), 
offers the opportunity to explore house price variation nationally, controlling the floor size effect 
by using a house price per square meter (HPM) measure.

Another criticism of housing research in England is that there is a lack of research on house 
price variation at different geographical and temporal scales, especially for the period after the 
GFC of 2008– – a time of great shock in the UK housing system (Gray 2012; Cooper et al. 2013). 
Some recent studies have begun to address this (Gray 2012; Feng 2016; Orford 2017; Law, 2018; 
Chi, Dennett, Oléron- Evans, et al. 2020), but only few have carried out this analysis nationally 
(Gray 2012; Cooper et al. 2013; Feng 2016; Chi, Dennett, Oléron- Evans, et al. 2020) and only 
Chi, Dennett, Oléron- Evans, et al. (2020) have accounted for the effect of size in transaction price. 
Two new insights into house price variation emerged from this research: firstly the examination 
of HPMs at LA level showed almost twice the variation of house price compared with raw trans-
action price. Secondly, HPMs at LA level represented 53% of England house price variation in 
2009, increasing to 76% in 2016, although these changes over time are not fully understood.

LAs in England have a duty to ensure effective functioning of their local housing mar-
kets (Morphet and Clifford 2020). A knowledge gap existed in understanding LA house price 
variation after the economic crisis. To overcome this knowledge gap in this paper we take 
this analysis further investigating two spatial scales (LA and the Middle Layer Super Output 
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Area– – MSOA– – level) and three different time scales (quarter, half- year, and year). The three 
different time scales are chosen as they are commonly used time slices in analysis house price 
trend in England. Our two aims were, first, to understand the extent to which space and time 
influence HPM variation in England and, second, to facilitate a deeper understanding of spatio- 
temporal changes using a model- based descriptive approach. In Section 2 we briefly review 
the previously observed house price variation in England and some common spatio- temporal 
models. In Section 3, the study area and the data used are introduced. Section 4 presents the 
multilevel modeling approach with the results shown in Section 5. A summary and conclusions 
are detailed in Section 6, together with recommendations for future research.

House price spatio- temporal variation in England

Regional house price trends in England have been likened to pond ripples after a stone is thrown in 
(Cooper et al. 2013). This metaphor refers to the notion that high house prices in one region push 
up house prices in adjoining regions over a time period (MacDonald and Taylor 1993). Empirical 
studies show such a pattern, with London and the South East being the ripple source leading to 
eventual spill- overs to other regions (Giussani and Hadjimatheou 1991; MacDonald and Taylor 
1993; Alexander and Barrow 1994; Meen 1996). This phenomenon of interregional interactions has 
been well- identified in long- term house price changes at quarterly or annual time scales since 1968.

Shocked by the GFC of 2007, regional house prices in England were pushed into a two- year 
recession between 2007 and 2009, with different rates of recovery afterwards. Studies after 2009 not 
only reveal a similar ripple effect, but also show an unprecedented divergence with an increasing of 
regional house price differences driven by a faster price increase in London (Cook and Watson 2016; 
Hamnett and Reades 2019). Gray’s (2012) research at LA level for the time period before Global 
Financial Crisis (1997– 2007) showed no “perfect ripple” but a pattern of hot and cold spots frag-
mented and dispersed across England. It showed, however, that LA house price growth exhibits a 
spatially and temporally lagged diffusion from the high- price areas in London to more distant areas.

All the above research, however, delivers conclusion based on a non- mix- adjusted index 
(aggregate transaction price), which will bias the results (Gray 2012). Normalizing the transac-
tion price by using HPM rather than using raw transaction price offers a more reliable basis for 
analysis (Chi, Dennett, Oléron- Evans, et al. 2020). Additionally, most of this research directly 
uses quarterly or yearly time categorization. Cooper et al. (2013) attempted to use different time 
slices when producing aggregate house price indices at different spatial scales, but their approach 
does not enable a systematic understanding of the time effect on price variations.

Various modeling techniques have been proposed to detect spatio- temporal patterns, such as 
geographically and temporally weighted regression (Huang, Wu, and Barry 2010; Fotheringham, 
Crespo, and Yao 2015), spatio- temporal areal unit modeling (Lee, Rushworth, and Napier, 
2018), and multilevel modeling (Jones and Bullen 1993, 1994; Orford 2002). Within these three 
types models, geographically and temporally weighted regression (GWR) has a computational 
challenge when observation numbers exceed 10,000 (Li et al. 2019), which is the case in our 
research. Spatio- temporal areal unit modeling relies on areal unit data at a single level to analyze 
spatial- temporal patterns, but this misses multi- level effects. Multilevel modeling (MLM) is a 
statistical tool that will allow for these different geographical and time level influences to be cap-
tured for a large number of cases and as such is our preferred method here. It also has some other 
useful advantages as within the groups in any given level, it allows relationships to vary around 
the overall relationship for all individuals across all the groups (Jones, 1991a). To produce more 
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reliable estimates for groups with small sample sizes, MLM shrinks the estimates toward the 
overall average (Steele, 2008a).

Study area and data

Study area
The study area is the whole of England, the largest country of the United Kingdom. It contains nine 
regions: the North East, the North West, Yorkshire and the Humber, the East Midlands, the West 
Midlands, the East of England, the South East, the South West and London. Administratively, 
England is divided into 326 LAs, and these are further divided into 6,791 MSOAs.

House price data
We use HPM information from a newly created house price dataset. This is a linked address- level 
database which uses the HM Land Registry PPD together with property geo- reference information 
from the Ordnance Survey and total floor area from Domestic EPCs in England between 2009 and 
2016. The combining of the above datasets together with data cleaning meant 20% of the full mar-
ket housing sales in the PPD was removed. Of this, 7% was due to linkage failure and 13% due to 
missing data or errors the property size information. Although the new dataset only represents 80% 
of full market housing sales in England from Land Registry PPD, it still covers all the regions, LAs, 
MSOAs, and 99.99% of Lower Layer Super Output Areas (LSOAs) in England. Nevertheless, 99% 
of LAs in England have over 80% representation of the Land Registry PPD sales in the new dataset, 
and 95% of local authorities have over 90% representation. Only three LAs– – the City of London, 
Westminster, and Camden– – have less than 80% representation (Chi et al. 2019). The new dataset 
records 4,682,468 full market sales and six fields are used in this research, namely HPM, transaction 
year, transaction half- year, transaction year quarter, MSOA codes, and LA district codes.

Methodology

The following analysis is divided into two stages with three methods employed. Firstly, a vari-
ance components model is used to explore the space and time effects on house price variance in 
England between 2009 and 2016, for three different time scales (yearly, half- yearly, and quar-
terly). Secondly, growth curve models are used to present a model- based description of the 
spatio- temporal patterns of local house prices in England between 2009 and 2016. Choropleth 
mapping is used to represent the spatio- temporal patterns of England’s local housing markets.

Variance components model
The variance components model is the simplest multilevel model with no explanatory variables 
(Raudenbush and Bryk 2002; Goldstein 2010). It quantifies variances over different spatial scales 
and time scales (Jones 1991b). A four- level variance components model was built to explore the 
extent of house price variation by LA, MSOA, and time. This model is written as:

(1)

hpigkj=β0+ lj+mkj+ugkj+eigkj

lj∼N
(

0, σ2
l

)

mkj∼N
(

0, σ2
m

)

ugkj∼N
(

0, σ2
u

)

eigkj∼N
(

0, σ2
e

)
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where hpigkj refers to an individual (natural log scale) observed HPM i, during time period g in 
MSOA k and LA j. The fixed term β0 represents the overall mean HPM over the complete time 
period, and lj, mkj, ugkj, and eigkj are the random terms of the model, representing respectively 
the residuals at LA level, MSOA level, time level, and individual level. lj measures the extent to 
which the overall mean house price in LA j varies from the overall mean HPM (β0),mkj measures 
the extent to which overall mean house price in MSOA k deviates from the overall mean HPM 
in LA j. ugkj quantifies the difference between the mean HPM for a given time period (e.g., one 
year) in one MSOA and that MSOA’s mean HPM over the whole period. The individual residual 
eigkj quantifies the difference between any individual HPM and the mean MSOA HPM within the 
same time period. Residuals at each level are assumed to be independent and identically distrib-
uted with a normal distribution of zero mean and constant variance.

In this model, total HPM variance is decomposed into four parts (σ2
l
, σ2

m
, σ2

u
, and σ2

e
), which 

represents the variance around the grand mean at the level of LA, MSOA, time, and individual 
(Jones and Bullen 1993). The variance at LA level (σ2

l
) measures HPM differences between LAs 

over the whole period; σ2
m

 is the MSOA level variance, measuring the price difference within 
local authority between MSOAs over the whole period; σ2

u
 is the residual variation at time level, 

which measures the time- to- time (e.g., year- to- year) differences within the same MSOA; σ2
e
 is 

the individual variance, measuring the HPM variability for a given time period and MSOA. With 
these four variance components in the hypothetical model, variance partition coefficients (VPC) 
can be calculated to summarizes the “importance” of spatial and time effects in influencing house 
price variation. For example, VPC at LA level represents the house price variability that can be 
accounted for at LA level. The equation for VPC at LA level is presented as equation (2), which 
is between- LA variance divided by the total variance.

VPC ranges from 0 to 1, with 0 signifying no between group differences and 1 signifying no 
within group differences. A higher VPC at a particular level indicates that a greater proportion of 
total variation is due to differences between the units at the given level.

Three separate four- level variance components models were used to estimate the extent of 
the house price (i.e., HPM) variability at LA level and MSOA level and for three different time 
horizons (quarterly, half- yearly, and yearly) within the study period. Level 1 is the individual 
residential properties. Level 2 is the quarterly, half- yearly, or yearly time horizon. Level 3 is 
MSOA level and level 4 is LA level. The equations for these three models are listed in Table 1. 
Likelihood ratio (LR) tests are used to test the significance of the LA, MSOA, and time effect in 
Models 1, 2, and 3. The LR test is based on the change in deviance (– 2 log likelihood) between 
two models and has a chi squared distribution (Raudenbush and Bryk 2002). The significance of 
LA effect is verified by conducting a LR test based on the deviance change from the candidate 
models in Table 1 to their corresponding three- level variance components models, obtained by 
dropping the LA level (lj). The MSOA effect is verified through comparison between the can-
didate models in Table 1 and their corresponding three- level variance components models by 
dropping the MSOA level (mkj). The three different time horizon effects are verified by means 
of three pairwise likelihood ratio tests, comparing the candidate models with their corresponding 
three- level variance components models, obtained by dropping the given time level (e.g., qskj).  

(2)VPCl =
σ2
l

σ2
l
+ σ2

m
+ σ2

u
+ σ2

e
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Additionally, the lowest deviance is used to identify which four- level variance components mod-
els is the best fitted model in Table 1.

Growth curve modeling
Growth curve modeling generally uses a multilevel model with time as a predictor to fit a trend 
in repeated- measures data over time and across different levels (Goldstein 2010). Growth curve 
modeling has been effectively used in longitudinal studies when addressing questions about 
change (Singer and Willett 2003; Steele 2008b; Zaninotto, Falaschetti, and Sacker 2009). In 
house price analysis, house price can be treated as a “repeated measurement” for the same areas 
(Jones and Bullen 1993). For example, individual transaction prices (level 1) are recorded for 
different LAs (level 2). Such a basic two- level growth curve model can be represented formally 
using the following equation:

where hpij is the individual HPM (natural log scale) for the ith transaction in LA j, tij is the time 
(e.g., year) of the transaction i in LA j. The natural logarithm of the response is used to reduce 
problems of non- linearity and provides a meaningful interpretation of the estimated slope pa-
rameter β1. β1 is the overall average slope. For small values of β1, it is approximately equal to 
the overall percentage change in HPM (Tufte 1974). β0 is the overall mean, which is interpreted 
as the overall HPM in England (2009– 2016) in terms of a logarithmic scale. The fixed part is 
β0 + β1tij, the random part is lj + eij. lj and eij are the residuals. Residuals at the same level or 
different levels are assumed to be uncorrelated.

In equation (3), all the LAs in level 2 share the growth trend (β1). However, growth curve 
modeling can permit this growth to vary between LAs by adding a new random part l1jtij. The 
new equation is:

(3)

hpij=β0+β1tij+ lj+eij

lj∼N
(

0, σ2
l

)

eij∼N
(

0, σ2
e

)

(4)

hpij=β0+β1tij+ l0j+ l1jtij+eij

l0j∼N
(

0, σ2
j0

)

l1j∼N
(

0, σ2
j1

)

eij∼N
(

0, σ2
e

)

Table 1. The Candidate Four- Level Variance Components Models

Model Equation

Model 1 hpiskj = �0 + lj +mkj + qskj + eiskj
Model 2 hpiwkj = �0 + lj +mkj + hywkj + eiwkj
Model 3 hpidkj = �0 + lj +mkj + ydkj + eidkj

Notes: hp is the log scale of HPM. For example, hpiskj stands for the log of HPM i in quarter 
period s in MSOA k in LA j. �0 is overall mean house price across the LAs overa the 
complete time period, lj is the residuals at LA level, mkj is the residuals at MSOA k in local 
authority j, qskj is the residual at time level in terms of quarter, hywkj is the residual at time 
level in terms of half- year period, ydkj is the residual at time level in terms of year. eiskj, eiwkj 
and eidkj are stand for individual level residuals.
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Here, hpij, β0, β1, and eij have the same meaning as in equation (3). l0j has the same meaning 
as lj in equation (3). The new random term l1j measures the extent to which the slope of LA j 
deviates from the overall slope β1. The random effects l1j and l0j are assumed to follow normal 
distributions with zero mean, variances σ2

j0
 and σ2

j1
 respectively, and covariance σj01. eij is also 

assumed to follow a normal distribution with zero mean and constant variance σ2
e
.

Figure 1 provides a graphical illustration of equation (4) for 22 transactions in two LAs (LA 
a and LA b) in England over five consecutive time intervals. Individual HPMs are shown as a 
black circle. β0 is the intercept, which represents the grand mean HPM (log scale) in England 
at time 0. β1 represents the overall slope in England across the whole time period, which is ap-
proximately equal to the percentage change of the HPM (Tufte 1974; Jones and Bullen 1993). 
β0 + l0j measures the intercept for LA j, and β1 + l1j measures the HPM percentage change for LA 
j. LA a has a larger intercept value (β0 + l01) than the mean HPM in England (β0) with a positive 
l01, whereas LA b has a smaller intercept value (β0 + l02) than the mean HPM in England with a 
negative l02. The slope of LA a (β1 + l11) is steeper than the overall average slope line (the black 
line) by an amount l11, whereas LA b has a slope (β1 + l12) which is smaller by an amount l12. For 
the HPMs in LA a and LA b, a high intercept is associated with a steep slope. If this pattern holds 
when all LAs are considered, the intercept- slope covariance will be positive and the group lines 
(the blue solid lines) will “fan out.” eij measures HPM differences for each individual i over the 
intercept (average LA HPM at time 0).

Given that house prices within the same MSOA are more similar than the HPMs within the 
same LA (Chi, Dennett, Oléron- Evans, et al. 2020), we account for MSOA effects in the model by 

Figure 1. A graphical illustration of the two- level growth curve model in equation 4.
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adding in MSOA level in the random part. Equations (3) and (4) can be extended to a three- level 
growth curve model by adding in a random term mkj as two models are listed in Table 2. In Models 
4 and 5, Level 1 is individual, level 2 is MSOA level and level 3 is LA level. A LR test is used to 
compare Models 4 and 5 to determine which provides a better fit. If Model 5 fits the data better, LAs 
in England reveal different house price growth curves compared with Model 4.1 The time variables 
(tikj) are centered at the beginning of year 2009 so that the estimated intercept has a meaningful in-
terpretation (Raudenbush and Bryk 2002), as the estimated house price (log scale) in 2009. We refer 
to the estimated slope for each LA in Model 4 and Model 5 as “estimated HPM percentage change” 
(LA slope, such as β1 in Model 4 or β1 + l1j in Model 5). We transform estimated intercept to its 
nature scale for each LA (e.g., exponential β0 + l0j in Model 5) and refer to it as the “starting- price.”

Results and discussion

Models 1 to 5 were run in MLwiN 3.03 (Charlton et al. 2019) using the Iterative Generalized Least 
Squares (IGLS) algorithm. The LR test on LA, MSOA and time random effects for each of the 
Models 1 to 3 are associated with effectively zero p- values, revealing that LA, MSOA and time 
variance are separately significant in these three models. Similarly, the LR test on LA, MSOA effect 
in Models 4 and 5 also results in a separately effectively zero p- value. Meanwhile, Model 3 with the 
lowest deviance among the Models 1 to 3 reflects the best fit model in the four- level variance mod-
els. We therefore choose the year as time scale in Models 4 and 5. A LR test reveals that Model 5 is 
preferred over the Model 4 (LR = 175,386, P < 0.001). All the results discussed below are based on 
the estimated values from these five multilevel models. Choropleth maps are plotted in ArcGIS 10.6.

LA and time effects on HPM variation in England (2009– 2016)
Table 3 presents the VPC results of the three four- level variance components models. For all 
three models, the VPC at each level is exactly the same when rounding to two decimal places. 
There is no difference in the influence of time for the three different time scales (i.e., quarter, 
half- year, and year) in England HPM variance. Compared with the LA and MSOA effects on 

Table 2. The Candidate Three- Level Growth Curve Models

Model Equation

Model 4 hpikj = �0 + �1tikj + lj +mkj + eikj

lj ∼ N
(

0, �2

l

)

mkj ∼ N
(

0, �2
m

)

eikj ∼ N
(

0, �2
e

)

Model 5 hpikj = �0 + �1tikj + l0j +mkj + l1jtikj + eikj

l0j ∼ N
(

0, �2

l0

)

l1j ∼ N
(

0, �2

l1

)

mkj ∼ N
(

0, �2
m

)

eikj ∼ N
(

0, �2
e

)

Notes: hpikj is the log HPM for transaction i in MSOA k belonging to LA j. tikj is the time 
period of the corresponding transaction, time scales is choose according related time scales 
of the best fitted model among models 1 to 3. �0 is overall mean house price across all LAs 
between 2009 and 2016, �1 is the slope, lj or l0j is the residual at level 3, mkj is the residual 
at level 2, eikj is the residual at level 1. l1j is the random slope at level 3.
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the total HPM variance, the time effect is very small (only accounting for 5% of total variance). 
Time is therefore treated as a fixed effect rather than a random effect in all subsequent analysis. 
Moreover, the deviance of Model 3 is smallest indicating that the annual time scale is the most 
appropriate. Therefore, subsequent analysis exclusively uses a one- year time scale.

The VPC at LA level is the greatest (0.59); this indicates that 59% of total HPM variance 
(log scale) between 2009 and 2016 lies between LAs. In other words, HPM differences between 
LAs in England are very large and HPM differences within LAs are relatively small. Of total 
HPM variance 12% lies between MSOAs within the same LA. Of the remaining 29% of vari-
ance, only 5% is due to year difference: 25% of total HPM variance occurs at the individual 
level, this could be due to differences between individual properties after controlling for size 
(e.g., plot size, property quality).

LA HPM change between 2009 and 2016
Table 4 summaries the model results from Models 4 and 5. Owing to a large decrease in deviance 
between Model 5 and 4, the LR test gives a near zero P- value. This suggests that Model 5 fits 
the data significantly better than Model 4, which reveals that LAs’ HPM growth trends do vary 
across England.

Covariance between the intercept and slope is 0.0061 in Model 5, suggesting a positive 
relationship between the LA slope and intercept. In other words, HPMs in expensive LAs grew 
relatively faster than in cheap LAs between 2009 and 2016. As the slope variance at LA level is 
also positive (0.0006), a “fanning out” of house price growth trends exists at LA level in England 

Table 3. VPC Statistic for Model 1, Model 2, and Model 3

Model 1 Model 2 Model 3

Level VPC Level VPC Level VPC

LA level 0.59 Local authority 
level

0.59 Local authority 
level

0.59

MSOA level 0.12 MSOA level 0.12 MSOA level 0.12
Quarter level 0.05 Half- year level 0.05 Year level 0.05
Individual level 0.24 Individual level 0.24 Individual level 0.24
Deviance 1,428,443 Deviance 1,338,665 Deviance 1,287,883

Table 4. Model Results of Growth Curve Model

Parameter

Model 4 Model 5

Estimate SE Estimate SE

�0 Intercept 7.5613 0.0237 7.5639 0.0199
�1 (Year- 2009) 0.0386 0.0001 0.0379 0.0013

�2

l0
 between local authority variance 0.1806 0.0144 0.1262 0.0102

�l01 Intercept- slope covariance – – 0.0061 0.0006

�2

l1
 Slope variance – – 0.0006 0.0000

�2
m

 between MSOA variance 0.0369 0.0007 0.0373 0.0007

�2
e
 Individual variance 0.0789 0.0001 0.076 0.000

Deviance 1,438,463 1,263,077
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over the period (Figure A in Appendix A). Intercept variance (σ2
l0

) at LA level is significantly 
larger than the slope variance (σ2

l1
), revealing a large difference in HPMs in 2009 across LAs and 

a very small difference in the overall HPM percentage increase across LAs. Figure A shows the 
estimated growth curves for each LA in Model 5 and each solid line stands for one LA. The blue 
lines represent the boundary of the fanning out trend. The dashed black line reflects the estimated 
HPM trend. LAs represented in the top eight lines show a clear cluster continuing far away from 
the overall HPM trend level, following by some LAs hold highest house price increase.

To further explore this growth trend, Figure 2 is created from Figure A by plotting the 
intercept and slope for each line. The intercept has been transformed back to its natural scale 
for each LA, and thus refers to the estimated starting- price in 2009. Each point stands for one 
LA and is colored by region. The black dashed lines indicate the England’s starting- price in 
2009 (1,927 £/m2) and its overall HPM percentage change between 2009 and 2016 (3.79%). 
It is obvious that the fanning out is not as simple as HPMs in expensive Las, which grew rel-
atively faster than in cheaper LAs between 2009 and 2016. The top eight most expensive LAs 
(Kensington and Chelsea, Westminster, Camden, City of London, Hammersmith and Fulham, 
Islington, Richmond upon Thames and Wandsworth), having HPM over 4,000 £/m2 in 2009, 
show a greater than 8% price increase in the following seven years. But they did not display the 
highest HPM percentage increase. The City of London displays the highest HPM percentage 
increase in this cluster, but this ranks only fifth among the LAs in England. The top four highest 
percentage increase LAs (Waltham Forest, Hackney, Lewisham and Lambeth) exhibit a higher 
than 10% HPM increase.

The LAs with a starting- price and percentage increases above the England average (top- 
right quadrant of Figure 2) show quite diverse behavior compared with all other LAs. Within 

Figure 2. The relationship between LA’s starting- price and percentage change in Model 5.
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this group nearly all are within London, the South East, and the East of England. These two 
dimensions in house price trend are separately plotted as y axis by region in Figure 3. The x 
axis in Figure 3 is the LA’s rank order based on the y value, and the dashed lines represent the 
England wide level of the y value. Obviously, the big differences of LAs within London are the 
core contribution for the LAs’ variation in starting- price and percentage change. Looking at the 
LAs’ HPM percentage increase, London’s LAs exhibited increases of greater than 6% between 
2009 and 2016, which is far greater than the England level (3.79%). The majority of LAs in 
the East of England and the South East exhibit moderate increases from 3.79% to 7.6%. Only 
the Isle of Wight shows relatively small price increases (1.47%) compared with the rest of LAs 
in South East. LAs in the South West, West Midlands, and East Midlands saw small increases 
at around the average level for England, between 2% and 6%. With the exception of Trafford, 
the remaining LAs in the North West and Yorkshire and The Humber saw small percentage 
increases, below England’s average. LAs in the North East saw only very small HPM changes; 
generally below 2% with fewer LAs show a decreasing overall price change. Meanwhile, the 
LAs’ starting- price pattern within the same region shows a slightly different pattern as LAs’ 
HMP percentage increases. For example, the Isle of Wight shows a similar starting- price to the 
rest of LAs in South East, but it has a relatively small percentage increase. LAs in East Midlands 
generally have starting- prices below the England level, but the HMP percentage change in some 
LAs is over the England level.

Spatial pattern difference in LA’s starting- price and percentage increase
Figure 4 shows the spatial pattern of average HPM percentage increases across LAs in England 
between 2009 and 2016. LA HPM percentage changes are sorted into six classes, corresponding 
to the vertical axis in Figure 2. Given all LAs with higher than 8% HPM increases are in London, 
we did not further subclassify this group. There are two obvious gradient patterns of percentage 
change at LA level. One is centered on London and the other is centered on Bristol.

In London and its nearby housing market, house price percentage changes follow a kind 
of radial gradient pattern with high increases at the center of London, decreasing as distance 
from the center increases. However, nine LAs (labeled on the inset map in Figure 4) display 
exceptional behavior. These nine LAs show a higher percentage increase (over 6%) compared 
with their neighboring authorities, and their travel time to London is around an hour. The under-
lying reasons that the housing markets of these nine LAs differ from their neighboring areas are 
likely to vary from case to case. One potential reason for the high percentage HPM increases in 
Milton Keynes, Luton, Stevenage and Harlow could be their role as London commuter towns; 
these areas have a high proportion of people who work in London (Appendix B). The reasons 
for the higher percentage increases in Oxford and Cambridge could be due to local green belt 
planning constraints or their status as prestigious university towns (Mace et al. 2016; Smith 
2017) within relatively easy commuting reach of London. Higher percentage HPM increases in 
Reading and Bracknell Forest may be due to their technology industries and the fact that both are 
well- connected to London by both the M3 and M4 motorways, as well as fast rail links (Osborne 
2016; Hodson 2019; Holland 2019). Indeed alongside Crawley in Sussex which also displays 
higher percentage HPM increases, many of these residential areas were developed in the post- 
war wave of new town building designed to re- house London families and have always retained 
an association with London through these displaced populations and commuting links.

HPM percentage change in and around Bristol exhibits another radial gradient pattern, with 
a high increase in Bristol and a decreasing percentage change away from the center, as seen 
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in Figure 4. Bristol is a tech hub for the electronics, creative media, and aerospace industries 
(Card 2014; Ismail 2018). The pattern observed around Bristol may relate to commuting to 
work patterns, in the same way that the London effect appears to (Rae 2017). Bristol may also 
be influenced by London as it commutable to London within 75 mins (Chi, Dennett, Morphet, 
et al. 2020).

Figure 5 represents the spatial pattern of the starting- price at LA level, corresponding to the 
equal 1,000 £/m2 interval in Figure 2. Given only two LAs show starting- price over 6,000 £/m2, 
we did not further sub- class these two LAs. About 89% of LAs in England have starting- prices 
between 1,000 and 3,000 £/m2 level, with 37% of them are over the 2,000 £/m2 level. Thirty- five 
of remaining LAs, representing almost 11%, have starting- prices over 3,000 £/m2. These thirty- 
five LAs are all located in or near London. Comparing the spatial patterns observed in Figures 4 

Figure 4. The spatial pattern of overall average house prices percentage change at local authority 
level.
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and 5, Luton, Stevenage, Harlow and Slough exhibit relatively higher percentage HPM increases 
but relatively lower estimated mean HPM in 2009 compared with their neighbors. LAs near 
Bristol show high HPM percentage increases, but their starting- prices are not as high as those in 
London and its nearby housing market, as the zoom map shows in Figure 5.

Looking at the geography of the estimated starting- price at LA level, HPMs display more 
complex patterns than would be suggested by the simplistic notion of a “North- South divide.” 
In the south of England, fourteen LAs on the southeast coastline and southwest coastline have 
HPMs under 2,000 £/m2, relatively cheaper than nearby LAs: Dover, Eastbourne, Gravesham, 
Hastings, Shepway, Medway, Swale, Thanet, Southampton, Gosport, Portsmouth, Weymouth 
and Portland, Havant, and Torbay. Conversely, in the North of England, five LAs display higher 
HPMs than their neighbors, with HPMs over 2,000 £/m2: Derbyshire Dales in the East Midlands, 
South Lakeland in the North West, and Hambleton, Harrogate and York in Yorkshire and The 

Figure 5. The spatial patterns of local authority starting- price in 2009.



Bin Chi et al. Spatio- Temporal Pattern of House Price Variation

15

Humber. Burnley in the North West and the City of Kingston upon Hull in Yorkshire, and The 
Humber exhibit house prices below 1,000 £/m2. The estimated mean HPMs of all other LAs in 
the north of England lie between 1,000 and 2,000 £/m2.

Conclusions

This research takes a first step in systematically exploring the spatio- temporal pattern of HPMs 
at LA level in England between 2009 and 2016, something that has not previously been possible 
due to the absence of data normalized by total floor area. It contributes to house price variation 
research in three main ways: first, it investigates patterns of HPM variation in England across 
two spatial scales and three different time scales (quarter, half- year, year) between 2009 and 
2016. Results reveal that the two spatial effects on HPM variation are very much larger than 
any of the time effects. The LA effect contributes 59% of total HPM variance between 2009 and 
2016, with the MSOA effect within the same LA contributing a further 12%. The time effect on 
HPM variance is the same no matter which time scale is used (quarter, half- year, year) and is 
relatively small enough to ignore compared to the two spatial effects. 

Secondly, as a one- year time scale has been found to fit the model best, annual HPM trajec-
tories in England were further investigated using growth curve modeling. Results demonstrate 
that HPMs at LA level shows a fanning out trend with those LAs that had higher HPMs in 
2009 growing relatively faster over the eight- year period than cheaper LAs. Thirdly, the spatio- 
temporal patterns of HPM at LA level after 2009 are more complex than the previously noted 
regional “ripple effect,” although London’s influence still dominates the scene. Bristol is the 
only other city in England with high percentage price increases not apparently spatially auto-
correlated with those local authorities in the immediate orbit of the Capital. Accounting for 
some aspects of stock heterogeneity through HPM removes some of the obvious “North- South 
divide” patterns apparent in raw price comparisons, with some LAs exhibiting lower prices than 
their neighbors and pockets of relatively higher starting- prices in areas in the rural North (South 
Lakeland, Derbyshire Dales, Harrogate) and South- West (Dorset, Devon and Cornwall) tradi-
tionally favored by those (predominantly London- dwellers) who own second homes. Some com-
muter towns in the London hinterland (Luton, Stevenage, Harlow and Slough) exhibit relatively 
higher percentage HPM increases but relatively lower estimated HPM in 2009.

The current government’s housing policy focuses on numbers of dwelling units without 
specifying type or space (Wilcox, Perry, and Williams 2014; Stephens et al. 2020). This re-
flects in part the relative absence of space in the government’s definition of a decent home 
(Department of Communities and Local Government 2006) which mentions only the need for a 
kitchen to have adequate space for cookers etc. The ability to analyze housing space standards 
against household size/structure at lower than LA level should enable a more effective analysis 
of housing conditions and policy implementation than hitherto. Therefore, with a clear under-
standing of the spatio- temporal patterns of LA house price, we intend to extend this work in two 
directions. First is developing further understanding of how house price variations by different 
property types shape affordable property size among LAs and are shaped by London commuting 
times. Second, we will focus on how the key local factors such as property type, plot size, land 
use structure, housing density and local physical and socio- economic environments (Narayan 
and Narayan 2011; Orford 2017; Hudson, Hudson, and Morley 2018) influence HPM variation 
at LA level between 2009 and 2016. Understanding the underlying mechanisms of house price 
variation in England at and below LA will not only offer deeper insights into pressing housing 
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inequality issues, but could also inform current housing and planning policies to ameliorate is-
sues of housing inequality.
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Notes
1 Model 4 fits better than its corresponding three- level variance components model (deviance is 1,964,419) 

according to the Likelihood Ratio test. Also, as the variance in slope observed between MSOAs within the  
same LA is quite small (0.0001). This reveals that the house price growth trend is quite similar within 
the same LA. So MSOAs were not modeled with a random slope in subsequent work. Additionally,  
given the time period in this research is relatively short and the conclusions are roughly similar when we 
use a quadratic term in time, we use only the linear growth curve model in this research.

2 Data for this map is aggregated travel to work data (Table WU03EW) in the Census 2011 at local authority 
unit and then treated all the local authorities in London as one unit. The proportion of extra- local authority 
commuting that goes to London refers to the number of people commuting outside of home local authority 
to work in London divided by the number of people commuting outside of home local authority to work.

APPENDIX A

Figure A. The “fanning out” of local house price growth trends across England.



Bin Chi et al. Spatio- Temporal Pattern of House Price Variation

17

APPENDIX B

References

Alexander, C., and M. Barrow. (1994). “Seasonality and Cointegration of Regional House Prices in the 
UK.” Urban Studies 31(10), 1667– 89.

Ball, M. J. (1973). “Recent Empirical Work on the Determinants of Relative House Prices.” Urban Studies 
10(2), 213– 33. https://doi.org/10.1080/00420 98732 0080311.

Card, J. (2014). “Why Tech Industries are Thriving in the South- West of England.” The Guardian, 10 
February. Available at: https://www.thegu ardian.com/small - busin ess- netwo rk/2014/feb/10/brist ol- 
tech- indus tries (accessed 28 February 2020).

Figure B. Percentage of outside travel to work in London against the total outside travel to work.2

https://doi.org/10.1080/00420987320080311
https://www.theguardian.com/small-business-network/2014/feb/10/bristol-tech-industries
https://www.theguardian.com/small-business-network/2014/feb/10/bristol-tech-industries


Geographical Analysis

18

Charlton, C., J. Rasbash, K. Jones, Browne, W. J., M. Healy, and B. Cameron. (2019). MLwiN Version 
3.03. Bristol: Centre for Multilevel Modelling, University of Bristol.

Chi, B., A. Dennett, R. Morphet, and C. Hutchinson. (2020). Exploring Local Authority Travel Time to 
London Effects on Spatio- Temporal Pattern of Local Authority House Prices Variation in England. 
The Bartlett Centre for Advanced Spatial Analysis. Available at: https://www.ucl.ac.uk/bartl ett/casa/
publi catio ns/2020/apr/casa- worki ng- paper - 218 (accessed 7 May 2020).

Chi, B., A. Dennett, T. Oléron- Evans, and R. Morphet. (2019). Creating a New Dataset to Analyse House 
Prices in England. CASA Working Paper 213. Available at: https://www.ucl.ac.uk/bartl ett/casa/publi 
catio ns/2019/sep/casa- worki ng- paper - 213 (accessed 10 January 2019).

Chi, B., A. Dennett, T. Oléron- Evans, and R. Morphet. (2020). “Shedding New Light on Residential 
Property Price Variation in England: A Multi- Scale Exploration.” Environment and Planning B: 
Urban Analytics and City Science. Available at: https://journ als.sagep ub.com/doi/10.1177/23998 
08320 951212 (accessed 4 September 2020).

Cook, S. (2003). “The Convergence of Regional House Prices in the UK.” Urban Studies 40(11), 2285– 94.
Cook, S., and D. Watson. (2016). “A New Perspective on the Ripple Effect in the UK Housing Market: 

Comovement, Cyclical Subsamples and Alternative Indices.” Urban Studies 53(14), 3048– 62.
Cooper, C., S. Orford, C. Webster, and C. B. Jones. (2013). “Exploring the Ripple Effect and Spatial 

Volatility in House Prices in England and Wales: Regressing Interaction Domain Cross- Correlations 
against Reactive Statistics.” Environment and Planning B Planning and Design 40(5), 763– 82.

Department of Communities and Local Government. (2006). A Decent Home: Definition and Guidance 
for Implementation. Available at: https://www.gov.uk/gover nment/ publi catio ns/a- decen t- home- defin 
ition - and- guidance (accessed 14 January 2021).

Downes, S. (2018). “Location, Location, Location’ Still Determines House Prices.” What Investment. 
Available at: https://www.whati nvest ment.co.uk/locat ion- locat ion- locat ion- is- still - the- most- impor 
tant- facto r- in- house - price s- 26147 66/ (accessed 2 November 2018).

Feng, Y. (2016). How Much is Worth? Novel Quantitative Approaches to Understanding the Changing 
Geography of House Prices in England. Ph.D. University of Bristol. Available at: https://ethos.bl.uk/
Order Detai ls.do?did=8&uin=uk.bl.ethos.701378 (accessed 18 March 2019).

Fotheringham, A. S., R. Crespo, and J. Yao. (2015). “Geographical and Temporal Weighted Regression 
(GTWR).” Geographical Analysis 47(4), 431– 52.

Giussani, B., and G. Hadjimatheou. (1991). “Modeling Regional House Prices in the United Kingdom.” 
Papers in Regional Science 70(2), 201– 19.

Goldstein, H. (2010). Multilevel Statistical Models, 4th ed. Wiley Series in Probability and Statistics. 
Hoboken, NJ: Wiley. Available at: https://www.dawso nera.com/guard/ prote cted/dawson.
jsp?name=https://shib- idp.ucl.ac.uk/shibb oleth &dest=http://www.dawso nera.com/depp/reade r/prote 
cted/exter nal/Abstr actVi ew/S9780 47097 3400 (accessed 4 January 2020).

Gray, D. (2012). “District House Price Movements in England and Wales 1997– 2007: An Exploratory 
Spatial Data Analysis Approach.” Urban Studies 49(7), 1411– 34.

Hamnett, C. (1983). “Regional Variations in House Prices and House Price Inflation 1969– 81.” Area 15(2), 
97– 109.

Hamnett, C., and J. Reades. (2019). “Mind the Gap: Implications of Overseas Investment for Regional 
House Price Divergence in Britain.” Housing Studies 34(3), 388– 406.

Hodson, T. (2019). Bracknell Property Price Forecast to Be Fastest Growing Region in 2019. In 
SevenCapital. Available at: https://seven capit al.com/prope rty- news/brack nell- prope rty- price - forec 
ast- 2019/ (accessed 9 January 2020).

Holland, R. (2019). The Berkshire Tech Hotspot where House Prices are Set to Soar. Available at: https://
www.homes andpr operty.co.uk/prope rty- news/buyin g- in- brack nell- the- berks hire- tech- hotsp ot- where -  
house - price s- are- set- to- soar- a1295 61.html (accessed 9 January 2020).

Huang, B., B. Wu, and M. Barry. (2010). “Geographically and Temporally Weighted Regression for 
Modeling Spatio- Temporal Variation in House Prices.” International Journal of Geographical 
Information Science 24(3), 383– 401.

Hudson, C., J. Hudson, and B. Morley. (2018). “Differing House Price Linkages Across UK Regions: A 
Multi- Dimensional Recursive Ripple Model.” Urban Studies 55(8), 1636– 54.

https://www.ucl.ac.uk/bartlett/casa/publications/2020/apr/casa-working-paper-218
https://www.ucl.ac.uk/bartlett/casa/publications/2020/apr/casa-working-paper-218
https://www.ucl.ac.uk/bartlett/casa/publications/2019/sep/casa-working-paper-213
https://www.ucl.ac.uk/bartlett/casa/publications/2019/sep/casa-working-paper-213
https://journals.sagepub.com/doi/10.1177/2399808320951212
https://journals.sagepub.com/doi/10.1177/2399808320951212
https://www.gov.uk/government/publications/a-decent-home-definition-and-guidance
https://www.gov.uk/government/publications/a-decent-home-definition-and-guidance
https://www.whatinvestment.co.uk/location-location-location-is-still-the-most-important-factor-in-house-prices-2614766/
https://www.whatinvestment.co.uk/location-location-location-is-still-the-most-important-factor-in-house-prices-2614766/
https://ethos.bl.uk/OrderDetails.do?did=8&uin=uk.bl.ethos.701378
https://ethos.bl.uk/OrderDetails.do?did=8&uin=uk.bl.ethos.701378
https://www.dawsonera.com/guard/protected/dawson.jsp?name=https://shib-idp.ucl.ac.uk/shibboleth&dest=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780470973400
https://www.dawsonera.com/guard/protected/dawson.jsp?name=https://shib-idp.ucl.ac.uk/shibboleth&dest=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780470973400
https://www.dawsonera.com/guard/protected/dawson.jsp?name=https://shib-idp.ucl.ac.uk/shibboleth&dest=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780470973400
https://sevencapital.com/property-news/bracknell-property-price-forecast-2019/
https://sevencapital.com/property-news/bracknell-property-price-forecast-2019/
https://www.homesandproperty.co.uk/property-news/buying-in-bracknell-the-berkshire-tech-hotspot-where-house-prices-are-set-to-soar-a129561.html
https://www.homesandproperty.co.uk/property-news/buying-in-bracknell-the-berkshire-tech-hotspot-where-house-prices-are-set-to-soar-a129561.html
https://www.homesandproperty.co.uk/property-news/buying-in-bracknell-the-berkshire-tech-hotspot-where-house-prices-are-set-to-soar-a129561.html


Bin Chi et al. Spatio- Temporal Pattern of House Price Variation

19

Ismail, N. (2018). “The Biggest Tech Hubs in the UK— and Which is Right for Your Business?” In 
Information Age. Available at: https://www.infor matio n- age.com/bigge st- tech- hubs- uk- right - busin 
ess- 12347 2568/ (accessed 28 February 2020).

Jones, C., and C. Leishman. (2006). “Spatial Dynamics of the Housing Market: An Interurban Perspective.” 
Urban Studies 43(7), 1041– 59.

Jones, K. (1991a). Multi- Level Models for Geographical Research. Concepts and techniques in modern 
geography. Norwich: Environmental Publications.

Jones, K. (1991b). “Specifying and Estimating Multi- Level Models for Geographical Research.” 
Transactions of the Institute of British Geographers 16(2), 148– 59.

Jones, K., and N. Bullen. (1993). “A Multi- level Analysis of the Variations in Domestic Property Prices: 
Southern England, 1980– 87.” Urban Studies 30(8), 1409– 26.

Jones, K., and N. Bullen. (1994). “Contextual Models Of Urban House Prices: A Comparison of Fixed-  and 
Random- Coefficient Models Developed by Expansion.” Economic Geography 70(3), 252– 72.

Kiel, K. A., and J. E. Zabel. (2008). “Location, Location, Location: The 3L Approach to House Price 
Determination.” Journal of Housing Economics 17(2), 175– 90.

Law, S. (2018). A Multi- Scale Exploration of the Relationship Between Spatial Network Configuration 
and Housing Prices Using the Hedonic Price Approach. A Greater London Case Study. Doctoral. 
UCL (University College London). Available at: http://disco very.ucl.ac.uk/10041 030/ (accessed 29 
September 2018).

Lee, D., A. Rushworth, and G. Napier. (2018). “Spatio- Temporal Areal Unit Modeling in R with Conditional 
Autoregressive Priors Using the CARBayesST Package.” Journal of Statistical Software 84(1), 1– 39.

Lewis, N. (2020). “Online Tool Launched Today is First to Provide ‘per Square Metre’ House Prices.” In 
The Negotiator. Available at: https://thene gotia tor.co.uk/onlin e- tool- launc hed- today - is- first - to- provi 
de- per- squar e- metre - house - price s/ (accessed 11 November 2020).

Li, Z., A. S. Fotheringham, W. Li, and T. Oshan. (2019). Fast Geographically Weighted Regression 
(FastGWR): A Scalable Algorithm to Investigate Spatial Process Heterogeneity in Millions of 
Observations. International Journal of Geographical Information Science 33(1), 155– 75.

MacDonald, R., and M. P. Taylor. (1993). “Regional House Prices in Britain: Long- Run Relationships and 
Short- Run Dynamics.” Scottish Journal of Political Economy 40(1), 43– 55.

Mace, A., F. Blanc, I. R. Gordon, and Scanlon, K. (2016). A 21st Century Metropolitan Green Belt. 
Available at: http://eprin ts.lse.ac.uk/68012/ (accessed 9 January 2020).

McAvinchey, I. D. and Maclennan, D. (1982) A regional comparison of house price inflation rates in 
Britain 1967– 76. Urban Studies, 19(1), 43– 57.

Meen, G. (1996). “Spatial Aggregation, Spatial Dependence and Predictability in the UK Housing Market.” 
Housing Studies 11(3), 345– 72.

Meen, G. (1999). “Regional House Prices and the Ripple Effect: A New Interpretation.” Housing Studies 
14(6), 733– 53. https://doi.org/10.1080/02673 03998 2524.

Morphet, J., and B. Clifford. (2020). Reviving Local Authority Housing Delivery: Challenging Austerity 
Through Municipal Entrepreneurialism. Bristol: Policy Press.

Narayan, S., and P. K. Narayan. (2011). “The Importance of Real and Nominal Shocks on the UK Housing 
Market.” International Journal of Business and Economics 10(3), 219– 34.

Orford, S. (2000). “Modelling Spatial Structures in Local Housing Market Dynamics: A Multilevel 
Perspective.” Urban Studies 37(9), 1643– 71.

Orford, S. (2002). “Valuing Locational Externalities: A GIS and Multilevel Modelling Approach.” 
Environment and Planning B: Planning and Design 29(1), 105– 27.

Orford, S. (2010). “Towards a Data- Rich Infrastructure for Housing- Market Research: Deriving Floor- Area 
Estimates for Individual Properties from Secondary Data Sources.” Environment and Planning B: 
Planning and Design 37(2), 248– 64.

Orford, S. (2017). Valuing the Built Environment: GIS and House Price Analysis. London: Routledge.
Osborne, H. (2016). “Reading Takes the Lead in House Price Rises.” The Guardian, 29 January. Available 

at: https://www.thegu ardian.com/money/ 2016/jan/29/house - price s- renta l- costs - conti nue- rise- ons- 
land- registry (accessed 11 January 2020).

Powell- Smith, A. (2017). House Prices by Square Metre in England & Wales. Available at: https://house 
prices.anna.ps (accessed 19 November 2018).

https://www.information-age.com/biggest-tech-hubs-uk-right-business-123472568/
https://www.information-age.com/biggest-tech-hubs-uk-right-business-123472568/
http://discovery.ucl.ac.uk/10041030/
https://thenegotiator.co.uk/online-tool-launched-today-is-first-to-provide-per-square-metre-house-prices/
https://thenegotiator.co.uk/online-tool-launched-today-is-first-to-provide-per-square-metre-house-prices/
http://eprints.lse.ac.uk/68012/
https://doi.org/10.1080/02673039982524
https://www.theguardian.com/money/2016/jan/29/house-prices-rental-costs-continue-rise-ons-land-registry
https://www.theguardian.com/money/2016/jan/29/house-prices-rental-costs-continue-rise-ons-land-registry
https://houseprices.anna.ps
https://houseprices.anna.ps


Geographical Analysis

20

Rae, A. (2017). “The Geography of Travel to Work in England and Wales: Extracts from the 2011 Census.” 
Applied Spatial Analysis and Policy 10(4), 457– 73.

Raudenbush, S. W., and A. S. Bryk. (2002). Hierarchical Linear Models: Applications and Data Analysis 
Methods, 2nd ed., Advanced Quantitative Techniques in the Social Sciences. Thousand Oaks, CA: 
Sage Publications.

Singer, J. D., and J. B. Willett. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event 
Occurrence. New York: Oxford University Press.

Smith, S. (2017). “The University Towns Where House Prices have Risen an Average 22pc in Three Years.” 
The Telegraph, 23 September. Available at: https://www.teleg raph.co.uk/prope rty/house - price s/unive 
rsity - towns - house - price s- have- risen - avera ge- 22pc- three/ (accessed 25 January 2020).

Steele, F. (2008a). Module 5: Introduction to Multilevel Modelling (Concepts). Available at: https://resea 
rch- infor mation.bris.ac.uk/en/publi catio ns/modul e- 5- intro ducti on- to- multi level - model ling- concepts 
(accessed 8 December 2020).

Steele, F. (2008b). “Multilevel Models for Longitudinal Data.” Journal of the Royal Statistical Society: 
Series A (Statistics in Society) 171(1), 5– 19.

Stephens, M., J. Perry, P. Williams, Young, G., and S. Fitzpatrick. (2020). UK Housing Review 2020. 5 
October. Chartered Institute of Housing. Available at: https://www.ukhou singr eview.org.uk/ukhr2 0/ 
(accessed 15 January 2021).

Stevenson, S. (2004). “House Price Diffusion and Inter- Regional and Cross- Border House Price Dynamics.” 
Journal of Property Research 21(4), 301– 20.

Tufte, E. R. (1974). Data Analysis for Politics and Policy. Prentice- Hall foundations of modern political 
science series. Englewood Cliffs: Prentice- Hall.

Wilcox, S., J. Perry, and P. Williams. (2014). UK Housing Review 2014. April. Chartered Institute of 
Housing. Available at: https://www.ukhou singr eview.org.uk/ukhr1 4/index.html (accessed 14 January 
2021).

Zaninotto, P., E. Falaschetti, and A. Sacker. (2009). “Age Trajectories of Quality of Life Among Older 
Adults: Results from the English Longitudinal Study of Ageing.” Quality of Life Research 18(10), 
1301– 9.

https://www.telegraph.co.uk/property/house-prices/university-towns-house-prices-have-risen-average-22pc-three/
https://www.telegraph.co.uk/property/house-prices/university-towns-house-prices-have-risen-average-22pc-three/
https://research-information.bris.ac.uk/en/publications/module-5-introduction-to-multilevel-modelling-concepts
https://research-information.bris.ac.uk/en/publications/module-5-introduction-to-multilevel-modelling-concepts
https://www.ukhousingreview.org.uk/ukhr20/
https://www.ukhousingreview.org.uk/ukhr14/index.html

