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Prior work in late-onset Alzheimer’s disease (LOAD) has resulted in discrepant findings
as to whether recent consanguinity and outbred autozygosity are associated with
LOAD risk. In the current study, we tested the association between consanguinity
and outbred autozygosity with LOAD in the largest such analysis to date, in which
20 LOAD GWAS datasets were retrieved through public databases. Our analyses
were restricted to eight distinct ethnic groups: African–Caribbean, Ashkenazi–Jewish
European, European–Caribbean, French–Canadian, Finnish European, North-Western
European, South-Eastern European, and Yoruba African for a total of 21,492 unrelated
subjects (11,196 LOAD and 10,296 controls). Recent consanguinity determination
was performed using FSuite v1.0.3, according to subjects’ ancestral background.
The level of autozygosity in the outbred population was assessed by calculating
inbreeding estimates based on the proportion (FROH) and the number (NROH) of runs
of homozygosity (ROHs). We analyzed all eight ethnic groups using a fixed-effect meta-
analysis, which showed a significant association of recent consanguinity with LOAD
(N = 21,481; OR = 1.262, P = 3.6 × 10−4), independently of APOE∗4 (N = 21,468,
OR = 1.237, P = 0.002), and years of education (N = 9,257; OR = 1.274, P = 0.020).
Autozygosity in the outbred population was also associated with an increased risk
of LOAD, both for FROH (N = 20,237; OR = 1.204, P = 0.030) and NROH metrics
(N = 20,237; OR = 1.019, P = 0.006), independently of APOE∗4 [(FROH, N = 20,225;
OR = 1.222, P = 0.029) (NROH, N = 20,225; OR = 1.019, P = 0.007)]. By leveraging
the Alzheimer’s Disease Sequencing Project (ADSP) whole-exome sequencing (WES)
data, we determined that LOAD subjects do not show an enrichment of rare, risk-
enhancing minor homozygote variants compared to the control population. A two-stage
recessive GWAS using ADSP data from 201 consanguineous subjects in the discovery
phase followed by validation in 10,469 subjects led to the identification of RPH3AL
p.A303V (rs117190076) as a rare minor homozygote variant increasing the risk of

Frontiers in Genetics | www.frontiersin.org 1 January 2021 | Volume 11 | Article 629373

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.629373
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.629373
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.629373&domain=pdf&date_stamp=2021-01-29
https://www.frontiersin.org/articles/10.3389/fgene.2020.629373/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-629373
January

29,2021
Tim

e:11:23
#

2

N
apolionietal.

C
onsanguinity

in
A

lzheim
er’s

D
isease

LO
A

D
[discovery:

G
enotype

R
elative

R
isk

(G
R

R
)

=
46,

P
=

2.16
×

10
−

6;
validation:

G
R

R
=

1.9,
P

=
8.0
×

10
−

4].
These

results
confirm

that
recent

consanguinity
and

autozygosity
in

the
outbred

population
increase

risk
for

LO
A

D
.

S
ubsequent

w
ork,

w
ith

increased
sam

ples
sizes

ofconsanguineous
subjects,

should
accelerate

the
discovery

ofnon-additive
genetic

effects
in

LO
A

D
.

K
eyw

o
rd

s:
A

lzheim
er

d
isease,

auto
zyg

o
sity,

ethnic
d

ifferences,
d

irectio
nal

d
o

m
inance,

inb
reed

ing
,

recessive
inheritance,runs

o
f

ho
m

o
zyg

o
sity

(R
O

H
),unip

arentaliso
d

iso
m

y

IN
T

R
O

D
U

C
T

IO
N

The
im

pact
of

consanguinity
on

reproduction
and

M
endelian

disorders
is

w
ell

know
n

and
docum

ented
(Bittles

and
Black,

2010).In
contrast,very

little
has

been
published

on
the

effects
ofconsanguinity

on
late-onsetdiseases,even

though
inbreeding

m
ay

have
a

prom
inent

influence
on

late-onset
traits

(Rudan
et

al.,2003).Recessive
inheritance

of
com

plex
phenotypes

can
be

linked
to

long
[≥

1-m
egabase

(M
b)]

runs
of

hom
ozygosity

(RO
H

s),
w

hich
are

indicative
of

recent
consanguinity

(G
hani

et
al.,2013).Levels

of
hom

ozygosity
vary

by
population

ow
ing

to
the

evolutionary
distance

of
different

populations
from

the
ancient

m
igration

events
that

led
to

elevated
hom

ozygosity
(Pem

berton
etal.,2012;K

ang
etal.,2016).

Severalstudieshave
been

carried
outin

late-onsetA
lzheim

er’s
D

isease
(LO

A
D

)
cohorts

from
different

ethnicities,
including

C
aribbean-H

ispanics
(G

hani
et

al.,
2013),

A
frican

A
m

ericans
(G

hani
et

al.,
2015),

W
adi-A

ra
A

rabs
(Sherva

et
al.,

2011),
and

N
orthern-Europeans

(N
alls

et
al.,2009a;Sim

s
et

al.,2011)
w

ith
the

aim
of

determ
ining

the
im

pact
of

RO
H

s
on

LO
A

D
.

The
studies

carried
out

in
C

aribbean-H
ispanic

(G
hani

et
al.,

2013)
and

A
frican

A
m

erican
(G

hani
et

al.,
2015)

populations
both

dem
onstrated

an
association

of
long

RO
H

s
w

ith
LO

A
D

,
thussuggesting

a
link

betw
een

recentconsanguinity
and

LO
A

D
.

A
n

association
betw

een
consanguinity

and
LO

A
D

w
as

also
dem

onstrated
in

a
genealogicalstudy

ofthe
Saguenay

region
in

Q
uébec

(V
ézina

et
al.,

1999).
C

onversely,
in

the
sm

all
ethnic

isolateofW
adi-A

raA
rabs(Shervaetal.,2011),theaveragedegree

of
inbreeding

w
as

significantly
higher

in
controls

com
pared

to
cases.M

oreover,the
tw

o
studiescarried

outin
C

aucasians(N
alls

et
al.,2009a;Sim

s
et

al.,2011)
show

ed
discordant

findings:the
British–Irish

study
(Sim

setal.,2011)displayed
no

association
of

num
ber

ofRO
H

s
w

ith
LO

A
D

,w
hile

the
m

ainly
N

orth-W
estern

European
cohort

of
neuropathologically

verified
subjects

from
the

TG
enII

cohort
(N

alls
et

al.,
2009a)

show
ed

a
suggestive

increased
num

berofRO
H

sin
LO

A
D

casescom
pared

to
controls.

In
sum

,the
results

vary
considerably

by
ancestralbackground,

thus
failing

to
provide

a
clear

picture
of

the
overall

im
pact

of
hom

ozygosity
on

LO
A

D
risk.

In
the

presentw
ork

w
e

tested
the

association
ofconsanguinity

and
autozygosity

w
ith

LO
A

D
by

leveraging
a

large
collection

of
publicly

available
G

W
A

S
data.To

this
aim

,w
e

determ
ined

the
individualancestry

ofsubjects
belonging

to
20

independent
G

W
A

S
datasets

and
pooled

the
consanguineous

subjects
according

to
theirrespectiveethnicgroup.Thisstep

w
asfollow

ed
by

an
association

analysis
betw

een
consanguinity

in
LO

A
D

cases
against

older,cognitively
healthy

controls.W
e

also
tested

the
overallim

pact
ofgenom

e-w
ide

autozygosity
in

the
outbred

population.
Finally,

w
e

leveraged
W

hole-Exom
e

Sequencing
(W

ES)
data

from
the

A
lzheim

er’s
D

isease
Sequencing

Project
(A

D
SP)

(Beecham
etal.,2017)

to
testthe

globalburden
ofrare

m
inor

hom
ozygote

variants
in

LO
A

D
and

to
perform

a
tw

o-
stage

recessive
G

W
A

S
using

201
consanguineous

subjects
in

the
discovery

phase
follow

ed
by

validation
in

10,469
subjects.

M
A

T
E

R
IA

LS
A

N
D

M
E

T
H

O
D

S

S
ub

jects
Tw

enty
LO

A
D

G
W

A
S

datasets
w

ere
obtained

from
publicly

available
data

repositories
(Supplem

entary
Table

S1).
The

20
datasets

have
been

described
in

previous
studies

(Lietal.,2008;
Filippinietal.,2009;Lee

etal.,2011;N
ajetal.,2011;Zhang

etal.,
2013;C

lark
etal.,2014;Proitsietal.,2014;Saykin

etal.,2015).
D

etailsoftheparticipating
studiesand

genotyping
platform

sused
are

provided
in

Supplem
entary

Table
S1.

The
A

lzheim
er’s

D
isease

N
euroim

aging
Initiative

(A
D

N
I)

(Saykin
et

al.,2015)
w

as
launched

in
2003

as
a

public-private
partnership,

led
by

Principal
Investigator

M
ichael

W
.

W
einer,

M
D

.The
prim

ary
goalofA

D
N

I
has

been
to

testw
hether

serial
m

agnetic
resonance

im
aging,

positron
em

ission
tom

ography,
other

biological
m

arkers,
and

clinical
and

neuropsychological
assessm

entcan
be

com
bined

to
m

easure
the

progression
ofm

ild
cognitive

im
pairm

entand
early

A
lzheim

er’sdisease.
W

hole-exom
e

sequencing
from

the
discovery

phase
of

the
A

lzheim
er’sD

isease
Sequencing

Project(A
D

SP)(Beecham
etal.,

2017)
w

as
obtained

through
the

N
ational

Institute
on

A
ging

G
enetics

of
A

lzheim
er’s

D
isease

D
ata

Storage
Site

(N
IA

G
A

D
S)

and
itincludes

5,096
A

lzheim
er’s

D
isease

(A
D

)
cases

and
4,965

controls,
w

ith
an

additional
enriched

sam
ple

set
com

prised
of

853
A

D
cases

from
m

ultiple
affected

fam
ilies

and
171

H
ispanic

controls.
This

w
as

a
re-analysis

of
de-identified

data
available

from
shared

data
repositories.

The
study

protocol
w

as
granted

an
exem

ption
by

the
Stanford

Institutional
Review

Board
because

the
analyses

w
ere

carried
outon

“de-identified,off-the-
shelf”data.

Inclusio
n

C
riteria,Q

uality
C

o
ntro

l(Q
C

)
P

ip
eline,A

ncestry
D

eterm
inatio

n
and

Im
p

utatio
n

The
entire

dataset
includes

34,111
participants.

A
nalyses

w
ere

perform
ed

using
PLIN

K
1.9

Frontiers
in

G
enetics

|w
w

w
.frontiersin.org

2
January

2021
|Volum

e
11

|A
rticle

629373

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-629373 January 29, 2021 Time: 11:23 # 3

Napolioni et al. Consanguinity in Alzheimer’s Disease

(Chang et al., 2015). A comprehensive flowchart of the data
QC/harmonization/ancestry-determination steps applied to the
full dataset is reported as Figure 1.

Subjects with autosome missingness (≥5%) and/or
X-chromosome missingness (≥5%) within the same dataset,
age below 60 years, age information missing, or phenotype
inconsistency [missing phenotype, diagnosis of mild cognitive
impairment or other neurodegenerative phenotype] were
excluded from the analysis (Supplementary Table S2).

Individual ancestry was determined using SNPweights v.2.1
(Chen et al., 2013) using reference populations from the 1000
Genomes Project (1KGP) (1000 Genomes Project Consortium,
Auton et al., 2015). By applying an ancestry percentage
cut-off ≥ 80%, the samples were stratified into the five
super populations, South-Asians (SAS), East-Asians (EAS),
Americans (AMR), Africans (AFR), and Europeans (EUR)
(Supplementary Table S2). Since most of the samples belonged
to the European population, we also determined their ancestry
percentage according to four major ethnicities, North-Western,
South-Eastern, Ashkenazi-Jewish, and Finnish Europeans, using
reference populations available both from SNPweights v.2.1
(Chen et al., 2013) and 1KGP (1000 Genomes Project
Consortium, Auton et al., 2015). European subjects were
stratified into the above-mentioned ethnicities when their
ancestry percentage was attributable with an ancestry percentage
cut-off ≥ 50% (Supplementary Table S3).

We assigned French–Canadian (FCN) ancestry to subjects
included in GenADA GWAS (Li et al., 2008) when they both
reported Canada as country of origin for all the grandparents and
French as their first spoken language.

Most subjects belonging to the Columbia University Study
of Caribbean Hispanics with Familial and Sporadic Late Onset
Alzheimer’s disease (CIDR) (Lee et al., 2011) had admixed
ancestry (Supplementary Table S2); therefore, we stratified
the subjects into three groups according to their prevalent
ancestral background. This stratification allowed the definition
of one dataset composed of African–Caribbean (African
ancestry ≥ 50%), one dataset composed of European–Caribbean
(European ancestry ≥ 50%) and one dataset including highly
admixed subjects (ancestry percentage less than 50% attributable
to a unique super-population from 1KGP, 1000 Genomes Project
Consortium, Auton et al., 2015). Only the African–Caribbean
and the European–Caribbean datasets were considered for the
analyses. Subjects with genetic ancestry estimates discordant
from self-reported ancestry were excluded from the analyses.

Next, datasets were tested for presence of consanguineous
subjects using FSuite v.1.0.3 (Gazal et al., 2014). Consanguineous
female subjects were flagged to avoid their exclusion because of
apparent sex-inconsistency (e.g., due to increased homozygosity
at X-chromosome SNPs). Subjects showing sex-inconsistency
were excluded along with the possibly contaminated samples
{heterozygosity F ≤ −0.03; more than 25 related [(identity-by-
descent (IBD) ≥ 0.0625, equivalent to 3rd degree relative] within
the same dataset}.

With the aim of maximizing the efficiency of quality control
procedures and harmonizing the GWAS results after imputation,
we collapsed the genotyping data from the 20 GWAS (when

needed), according to sample ethnicity and the number of SNPs
shared across the SNP-array platforms. Thus, we defined five
groups, reported in Supplementary Table S4, where the subjects
from different GWAS were collapsed and further QCed to
remove the SNPs with a call rate ≤ 95%; Minor Allele Frequency
(MAF)≤ 1%; SNPs with MAF deviating more than 10% from the
MAF reported in 1KGP for the relative population; SNPs with
differential missingness between cases and controls (P < 0.05);
SNPs deviating from Hardy–Weinberg Equilibrium (HWE) in
controls (P < 5 × 10−5); tri-allelic SNPs; and SNPs where
the alleles are mismatched compared to the 1KGP reference
sequence. A/T and C/G SNPs were removed prior to imputation.

All the datasets were phased and imputed using the Michigan
Imputation Server (Das et al., 2016), considering the Haplotype
Reference Consortium r1.1. 2016 European panel (McCarthy
et al., 2016) for Europeans, 1KGP Phase 3 African panel (1000
Genomes Project Consortium, Auton et al., 2015) for African
Indianapolis-Ibadan and the Consortium on Asthma among
African-ancestry Populations in the Americas (CAAPA) (Mathias
et al., 2016) for admixed Caribbean. After imputation, SNPs with
a r2 quality score ≤ 0.7 and MAF ≤ 0.01 were excluded. Results
of the imputation process are provided in Supplementary Table
S5 and Supplementary Figure S1.

For the statistical analyses, inter-dataset duplicates
(IBD ≥ 0.95) were removed from the dataset having the
lowest SNP coverage, while, in case of relatedness (IBD≥ 0.0625)
the affected or older subject were kept, independently of SNP
coverage (Supplementary Tables S6–S13).

Consanguinity Determination
Consanguinity determination was performed using FSuite v1.0.3
(Gazal et al., 2014), both at the pre- and post-imputation stage
on QCed SNPs, according to each subjects’ ancestral background.
Results were concordant in 98% of the subjects analyzed.
Discordant subjects were kept in the subsequent analyses as
outbred, since their ROHs may be somatic Copy Number
Variations or linked to a specific ancestral background (e.g.,
ethnic minorities – Acadians, Sardinians, etc.) not captured by
our ancestry-determination pipeline.

Subjects showing a homozygous region over 10 Mb
on only one chromosome were considered carriers of
putative uniparental isodisomy (UPD), according to the
homozygosity cut-off previously reported (Papenhausen et al.,
2011). UPD carriers were excluded from the association
testing of consanguinity with LOAD since they represent
subjects affected by chromosomal alterations, not the result of
consanguineous unions.

ROH Calling and Burden Analysis
Runs of homozygosity (≥1 Mb) were determined for each
ethnic group separately using PLINK1.9 (Chang et al., 2015)
and according to the guidelines recently reported (Keller et al.,
2012). GWAS datasets were pruned for strong LD (MAF ≥ 0.01,
r2
≤ 0.1) and ROHs were defined as being ≥ 65 consecutive

homozygous SNPs with no heterozygote calls allowed and a
density greater than 1 SNP per 200 kb.
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FIGURE 1 | Flow-chart of the workflow adopted in the data QC/harmonization/ancestry-determination processing of the full dataset.

For each subject, we summed the total length of all their
ROHs in the autosome and divided by the total SNP-mappable
autosomal distance (2.77 × 109 bases) to derive FROH, the
proportion (between 0 and 1) of the autosome in ROHs, as
previously described (Chang et al., 2015). FROH was used as the
predictor of case-control status in ROH burden analyses.

Population Genetics, WES Variant
Annotation and Statistical Analyses
Inter-population structure was examined using ADMIXTURE
(Alexander et al., 2009). Intra-population structure for each
ancestral group was determined using principal components
(PCs) obtained from EIGENSOFT v.6.1 (Price et al., 2006) using
pruned (r2

≤ 0.1), directly genotyped, SNPs.
The association of consanguinity/autozygosity with LOAD

was carried out using three different logistic regression models:

(a) MODEL1: adjusting for each subject’s age at LOAD
onset (when not available, we used the subject’s age at
last visit or death), sex, the first three PC eigenvalues
from population structure and GWAS imputation
group (only for Ashkenazi-Jewish Europeans, Finnish
Europeans, North-Western Europeans and South-Eastern
Europeans, since those subjects were genotyped on
multiple platforms);

(b) MODEL2: including APOE∗4 dose to the list of covariates
used in MODEL1;

(c) MODEL3: including “years of education” (EDU) to the list
of covariates used in MODEL2.

Since EDU is available only for 43.1% of the full dataset
(9,260 out of 21,492 subjects), we fitted MODEL1 and MODEL2
to this restricted subset of subjects as well, to allow an
appropriate comparison with MODEL3 of the effect estimates.
The association of EDU with FROH was tested by linear
regression, considering MODEL2 and adjusting for diagnosis
status. The analyses were carried out for each ethnic group
separately and combined using a fixed-effect meta-analysis
implemented in GWAMA (Mägi and Morris, 2010).

GWAS participants were mapped to ADSP WES participants
through IBD estimation using∼30K common, overlapping SNPs
(MAF > 0.01) between the two datasets. We considered
matching samples as those with a pair-wise coefficient
of relatedness above 99%. The burden of rare recessive
variants was tested using a general linear model, adjusting
for sex, age, APOE∗4 dose and ethnicity. ADSP WES
data were annotated using Variant Effect Predictor (VEP)
(McLaren et al., 2016). Recessive variants having a CADD
(Rentzsch et al., 2019) score ≥ 15 and a MAF < 10%
were considered when testing the global burden of rare
recessive variants in LOAD and in a two-stage GWAS by
applying the Recessive-Allele Frequency Test (RAFT) statistic
(Lim et al., 2014).

Statistical significance was set at P< 0.05 for all the association
testing, while for the two-stage GWAS, we applied Bonferroni’s
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correction according to the number of recessive variants tested
in the discovery [P < 1.8 × 10−5 (0.05/2767)] and replication
[P < 0.007 (0.05/7)] phases.

RESULTS

Ancestry Determination and
Ethnic-Specific Differences
After quality control procedures, our analyses were restricted
to eight distinct ethnic groups, namely African–Caribbeans
from Dominican Republic (ACD, N = 398), Ashkenazi-Jewish
Europeans (AJE, N = 1,229), European–Caribbeans from
Dominican Republic (ECD, N = 671), French–Canadians (FCN,
N = 376), Finnish Europeans (FIN, N = 219), North-Western
Europeans (NWE, N = 16,496), South-Eastern Europeans (SEE,
N = 1,083), and African-Yoruba (YRI, N = 1,020), for a total
of 21,492 unrelated subjects (11,196 LOAD, 10,296 controls).
The analysis of genetic structure, applied to the whole dataset,
confirmed the effectiveness of ancestry determination cut-
offs (Figure 2).

Ethnic groups showed significant differences (P < 0.00001)
in mean age, EDU and APOE allele frequency, independently
of diagnostic status (Figure 3). Both consanguinity rates
and consanguinity degree differed significantly (P < 0.00001)
across the eight ethnic groups analyzed, with percentages of
consanguineous subjects ranging from 1.2% in YRI to 31.7% in
ECD (Table 1). As expected, consanguineous subjects displayed
higher FROH estimates (0.024 ± 0.025 vs. 0.003 ± 0.002) and
more ROH (NROH, 9.4 ± 6.3 vs. 4.4 ± 2.5) compared to
outbred subjects (P < 0.00001, Table 2). When considering
exclusively the outbred population, both FROH estimates and
NROH significantly differed across the eight ethnic groups
analyzed (P < 0.00001, Figure 3), with ACD and ECD showing
the lowest FROH (0.0007 ± 0.0012) and NROH (0.4 ± 0.8),
respectively. Conversely, the highest FROH and NROH were
found in FIN (0.0053 ± 0.0038) and FCN (8.4 ± 2.9),
respectively (Figure 3).

Consanguineous subjects in ACD, ECD, FIN, and NWE
groups showed a statistically significant (ACD, ECD, NWE),
or nearly significant (FIN), lower education level compared
to the relative outbred population (on average, 1.4 fewer
EDU, Supplementary Tables S6–S13). Conversely, YRI
consanguineous subjects showed higher education levels
compared to the relative outbred population (Supplementary
Table S13). No association was detected between FROH and
EDU in the outbred sample (N = 8,648, β = −0.059, SE = 0.196,
P = 0.760, heterogeneity-Q = 2.1 × 10−7). However, a highly
significant heterogeneity was found across seven ethnic groups,
with ACD (β =−3.765, P = 0.077), ECD (β =−2.688, P = 0.059),
and FIN (β = −4.959, P < 0.00001) showing a significant,
or nearly significant, negative correlation between FROH and
EDU, while YRI displayed an opposite correlation (β = 0.870,
P = 0.079).

No significant differences were found for mean age between
inbred and outbred groups. Consanguinity rates reported for
the eight analyzed ethnic groups largely fall within the ranges

reported in the literature (Goldschmidt et al., 1960; Gazal et al.,
2015; Vardarajan et al., 2015).

The distribution of APOE genotypes and alleles did not show
deviations from HWE (Supplementary Table S14). In addition,
APOE genotypes and allele counts differed significantly between
outbred and consanguineous subjects only for AJE controls, FCN
cases and FIN controls (Supplementary Table S14).

Consanguinity Is Associated With an
Increased Risk of LOAD
Consanguinity was significantly associated with LOAD
(N = 21,481, OR = 1.262, P = 3.6 × 10−4), independently
of APOE∗4 (N = 21,468, OR = 1.237, P = 0.002) and EDU
(N = 9,257, OR = 1.274, P = 0.020) (Table 3).

When testing the association of degree of consanguinity
with LOAD by separating close (first cousin/double-first
cousin/avuncular offspring) from distant (second cousin
offspring) consanguinity, it became clear that the association was
driven by close consanguinity (close: N = 19,227, OR = 1.713,
P = 0.002; distant: N = 21,284, OR = 1.207, P = 0.007, Table 3).
The association reported for close and distant consanguinity
was independent of APOE∗4 and EDU (Table 3). When
considering the analyses carried out in the smaller EDU subset,
the inclusion of APOE∗4 does not reduce statistical estimates
of the associations (Table 3). Conversely, the inclusion of EDU
as a variable slightly decreases all the associations reported in
MODEL3 compared to MODEL2, such that the association
of distant consanguinity with LOAD in MODEL3 trends in
the same direction but is no longer statistically significant
(OR = 1.170, P = 0.158, Table 3).

Autozygosity in the Outbred Population
Is Associated With an Increased Risk of
LOAD
Table 4 reports the results obtained from the meta-analysis of
the association of genome-wide autozygosity determined both
by FROH estimates and by NROH across the eight ethnic groups.
When considering the full dataset, both FROH and number of
ROHs are significantly associated with LOAD, independently of
APOE∗4 (Table 4). However, when testing the association of
FROH and the number of ROHs with LOAD in the subset with
information on EDU, the meta-analysis results are not statistically
significant for Table 4, likely reflecting a lack of power rather than
an effect of education given that MODELS 1 and 2 are also no
longer significant with these sample sizes.

LOAD Genome Is Not Enriched in Rare
Recessive Damaging Variants
Given the consistent association of LOAD with consanguinity
and autozygosity, we leveraged ADSP WES data to establish
whether LOAD subjects showed an enrichment of damaging
recessive variants compared to the control population. After
merging GWAS imputed data from NWE, SEE, AJE, FIN, and
FCN groups with ADSP WES data, we determined that 4,969
subjects were overlapping between the two datasets (AJE = 287;
FIN = 47; NWE = 4,424; SEE = 211).
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FIGURE 2 | Analysis of the genetic structure confirmed the effectiveness of our ancestry-determination pipeline. Ancestry proportions of the 21,492 unrelated
subjects studied (from the eight determined ethnic groups) as revealed by the ADMIXTURE software (Alexander et al., 2009), using pruned (MAF ≥ 0.01, r2

≤ 0.1)
SNPs at K = 6. Each color represents a different ancestral component, and each ancestry is a mixture of different components. ACD, African–Caribbean from
Dominican Republic; AJE, Ashkenazi-Jewish Europeans; ECD, European–Caribbean from Dominican Republic; FCN, French–Canadians; FIN, Finnish Europeans;
NWE, North-Western Europeans; SEE, South-Eastern Europeans; YRI, African Yoruba.

FIGURE 3 | The eight ethnic groups analyzed showed ethnic-specific differences in Alzheimer’s-relevant risk factors. (A) mean age, (B) EDU, (C) APOE∗2 frequency,
(D) APOE∗4 frequency, (E) inbreeding coefficient, and (F) number of ROHs (>1 Mb) differ significantly across the eight ethnic groups analyzed (P < 0.00001).

Previous studies have shown that long ROHs are enriched
for damaging homozygous variants, with the majority having a
MAF ≤ 5% (Pemberton et al., 2012; Pemberton and Szpiech,
2018). Thus, we determined the number of rare, deleterious
minor homozygote variants (RMHV) for each GWAS subject
that was also whole-exome sequenced through ADSP. The four
ethnic groups differed significantly in the average individual
number of RMHV in their respective outbred population
(N = 4,753, P = 0.0002), independently of diagnostic status

(AJE: 18.97 ± 0.31; FIN:16.65 ± 0.74; NWE: 14.88 ± 0.08; SEE:
18.16 ± 0.38). As expected, consanguineous subjects displayed
a significantly higher average individual number of RMHV
compared to the outbred population, independently of their
ethnicity and diagnostic status (23.31 ± 0.37 vs. 15.26 ± 0.08,
P < 0.00001). Notably, the average RMHV in 12 subjects
carrying a putative UPD was lower than the one reported
for the outbred group, and significantly different compared to
distant or close consanguineous subjects (UPD:14.46 ± 1.43;

Frontiers in Genetics | www.frontiersin.org 6 January 2021 | Volume 11 | Article 629373

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-629373 January 29, 2021 Time: 11:23 # 7

Napolioni et al. Consanguinity in Alzheimer’s Disease

TABLE 1 | Consanguinity rates differ across the eight ethnic groups analyzed.

Ethnicity Status N INBRED N (%) 1C N (INBRED-%) 2C N (INBRED-%) 2 × 1C N (INBRED-%) AV N (INBRED-%)

ACD Total 398 94 (23.6) 13 (13.8) 80 (85.1) — 1 (1.1)

LOAD 170 47 (27.7) 10 (21.3) 37 (81.2) — —

Controls 228 47 (20.6) 3 (6.4) 43 (91.5) — 1 (2.1)

AJE Total 1229 141 (11.5) 34 (24.1) 107 (75.8) — 1 (0.1)

LOAD 754 80 (10.6) 21 (26.3) 59 (73.8) — —

Controls 475 61 (12.8) 13 (21.3) 48 (78.7) — 1 (1.6)

ECD Total 671 213 (31.7) 49 (23.0) 158 (74.2) 5 (2.3) 1 (0.5)

LOAD 337 117 (34.7) 32 (27.4) 80 (68.4) 4 (3.4) 1 (0.8)

Controls 334 96 (28.7) 17 (17.7) 78 (81.3) 1 (1.0) —

FCN Total 376 53 (14.1) 3 (5.7) 50 (94.3) — —

LOAD 193 29 (15.0) 1 (3.4) 28 (96.6) — —

Controls 183 24 (13.1) 2 (8.3) 22 (91.7) — —

FIN Total 219 31 (14.2) — 31 (100.0) —

LOAD 110 18 (16.4) — 18 (100.0) — —

Controls 109 13 (11.9) — 13 (100.0) — —

NWE Total 16,496 500 (3.0) 55 (11.0) 439 (87.8) 6 (1.2) —

LOAD 8,870 313 (3.5) 37 (11.8) 270 (86.3) 6 (1.9) —

Controls 7,626 187 (2.5) 18 (9.6) 169 (90.4) — —

SEE Total 1,083 184 (17.0) 13 (7.1) 171 (92.9) — —

LOAD 678 116 (17.1) 10 (8.6) 106 (91.4) — —

Controls 405 68 (16.8) 3 (4.4) 65 (95.6) — —

YRI Total 1,020 12 (1.2) — 12 (100.0) — —

LOAD 84 1 (1.2) — 1 (100.0) — —

Controls 936 11 (1.2) — 11 (100.0) — —

1C, first-cousins offspring; 2C, second-cousins offspring; 2 × 1C, double-first cousins offspring; AV, avuncular offspring.
ACD, African–Caribbean from Dominican Republic; AJE, Ashkenazi-Jewish Europeans; ECD, European–Caribbean from Dominican Republic; FCN, French–Canadians;
FIN, Finnish Europeans; NWE, North-Western Europeans; SEE, South-Eastern Europeans; YRI, African Yoruba.

outbred:15.26 ± 0.07; distant consanguinity:20.23 ± 0.39; close
consanguinity:42.14± 1.43).

When testing the burden of RMHV in LOAD vs. controls,
no significant association was detected in the outbred
(LOAD:15.15 ± 0.10; Controls:15.35 ± 1.14; P = 0.303) or
consanguineous (LOAD:23.97 ± 0.99; Controls:24.48 ± 1.67;
P = 0.805) group.

Identification of RPH3AL p.A303V
(rs117190076) as RMHV Associated With
LOAD
Despite the lack of association between the burden of RMHV
and LOAD, we decided to leverage WES data to perform
a two-stage recessive-GWAS using the 201 consanguineous
subjects identified in ADSP as discovery phase, followed by
validation in the remaining 10,469 ADSP subjects. To this
aim, we applied the RAFT statistic (Lim et al., 2014) to the
2,767 RMHV detected in the discovery cohort composed
exclusively of consanguineous subjects. Seven RMHV yielded a
Bonferroni’s corrected statistically significant P < 1.8 × 10−5

(Table 5). When applying the RAFT statistic to the seven
variants in the validation group, only the RPH3AL missense
variant (rs117190076, NP_001177340 p.A303V), successfully
replicated (Genotype Relative Risk = 1.9, P = 8.0 × 10−4).
However, we could not validate one of the seven variants

passing the statistical threshold in the discovery phase
(SCAPER on chr15q24.3, rs200719909, NP_001339938
p.A280V), because no minor homozygote was detected in
the replication/validation phase conducted on outbred subjects
(Table 5). Remarkably, 523 out of 2,767 RMHV tested in the
discovery group (18.9%) did not have a minor homozygote
counterpart in the validation group (Supplementary Table
S15). Although those variants did not pass the statistical
threshold, set up by applying the Bonferroni’s correction in
the discovery phase on outbred subjects, they may still have
functional/causal role in LOAD.

Putative UniParental Disomy Does Not
Associate With LOAD
During the inbreeding determination process, 56 subjects (6
ACD, 42 NWE, 8 SEE) were found to be potential cases
of UPD (Figure 4). The presence of UPD did not show a
significant association with an increased risk for LOAD in a
logistic regression testing the presence of putative isodisomy
compared to the rest of ACD, NWE, and SEE outbred populations
(OR = 1.561, P = 0.158). The origin of UPD in our subjects
is unknown due to the lack of genotype data from their
parents. Nine putative UPD subjects had first-degree relatives
genotyped and in these nine cases none of the first-degree
relatives showed any evidence of consanguinity or shared long
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TABLE 2 | Genome-wide autozygosity determined through FROH estimates and number of ROHs across the eight ethnic groups according to case-control and
consanguinity status.

Ethnicity Status Outbred FROH (Mean ± SD) Inbred FROH (Mean ± SD) Outbred ROH N (Mean ± SD) Inbred ROH N (Mean ± SD)

ACD Total 0.0007 ± 0.0012 0.0251 ± 0.0328 0.6 ± 0.8 6.6 ± 5.5

LOAD 0.0006 ± 0.0011 0.0280 ± 0.0233 0.6 ± 0.8 7.8 ± 5.6

Controls 0.0007 ± 0.0012 0.0223 ± 0.0402 0.6 ± 0.8 5.4 ± 5.1

AJE Total 0.0048 ± 0.0031 0.0286 ± 0.0255 3.4 ± 2.0 9.3 ± 5.4

LOAD 0.0048 ± 0.0032 0.0287 ± 0.0233 3.4 ± 2.0 9.0 ± 5.3

Controls 0.0049 ± 0.0030 0.0285 ± 0.0284 3.6 ± 2.0 9.6 ± 5.7

ECD Total 0.0008 ± 0.0015 0.0275 ± 0.0303 0.4 ± 0.8 6.9 ± 5.8

LOAD 0.0007 ± 0.0016 0.0313 ± 0.0349 0.4 ± 0.8 7.9 ± 6.6

Controls 0.0007 ± 0.0015 0.0229 ± 0.0228 0.4 ± 0.8 5.8 ± 4.5

FCN Total 0.0052 ± 0.0022 0.0227 ± 0.0154 8.4 ± 2.9 13.9 ± 5.1

LOAD 0.0054 ± 0.0022 0.0238 ± 0.0165 8.8 ± 3.0 14.6 ± 5.3

Controls 0.0050 ± 0.0023 0.0215 ± 0.0141 8.0 ± 2.9 13.0 ± 4.9

FIN Total 0.0053 ± 0.0038 0.0156 ± 0.0067 5.8 ± 3.3 10.8 ± 3.3

LOAD 0.0052 ± 0.0036 0.0162 ± 0.0077 5.7 ± 3.2 11.1 ± 3.5

Controls 0.0053 ± 0.0040 0.0148 ± 0.0054 5.8 ± 3.5 10.4 ± 3.1

NWE Total 0.0029 ± 0.0016 0.0233 ± 0.0233 4.7 ± 2.3 11.3 ± 6.7

LOAD 0.0029 ± 0.0016 0.0242 ± 0.0264 4.8 ± 2.3 11.4 ± 7.2

Controls 0.0029 ± 0.0016 0.0219 ± 0.0173 4.7 ± 2.3 11.2 ± 5.9

SEE Total 0.0013 ± 0.0020 0.0198 ± 0.0182 1.3 ± 1.6 7.9 ± 5.2

LOAD 0.0014 ± 0.0020 0.0200 ± 0.0202 1.4 ± 1.6 7.7 ± 5.4

Controls 0.0012 ± 0.0019 0.0193 ± 0.0143 1.2 ± 1.5 8.2 ± 4.8

YRI Total 0.0022 ± 0.0014 0.0111 ± 0.0059 3.8 ± 2.0 6.6 ± 1.8

LOAD 0.0024 ± 0.0015 0.0078 4.0 ± 2.2 7

Controls 0.0023 ± 0.0014 0.0113 ± 0.0060 3.8 ± 2.0 6.5 ± 1.9

ACD, African–Caribbean from Dominican Republic; AJE, Ashkenazi-Jewish Europeans; ECD, European–Caribbean from Dominican Republic; FCN, French–Canadians;
FIN, Finnish Europeans; NWE, North-Western Europeans; SEE, South-Eastern Europeans; YRI, African Yoruba.

ROHs, suggesting the presence of true isodisomy. Moreover,
one of the 12 UPD subjects had ADSP WES data, showing
a UPD on chromosome 9p (9p-UDP), was homozygote for
the somatic JAK2 V617F (rs77375493) mutation. Since the
co-occurrence of JAK2 V617F mutation and 9p-UPD is very
common in hematological malignancies (Wang et al., 2016), a
somatic (hematologic) origin for some of the reported UPD is
highly conceivable, especially since 9p-UPD is the most common
UPD among our UPD subjects (8/56, 14%, Figure 4).

DISCUSSION

Our results clearly demonstrate the effect of recent consanguinity
and outbred autozygosity in increasing the risk of LOAD
consistently across the eight ethnic groups analyzed,
independently of APOE∗4 and EDU. Several important
features separate our work from previous studies looking at the
impact of consanguinity and autozygosity on LOAD. First, and
most critically, this is the largest such study to date combining
11,196 cases and 10,296 controls across eight ethnically
distinct populations. Second, we went beyond standard super-
population definitions of ethnicity and determined European
sub-ancestry (NWE, AJE, FCN, FIN, NWE, and SEE), since it has
previously been established that these ethnicities have different
inbreeding rates (Pemberton et al., 2012; Kang et al., 2016), or

are characterized by founder effects (AJE, FCN, FIN) (Jakkula
et al., 2008; Roy-Gagnon et al., 2011). Third, rather than
examining autozygosity across all subjects, we enriched our
sample by identifying a consanguineous subset and analyzing
them separately from the relative outbred population. This step
allowed us to estimate the risk for LOAD attributable to the
mating types of consanguineous subjects (first cousin/double-
first cousin/avuncular vs. second cousin offspring), thereby
providing a measure applicable to the clinical setting. Fourth,
we leveraged the large amount of WES data from ADSP to
determine the contribution of rare recessive damaging variants
in LOAD. Lastly, we provided, for the first time, an estimate
of the impact of putative isodisomy on LOAD; these subjects
were also removed from our analysis of inbred subjects, thereby
eliminating a source of noise since these subjects are wrongly
identified as consanguineous using standard measures.

The overall results suggest the existence of inbreeding
depression, which is a recognized phenomenon that is common
to polygenic traits in all living organisms (Joshi et al., 2015).
Inbreeding depression is thought to result from increased
homozygosity of multiple recessive alleles that act in the same
direction of effect at loci that influence the phenotype of
interest (“directional dominance”) (Joshi et al., 2015). In a
consanguineous individual, inbreeding depression is predicted to
affect many polygenic endophenotypes which can be established
risk factors for late-onset diseases, such as blood pressure, body
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TABLE 3 | Consanguinity increases the risk of LOAD.

Full dataset

MODEL1 OR 95% CI P q_p-value I2 N ACD AJE ECD FCN FIN NWE SEE YRI

Consanguinity 1.262 1.111–1.435 3.58E-04 0.200 0.285 21,481 + – + + + + + +

Close consanguinity
(1C+2 × 1C+AV)

1.713 1.226–2.394 0.002 0.385 0.049 19,227 + – + – NA + + NA

Distant consanguinity (2C) 1.207 1.054–1.383 0.007 0.295 0.171 21,284 + – – + + + + +

MODEL2
Consanguinity 1.237 1.081–1.417 0.002 0.864 0.000 21,468 + + + + + + + +

Close consanguinity
(1C+2 × 1C+AV)

1.798 1.267–2.552 0.001 0.681 0.000 19,212 + + + + NA + + NA

Distant consanguinity (2C) 1.172 1.015–1.354 0.031 0.883 0.000 21,271 + + – + + + + +

EDU Subset

MODEL1

Consanguinity 1.423 1.180–1.716 2.21E-04 0.549 0.000 9,260 + + + NA + + + +

Close consanguinity
(1C + 2 × 1C + AV)

2.201 1.401–3.455 6.16E-04 0.487 0.000 7,619 + + + NA NA + + NA

Distant consanguinity (2C) 1.312 1.074–1.603 0.008 0.530 0.000 9,156 + + – NA + + + +

MODEL2

Consanguinity 1.418 1.165-1.725 5.04E-04 0.792 0.000 9,252 + + + NA + + + +

Close consanguinity
(1C + 2 × 1C + AV)

2.417 1.516–3.854 2.11E-04 0.717 0.000 7,611 + + + NA NA + + NA

Distant consanguinity (2C) 1.287 1.042–1.588 0.019 0.729 0.000 9,147 + + – NA + + + +

MODEL3

Consanguinity 1.274 1.038–1.562 0.020 0.483 0.000 9,252 + + – NA + + + +

Close consanguinity
(1C + 2 × 1C + AV)

2.014 1.240–3.271 0.005 0.612 0.000 7,611 + + + NA NA + + NA

Distant consanguinity (2C) 1.170 0.941–1.455 0.158 0.459 0.000 9,147 + + – NA + + + +

ACD, African–Caribbean from Dominican Republic; AJE, Ashkenazi-Jewish Europeans; ECD, European–Caribbean from Dominican Republic; FCN, French–Canadians,
FIN, Finnish Europeans; NWE, North-Western Europeans; SEE, South-Eastern Europeans; YRI, African Yoruba.
1C, first-cousins offspring; 2C, second-cousins offspring; 2 × 1C, double-first cousins offspring; AV, avuncular offspring; q p-value, Cochran’s heterogeneity statistic’s
p-value; i2, heterogeneity index; ±, summary of effect directions; NA, not available.
Values reported in italics are statistically significant.

mass index, cholesterol levels, glucose levels, and bone mineral
density (Rudan and Campbell, 2004). The previous negative
association of educational attainment and general cognitive
abilities with genome-wide autozygosity (Joshi et al., 2015)
suggests involvement of directional dominance at these two
endophenotypes in increasing the risk for LOAD. Indeed, it
has been widely reported that lower education is associated
with a greater risk for dementia (Sharp and Gatz, 2011), while
lower general cognitive abilities have been linked to an increased
risk of dementia according to the cognitive reserve theory
(Schmand et al., 1997). However, the present results show that
the association of consanguinity with LOAD is independent of
educational attainment. This evidence leads us to speculate on the
involvement of other polygenic endophenotypes mediating the
association of consanguinity with LOAD or on the direct effect of
recessive loci in LOAD, yet to be discovered. In this context, we
can mention that a recent study (Andrews et al., 2021), leveraging
Polygenic Risk Score/Mendelian Randomization analyses on
a large sample (N = 26,431 LOAD cases/controls tested for
22 LOAD risk factors/clinical biomarkers), strongly supported
a causal role for blood pressure and cholesterol levels with
LOAD phenome. Thus, it may be conceivable that directional

dominance acting on blood pressure and cholesterol levels
may be contributing to the association reported here. Future
studies targeting a larger subset of consanguineous subjects,
phenotypically characterized in a more homogeneous way, ideally
including clinically relevant biomarkers such as blood pressure
and cholesterol levels, will allow us to better determine the impact
of directional dominance at those endophenotypes in LOAD.

Notably, despite significant differences in consanguinity rates,
autozygosity level, mean age, mean EDU, and APOE frequencies,
each of the ethnic groups individually showed significant
association (or a non-significant trend in the same direction) for
the association of close consanguinity or autozygosity with an
increased risk of LOAD. Our results in ACD, ECD, and YRI are
reassuringly and not surprisingly, in line with the previous studies
(Ghani et al., 2013, 2015) since we used overlapping datasets.
However, the results in the European groups (AJE, FCN, FIN,
NWE, and SEE) are new and highlight interesting differences
across the five ethnicities.

Previous studies carried out on Europeans of British/Irish
descent (Nalls et al., 2009a; Sims et al., 2011) reported
inconsistent results on the role of ROHs in Caucasians. However,
neither study had sufficient power to detect significant results
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TABLE 4 | Autozygosity in the outbred population increases the risk of LOAD.

Full dataset

MODEL1 OR 95% CI P q_p-value i2 N ACD AJE ECD FCN FIN NWE SEE YRI

FROH 1.204 1.018–1.424 0.030 0.319 0.142 20,237 – – – + – + + +

NROH 1.019 1.005–1.034 0.006 0.220 0.261 20,237 + – – + – + + +

MODEL2
FROH 1.222 1.021–1.462 0.029 0.245 0.232 20,225 – – + + – + + +

NROH 1.019 1.005–1.034 0.007 0.241 0.237 20,225 – – + + – + + +

EDU subset

MODEL1

FROH 1.141 0.871–1.494 0.340 0.821 0.000 8,655 – + – NA – + + +

NROH 1.009 0.988–1.031 0.413 0.683 0.049 8,655 + + – NA – + + +

MODEL2

FROH 1.180 0.887–1.570 0.256 0.712 0.000 8,647 – + + NA – + + +

NROH 1.011 0.988–1.034 0.348 0.561 0.000 8,647 – + + NA – + + +

MODEL3

FROH 1.123 0.839–1.503 0.435 0.392 0.046 8,647 – + – NA – + + +

NROH 1.011 0.989–1.034 0.334 0.258 0.224 8,647 – + – NA – + + +

ACD, African–Caribbean from Dominican Republic; AJE, Ashkenazi-Jewish Europeans; ECD, European–Caribbean from Dominican Republic; FCN, French–Canadians;
FIN, Finnish Europeans; NWE, North-Western Europeans; SEE, South-Eastern Europeans; YRI, African Yoruba.
NROH, number of ROHs; Q p-value, Cochran’s heterogeneity statistic’s p-value; i2, heterogeneity index; ±, summary of effect directions; NA, not available.
Values reported in italics are statistically significant.

given the small sample size (N < 3,000). Indeed, given the small
variation in genome wide FROH in unselected samples (standard
deviation in our analyses are on the order of 0.001), large sample
sizes (e.g., >12,000) are necessary to detect inbreeding depression
given the relatively small effect sizes in samples not selected for
recent inbreeding (Keller et al., 2012).

We also leveraged WES data from ADSP to determine the
contribution of rare recessive variants in LOAD. The lack
of association between the global burden of rare recessive
variants and LOAD suggests either the involvement of increased
homozygosity at common loci or the existence of specific
recessive loci driving the association of consanguinity with
LOAD. The two-stage recessive-GWAS we carried out using
ADSP WES data showed the association of RPH3AL p.A303V
(rs117190076) with LOAD. The RPH3AL gene (also known
as NOC2), located on 17p13.3 (OMIM∗604881), encodes for
the Rabphilin 3A-like (without C2 domains) protein which
plays an essential role in endocrine and exocrine cells, ranging
from the accumulation of secretory granules of increased size
to impairments in the regulated release of their secretory
products (Cheviet et al., 2004). In particular, RPH3AL has been
shown to be a crucial effector for RAB3A and RAB27A in the
regulation of secretory vesicle exocytosis (Fukuda et al., 2004).
The dysregulation of RAB3A and RAB27A has already been
linked to Alzheimer’s and other neurodegenerative disorders
(Davidsson et al., 2001; Ginsberg et al., 2011; Bereczki et al.,
2016; Iguchi et al., 2016), while the ancestral RPH3A (Rabphilin
3A) gene (Craxton, 2010) was found to influence dementia
severity, cholinergic deafferentation, and increased β-amyloid
concentrations in postmortem neocortex of Alzheimer’s disease
patients (Tan et al., 2014). Moreover, other rs117190076-
unlinked variants at the RPH3AL locus have been associated

with LOAD-related phenotypes, such as Alzheimer’s age-at-
onset in PSEN1 E280A carriers (rs4341804, P = 7.10 × 10−13)
(Vélez et al., 2013) and cognitive performance scores in
electronic health records (rs74192827, P = 5.02 × 10−7) (McCoy
et al., 2018). Thus, the overall evidence suggests a functional
role of the RPH3AL locus in LOAD that clearly warrants
further investigations.

Interestingly, our work highlighted the presence of potential
UPD carriers in the population studied, with prevalence estimates
of 0.25% in NWE, 0.74% in SEE and 1.51% in ACD, respectively,
showing a trend toward a significant association with increased
risk of LOAD. Current estimates of UPD in the general
population suggests a general prevalence of 0.05% (1 in 2,000
births) (Nakka et al., 2019), lower than the estimates we
reported. One explanation for this discrepancy could be the
fact that we were not able to determine whether those long,
unique, ROHs (used to define the presence of UPD) may
turn to be true long deleted genomic regions, of somatic or
germ-line origin. Indeed, we did not have access to raw SNP-
array intensity data from most of the cohorts included in our
study, leading to an under-estimation of large deletions and a
consequent increased number of subjects carrying a putative
UPD. Nonetheless, our studied sample is mostly representative
of the elderly population, where age-related somatic events,
like Clonal Hematopoiesis of Indeterminate Potential (CHIP),
already linked to cardiovascular disease (Jaiswal et al., 2017), may
result in large somatic genomic aberrations, such as “pseudo” 9p-
UPD (Wang et al., 2016), that can be misinterpreted as germline
UPD. A deeper analysis of these phenomena is clearly warranted,
since it may offer important insights into the missing heritability
of several age-related diseases. In this context, it is remarkable
that functional mutations of the TET2 gene, a main driver of
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CLEC1B rs2273987 0.0802 NP_
057593.3,

p.Ser28Phe

25 117 21 4 58 1 0 404 2.66 ×
10−10

4,773 895 51 3,998 710 38 1.100 0.451

KNDC1 rs11101618 0.0220 NP_
689856.6,

p.Ala128Ser

24 134 3 3 58 1 0 305 1.05 ×
10−7

5,385 287 4 4,413 281 7 1.000 1.000

SCAPER rs200719909 0.0004 NP_
001339938.1,
p.Ala280Val

15 140 0 2 59 0 0 2309 2.09 ×
10−7

5,714 4 0 4,736 4 0 — —

IGSF22 rs78892734 0.0375 NP_
775859.3,

p.Ala1008Thr

21 125 4 2 48 0 0 1987 2.85 ×
10−7

4,838 306 17 4,036 232 10 1.400 0.181

C16orf74 rs141454251 0.0092 NP_
996850.1,
p.Gln12His

23 118 0 2 42 0 0 1779 3.59 ×
10−7

4,982 100 1 3,911 64 1 1.000 1.000

SGSH rs9894254 0.0528 NP_
000190.1,
p.Val361Ile

23 113 9 3 37 1 0 142 1.12 ×
10−6

4,695 333 13 3,627 278 9 1.100 0.689

RPH3AL rs117190076 0.0534 NP_
001177340.1,
p.Ala303Val

18 120 14 4 55 3 0 45 2.16 ×
10−6

4,988 603 36 4,138 477 16 1.900 0.001

AA, major homozygote; Aa, heterozygote; aa, minor homozygote; GRR, Genotype Relative Risk.
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FIGURE 4 | Numerous cases of putative isodisomy misidentified as consanguineous subjects. Fifty-six subjects identified as consanguineous by FSuite v1.0.3
(Gazal et al., 2014) showed a single homozygous region over 10 Mb on just one chromosome, the homozygosity cut-off previously reported to define the presence
of putative uniparental isodisomy (UPD). Two female subjects showing a putative UPD on X-chromosome are not shown. Red = LOAD; Blue = Control.

CHIP (Jaiswal et al., 2017), have recently been found to be
associated with multiple neurodegenerative disorders, including
LOAD (Cochran et al., 2020).

One important limitation is that the ethnic stratification,
especially for the European groups, led to very small samples
in terms of the number of inbred subjects for some of the
ancestral groups [e.g., FCN, N = 53; FIN, N = 31 (Supplementary
Tables S6–S13)]. Nonetheless, the meta-analytic approach used
can greatly mitigate potential biases due to the inclusions

of small samples, while providing a better sense of the
ethnic-related differences in consanguinity prevalence. Similarly,
considering the important contribution of somatic genomic
events related to aging such as CHIP, the heterogeneous nature
of the specimens used (e.g., whole blood vs. post-mortem
brain tissue) in SNP-array genotyping across the different
cohorts and samples may have led to uncontrolled biases when
determining the impact of true ROHs vs. large genomic deletions
of somatic origin.
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Overall, these results provide substantial evidence that
consanguinity increases risk for LOAD. One might anticipate
a change in the genetic architecture of LOAD in the coming
decades when more recent cohorts, composed of subjects born
after the World War II, will be analyzed. Panmixia and larger
effective population sizes have resulted in decreasing autozygosity
as the chronological age of a population decreases (Nalls
et al., 2009b). Consistent with this pattern, mounting evidence
suggests that trends in dementia incidence rates are decreasing
(Satizabal et al., 2016; Derby et al., 2017; Noble et al., 2017).
Subsequent work with increased sample sizes of consanguineous
subjects should accelerate the discovery of non-additive genetic
effects in LOAD.
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