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Abstract

This paper reviews global-local prior distributions for Bayesian inference in high-
dimensional regression problems including important properties of priors and effi-
cient Markov chain Monte Carlo methods for inference. A chemometric example
in drug discovery is used to compare the predictive performance of these methods
with popular methods such as Ridge and LASSO regression.

1 Introduction

This paper builds on a body of Bayesian approaches to variable selection and reg-
ularisation in regression from the Statistics literature and compares their predictive
performance using some chemometric data used in drug discovery. Chemometrics
and variable selection brought one of us (PJB) into close collaboration with Cliff
Spiegelman in the late 1980’s with exchange visits to Texas A&M, USA and Liv-
erpool University, UK. Two joint papers Brown and Spiegelman (1991) and Brown
et al. (1991) resulted, and periodic visits to Texas, following Marina Vannucci’s ap-
pointment at Texas A&M. For an overview of this regression variable selection work
see chapter 7 of Brown (1993). A paper in an issue in honour of Professor Luc Mas-
sart (Vannucci et al., 2005) was commissioned by Cliff.

∗P. J Brown was supported in this work by a Leverhulme Emeritus Fellowship EM-2018-059/9.
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By way of setting the scene, we will describe a few recent developments in
the Bayesian Statistics literature and apply one of these to some chemometric drug
discovery data arising from collaborations with computational chemists at Glaxo-
SmithKline during the last decade and also involving Professor I. Poli’s group at the
European Centre for Living Technology, Universita Ca’Foscari, Venice.

In chemometrics some Bayesian applications have emerged, for example in cal-
ibration, see Fearn et al. (2010) and in classification Fearn et al. (2019), but we will
focus more on the area of variable selection in regression, especially when the num-
ber of explanatory variables is large, of the order of several thousand and when the
number of observations is quite modest, numbering in tens or hundreds. This area
has mushroomed in the last decade and a half. We will consider some examples of
prior distributions which are sufficiently flexible to be useful for a variety of exam-
ples. For the Bayesian, the prior distribution assumed is fundamental and inference
amounts to combining it with the data likelihood to form an ’after the data‘ or pos-
terior probability distribution.

One of the earliest ways to cope with ill-conditioned and highly correlated re-
gression data was developed in the early 1970’s and assumes a spherical indepen-
dent normal prior distribution on the regression coefficients, the ridge prior, see for
example Marquardt (1970). The aim here was not so much variable selection as reg-
ularisation for achieving good predictions.

Vannucci et al. (2005) considered chemometric NIR and mid IR data and used
parametrized curves made up of wavelets in several component multi-compositional
setting. This lead to a regression problem where the wavelet bases act as regressors.
The key idea for variable selection is that each regression coefficient can be present,
with some regularisation through a ridge or other continuous prior, or is set to zero.
But because a priori one doesn’t know which coefficients should be set to zero there
is a mixture prior with a spike of probability at zero leading to the so-called ’slab and
spike’ prior. Implementation is fairly straightforward with iterative Markov chain
Monte Carlo (MCMC) techniques. At first sight, it is perhaps surprising that MCMC
can effectively search such a vast space of possibilities (2p, with a large number, p of
regression coefficients) but Yang et al. (2016) show why pessimism is not warranted.

However, there are drawbacks to the ’slab and spike‘ approach, both in conver-
gence issues with MCMC samplers, a task that becomes more difficult for very high
dimensional problems, and in fidelity of inference, that is the ability to identify the
right active coefficients and assign valid confidence sets, as developed in Van der
Pas et al. (2016). The computational issues in awkward high dimensional problems
have been mitigated by Griffin et al. (2020), in effect learning about promising di-
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rections of search. Fidelity issues may be improved by getting away from the ’slab
and spike’ mixture prior to a ’one group’ prior which is flexible enough to form a
spike or leave the coefficient regularised depending on the information in the data.
A computational environment STAN, see Gelman et al. (2014) has been developed
and is continually evolving and based on Hamiltonian MCMC which enriches the
MCMC approach by allowing the inclusion of directions of search and a type of con-
jugate gradients exploration with similarities to PLS iterative methods popular in
chemometrics.

An alternative approach to Bayesian variable selection is to use a utility func-
tion and decision theory formulation. Two-stage approach to this uses a baseline
weak regularising prior with the posterior then projected on to submodels defined
by omitting covariates, so that predictions change as little as possible, see Lindley
(1968), Goutis and Robert (1998), Brown et al. (2002), and Piironen et al. (2020).

When we talk of high dimensions and relatively little data, obviously many in-
ferential issues will remain vague and uncertain, the challenge is to find likely sub-
models for which there is some hope of reflecting what might happen in future.
Aside from such inferential issues there are technical aspects for getting fast algo-
rithms that can reveal such fidelities as described in section 4.

2 The regression model and prior distributions

The linear regression model is often written as

Y = Xβ + ε (1)

where Y is a (n × 1)-dimensional vector of responses, X is a (n × p)-dimensional
matrix of explanatory variables, β is a (p× 1)-dimensional vector of regression coef-
ficients and ε ∼ N(0, σ2In). Broadly we assume a scale mixture of normals formula-
tion for the prior distibution of the regression parameters so that β ∼ N(0,Ψ) with
idiosyncratic hyperparameters Ψ = diag(ψ1, . . . , ψp) and then ψi

i.i.d.∼ G for some
distribution G. The properties of the posterior distribution are determined by the
choice of hyperprior G. Typically G will involve both local and global hyperparam-
eters and their distributions will characterise the behaviour of the resultant posterior
distribution. One further dichotomy is whether the prior for the regression parame-
ters is structured to be conjugate or not. In a conjugate formulation β ∼ N(0, σ2Ψ) so
that when the likelihood from the regression model (1) is multiplied by the prior dis-
tribution the two blend together and the posterior distribution is of the same form as
the prior. It is as if the prior can be thought of as pseudo data from the model. The
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appeal is one of automatic scaling, if you change the scale of the response Y then
inference will remain the same. This will not be the case for a non-conjugate formu-
lation but in the conjugate formulation with number of explanatory variables p very
large, there can be overfitting and poor estimates of σ2, see Moran et al. (2019).

With the specification of normal prior and hyper priors, all that needs now to be
done in the Bayesian paradigm is to multiply likelihood by prior distributions and
organise into an appropriate form for MCMC sampling.

3 Global-Local Priors

In Bayesian analysis of the linear regression model the prior G is often explicitly
structured into a set of local idiosyncratic parameters and a global parameter. There
has been increasing interest in the use of global-local priors for regression coeffi-
cients, (see Bhadra et al., 2019, for a comprehensive review).

Each regression parameter has its own ideosyncratic scale, ψj for the jth regres-
sion coefficient, and there is also a global (across all regression coefficients) scale
parameter which we will designate as τ. In notation with usual conventions, the
conjugate global-local model for the regression coefficients, βj , j = 1 . . . , p is

βj ∼ N(0, σ2ψ2
j τ

2), ψj ∼ f, τ ∼ g, (2)

and the non-conjugate global-local model is

βj ∼ N(0, ψ2
j τ

2), ψj ∼ f, τ ∼ g, (3)

where f and g are general probability densities over the positive real line. It is spec-
ification of f and g which allows the rich class of different prior distributions. We
will write Ψ = (ψ1, . . . , ψp) and consider a few promising representatives in our
chemometric example. The prior aims to shrink out small less important regression
coefficients whilst leaving largely untouched important large coefficients, a hard act
for all occasions! Some reassurance in this direction is provided by Van der Pas
et al. (2016) who provide a general treatment of posterior consistency for these pri-
ors when the number of variables diverges to infinity and Ghosh et al. (2016) who
consider asymptotic properties of Bayes risk.

3.1 Horseshoe prior and variants

The horseshoe prior, Carvalho et al. (2010) uses the choice

ψj ∼ C+(0, 1), (4)
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where C+(0, a2) denotes a Cauchy distribution with location zero and scale a trun-
cated to the positive real line, which is called the half-Cauchy distribution (Gelman,
2006). This popular prior aims to achieve minimal shrinkage of important large
coefficients whilst shrinking out smaller regression coefficients. This is achieved by
assuming a half-Cauchy prior on the local scales used to construct the prior distribu-
tion and as such it has had good successes but can overshrink large coefficients when
the data likelihood is weak. We will use it to investigate the chemometric problem
in section 5. The fidelity aspects have been investigated by Van der Pas et al. (2014).
Their paper assumes τ is known. One variant puts a hyperprior on τ, and Van der
Pas et al. (2017) investigate whether this affects the good minimax shrinkage prop-
erties of the horseshoe. Another variant due to Piironen and Vehtari (2017) seeks to
regularise this horseshoe, which is called the regularized horseshoe or the ’Finnish
horseshoe‘, so as to make it less severe when information is weaker as for example
in logistic regression for binary data. This introduces an extra hyperparameter c and
uses the hierarchy

ψ2
j =

c2 ψ̃2
j τ

2

c2 + τ2ψ̃2
j

, ψ̃j ∼ C+(0, 1), . (5)

This choice implies that the prior variance of βj is in (0, c2). The prior variance
controls the amount of shrinkage and the regularized horseshoe puts a lower limit
on the amount of shrinkage (unlike the horseshoe where the prior variance is in
(0,∞)). The regularized horseshoe converges to the horseshoe as c/τ →∞.

3.2 Normal-gamma prior

Griffin and Brown (2010) propose a prior where the distribution G has gamma den-
sity function Ga(x|λ, b) ∝ xλ−1 exp{−bx} with expectation λ and λ is the shape.
Thus we have

ψ2
j ∼ Ga(λ, 1).

It forms a natural extension of the lasso which implicitly applies an exponential prior
and is popular in finance for long tailed distributions. It has exponential tails rather
than the polynomial tails of the horseshoe. The error variance σ2 can also be incor-
porated to form a conjugate prior. This prior is investigated for ’fidelity’ of inference
in Van der Pas et al. (2016) and is shown to be able to achieve the optimal minimax
rate of convergence to truth. By ’fidelity’ of inference the authors are aiming for two
things, recovery of the true underlying regression vector and secondly uncertainty
quantification .
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3.3 Normal-gamma-gamma distribution

A further elaboration of the normal-gamma provides a distribution with much fatter
tails

ψ2
j ∼ Ga(λ, γj), γj ∼ Ga(c, 1). (6)

Thus ψ2
j ∼ GG(λ, c, τ) a gamma-gamma distribution. The shape parameter λ con-

trols the behaviour close to zero, whereas shape c controls the behaviour in the tails,
with λ = c = 1/2 being the horseshoe. It thus offers more flexibility than the horse-
shoe. It was introduced in Griffin and Brown (2017) when wishing to shrink inter-
action parameters differently from main effects. It considered levels of coefficients,
corresponding to main effects, first order interactions and higher order interactions
which are usually more numerous and need more shrinkage. Some order on the lev-
els of shrinkage can be imposed by the notion of heredity, whereby in strong heredity
both main effects should be important for the interaction to be important. Weak
heredity on the other hand requires just one of the two main effects to be important
for the interaction to be important. See Cadonna et al. (2020) for a comprehensive
review of this prior and other uses of this structure in the literature.

3.4 Dirichlet-Laplace distribution

Like the normal-gamma this prior avoids the very fat-tailed distributions of the
normal-gamma-gamma and the horseshoe. It modifies the exponential lasso prior
differently from the normal-gamma, chopping up the regression parameter into ran-
dom chunks as determined by a Dirichlet distribution on the p-dimensional simplex.

βj |φ, τ ∼ DE(φj , τ), φ ∼ Dir(a, . . . , a), τ ∼ gamma(pa, 1/2) (7)

where DE(φj , τ) is a double exponential (i.e. Laplace) distribution with pdf f(βj) =

(2τ)−1 exp−|βj − φj |/τ, and Dir(a,. . . , a) is a Dirichlet distribution over the simplex
with equal parameter values. Typically the parameter a is prespecified or given a
prior distribution. This Dirichlet-Laplace distribution is introduced and motivated
in Bhattacharya et al. (2016). See Zhang et al. (2020) for an informative prior distri-
bution on model fit with a similar structure.

4 Fast algorithm and vague priors

Computational speed becomes paramount in high dimensional Bayesian analysis.
A number of tricks have been introduced and we consider ones described by Bhat-
tacharya et al. (2016) and Makalic and Schmidt (2016), the latter for the horseshoe
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prior. We will employ a clever insight by Makalic and Schmidt (2016) who re-
parameterized the prior in (4) so that the MCMC updating scheme involves sam-
pling ψj from inverse gamma distributions rather than the more problematic gener-
alised inverse Gaussian which would be necessary under the original parameterisa-
tion. Naive sampling from β|Ψ, σ2 can be computationally prohibitive if p is large
since the standard form of the posterior distribution involves inversion of the ma-
trix XTX + Ψ−1 which will be challenging unless XTX has special structure. If n is
much smaller than p, Bhattacharya et al. (2016) develop an algorithm for sampling
β|Ψ, σ2 which avoids inverting the (p × p)-dimensional matrix XTX + Ψ−1. Their
algorithm incorporates a data augmentation step

1. Sample u ∼ N(0,Ψ) and δ ∼ N(0, In) independently.

2. Set v = Xu+ δ.

3. Solve (XΨXT + In)w = Y − v.

4. Set β = u+ ΨXTw.

This involves solving an n-dimensional set of linear equations in step 3, a far quicker
task than matrix inversion. We refer to this as the “Fast algorithm”.

In some practical problems, we may not want to use the same prior for all vari-
ables but allow different priors on exclusive subsets of the variables. If all priors
are proper, the fast algorithm can be used but there may be cases where we wish to
use a non-informative prior for regression coefficients associated with some “key”
explanatory variables. There is a long tradition of using unnormalisable ’vague’ pri-
ors, see for example the Jeffreys prior using invariance arguments, Jeffreys (1961),
especially for parameters that are important and we don’t wish to pre-judge in any
probabilistic way. In many contexts there may be a few such important parameters.
We could set variance to a large value in the algorithm but we have found in sen-
sitive problems this leads to further instability. If an improper prior is used then u

will have an improper distribution in Step 1 of the fast algorithm and the algorithm
cannot be implemented. This is easily bypassed by removing the effect of the key
variables from both X and Y. Let Z denote the n × q matrix of carriers for the ex-
planatory variables with vague priors, assumed few in number or singularites will
appear. Then GZ = In−Z(ZTZ)−1ZT is the orthogonal projection that removes the
effect of these covariates and is idempotent. We just set X̃ = GZX, Ỹ = GZY and
and apply the algorithm to X̃ and Ỹ (Chipman et al., 2001, section 3, last paragraph
before section 3.1).

The posterior can be easily sampled using a Gibbs sampler which updates sets or
blocks of parameters successively conditional on the other sets of parameters β|ψ, σ2,
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ψ|β, σ2 and σ2|β, ψ. Here there are three blocks and this could be called a three block
sampler. In the case of a conjugate formulation however Pal et al. (2017) show that
jointly updating β and σ2 in the Gibbs sampler can lead to better theoretical prop-
erties for the resulting Markov chain. The joint sampling is achieved by sampling
σ2 from σ2|ψ and β from β|σ2, ψ. This idea is extended to the more general class of
global-local priors by Rajaratnam et al. (2019). This scheme is termed the ’two-block‘
sampler and we use this sampler in our examples for conjugate models.

In both the two-block and three-block sampler, the computational complexity
of the fast algorithm will scale linearly in p for large enough p whereas the naive
algorithm will scale polynomially in time (with the exact type of scaling determined
by the method used to solve the system of linear equations in Step 3). This point
and the potential for substantially faster algorithms in small n, large p settings are
comprehensively illustrated in Bhattacharya et al. (2016).

5 Drug Discovery Data

The original experimental data generated was analysed by Pickett et al. (2011). The
data were intended to be typical of data arising in the process of lead optimisation in
drug development, where a promising compound (the lead) is improved by chemical
modifications. In this application the compound can be modified at two sites, A
and B, and 50 possible modifications (chemical reagents) were considered at each
site. Thus A and B are the factors and the different reagents are the levels of the
factors. The basic compound was an inhibitor and the aim was to synthesize all
50× 50 = 2500 possible modifications and measure their inhibitory strength (pIC50)
by means of an assay. However, the ‘complete’ data matrix has 796 missing values
(32%), mostly because the modified compound could not be synthesized (23%) or
because it was found to be inactive (7%), but also because occasionally the assay
failed (1%) or was not undertaken (1%). The same data was analysed by Borrotti
et al. (2014). Optimal designs have been investigated and illustrated in Brown and
Ridout (2016).

We will analyse data using a different molecular representation as constructed
by Glaxo SmithKline by in house algorithms, see Hussain and Rea (2010) giving
rise to different ’fragments’. In our case the full set of 1704 compounds could be
represented by 3149 ’attributes’ (an attribute giving the presence or absence of a
fragment). We have the full set of 1704 synthesised molecules each with an associ-
ated activity level ranging from 3.7 to 8, where high values are desirable. The model
matrix X comprises a 1704 by 3149 matrix of zeros and ones identifying whether a
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fragment is absent (0) or present (1). Whilst we are in the fortunate position of hav-
ing the full set of 1704 activities, in practice assays are expensive and slow and GSK
wanted to investigate 140 assayed from the 1704 available. Thus we can measure
the effectiveness of different methods of prediction by comparing predictions and
actual on the (1704 - 140)=1564 other compounds. To avoid peculiar or poor choice
several random choices were made.

We compare the predictive performance of the different prior distributions de-
scribed in Section 3 (in both conjugate and non-conjugate form) and the classical
ridge and the lasso. The regularisation parameters in the latter two methods are
selected using 10-fold cross-validation. In the Bayesian methods, we consider two
priors for the observation variance σ2: the vague prior π(σ2) ∝ σ−2 and the half-
Cauchy prior (Gelman, 2006). The hyperparameters are either fixed at pre-determined
values or inferred from the data by giving hyperpriors to the hyperparameters. In
order to compare the performance of the methods we generate 20 random cross-
validation sets with 140 training samples and 1564 testing samples. We calculate the
mean absolute error for all methods which is

MAE =
1

20

1

N

20∑
j=1

N∑
i=1

∣∣∣y(j)i − ŷ(j)i ∣∣∣
where y(j)i is the i-th observation in the j-th testing set and ŷ

(j)
i is the prediction

of y(j)i calculated using the j-th training set. This measure is less sensitive to the
occasional outlier than mean square error. In the Bayesian methods, ŷ(j)i is the pos-
terior predictive median and, in the classical methods, ŷ(j)i = x

(j)
i β̂(j) where x(j)i

are the observed variables for the i-th observation in the j-th testing set and β̂(j)

are the estimated regression coefficients calculated using the j-th training sample.
This measures the accuracy of these point estimates. For the Bayesian methods, we
also calculate the log predictive score, which measures the accuracy of the posterior
predictive distribution as a density estimate. The log predictive score is

LPS = − 1

20

1

N

20∑
j=1

N∑
i=1

log p
(
y
(j)
i

∣∣∣x(j)i , X
(train)
j , y

(train)
j

)
where X(train)

j and y
(train)
j are the design matrix and responses for observations in

the j-th training sample. We exclude the lasso and ridge estimators from this mea-
sure since these estimators are only designed to provide point estimates.

The methods compared and the hyperprior choices are given below

• Horseshoe (HS) (fixed): τ = p0/(p−p0) where p0 is a prior guess at the number
of important variable and we set p0 = 3 (Piironen and Vehtari, 2017).
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• Horseshoe (HS) (hyperprior): τ(p − p0)/p0 ∼ C+(0, 1) and we set p0 = 3 Piiro-
nen and Vehtari (2017).

• Regularized Horseshoe (RHS): τ(p − p0)/p0 ∼ C+(0, 1), c−2 ∼ Ga(2, 8) and we
set p0 = 3 (Piironen and Vehtari, 2017).

• Normal-Gamma (NG): λ ∼ Ga(1, p/5) and τ ∼ C+(0, 1).

• Normal-Gamma-Gamma (NGG): λ ∼ Ga(1, p/5), c ∼ C+(0, 1) and τ ∼ C+(0, 1).

• Dirichlet-Laplace: a = 1/2 (Bhattacharya et al., 2016).

Conjugate Non-Conjugate
Method Vague Half-Cauchy Vague Half-Cauchy

MAE LPS MAE LPS MAE LPS MAE LPS
DL 0.34 0.83 0.34 0.83 0.36 5.07 0.37 1.88
NG 0.36 0.82 0.36 0.82 0.37 >1000 0.36 0.82
HS 0.39 0.87 0.39 0.87 0.37 0.85 0.38 0.85
RHS 0.38 0.85 0.39 0.85 0.35 0.98 0.35 0.81
NGG 0.41 0.91 0.41 0.92 0.40 0.90 0.40 0.89

Ridge 0.46
Lasso 0.49

Table 1: MAE and LPS results for the regression with fragments only (bold best on
MAE).

We consider two possible choices of variables. Firstly, a regression which only
uses the 3149 fragments and the second regression which includes the effect of molec-
ular weight (as a “fixed” variable), the effects of the 3149 fragments and the inter-
action between molecular weight and the fragments (which are given global-local
shrinkage priors).

The prediction results for the regression with only the fragments are shown in
Table 1. The Bayesian methods perform well. The conjugate Dirichlet-Laplace prior
provides the smallest MAE. The MAE is about 31% lower for the Dirichlet-Laplace
compared to the Lasso with a slightly smaller improvement compared to the ridge
estimator. It is useful to divide the methods into two groups: priors with polynomial
tails (HS, RHS and NGG) and priors with exponential tails (DL and NG). The con-
jugate setting outperforms the non-conjugate for the priors with exponential tails
whereas the ordering is reversed for the priors with polynomial tails. The exponen-
tial tailed priors provide poor density forecasts (high LPS) if the non-conjugate prior
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is used with a vague prior for σ2. This is improved by using a half-Cauchy prior for
σ2 but the performance with the DL is still poor and so the use of a non-conjugate
DL prior is not recommended (in contrast, the NG provides excellent performance).
The poor density forecasting performance is due to underestimation of σ2.

Conjugate Non-Conjugate
Method Vague Half-Cauchy Vague Half-Cauchy

MAE LPS MAE LPS MAE LPS MAE LPS
DL 0.36 0.90 0.36 0.90 0.43 7.19 0.43 2.56
NG 0.36 0.95 0.37 0.87 0.36 1.15 0.37 0.87
HS 0.45 1.00 0.45 0.99 0.42 0.94 0.43 0.95
RHS 0.44 0.96 0.44 0.97 0.41 0.92 0.41 0.91
NGG 0.43 0.97 0.44 0.98 0.42 0.95 0.43 0.96

Ridge 0.58
Lasso 0.63

Table 2: MAE and LPS results for the regression with molecular weight, fragments and
the interactions of fragments and molecular weight (bold best on MAE).

The prediction result for the regression with molecular weight, fragments and
the interactions of molecular weight and fragments are shown in Table 2. Here there
are many explanatory variable, p = 3149+3150 = 6299.Again the Bayesian methods
perform better than the classical methods. The Bayesian methods generally perform
slightly worse with this data than with the regression on the fragments only (with
the exception of the normal-gamma methods). Both the performance of the classical
methods deteriorate but a much greater degree than the Bayesian methods. The
improvement of the Dirichlet-Laplace prior over the Lasso is now 43% and slightly
less than the ridge estimator. This suggests that the Bayesian methods are more
robust to the inclusion of “noise” variables with little information value compared
to the classical estimator (even though, the lasso is designed to eliminate variables
with little predictive power). The relative performance of different Bayesian set-ups
is similar to fragments only case.

We now consider inference on the regression coefficients using these priors on the
full data set of 1704 observations. For each prior, the combination conjugate/non-
conjugate set-up and prior for σ2 which gives the smallest LPS is used. Figure 1
shows the posterior distribution of the regression coefficients summarized by their
posterior median and 95% credible interval. All methods are able to identify a very
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Figure 1: Fragments only, 1704 observations, the posterior distributions of the regression
coefficients shown using the posterior median (cross) and 95% credible interval (line)

similar set of regression coefficients whose 95% credible interval do not cross zero
which suggests the corresponding fragments have strong effects on activity. The
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exponential tailed priors (DL and NG) tend to lead to slighter wider credible inter-
vals for the other regression coefficients than the polynomial tailed priors (HS, RHS
and NGG). The difference in predictive performance leads to the conclusion that the
polynomial tailed priors are over-selecting regression coefficients (and so setting too
many too close to zero). The DL and NG priors do a better job in this data of balanc-
ing selection and shrinkage. This illustrates the importance of the tail properties of
the prior.

If we consider the regression model with molecular weight, fragments and in-
teractions of molecular weight and interactions, the results for the main effects of
fragments are shown in Figure 2 and results of the interactions between molecular
weight and fragments are shown in Figure 3. The inference about the main effects is
similar to the inference from the model without interactions but with larger credible
intervals for a lot of regression coefficients. Interestingly, the NG and RHS priors
provide inference which is closest to the inference in the model without interactions.
The inference about the interaction shows that there is little evidence of substantial
effects. The inference with the HS and DL priors shows that there is some evidence
of sizeable effects for a few interactions. However, the corresponding posterior me-
dians are very close to zero. This combined with the cross-validation results suggest
that these interactions only worsen predictive performance.

6 Discussion

Global-local prior distributions offer effective alternatives to the more classical op-
tions of ridge and lasso regression. They give accurate predictions in the drug dis-
covery example and offer estimates which can be examined by the usual array of
inferential and display diagnostics. They can show the important variables in the
linear model and are able to be scaled up to large problems of several thousand
parameters.

In comparing different prior distributions the characteristic of importance is the
tail behaviour and the spike at zero. Tails should be at least as fat as an exponential
but not too fat. The normal distribution itself, leading to ridge shrinkage, has tails
that are too thin and inference will be pushed towards vagaries in the data. In this
chemometric study the two prior distributions that come out best are those with
exponential tails (NG and DL), and not those with polynomial tails that tend to
shrink out regression variables too readily in the case of HS and NGG as anticipated
in Griffin and Brown (2011). The classical lasso and ridge do not fare well. Whilst
the lasso has the fat exponential tail its classical formulation requires maximising
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Figure 2: Full model (fragments plus MW interactions), 1704 observations, the posterior
distributions of the fragments main effects using the posterior median (cross) and 95%
credible interval (line)

rather than integration and such averaging is beneficial for inference.
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Figure 3: Full model (fragments plus MW interactions), 1704 observations, the posterior
distributions of the interaction with MW coefficients using the posterior median (cross)
and 95% credible interval (line)
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