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Abstract (250 / 250 words)  

Purpose: To conduct a simplified lesion-detection task of a low-dose (LD) PET-CT protocol for frequent lung 

screening using 30% of the effective PETCT dose and to investigate the feasibility of increasing clinical value of 

low-statistics scans using machine learning. 

Methods: We acquired 33 SD PET images, of which 13 had actual LD (ALD) PET, and simulated LD (SLD) 

PET images at seven different count levels from the SD PET scans. We employed image quality transfer (IQT), 

a machine learning algorithm that performs patch-regression to map parameters from low-quality to high-quality 

images. At each count level, patches extracted from 23 pairs of SD/SLD PET images were used to train three IQT 

models – global linear, single tree, and random forest regressions with cubic patch sizes of 3 and 5 voxels. The 

models were then used to estimate SD images from LD images at each count level for 10 unseen subjects. Lesion-

detection task was carried out on matched lesion-present and lesion-absent images. 

Results: LD PET-CT protocol yielded lesion detectability with sensitivity of 0.98 and specificity of 1. Random 

forest algorithm with cubic patch size of 5 allowed further 11.7% reduction in the effective PETCT dose without 

compromising lesion detectability, but underestimated SUV by 30%. 

Conclusion: LD PET-CT protocol was validated for lesion detection using ALD PET scans. Substantial image 

quality improvement or additional dose reduction while preserving clinical values can be achieved using machine 

learning methods though SUV quantification may be biased and adjustment of our research protocol is required 

for clinical use. 
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Abbreviations 

SD: Standard Dose, LD: Low-Dose, ALD: Actual Low-Dose, SLD: Simulated Low- 

Dose, IQT: Image Quality Transfer, PET: Positron Emission Tomography, CT: Computed Tomography, VOI: 

Volume of Interest, GL: Global Linear regression, ST: non-linear Single Tree regression, RF: non-linear Random 

Forest regression 

SUV: Standardized Uptake Values, NMSE: Normalized Mean-Square-Error, NMedSE: Normalized Median-

Square-Error, STD: Standard Deviation, CNR: Contrast-to-Noise Ratio, AUROC: Area Under Receiver Operating 

Characteristics Curve (Calculated parameters are italicized for ease of differentiation between names of images 

and metrics) 
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1. Introduction 

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide with 2.09 

million cases in 2018 [1]. As early lung cancer is typically asymptomatic, it is often diagnosed only at an advanced 

stage [2,3]. The systematic screening of subjects at risk using low-dose (LD) computed tomography (CT) can 

potentially lead to a reduction in lung cancer mortality by about 20% as demonstrated in large screening trials 

[3,4]. However, screening using CT has high sensitivity for detecting small cancerous lesions [4] but at the cost 

of false-positive rates over 90% [5]. This leads to over-diagnosis resulting in unnecessary complications of 

incurring excessive cost, anxiety, and inconvenience associated with unnecessary investigation of subjects without 

lung cancer. Positron Emission Tomography (PET) imaging with [18F]fluorodeoxyglucose ([18F]FDG) provides 

crucial metabolic information, which allows for better differentiation between malignant tumors and benign 

tumors, and facilitates the detection of nodal and distant metastases, particularly in the bone [2]. PET was shown 

to yield high sensitivity and specificity, which, when combined with CT anatomical information, overcomes the 

shortcoming of CT screening [3]. However, a PET-CT scan adds a median radiation exposure of 4.0 (1.2 – 28.8) 

mSv to patients with a 4 MBq/kg injection of [18F]FDG, compared to that from LD CT of about 1.0 mSv [6]. 

Thus, the widespread use of PET-CT for the frequent screening of patients at risk, and disease surveillance after 

treatment, would require LD PET-CT protocols to minimize radiation exposure [7].  

While many studies investigated lesion detectability and staging capability with LD CT, little effort has gone into 

investigating the clinical use of LD PET protocol for lung cancer screening [7]. Reducing the radiation dose of 

PET increases the statistical noise in the reconstructed images, which can affect the ability to detect lung nodules, 

especially in early stages where they are often of limited size. We previously investigated the diagnostic value of 

LD PET images for lung lesion detection. Our results showed that PET dose could be reduced to 18.5 MBq leading 

to an effective patient dose of 0.4 mSv [6-8] without losing clinical significance. However, in this previous work, 

the assessment was performed using simulated LD PET (SLD) images that were generated by discarding detected 

counts from the actual standard dose (SD) PET scans. Simulated and actual low-dose (ALD) PET images may 

exhibit different image quality due to differences in the number of randoms, the level of deadtime of the system, 

and the quality of the attenuation correction. With this regard, we recently demonstrated that count decimation 

was a quantitatively accurate technique for emulating low-count scans [9]. In this work, we found no significant 

measured differences, between ALD and SLD images, in the standard metrics used to quantify regions of focal 

uptake such as mean and max SUV. In addition, we showed that despite the difference in random counts levels, 

ALD and SLD reconstructed images exhibited similar noise properties. Nevertheless, these metrics or image noise 

properties do not necessarily correlate with visual lesion detection performance as intrinsic variability of human 

observer’s performance is not only dependent on image noise and their performance consistency decreased at low 

signal-to-noise ratio (SNR) [10]. Therefore, for its clinical acceptance, it is essential to validate the LD-PET 

protocol using actual lesion detection task.  

Finally, in this previous work, no attempt was made to investigate the applicability of advanced image processing 

techniques in the context of lesion detection with the goal to increase the clinical value of PET images 

reconstructed from low-statistics scans. Machine Learning (ML) has recently gained immense credits in medical 

applications and has for instance proven to be an efficient avenue for mapping suboptimal image quality to high 

image quality with richer image content and lower noise. Albeit already well-accepted in structural imaging using 
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CT and Magnetic Resonance Imaging (MRI), ML for image quality improvement is still burgeoning for functional 

imaging such as PET. In this area, a few authors have nevertheless recently demonstrated the superiority of ML-

based approaches over several standard denoising methods, including Gaussian filter, anatomical-guided non-

local mean filter, and maximum a posterior reconstruction with Quadratic prior and relative difference prior, in 

terms of image quality and trade-off between noise and bias [11,12]. In these studies, classical metrics such as 

image error, lesions contrast to noise ratio, or difference in lesion SUV were employed for the assessment of the 

proposed methods and, to our knowledge, the advantage of ML-based approaches in the context of visual lesion 

detection task remains to be demonstrated. 

The first objective of this study was to conduct evaluation and validation of the LD PET-CT protocol using a 

simplified lesion-detection task by comparing, for the first time, on the same cohort, SD and ALD PET-CT. The 

second objective was to assess the image quality and detection performance obtained with a ML algorithm called 

Image Quality Transfer (IQT) [13] and to determine to which extent this technique allows to increase the clinical 

value of LD PET images or to further reduce the scan statistics without trading the detection accuracy.  

2. Methods and Materials 

2.1.  Image acquisition 

Thirty-three subjects (weight: 62.6 ± 14.0 kg) with biopsy-proven malignancy in the lungs were recruited for this 

study. Written informed consent was obtained before their recruitment into the study and ethics approval was 

given by the Institutional Review Board. The PET data were acquired on the Biograph mCT (Siemens Healthcare 

Molecular Imaging, USA) in list-mode format. Thirteen subjects had LD PET scans followed by SD PET scans, 

while the remaining twenty subjects had only SD PET scans.  

The LD PET-CT protocol consisted of 1 (3 subjects only) or 2 bed-positions of 10 min each, covering the entire 

lungs using our previously described imaging protocol [9], 60 min post-injection of [18F]FDG (27.0 ± 4.00 MBq). 

For the LD protocol, the CT parameters were 120 kVp, 40 mAs (careDose) with a pitch of 1. The use of LD-CT 

protocol has been demonstrated to retain the accuracy of CT-derived attenuation correction of SD CT protocol 

[9,14]. The SD PET-CT acquisitions followed the same protocol except for the injection of a SD of [18F]FDG 

(221 ± 5.68 MBq) as well as the use of 140 mAs (careDose) and a pitch 1.5 for the CT acquisition. Subjects were 

instructed to void the bladder before being positioned on the scanning bed. Also, an additional 30 min waiting 

time was imposed before the SD injection for subjects who underwent LD PET scans to limit the contribution of 

the remaining activity into the acquired SD scans. We estimated that activity from the 1st scan accounted for only 

about 6% of the total activity at the time of the SD scan [9]. The average estimated total effective dose is 2.39 ± 

1.83 mSv and 5.34 ± 2.32 mSv for all LD-CT and SD-CT scans.  

2.2.  Low-dose simulation and image reconstruction 

A total of 7 count levels of SLD with expected net trues count levels (prompts – randoms events) of 0.25, 0.5, 1.0, 

2.0, 5.0, 7.5 and 10 million (M) were generated from the SD PET data by randomly discarding events from the 

list-mode using our previously published method. For each of these count levels, 5 independent realizations were 

generated per subject from their SD PET scan. The number of true counts, average percentage of true counts in 

the SLD images compared to that of SD images, and the corresponding estimated injected dose and effective dose 

are reported in Table 1 for each of the 7 count levels, as well as that for ALD.  
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Count levels 0.25 0.5 1 2 5 7.5 10 ALD* SD 

Counts (x106 ) 
0.253 ± 

0.002 

0.506 ± 

0.005  

1.012 ± 

0.010 

2.025 ± 

0.019 

5.062 ± 

0.048 

7.593 ± 

0.072 

10.123 ± 

0.096 

17.261 ± 

8.257 

128.264 ± 

47.120  

% counts / full 

counts 
0.20 0.39 0.79 1.58 3.95 5.92 7.89 12.2 100 

Dose (MBq) 0.44 0.87 1.74 3.49 8.72 13.1 17.4 27.0 221 

Effective PET 

dose (mSv) 
0.01 0.02 0.03 0.07 0.17 0.25 0.33 0.51 4.20 

Effective PETCT 

dose (mSv) 
2.40 2.41 2.42 2.46 2.56 2.64 2.72 2.90 9.54 

% Reduction in 

overall dose 
74.9 74.8 74.6 74.2 73.2 72.3 71.5 69.6 100 

Table 1: Actual counts (average ± standard deviation) of the simulated low-dose (SLD) realizations at each count 

level and actual low-dose (ALD), and average percentage of true counts to the true counts of standard dose (SD) 

PET scan. The scans were acquired with 1-2 bed positions of 10 min each. The average dose of SLD at each count 

level was approximated by multiplying the fractional true counts at each level with the averaged standard dose of 

221 MBq injected to all 33 subjects. The effective dose was estimated with reference to ICRP Publication 128. * 

Actual counts and injected dose of 13 subjects only. 

All PET scans were reconstructed using JSRecon and e7tools with the constructor implementation of the ordinary 

Poisson ordered-subset expectation-maximization (OP-OSEM) algorithm, with all corrections including time-of-

flight information, and system resolution modeling with 2 iterations and 21 subsets. Each reconstructed image 

consisted of a 400 × 400 × 171 matrix with voxel size of 2.04 mm × 2.04 mm × 2.03 mm. The PET images were 

converted to NIFTI format and normalized by injected dose and subject’s weight to obtain the standardized uptake 

value (SUV) SD, ALD, and SLD PET images.  

2.3. IQT training 

IQT is a machine learning technique that was originally proposed to enhance information content and resolution 

of low-quality diffusion MR images [13]. In this work, the patch-regression process that learns the correction 

mapping from matched pairs of low-quality and high-quality PET images was adapted to identify similarities 

between pairs obtained at the same spatial resolution but reconstructed from scans with different statistics; a LD 

scan and its corresponding SD scan. The mapping was learned independently for each voxel from its direct 

neighbors within 3D patches. Three regression models: Global linear (GL), non-linear single tree (ST), and 

random forest (RF) models were implemented and trained. Overfitting was controlled by using half of the training 

data for validation. The learned mappings were then used to map low-quality, LD PET images to high-quality, 

SD images, and the training performance was evaluated using the root median squared error (RMedSE) between 

the estimated and ground-truth SD images. IQT was written in Matlab and the training and output estimation steps 

were carried out on Matlab version R2017b (The MathWorks, Inc., Natick, Massachusetts, US). 

The general process is illustrated in figure 1. To allow comparison with ALD, data of the last 10 subjects who had 

both ALD and SD scans were selected for evaluation while the remaining twenty-three subjects were used for 

training (Fig. 1, step 1). Masks were generated for all subjects covering all the lung space and body on the SD 

PET images but excluding the top and bottom 10 transverse slices, which contained higher noise due to their 

proximity to the end of the field of view (Fig. 1, step 2). For each count level, 5 realizations of SLD were generated 

from the 23 SD training images and 3 from the 10 SD evaluation images, leading to 115 and 30 matched pairs of 

SD/SLD dataset for training and evaluation (Fig.1, step 3). The IQT algorithms were trained to map SLD to SD 

images, with patch regression performed using only voxels within the mask and with cubic patch sizes of 3 and 5 
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voxels (Fig. 1, step 4). For each count level, each trained model was finally used to estimate the SD estimate from 

the SLD images of the ten unseen subjects (Fig. 1, step 5).  

 

Fig. 1: Overview of steps taken to (1) split the dataset into training and evaluation datasets, (2) generate mask 

from standard dose (SD) PET images, (3) simulate the low-dose (SLD) images from SD PET images, (4) train the 

IQT algorithms using a set of SD, mask and SLD images for each subject at each count level and (5) estimate SD 

images from SLD images using the trained IQT algorithms – GL, ST, and RF regressions, with 3 and 5 cubic 

patch sizes, for all SLD of each evaluation subject for all 7 count levels. 

2.4.  Image analysis 

A total of 19 isolated lesions of various sizes and contrasts were identified within and near lung regions, including 

bone and lymph node metastasis from the 10 evaluation subjects using their SD image. The presence and location 

of true isolated lesions were confirmed by an experienced nuclear medicine physician. ALD images were 

registered to the SLD images for ease of visual comparison of the same lesion. Lesion volume of interest (VOI) 

was obtained by seeding on the highest value of each suspected lesion on the SD and ALD PET images with a 

40% threshold. The lesion’s volume was defined as the number of voxels in the lesion multiplied by the PET 

image’s voxel volume of 8.45 mm3 [7]. The SD-VOIs were used to obtain the SUV of lesions in the SD and SLD 

images, while the ALD-VOIs were applied only to ALD images. The length of the lesion was defined on the major 

axes in pixels then multiplied by the voxel size of 2.04 cm. SUVs were also measured for each subject in normal 

tissues of the lung air spaces, muscles, and liver using cubic VOIs of 32.6 x 32.6 x 32.5 mm3 that were defined 

from the SD image. 

Normalized mean-square-error (NMSE) and normalized median-square-error (NMedSE) of the SLD and IQT-

estimated images from the original SD images were calculated within the masked region [11]: 

𝑁𝑀𝑆𝐸 =

‖𝐼𝑆𝐿𝐷
𝐼𝑄𝑇

− 𝐼𝑆𝐷‖2
2

‖𝐼𝑆𝐷‖2
2  

(1) 

Where ISD refers to the entire reference image, in this case, the SD image and ISLD/IQT refers to SLD or IQT-

estimated images. Mean is replaced with the median to obtain NMedSE.  
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Contrast-to-noise ratio (CNR) of the lesion to background was determined using the following equation [15]: 

𝐶𝑁𝑅 =
𝑆𝑈𝑉𝑀𝐸𝐴𝑁𝐿𝑒𝑠𝑖𝑜𝑛 − 𝑆𝑈𝑉𝑀𝑒𝑎𝑛𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑆𝑈𝑉𝑆𝑇𝐷𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 (2) 

 where SUVSTD refers to the standard deviation of SUV measured in the lung tissue.  

2.5.  Lesion Detection Task 

A lesion-detection task was carried out with two distinct objectives: 1) to validate using the ALD scans, the LD 

PET-CT protocol for lesion detection and 2) to investigate performance improvement in the lesion detection 

obtained with IQT machine learning. The best IQT algorithm that yielded the most reliable and accurate estimated 

images were determined using NMSE and CNR, together with visual assessment. The detection task was 

performed by two experienced post-doctoral researchers in PET and one medical physicist (MSc) with 10 years 

of lesion detection and image segmentation experience.  

Two sets of 266 (19 lesions x 7 count levels x 2 (paired lesion-present and lesion-absent)) images each were 

generated, showing the transverse, coronal and sagittal sections of SLD images and their corresponding images, 

estimated using the best algorithm in IQT. All the images were set to the same image intensity range of 0-5. The 

images were stratified by image-type (e.g. simulated vs. IQT-estimated) and randomly presented regardless of 

count levels to avoid bias [16]. Cubic VOIs with dimensions of 32.6 x 32.6 x 32.5 mm were placed over each 

lesion on the SLD and corresponding IQT-estimated images centered at voxel with the highest SUV value. 

Similarly, VOIs of the same dimension were placed in the lung tissues, away from surrounding lesions and other 

tissues (e.g. bone), thus generating a population of matched lesion-present (Fig. 2a) and lesion-absent images (Fig. 

2b). Besides, high-quality estimates of ALD images (IQT-ALD) were produced using the best IQT model trained 

using the 10M count level SLD dataset, which corresponds to the closest statistics. Raters were given the SLD 

dataset on the first day followed by the IQT-estimated dataset on the next day. The ALD dataset was given a few 

days later with the IQT-ALD dataset on the following day, using a set of 19 matched lesion-present and lesion-

absent images. This was done to avoid bias in rating based on image type and for the observers to remember the 

images.  
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Fig. 2: Three orthogonal views (from left to right: transverse, coronal, and sagittal) of SLD or IQT-estimated 

images shown in lesion detection task for (a) lesion-present and (b) lesion-absent in the cubic volume, highlighted 

in red. The example used here shows the SLD image of a subject at 7.5M count level.  

Human observers were asked to use a five-point rating scale to report their confidence in identifying the lesion, 

with 1 representing 100% confidence of no lesion and 5 representing 100% confidence of a lesion [7]. A lesion 

was assumed to be detectable by the observer if it was given a confidence rating of 3 or more, to mimic the clinical 

situation of detecting all suspicious lesions. They were given the SLD dataset on the first day followed by the 

IQT-estimated dataset on the next day. The ALD dataset was given a few days later with the IQT-ALD dataset on 

the following day. This was done to avoid bias in rating based on image type and for the observers to remember 

the images. For each observer, the average confidence ratings for lesion-present and lesion-absent of SLD and 

IQT-estimated images were determined at each count level, as well as for ALD and IQT-ALD images. The area 

under the receiver operating characteristics curve (AUROC) was estimated non-parametrically for the 

performances of human observers on ALD, SLD, and IQT-estimated images.  

3. Results 

3.1. Lesion Delineation 

A total of 19 isolated lesions were delineated in 10 subjects as shown in Table 2. The volumes of the lesions 

generated using SD and ALD images were 0.92 ± 1.69 cm3 (Median, [1st quartile, 3rd quartile]: 0.27 [0.18, 0.62]) 

and 1.07 ± 1.82 cm3 (0.41 [0.18, 0.49]). The SUVMEAN of SD and ALD images were 4.46 ± 2.63 (3.64 [2.54, 5.85]) 

and 4.08 ± 2.52 (3.78 [2.03, 5.45]), while the SUVMAX were 7.17 ± 4.56 (6.14 [3.42, 9.45]) and 6.59 ± 4.28 (5.97 

[2.90, 8.26]). Significant difference was only found in SUVMEAN of the lesions generated using SD and ALD 

images (Wilcoxon signed-rank, p < 0.05). However, after excluding 3 lesions in subjects that moved during the 

ALD scans, no significant difference was observed.  

Lesion Subject 
Weight 

(kg) 
Histology 

TNM 

Stage 
Lesion Type 

SD PET  ALD PET 

Vol Length SUVMEAN SUVMAX  Vol Length SUVMEAN SUVMAX 

1 1 44.1 ADC IV Lung nodule 0.55 1.04 4.06 8.22  0.50 1.00 3.50 6.33 

2 2 55.7 ADC IIIA Lung nodule 1.75 1.61 4.01 7.97  1.70 1.63 3.79 8.21 
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3 3 66.6 ADC IIIB Lung nodule 0.40 1.28 1.68 2.27  0.43 1.41 1.43 2.19 

4  Lymph node 0.18 0.70 2.74 3.71  0.47 1.14 1.49 2.04 

5  Lung nodule 0.19 0.97 6.01 7.95  0.18 1.12 6.19 8.31 

6 4 33.8 ADC * Bone 0.13 0.83 2.36 3.14  0.11 0.64 2.26 3.12 

7  Lymph node 0.27 1.05 1.95 2.62  0.08 0.77 4.04 5.53 

8  Bone 0.16 0.71 2.90 3.96  0.18 1.17 2.33 3.14 

9 5 77.0 RCC IV Lymph node 0.69 1.13 3.64 4.94  0.41 1.05 3.78 5.20 

10  Lung nodule 0.24 0.91 1.88 2.55  0.45 1.24 1.33 1.84 

11 6 64.6 ADC IV Lung nodule 0.13 0.83 4.79 6.14  0.13 0.84 5.10 7.17 

12  Lung nodule 0.10 0.69 10.36 14.19  0.13 0.71 9.10 12.22 

13  Lung nodule 0.23 0.85 9.35 17.23  0.24 0.88 8.66 14.48 

14  Bone 0.43 1.32 5.70 10.68  0.48 1.39 5.80 11.22 

15 7# 73.9 ADC * Lung nodule 0.33 1.24 3.58 4.77  0.30 1.43 1.48 2.12 

16  Lung nodule 0.24 0.84 6.10 11.62  0.38 1.00 4.39 7.78 

17 8 59.8 ADC IV Lung nodule 3.30 2.61 2.71 6.46  3.17 2.53 2.69 5.97 

18 9 45.1 ADC IA3 Lung nodule 7.12 2.50 8.80 14.66  7.25 2.55 8.33 15.62 

19 10# 74.8 ADC * Lymph node 1.06 1.84 2.18 3.05  3.79 5.00 1.81 2.69 

Table 2: Characteristics of 19 identified lesions in the selected 10 evaluation subjects with SD and ALD PET 

images. Vol refers to the volume of the lesion (cm3). Length refers to the length of the major axes of the lesion 

(cm). ADC = Adenocarcinoma, RCC = Renal cell carcinoma. *Staging was not carried out. #Lesions shifted due 

to subject motion in ALD. 

 

3.2. Image Error – NMedSE and NMSE  

Fig. 3 shows the average NMSE and NMedSE measured between the SLD or IQT-estimated images and the SD 

images from the 10 unseen subjects. As expected, NMSE and NMedSE increased with decreasing true counts for 

both SLD and IQT-estimated images. However, we can appreciate the substantial reduction of the NMSE and 

NMedSE that was obtained using IQT. Moreover, the patch size of 5 yielded more accurate estimates than the 

patch size of 3. Overall, RF regression yielded the best performances across all count levels. IQT was able to 

estimate high-quality images with NMSE of less than 0.2 and NMedSE of less than 0.05 down to 5M count levels, 

beyond which the errors increased more steeply. The root mean square error and root median square error resulting 

from the IQT correction process are shown in supplementary figure 1. 

 

Fig. 3: (a) Average normalized mean-square error (NMSE) and (b) average normalized median-square-error 

(NMedSE) of the SLD images (white), and the IQT-estimated images, using GL (gray), ST (green) and RF (blue) 

regression algorithms with patch sizes of 3 (light-shade) and 5 (dark-shade) with respect to the SD images of 10 

evaluation subjects within the masked regions. Each evaluation subject has 3 SLD and 3 corresponding IQT-

estimated images. 

3.3. Lesion-to-background contrast  

The CNR increased steadily with increasing true counts for both SLD and IQT-estimated images (Fig. 4). The 

proposed LD protocol yielded ALD images with a CNR that is half of the SD images while reducing by roughly 

8 times the subject exposure (Table 1). All IQT models improved the CNR of the estimated images across all 
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count levels, however with a noticeable advantage for the ST and RF models using a patch size of 5. Larger patch 

size of 7 or more may improve the results, but we are limited by our computational capabilities. The relative 

increase in CNR obtained with IQT compared to the unprocessed SLD images decreases slightly with increasing 

count levels, with for instance a relative increase of 121% at 0.25M count level and 82% at 10M count level 

observed with RF5. We can note that RF5 and ST5 could estimate images from the 7.5M count level SLD images 

with CNR higher than the proposed low-dose protocol (ALD), potentially allowing an additional reduction by 

50% of the injected dose from 27.0 MBq with the current protocol down to 13.1 MBq.  

 

Fig. 4: Average contrast-to-noise (CNR) of SLD/ALD (white), and the IQT-estimated images, using GL (gray), 

ST (green) and RF (blue) algorithms with patch sizes of 3 (light-shade) and 5 (dark-shade) with respect to the SD 

images for 10 evaluation subjects. Each evaluation subject has 3 SLD and 3 corresponding IQT-estimated images. 

The black and red lines indicate the CNR of SD and ALD images. 

3.4. Bias in SUV 

Fig. 5 shows the SUVMEAN and SUVMAX of the lesions, lung air spaces, muscles, and liver of the SD, SLD and 

IQT-estimated images. The bias in SUVMEAN of 19 lesions resulting from the IQT correction process are shown in 

supplementary figure 2. We can note that the SUVMEAN and SUVMAX of the lesions were underestimated by over 

30% even for ALD and SLD images of 10M count levels. 
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Fig. 5: (a) SUVMEAN and (b) SUVMAX of all 19 lesions, (c) SUVMEAN and (d) SUVMAX of lung air spaces, (e) 

SUVMEAN and (f) SUVMAX of muscles, and (g) SUVMEAN and (h) SUVMAX of liver. The values were averaged across 

3 realizations of SLD (white) and their corresponding IQT-estimated images using global linear (GL, gray), non-

linear single tree (ST, green) and non-linear random forest (RF, blue) regression algorithms, with 3×3×3 (light 

shade) and 5×5×5 (dark shade) patch sizes. The dotted line refers to the averaged values obtained using the SD 

images of 10 evaluation subjects. Significant differences in (a) SUVMEAN and (b) SUVMAX of lesions (Wilcoxon 

signed-rank test, p < 0.05) were generally found across different count levels within each image-type and across 

the different image types at each count level except between SLD and SD above 1M counts. 

3.5. Lesion Detection Task 

Fig. 6 shows the coronal views of the SLD and IQT-estimated PET images obtained from the 7 different count 

levels for one subject. The corresponding SD, ALD PET images as well as the mask generated from the SD image 

are also shown. This subject presents only one small lesion that can be observed with reasonable confidence from 
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both SLD and IQT-estimated images down to about 2M count level. Below this level, the SLD image 

demonstrated unclear tissue boundaries due to decreasing true counts. IQT-estimated images showed improved 

image quality across all count levels compared to the SLD images with an observable image superiority, in terms 

of clearer tissue boundaries and reduced noise, when estimated with ST and RF regression using a patch size of 

5. However, the lesion can hardly be observed from 2M count level and below. As observed in Fig. 6, ST and RF 

regressions using a patch size of 5 produced image estimates from the 5M and 7.5M count levels of similar or 

higher quality than the ALD images. 

 

Fig. 6: Image qualities of the SD, ALD, and the SLD and IQT-estimated images at 7 different count levels of one 

subject with one small lesion (highlighted by the red arrow) visible in the selected coronal slice. IQT-estimated 

images were estimated using GL, ST, and RF regression algorithms, with cubic patch sizes of 3 and 5. All the 

images are viewed at the same image intensity range at the same slice. The body mask was generated using the 

SD image for IQT-training.  

Although ST with cubic patch size of 5 generally yielded the smallest biases in SUVMEAN and SUVMAX (refer to 

supplementary fig. 2) and highest CNR (Fig. 4), RF with cubic patch size of 5 generally resulted in smallest image 

error and the quality of the estimated images appeared higher during the visual assessment. As such, the images 

estimated using RF with cubic patch size of 5 were selected for further evaluation in the lesion detection task. 

Fig. 7 shows the average confidence level rated by the three observers (a), sensitivity (b), specificity (c), and the 

average AUROC (d) for ALD, SLD, and for the corresponding IQT-estimated images obtained with RF5. The 

confidence rating of true lesions shown in Fig. 7a steadily increased with increasing count levels and eventually 
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plateaued at 4.7 from 7.5M count levels, indicating that not all lesions were identified with 100% confidence. We 

can observe that IQT did not increase the confidence for the detection of true lesion except at very low counts (< 

1M). This higher confidence level at low counts did not translate in an increase of the sensitivity (Fig. 7b). 

However, non-lesions were rated with higher confidence in IQT-estimated images than on the SLD images and 

with a much smaller variance across observers. The corresponding reduction in the false-positive rate led to a 

substantial increase in the specificity (Fig. 7c) and of the AUROC (Fig. 7d). The AUROC also showed that without 

IQT, only ALD images yielded AUROC close to 1, providing further validation evidence for this LD PET 

protocol. However, the use of IQT allowed a further reduction of the dose down to 7.5M count levels while 

preserving true/false lesion discrimination power.  On the whole, IQT substantially improved the specificity across 

all count levels than SLD images.  

 

Fig. 7: Results of lesion detection tasks carried out by 3 human observers: (a) confidence rating of SLD or ALD 

(∆--) and IQT-estimated (○-) images of true / lesions (filled marker) and false / non-lesion regions (unfilled 

marker), and the (b) Sensitivity, (c) Specificity and (d) area under the receiver operating curve (AUROC), in lesion 

detection for SLD (▲--) and IQT-estimated (●-) images. The parameters were averaged over the 3 human 

observers and the STD of their performance are shown in the error bar across the different count levels of SLD 

images and ALD images, each consisting of 19 matched lesion-present and lesion-absent images.  

4. Discussion 

In this study, we evaluated the image quality of LD PET images and validated their clinical value for lesion 

detectability. The feasibility to use IQT, a machine learning regression method, to increase the image quality of 

low-statistics scans or to further reduce the dose while maintaining the image quality for lesion detections was 

also investigated. 

4.1. Validation of the low-dose PET-CT protocol 
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We first conducted a validation of a LD PET-CT protocol for frequent lung screening. This was developed from 

previous work [9] that showed using simulated PET data, the PET dose could be reduced to 8% of a SD (roughly 

18.5 MBq) without losing clinical significance, leading to an effective patient dose of 0.4 mSv. However, as 

pointed out in this preliminary work, it is preferable to use a dose slightly higher than this lower limit as the benefit 

of improved accuracy from PET would far outweigh the small risk associated with these levels of radiation. Under 

the LD PET-CT protocol in this study, the subjects received an average dose of 27 MBq of [18F]FDG, which 

corresponds to 12% of a standard PET dose, with a 55% reduction in CT dose. The results showed that although 

lesion contrast was reduced by about half in LD PET, there was no significant difference in lesion volume, length, 

SUVMEAN, and SUVMAX. We then assessed whether there was any loss in lesion detectability with the LD PET-CT 

protocol as compared to SD PET-CT. A lesion detection task was carried out using a matched dataset of lesion-

present and lesion-absent images instead of asking the human observers to locate and detect all the lesions. This 

was done to ensure a more consistent and error-free method of comparing the ability to detect the same lesion and 

differentiate lesion from non-lesion region for a large number of datasets. 

The outcome of this task was only one missed lesion by one rater, leading to a sensitivity of 0.98. The missed 

lesion is close to the lung wall, and is small (see lesion 10 in Table 2) making it hard to distinguish it from the 

background noise and texture (refer to supplementary fig. 3). No false positive was observed with the ALD images 

leading to a specificity of 1. Note that with the recommended dose based on our previous work (SLD at 10M 

count level), the task resulted in a total of 6 false positives and 2 false negatives among three raters, leading to a 

sensitivity of 0.965 and a specificity 0.895 and supporting our choice to slightly increase the dose. We can also 

observe from Fig.7 that, at least down to 5M count levels, decreasing the image quality did not impact much the 

sensitivity but had a significant effect on the specificity, meaning that under higher noise conditions we are 

tempted to see more lesions. With this regard, as discussed in the next section, IQT played a major role and led to 

improved image quality allowing raters to better distinguish true lesions from background noise. 

4.2. Feasibility of LD PET-CT protocol and use of AI in improving image quality 

In recent years, artificial intelligence has shown potential in recovering image quality of LD PET images for 

oncology and neurology applications [11,17-19]. In addition, computer-aided detection (CAD) systems were also 

developed to support the detection of lung nodules using machine learning or deep learning. Some studies showed 

the use of automated detection of lesions at ultralow PET-CT dose of 0.11 mSv using deep learning [17,20]. The 

use of AI showed great potential even at ultralow dose, but the final diagnosis still relies on the radiologist’s 

decision to agree with the CAD’s results. Therefore, the image quality of the LD PET-CT images must still be 

good to ensure the detection of all lesions while ensuring no false positives. These previous studies showed that 

images enhanced using ML approaches are characterized by higher CNR and SNR mainly due to noise removal.  

Our results showed indeed reduced noise in IQT-estimated images resulting in higher CNR (Fig. 4) and lower 

image error (Fig. 3) with NMedSE below 0.1 and NMSE below 0.2 even down to 5M count level (3.95% counts 

of SD images). These results are relatively similar to those obtained by Lu et al [11] with LD of 10% counts of 

SD images. However, we had higher biases in SUVMEAN of about 30% compared to Lu et al [11] who obtained 

about 15% bias in SUVMEAN using deep learning, with 10 lesions of fairly similar length (0.85 ± 0.52 mm) to the 

lesions used in our study. This may indicate that deep learning was able to better estimate the uptake in lesions. 
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We intend to implement the more recent IQT techniques that utilize deep learning via convolutional neural 

networks, which might lead to better estimation of SD PET images from LD images [20,21].  

ML-enhanced images might also exhibit different textures and noise granularity, whereas lower than regular PET 

images. This might add to confound raters that are more familiar to assess classical PET images, even at low 

counts. To our knowledge, this work reports for the first time lesion detection task outcomes from ML-enhanced 

PET images in the context of LD PET-CT lung screening. Our results showed that the increased image quality 

obtained with the IQT approach translated in a substantial reduction of false-positive across all count levels. This 

leads to a much higher specificity while maintaining high sensitivity, at least down to 5M count levels. The 

detection task using the ALD images that were enhanced with IQT resulted in the detection of all the lesions with 

no false positives. Overall, better agreement between readers was obtained with IQT with smaller variabilities 

than with SLD. Visually, the estimated images showed better body and lesion contours but appeared more 

pixelated probably due to “spaces” within SLD images (Fig. 6). Thus, the estimation of high-quality images using 

IQT may be limited to LD images above 5M true counts. Although IQT is limited by the number of true counts 

available for reliable estimation of SD PET images, our results showed that IQT was able to improve the image 

quality, in terms of lesion contrast (Fig. 3) and small lesions were detected with higher accuracy and confidence 

levels than SLD PET images down to 5M count levels (Fig. 7). This supports the use of IQT in improving low-

quality, LD PET images, which would allow the use of injected doses somewhere between 9 MBq and 18 MBq 

(Table 1).  

As already mentioned, reducing the dose to these ultralow levels is somehow debatable due to the small risk 

associated with the accompanying level of radiation. However, achieving the optimal LD image whose quality 

can be subsequently enriched with ML technology as we demonstrated with the ALD or even with the 10M count 

level images, is a more relevant application of IQT. Moreover, this developed IQT technology is applicable to 

many situations where PET images are reconstructed from low counting statistics scans. This is particularly the 

case in dynamic and/or gated PET acquisitions where total counts are split between each frame and gate. This is 

also the case in scanning protocols with shorter acquisition time in order to reduce motion artifacts with children 

or patients with conditions and may have difficulties in remaining still in the scanner. IQT may also be combined 

with motion correction approaches that rely on estimating the rigid motion parameters or motion fields from a 

first dynamic and/or gated reconstruction. Reducing the frame duration or increasing the number of gates to 

increase the temporal frequency of motion estimates leads to image degradation. IQT could help to increase the 

image quality of these short time frame images enabling either an increase in accuracy of the motion parameters 

and/or motion fields or an increase of the temporal frequency of the motion parameters.  

4.3. Study Limitations 

Presented results are based on a 10 min acquisition for lung screening using the Siemens mCT scanner. With an 

axial field of view of 22.1 cm, this scanner offers a sensitivity of 10 cps/kBq [22]. Acquisition times and/or 

injected activities should be proportionally adjusted to obtain the counting statistics presented in table 1 with 

scanners less sensitive. However, due to faster electronics and increased axial field of view, most of the modern 

scanners offer similar or higher performance with sensitivities ranging from 13.3 cps/kBq for the Siemens 

synchronous PET-MR scanner and the GE DMI PET/CT system [23], to more than 20 cps/kBq for the SIGNATM 

[24] and the DIQ PET/CT system [25] from General Electric. Higher sensitivities would potentially allow further 
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reduction of the acquisition time and/or of the injected dose while preserving the image quality. The reported dose 

reduction obtained with the ALD protocol is based on a 10 min acquisition research protocol for lung screening 

using the Siemens mCT scanner, which does not translate directly to standard clinical protocols. However, same 

scan statistics can be reached using a 3 min bed acquisition as in standard whole-body PET imaging, but with a 

corresponding injected dose 3.33 times higher than our proposed injected LD in order to compensate for the 

shorter acquisition time. This would lead to an effective PET dose corresponding to 40% of the effective dose 

obtained with a SD PET. When combined with the dose induced by the CT, the overall effective dose of a LD 3 

min bed acquisition would be 43% of that of a SD. Based on the results obtained with the 7.5 M counts scans, 

IQT technology would allow further reductions leading to an overall effective dose of 34% of that of a standard 

whole-body PET scan. However, background tissue activity and inhomogeneity are other determinant factors 

impacting our capacity to detect lesions, and the translation of the lung lesion detection performance presented 

here is hardly translatable to whole-body screening.  

Significant difference was obtained for SUVMEAN only when all lesions were included, despite a small difference 

in SUVMEAN and SUVMAX between SD and ALD of -7.39% and -5.59%. However, no significance was observed 

after excluding 3 lesions in subjects that moved, indicating that our study may be underpowered. In addition, 

SUVMAX from ALD was unexpectedly lower than that from SD, though the difference is expected to be very small 

(Fig. 5b). ALD and SD are coming from different acquisitions, leading to the inclusion of other sources of 

variability, which might explain this surprising finding (and contrary to SLD and SD).  Motion in ALD scans and 

other sources of variabilities may have contributed to the need for larger samples. Images were provided to raters 

using 2D views in 3 orthogonal directions for visual assessment to shorten the assessment time, and to ensure 

consistency in assessment. The visual assessment might have been more accurate using a 3D visualization 

program allowing human observers to scroll through the slices. However, this is time-consuming and the need to 

load many images may lead to errors in classification. We made every attempt to standardize the observer task by 

selecting lesions that can be isolated within cubic VOIs, and small in volume (not exceeding 25% of the cubic 

volume) to avoid confusion of reading multiple lesions per image and have an experienced medical physicist to 

verify the selected lesions before we started the task. Notwithstanding this, there is always the possibility for bias 

in a study such as this as all the lesions were identified by only one nuclear medicine physician once, and different 

physicians may not agree with identified lesions and even within themselves.  

5. Conclusions 

Only one small lesion out of 19 was missed by a single rater out of 3 using the proposed LD PET-CT protocol, 

which allows a reduction of the exposure to patients to 43% of the standard protocol. In addition, although lesion 

contrast was reduced by about half in LD PET, there was no significant difference in lesion volume, length, 

SUVMEAN, and SUVMAX. These results obtained validated the use of our proposed LD PET-CT protocol for frequent 

lung cancer screening. RF algorithm with a cubic patch size of 5 yielded the lowest NMedSE and NMSE and the 

estimated images appeared better during the manual visual assessment. IQT-estimated images yielded higher 

specificity and lesion contrast than SLD images, indicating an improvement in visual image quality and accuracy 

in lesion detection. Estimation of high-quality images using IQT can be achieved using SLD images with about 

5-7.5M true counts without any loss in lesion detection, potentially enabling further reduction in radiation 
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exposure to 34% of SD PET-CT protocol. However, enriching the image content of LD PET images obtained 

with our current protocol is a more relevant application of IQT. 

 

Journal policies detailed in this guide have been reviewed. 
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Supplementary Materials 

 

Supplementary Fig. 1: (A) Average root-mean-square error (RMSE) and (B) average root-median-square-error 

(RMedSE)of the SLD images (white), and the IQT-estimated images, using global linear (GL, gray), non-linear 

single tree (ST, green) and random forest (RF, blue) regression algorithms with patch sizes of 3 (light-shade) and 

5 (dark-shade) with respect to the SD images of 10 evaluation subjects within the masked regions. Each evaluation 

subject has 3 SLD and 3 corresponding IQT-estimated images. 

 

 

Supplementary Fig. 2: Average bias in (a) SUVMEAN and (b) SUVMAX between the SLD images (white), and the 

IQT-estimated images, using global linear (GL, gray), non-linear single tree (ST, green) and random forest (RF, 

blue) regression algorithms with patch sizes of 3 (light-shade) and 5 (dark-shade) with respect to the SD images 

of 10 evaluation subjects with a total of 19 lesions. Each evaluation subject has 3 SLD and 3 corresponding IQT-

estimated images per algorithm, but one ALD, and only one IQT-estimated image per algorithm. Bias in SUV is 

determined as 
𝑆𝑈𝑉𝑆𝐿𝐷

𝐼𝑄𝑇

−𝑆𝑈𝑉𝑆𝐷

𝑆𝑈𝑉𝑆𝐷
× 100%.      

 

 



21 
 

 

Supplementary Fig. 3: Orthogonal views of (a) SD and (b) ALD images of a subject, with a small lesion in the 

cubic volume, highlighted in red, as displayed in the lesion detection task.  


