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Abstract—Genetic improvement (GI) tools find improved pro-
gram versions by modifying the initial program. These can be
used for the purpose of automated program repair (APR). GI
uses software transformations, called mutation operators, such
as deletions, insertions, and replacements of code fragments.
Current operator selection strategies, however, under-explore the
search spaces of insertion and replacement operators. Therefore,
we implement a uniform operator selection strategy based on
the relative operator search space sizes. We evaluate it on the
QuixBugs repair benchmark and find that the uniform strategy
has the potential for improving APR tool performance. We also
analyse the efficacy of the different mutation operators with
regard to the type of code fragment they are applied to. We find
that, for all operators, choosing expression statements as target
statements is the most successful for finding program variants
with improved or preserved fitness (50.03%, 33.12% and 23.85%
for deletions, insertions and replacements, respectively), whereas
choosing declaration statements is the least effective (3.16%,
10.82% and 3.14% for deletions, insertions and replacements).

I. INTRODUCTION

Genetic improvement (GI) is a software engineering tech-
nique aiming to improve both functional and non-functional
properties of software by utilising search-based techniques [1].
GI can be used as a strategy for automated program repair
(APR), when software bugs, usually exposed by failing test
cases within a test suite, are fixed in an automatic way [2].
Test suite based APR tools aim to find a patch, that would
modify the software in a way such that it passes all the test
cases from the test suite [3], [4].

Search-based APR tools use software transformations —
mutations — to generate new program variants for evaluation.
The most commonly used mutation operators are: deletion
(removes a fragment of the program), insertion (copies a
fragment of the program and inserts it in a different place)
and replacement (replaces a fragment of the program with
another fragment) [2]. Fragments are typically a line in the
program source code or a node in the program abstract syntax
tree (AST), usually a statement.

One possible area for improvement of GI-based APR tools
is in the strategies for selecting and applying those mutation
operators. The state-of-the-art for operator selection strategy
leads to an unbalanced exploration of all possible ways the
different operators can be applied. Our idea is to implement
and evaluate a more fair strategy, that will allow for the spaces
of all operators to be uniformly explored. We also want to
explore and analyse the efficacy of applying the operators
to different parts of the program source code (for example,
conditional statements, loops, return statements). We aim to
present recommendations for more effective operator selection

strategies, which would consider where in the program the
mutation operator is being applied.

In order to achieve our aims we implemented the uniform
selection strategy in the PyGGI [5] GI tool and run it on one
of the more challenging benchmark sets for program repair:
QuixBugs [6]. Our results show that:

• For the programs that could not be repaired using a single
edit targeting a comparison operator modification, PyGGI
performed better with the uniform operator selection
strategy than the standard strategy.

• Out of the three standard operators, the deletion operator
is the most effective at improving program fitness, even
though it is not present in many repairing patches. This
could be caused by deletions removing program state-
ments that include the buggy code fragments. The inser-
tion operator, however, is the most effective at preserving
program behaviour with respect to the test suite.

• For program repair, expression statements are very ef-
fective (50.03%, 33.12%, 23.85%) and declaration state-
ments are the least effective (3.16%, 10.85%, 3.14%) as
target nodes for all three standard operators — deletions,
insertions and replacements, respectively.

• For preserving program behaviour, expression statements
are the most effective (16.53%, 14.14%, 9.33%) and
declaration statements are the least effective (2.41%,
5.16%, 2.56%) for deletions, insertions and replacements,
respectively.

II. BACKGROUND

The research areas of automated program repair (APR) and
genetic improvement (GI) are closely interlinked, as the roots
of GI also lie in program synthesis and automatic program-
ming as well as in genetic programming. GI techniques have a
broader use than just automatic bug repair, as they also include
improvement of non-functional properties, such as memory
usage, execution time or energy consumption [1].

GI-based program repair tools typically generate hundreds
or thousands program variants, using software transformations,
at the granularity level of lines, statements, expressions, or
even binary code. Next, a search strategy is employed to
navigate the space of the generated software variants, evaluated
using a given fitness function, until all test cases pass. For
the purpose of program repair the fitness typically takes into
account the number of passing and failing tests.

The state-of-the-art for choosing and applying the mutation
operators is a two-step selection process [7]. The mutation
operator is chosen first, each mutation operator having an equal



probability of being selected, and its parameters, including
the location at which the operator will be applied, second.
Typically, if there are n statements in the program’s AST,
then there are n possible statement deletions, n2 statement
insertions, and n2 statement replacements.1 The search space
induced by the deletion operator is significantly smaller than
the search spaces of the insertion and replacement operators.
Therefore, when operators are selected with equal probabilities
the search space of deletions ends up being explored much
more thoroughly.

The idea we investigate is to implement and evaluate a fair
uniform strategy for the operator selection process, based on
the size of the induced search spaces. With such a strategy,
each individual way of the modification of the program would
have an equal probability of being selected and applied and
the spaces of all operators would be equally explored.

III. EXPERIMENTAL DESIGN

For this study on the effectiveness of the uniform strategy
for mutation operator selection and on the efficacy of muta-
tion operators to create successful new program variants, we
formulate the following two research questions:

RQ1. How effective is the uniform operator selection
strategy at finding test suite adequate patches for faulty
programs using GI?
For RQ1, we want to analyse the number of test suite adequate
patches that a GI tool can find for defected programs from a
standard APR benchmark using the uniform operator selection
strategy. We want to compare those results to the results
produced by the initial operator selection strategy to determine
whether the uniform strategy improves tool’s performance.

RQ2. Which combinations of GI mutation operators
and types of program statements are the least disruptive,
creating useful new program variants?
For RQ2, we aim to analyse the efficacy of each operator
to create improved program variants, i.e., with better fitness
than the variant on which it is applied, or preceding variant.
Each program variant is represented as an edit list, meaning
a list of modifications to be applied to the original program.
Additionally, we focus on analysing which operators applied to
which types of program statements lead to program variants
with better fitness, with unchanged fitness, and with worse
fitness than their preceding variant.

A. Dataset

In this study, we use faulty Java programs from the
QuixBugs benchmark, that provides 40 programs, each expos-
ing a single one-line bug. We chose the QuixBugs benchmark
as it proved to be particularly challenging for APR tools [8].
We exclude programs for which there is no positive test case,
without which APR tools cannot ensure the intended behaviour
of the program is preserved. Additionally we only target
programs that have bugs causing incorrect output, excluding 5
programs with infinite loops and array index errors. Overall,
we target 27 Java programs from the QuixBugs benchmark.

1The exact numbers depend on the exact implementation used.

B. PyGGI setup

The experiment is conducted using a modified version of
PyGGI [5] – a GI tool for multiple programming languages,
which can also be used for APR. Our version has a new
mutation operator and the proposed uniform selection strategy.
PyGGI uses SrcML to obtain an XML-based representa-
tion of the program’s AST. The types of tags we consider
are break, continue, decl_stmt, do, expr_stmt,
for, goto, if, return, and switch, for statements; and
operator_comp for operators.

PyGGI implements the three standard mutation operators:
deletion, insertion, and replacement. For the sake of simplicity,
to avoid overlaps in the search space, and to ensure fair
comparison, we restrict the insertion operator to modification
points preceding statements — other GI tools such as Gen-
Prog [9] and Gin [10] implement insertion before only. In the
experiments we also use a mutation operator which we call
comparison operator modification, which was not originally
implemented in PyGGI. It targets comparison operators (that
is, ==, ! =, <, >, <=, >=), replacing the operator with any
other possible comparison operator. We decided to add the
comparison operator modification as it proved to be effective
with different datasets [11], [12], [13] including successful
application in industry [14].

Our experimental setup is based on the setup chosen for
the evaluation of QuixBugs benchmark by PyGGI 2.0 [5]. The
local search algorithm is run with a budget of 500 iterations
with a time limit of 10 seconds for test suite execution. Each
patch is represented as a list of edits. PyGGI by default
implements a hill-climbing local search algorithm. We use the
standard mutation in which with equal probabilities either a
new edit is generated and applied to the current edit list, or
an existing edit is removed unless the list is already empty.

Experiments are repeated 20 times, during which we gather
data needed for the research questions. For RQ1, after each
repair attempt we report the number of iterations, the best
patch that was found, and its fitness. For RQ2, in each
iteration we report which mutation operator was added to
the patch, and what type of nodes it targets (both target
and ingredient modification points). We also report on the
fitness, run status, and run information, for both the current
and preceding patches.

C. Uniform sampling strategy implementation

To simplify the process of implementation of the uniform
selection strategy, we decided to keep the two-step selection
process and skew the probabilities of selecting the operator
during the first step, as such implementation is equivalent
to the theoretical one-step uniform selection strategy. Such
implementation is easily reproducible for future studies.

Overall, with n the number of statements and m the number
of comparison operators in the program, there are n unique
possible statement deletions, n2 unique statement insertions,
n2 unique statement replacements, and 5m unique comparison
operator modifications, as each one can be replaced by any of
the other possible five.



TABLE I
INITIAL OPERATOR SELECTION STRATEGY RESULTS

Patches Iterations

Program all unique avg min max stdev

DFS 14 6 192 22 393 126.8
KHEAP-SORT 1 1 63 63 63 -
KNAP-SACK 17 5 102 4 495 128.6
LIS 13 9 179 18 442 128.3
MERGE-SORT 1 1 95 95 95 -
PASCAL 15 4 153 2 490 148.4
QUICK-SORT 20 4 25 1 64 18.7
SIEVE 3 3 256 65 389 169.8

Avg 10.50 4.13 133.13 - - -
Stdev 7.63 2.64 75.68 - - -

Combined, that makes a total of T = n + n2 + n2 + 5m
possible unique edits, and therefore skewed probabilities of
n/T , n2/T , n2/T , and 5m/T are used so that selection is
uniform over the possible unique edits rather than simply
uniform over the edit type.

IV. EVALUATION

Next, we present the experimental results for both research
questions. RQ1 evaluates the effectiveness of the uniform op-
erator selection strategy as compared to the standard one. For
RQ2 we analyse the efficacy of different mutation operators
considering the type of statements they are applied to.

A. RQ1: Uniform operator selection strategy results

For this RQ we attempt to find test suite adequate patches
for the programs in the QuixBugs benchmark using PyGGI
with two operator selection strategies to compare the results.

At first, we run PyGGI with the QuixBugs benchmark using
the initial two-step operator selection strategy. The local search
algorithm is able to find 84 test suite adequate patches for 8
programs among the 27 programs we evaluate, with 33 patches
syntactically unique. Table I shows detailed results for the
programs with successful patches, including statistics on the
number of iterations spent before a successful patch is found.

Compared to the PyGGI 2.0 release work [5], also using the
QuixBugs benchmark, the search algorithm found test suite
adequate patches for five more programs, taking into account
only results for the statement level for Java programs.

Next, we run PyGGI using the newly implemented uni-
form operator selection strategy. This time, the local search
algorithm is able to find 68 test suite adequate patches for 7
programs. Out of those 68 patches, 25 patches are syntactically
unique. Table II shows the detailed results.

For four out of eight programs (kheapsort, knapsack, pascal,
quicksort), PyGGI with the initial operator selection strategy
had more successful repair attempts that found a test-adequate
patch than the uniform strategy. For all those four programs,
PyGGI with the initial strategy took less iterations on average
to find a successful patch. The explanation partly lies in the
type of bug exposed in three of these programs, for which
a comparison operator modification is required: due to the

TABLE II
UNIFORM OPERATOR SELECTION STRATEGY RESULTS

Patches Iterations

Program all unique avg min max stdev

DFS 19 5 83 10 222 51
KHEAP-SORT 0 0 - - - -
KNAP-SACK 9 2 159 1 397 157.3
LIS 17 6 171 10 451 154.3
MERGE-SORT 3 3 393 330 474 73.7
PASCAL 1 1 430 430 430 -
QUICK-SORT 13 2 251 17 499 173
SIEVE 6 6 312 161 467 113.1

Avg 8.50 3.13 257.0 - - -
Stdev 7.25 2.3 128.3 - - -

TABLE III
PYGGI EFFECTIVENESS COMPARED TO OTHER APR TOOLS

Standard Uniform # other APR
Program strategy strategy tools [8]

DFS X (6) X (5) 6
KHEAPSORT X (1) (0) 0
KNAPSACK X (5) X (2) 1
LIS X (9) X (6) 5
MERGESORT X (1) X (3) 1
PASCAL X (4) X (1) 0
QUICKSORT X (4) X (2) 6
SIEVE X (3) X (6) 0

relatively small size of the induced search space, that operator
ends up being selected less often in the uniform operator selec-
tion strategy. For the other four programs (dfs, lis, mergesort,
sieve), PyGGI with the uniform operator selection strategy had
more successful repair attempts.

We can also observe, as shown in Table I and Table II, that
the standard deviation of the average iterations needed to find
a successful patch is around twice the one for the uniform
strategy than for the initial strategy, whereas the number of
found patches has comparable values of presented statistics.
This can be explained by the fact that the programs that can
be fixed with one comparison modification operator took much
longer to find a patch for, as that operator is selected in the
uniform strategy less often than in the initial strategy.

The comparison of unique patches found by both strategies
is shown in Table III, together with the number of other APR
tools reported to find test suite adequate patches in the recent
QuixBugs study [8]. In particular, PyGGI was able to find test
suite adequate patches for three more programs (kheapsort,
pascal, sieve) than any of the ten tools used in the study.

Next, we analyse the patches from both initial and uniform
operator selection strategies. There are 73 individual edits
within the 33 unique test suite adequate patches that were
generated by PyGGI with the initial selection strategy, which
gives an average patch length of 2.12 edits. For the uniform
strategy, there are 49 edits within the 25 unique test suite
adequate patches, giving an average patch length of 1.96 edits.

Interestingly, as shown in Table IV, only 12.3% of edits
from successful unique patches generated by the initial oper-



TABLE IV
OCCURRENCES OF MUTATION OPERATORS IN UNIQUE SUCCESSFUL

PATCHES

Initial strategy Uniform strategy

Operator patches edits patches edits

All 33 73 25 49
Deletion 18.2% 12.3% 0% 0%
Insertion 45.4% 21.9% 40% 24.5%
Replacement 45.4% 24.7% 68% 57.1%
Comparison op mod 63.6% 41.1% 32% 18.4%

ator selection strategy have deletion as the mutation operator,
even though every operator has the same chance of getting
selected. The comparison operator modification is the most
successful, which is understandable, as the incorrect compari-
son bug appears in 5 programs from the QuixBugs benchmark.

We compare our results to the work by Le Goues et al. [15],
which includes the effectiveness of different operators at
repairing buggy programs. Interestingly, they found that dele-
tions appeared in the repair patches more often than inser-
tions and replacement, with replacements appearing the least
often. This is in contradiction with our results, as in our
study deletions are the least common, whereas insertions and
replacements are comparably common. An explanation might
be the type of programs and bugs to be fixed, as they used a
much bigger benchmark including eight C programs with over
5 million of lines and 105 defects. The operator distribution
for initial repairs from their work is 1.7 : 1 : 1.45, in contrast
to 1 : 2.5 : 2.5 in our experiments (for deletions, insertions,
and replacements, respectively).

For the uniform operator selection strategy, probably due
to the reduced associated probability, there are no deletion
edits within the successful patches. Replacements are the most
successful, they appear in 68% of unique successful patches,
followed by insertions at 40%, then comparison operator
modifications at 32%.

To sum up our findings for RQ1, for programs that could
not be repaired using comparison operator modification only,
PyGGI performed better with the uniform operator selection
strategy, finding successful test suite adequate patches during
more repair attempts than the initial operator strategy. This
shows that a strategy in which the search spaces of operators
are more uniformly explored can improve performance of GI
tools. Our results suggest to skew the probability distribution
from deletions in favour of insertions and replacements.

B. RQ2: Mutation operators efficacy

For this RQ we aim to analyse the efficacy of different mu-
tation operators in finding new program variants. We analyse
data from 167,931 iterations of the local search algorithm,
excluding the comparison operator modifications in which the
target and ingredient are identical.

Table V shows statistics regarding mutation operator ef-
ficacy, in the context of addition to the current patch. For
each operator we describe the number of analysed patches,

TABLE V
MUTATION OPERATORS EFFICACY

Fitness

Operator Patches Success <% >% =% ==%

Deletion 7189 47.8% 3.9 20.2 23.7 9.5
Insertion 81110 28.7% 0.7 5.0 23.0 10.5
Replacement 74303 22.8% 1.5 8.4 12.9 6.3
Comp op mod 5329 89.2% 13.6 36.2 39.4 17.9

the percentage of patches that run successfully without regard
to their fitness (i.e., excluding compilation and runtime errors),
then the percentage of patches with a better (<), worse (>),
and equal (=) fitness (i.e., number of failing test cases) that
their predecessor, and finally the percentage of patches with
equal fitness and exact same output than their predecessor.

Mutation operators that produce program variants with
test suite preserving behaviour are an important factor for
improvement of both functional and non-functional properties
of software [16]. The presence of neutral mutations within
the patches plays an important role in the process of finding
correct patches [17]. Additionally, producing neutral variants
is a crucial part of improving the non-functional properties of
software such as execution time or memory usage.

Comparison operator modifications are the most effective
at improving the fitness of the program, with 13.57% effec-
tiveness; this is probably an artefact due to the 5 QuixBugs
programs for which the one-line defect is precisely an incorrect
comparison operator. Comparison operator modifications are
also the most effective at finding behaviour preserving variants,
with 17.88% patches producing the same output as their
preceding variants. Interestingly, the delete operator was the
least present within the final successful patches analysed
in RQ1; a possible explanation for this results comes from
insufficient test suite for the analysed program, as intuitively
in most cases change of the comparison operator in logical
expressions should change the behaviour of the program.

As for the three standard operators, the deletion operator
is the most effective. Out of patches with deletions as the
lastly added edit, 3.95% patches have better fitness than their
predecessor, as compared to 0.66% for insertions and 1.49%
for replacements. Possible interpretation of this result is that
using deletion operators often leads to patches that get stuck
in local minima and don’t lead to actual repairs. Deletions that
improve fitness may remove the program statements that cause
the fault to appear, which could possibly show what place in
the program is causing the defect, but not actually fix it.

We also analyse the efficacy of mutation operators consid-
ering the type of target statement they were applied to. Charts
presented in Figure 1 and Figure 2 show how often each
modification operator applied to different types of statements
led to program variants with fitness no worse than their
preceding variants and to program variants with test suite
preserved behaviour. Continue statements, despite being in
percentage by far the most effective, are excluded from all
charts due to the extremely low support, as show in Table VI.



Fig. 1. Percentage of modifications that create neutral program variants

TABLE VI
ANALYSED PATCHES FOR EACH OPERATOR AND ITS TARGET STATEMENT

Operator expr stmt decl stmt if for return while continue

Deletion 1,645 1,615 1,342 700 1,733 150 4
Insertion 21,809 19,413 13,325 8,695 16,072 1,633 163
Replacement 20,020 17,841 12,293 8,044 14,526 1,436 143

Choosing expression statements as target nodes for any
operator showed to be the most effective as compared to other
types of nodes. 50.03%, 33.12% and 23.85% of modifications
with expression statements as target nodes, for deletion, inser-
tion, and replacement, respectively, led to program variants
with improved or preserved fitness in comparison to their
preceding variants. Deleting, inserting before and replacing
declaration statements was consistently the least effective, as
only 3.16% of deletions, 10.82% of insertions and 3.14% re-
placements applied to this type of statements created program

Fig. 2. Percentage of modifications that create variants with improved or
preserved fitness

variants with fitness no worse than their predecessors.
For the deletion operator, another type of nodes that showed

to be effective are for loops and if statements, with 52%
and 35.02% of program variants with improved or preserved
fitness, respectively. Interestingly choosing expression state-
ments (5.17%), if statements (10.21%) and for loops (6.86%)
as target nodes for the deletion operator is the most effective
at creating variants with improved fitness, as compared to all
other operators and types of nodes. For both the insertion and
replacement operator, return statement is another type of target
node that is effective, with 28.61% and 18.23% effectiveness
in creating variants with no worse fitness. It is also worth
noting that compared to insertions and replacements, the
deletion operator has over 10 times bigger variance amongst
effectiveness on different types of target nodes.



The relative results for finding neutral program variants are
similar to the effectiveness of operators and target nodes in
creating variants with no worse fitness than their predecessors.
Choosing expression statements is the most successful in
preserving program behaviour for all modification operators,
with effectiveness of 16.53%, 14.14% and 9.33% for deletions,
insertions and replacements respectively. Similarly, the delet-
ing, inserting before or replacing the declaration statements is
the least effective.

The chart in Figure 3 presents the effectiveness of the
comparison operator modification in creating program variants
with improved or preserved fitness depending on the target
and ingredient comparison operators chosen. For each bar
on the chart, there is a label that corresponds to the num-
ber of comparison operator modification edits with specific
target and ingredient nodes. The chart shows that modifying
the less or equal comparison operator was consistently the
most successful, with effectiveness greater than 90% for each
ingredient comparison operator. Modification of the greater
or equal comparison operator also shows to be consistently
successful, with effectiveness over 70% for all but not equal
ingredient comparison operators. Another effective target and
ingredient comparison operators combinations are changing
greater comparison operators to not equal and not equal to
less, with 100% and 82% effectiveness, respectively. Replacing
greater operators with less or equal and equals operators was
the least effective, both having effectiveness less than 15% in
creating program variants with improved or preserved fitness.
Note there are 69 comparison operators within the 27 programs
we analyse, as compared to 352 program statements.

We also compare our results on creating neutral program
variants with regards to the given test suite to work by Har-
rand et al. [16]. Their study focuses on finding regions within
Java programs that are likely to transform into neutral program
variants. They use 6 large open source Java projects, and
they distinguish slightly different program statement types as
compared to our work. For the deletion operator, they reported
the effectiveness of if statements to range between 10% and
20% for the 6 projects, as compared to 10.21% effectiveness
result in our study. They also reported the effectiveness of
loop statements to range between 0% and 15%, as compared
to 16% for for loops and 7.33% for while loops in our study
and the effectiveness of return statements to range from 10%
to 25% as compared to 6.25% in our results.

For the insertion operator, Harrand et al. report the effec-
tiveness of ingredient nodes, whereas we focus on target nodes
for that operator. However, we can compare the results. They
found if statements and loops to be comparably successful at
creating neutral program variants as ingredient nodes, with
effectiveness ranging from 40% to over 60%. They found try
statements, which we did not analyse, to be the most successful
with effectiveness over 70% for three Java projects and return
statements to be the least successful with effectiveness from
10% to 30%. We found return statements and expression
statements to be relatively successful with 12.49% and 14.14%
effectiveness respectively. In our study, declaration statements

were the least successful (5.16%) as target nodes for insertions.
Summarising our findings for RQ2:
• Out of the three standard operators, deletion is the most

effective at improving program fitness, even though it is
present in very few final patches, which could be caused
by deletions removing program statements that include
buggy code fragments. Insertion, however, is the most
effective at preserving program behaviour with respect to
the test suite.

• For program repair, expression statements are very effec-
tive (50.03%, 33.12%, 23.85% for deletions, insertions,
and replacements, respectively) and declaration state-
ments are the least effective (3.16%, 10.85%, 3.14%)
as target nodes for all three standard operators. For
deletions, for loops are the most successful with 52%
effectiveness. For insertions and replacements return
statements are also effective (28.61%, 18.23%).

• For preserving program behaviour, with respect to the
given test-suite, expression statements are the most effec-
tive (16.53%, 14.14%, 9.33%, for deletions, insertions,
and replacements) and declaration statements are the
least effective (2.41%, 5.16%, 2.56%).

• Comparison operator modification was the most effective
out of all four operators at both improving and preserving
program behaviour. It is important to note that every
program from the QuixBugs benchmark has a one-line
defect, and for 5 programs that defect is an incorrect
comparison operator. Modifying the “<=” comparison
operator was consistently the most successful at improv-
ing or preserving fitness, with effectiveness greater than
90% for each ingredient comparison operator. Replacing
“>” operators with “<=” or “==” operators was the least
effective, both having effectiveness less than 15%.

V. THREATS TO VALIDITY

We use the QuixBugs benchmark to evaluate our work. This
benchmark includes small programs (up to 60 lines of code)
that implement popular algorithms, each program having one
simple one-line bug. The benchmark does not include more
complex defects, therefore our results may not generalise to
bigger software with more complex bugs. 5 out of 27 programs
we analyse from the benchmark and 4 out of 8 programs we
found successful patches for have faults that include a single
incorrect comparison operator. Therefore, positive results for
the comparison operator modification may be inflated.

The ability of mutations to improve program fitness during
search before the final repair is found does not necessarily
correlate with their usefulness in reaching optimal fitness and
the desired fix. For insertions and replacements we analyse
and present the results for different types of target nodes but
do not take into consideration the ingredient node for each
target node, which could provide more detailed data.

Finally, we do not provide a manual analysis of the resultant
test-suite adequate patches, due to the large number of patches
found. However, manual analysis would be needed to establish
which patches are true fixes.



Fig. 3. Percentage of comparison operator modifications that create variants with improved or preserved fitness

To mitigate these threats we make our implementation freely
available, so that future researchers can extend the study to
other benchmarks and programming languages.2 Thanks to
using PyGGI, a multi-lingual GI tool, the study can be easily
extended to Python, C#, C, or C++ programs.

VI. RELATED WORK

The exponential growth of work in GI and APR started
in the late 2000s when Arcuri et al. [18], [19], Weimer et
al. [7], [20], and Debroy and Wong [21] published their work
on automated software repair using genetic programming.
Since then many APR tools and techniques were released,
and applied in the industry [22], [14]. In addition to APR,
GI tools are also used for the improvement of non-functional
properties of software, as introduced by White et al. [23]
with their work on reduction of energy consumption. Since
then, GI tools have been applied to improve different non-
functional properties such as execution time [24], [25] or
memory consumption [12].

As the field of APR expands, work on sub-areas of the
field is being published. We performed a literature review
for the area of mutation operators within fields of genetic
improvement and automated program repair. We found several
papers on the improvement of different sub-areas of APR
techniques, including previously mentioned work by Le Goues
at al. on representations and operators [15], which we found
the most relevant to our paper, the only focusing on this aspect
of the GI process. We also found work on improving patches
produced by APR tools [26], [27], using high-order mutations
in GI [28], [29], fault localisation [30], [31], [32] and the
impact of test suite metrics on the APR performance [33].

VII. CONCLUSIONS AND RECOMMENDATIONS

Changing the mutation operator selection strategy is a po-
tential area of improvement of GI-based APR tools. The state-
of-the-art approach for operator selection leads to unbalanced
exploration of the program modification space, with the search

2GitHub link will be provided in case of acceptance.

spaces of the insertion and replacement operators being under-
explored. We implemented the uniform operator selection
strategy in the PyGGI framework [5], using the Java versions
of programs from the QuixBugs benchmark for evaluation [6].
We used four mutation operators: deletion, insertion, and
replacement of statements, as well as a comparison operator
replacement. We implemented the uniform operator selection
strategy, keeping the two-step operator selection process by
adjusting the probabilities of selecting individual mutation
operators. We compared this strategy with the standard one.

The standard operator selection strategy found 33 unique
test suite adequate patches for 8 programs altogether, whereas
the uniform strategy found 25 unique test suite adequate
patches for 7 programs. The performance of the uniform
strategy greatly depends on the type of defect in the program.
For four programs where the defect can be fixed with one
comparison operator modification, the uniform strategy was
less successful as this type of operator ends up being selected
much less often. For other programs, the uniform selection
strategy had more successful repair attempts (42), i.e., more
test-suite adequate patches found, than the standard strategy
(31), which suggests that moving towards uniform exploration
of spaces of the three standard modification operators can
improve the performance of the GI search algorithm.

The deletion operator was present in only 18.2% of repairing
patches for the standard strategy (as compared to 45.4% for
insertions, 45.4% for replacements and 63.6% for comparison
operator modifications), and was present in no patches for
the uniform strategy. Even without deletion operators in the
final patches, the uniform strategy had more successful repair
attempts. Possibly the optimal operator selection strategy lies
somewhere in between the standard approach and the pure
uniform selection strategy.

Interestingly, we found that during the execution of the
search algorithm, deletion operators were more successful than
insertions and replacements at obtaining program variants with
improved fitness. Possible explanation of that result is that
deletion operators lead to better fitness because they remove
statements that contain the faulty code. When analysing the



efficacy of operators as applied to different types of program
statements, we found that choosing an expression statement as
target node was consistently the most successful (50.02% for
deletions, 33.12% for insertions, 23.85% for replacements) at
finding program variants with improved or preserved fitness,
whereas choosing a declaration statement was the least effec-
tive (3.16% for deletions, 10.82% for insertions, 3.14% for
replacements, respectively).

A possible direction for future work is to evaluate different
operator selection strategies that skew the probability distribu-
tion of operator selection away from deletions and towards in-
sertions, replacements, and comparison operator modifications.
Additionally, after a specific operator gets selected, different
types of program statements could be selected with different
probabilities, skewed towards statements that were shown to
be more successful at creating improved program variants.

For replicability purposes we provide our modified version
of PyGGI at (link removed for review process).
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