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Abstract 

Whilst there are currently no available disease modifying therapies for Huntington’s 

Disease (HD), recent progress in huntingtin-lowering strategies hold great promise. 

Initiating therapies early in the disease course will be important and a complete 

characterisation of the premanifest period will help inform when to initiate disease 

modifying therapies and the biomarkers that may be useful in such trials. 

Previous research has characterised the premanifest period up to approximately 15 

years from predicted onset, but even at this early stage the disease process is already 

underway as evidenced by striatal and white matter atrophy, reductions in structural 

connectivity within brain networks, rising biofluid biomarkers of neuronal dysfunction, 

elevations in psychiatric symptoms and emerging subtle cognitive impairments. In 

order to understand how early neurodegeneration can be detected and which 

measures are most sensitive to the early disease processes, we need to look even 

earlier in the disease course. 

This thesis documents the recruitment and analysis of the HD Young Adult Study: a 

premanifest cohort further from predicted clinical onset than previously studied with 

an average of 24 years prior to predicted onset. Differences between gene carriers 

and controls were examined across a range of imaging, cognitive, neuropsychiatric 

and biofluid measures. The structural and functional brain connectivity in this cohort 

is then investigated in further detail. By providing a detailed characterisation of brain 

structure and function in the early premanifest period along with the most sensitive 

biomarkers at this stage, this work will inform future treatment strategies that may 

seek to delay the onset of functional impairments in HD. 
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Impact Statement 

Recent advances in therapeutic approaches targeting DNA and RNA hold great 

promise for Huntington’s disease (HD), since they are capable of targeting the 

causative genetic mutation and the resultant mutant huntingtin protein (mHTT) 

thought to be central in the disease process. The first huntingtin-lowering approach 

is now is a phase 3 clinical trial. Such treatments are most likely to be successful if 

instigated early in the disease process and ideally, before function is impaired. 

Previous research has characterised the premanifest period up until 15 years from 

predicted onset. Even at this stage, there is already ongoing neurodegeneration 

detectable on imaging and biofluid measures coupled with subtle early cognitive 

impairment and neuropsychiatric disturbance. Therefore we need to look back even 

earlier in the disease process to understand when these changes first become 

detectable and which measures may be most sensitive at this stage, in order to inform 

future therapeutic strategies that seek to delay or prevent early neurodegeneration 

and preserve clinical function. 

The central work in this thesis is the recruitment and study of a unique premanifest 

HD cohort who, at approximately 24 years from predicted clinical disease onset, are 

further from onset than previously studied, alongside a well matched control group. 

This is one of the earliest premanifest cohorts ever studied in neurodegenerative 

diseases. The study assessments included a state-of-the-art battery including multi-

modal imaging, extensive cognitive and neuropsychiatric testing, and blood and 

cerebrospinal fluid for biofluid biomarker assessments. 

There are four key findings from this thesis that will be influential in future therapeutic 

strategies for HD. The first is that cognitive and neuropsychiatric function appears 

intact approximately 24 years from predicted onset and hence this represents a 

potentially appropriate time to initiate future disease-modifying therapies that aim to 

delay or prevent early functional impairments in HD. Second, the finding that brain 

structure as assessed by multi-modal imaging appears largely intact at this stage of 

disease, further highlighting that brain structure and function is largely preserved early 

in the premanifest period. The detailed characterisation of normal structural 

connectivity in this cohort will be important for future viral-vector delivered therapies, 
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since the distribution of these therapeutics can be limited and depends partly on 

preserved axonal connections. Thirdly, this thesis demonstrates that despite showing 

largely preserved brain structure and function, cerebrospinal fluid (CSF) and plasma 

concentrations of neurofilament light (NfL), a marker of neuroaxonal injury, are 

already elevated alongside a detectable marker of astrocytic activation, YKL-40. 

Thus, NfL appears to be one of the earliest detectable markers of neurodegeneration 

and may be the most suitable biomarker to monitor progression and, eventually, 

efficacy for future premanifest trials. Importantly, this work demonstrates that CSF 

NfL has superior sensitivity/specificity than plasma NfL at this early stage and may be 

a superior disease marker in such cohorts. Finally, huntingtin-lowering therapies in 

development will require biomarkers of target engagement to assist in measuring the 

pharmacodynamic response and identifying optimal dose-responses. This work 

shows that suppression of CSF mHTT to undetectable concentrations could be a 

viable measure of target engagement for such trials. However, because 

concentrations of mHTT are frequently only just above the detection limit at this early 

stage, CSF total huntingtin, measured in this thesis for the first time in HD, could be 

used to provide a measure of percentage huntingtin reduction for total huntingtin-

lowering trials. Collectively, these results are likely to have a major impact on the 

direction and design of future clinical trials in premanifest HD. 

Each results chapter of this thesis has resulted in publishable work. The results of the 

HD Young Adult Study have been published in the Lancet Neurology, whilst results 

from the other two data chapters have been written up for publication. This work has 

also been presented at several global conferences via platform talks and poster 

presentations. 

  



6 
 
 

 

 

Acknowledgements 

Firstly, I’d like to thank all participants who gave their valuable time to participate in 

this research. I was so impressed and inspired by their commitment and resolve in 

the pursuit of advancing Huntington’s research. I would also like to thank the 

Wellcome Trust for funding this important work. 

Thank you Sarah Tabrizi and Geraint Rees for bringing me to the UCL HD centre and 

putting your trust in me. You have always been available, supportive and it has been 

an honour to work under your guidance on such a great project. 

Thanks to everyone who worked on the HD-YAS. It was a great collaborative project 

to work on together and an amazing team to work with. To the HD clinical and 

research team at UCL, I wanted to express my gratitude for your help and just how 

much I have enjoyed being part of the team.  

Special thanks to Peter McColgan, Rachael Scahill, Sarah Gregory, Eileanoir 

Johnson and Marina Papoutsi for all of your support throughout this PhD and for 

always being on hand to help whenever it was needed. I wouldn’t have been able to 

do this without you. 

Finally, I’d like to thank my wife and family for their love and support.  

 

 

  



7 
 
 

 

 

 

Contents 

List of Tables ......................................................................................................... 13 

List of Figures ........................................................................................................ 15 

Abbreviations ......................................................................................................... 17 

1 Introduction .................................................................................................... 20 

1.1 Huntington’s disease ............................................................................... 21 

1.1.1 Genetics ........................................................................................... 21 

1.1.2 Neurobiology .................................................................................... 22 

1.1.3 Pathology ......................................................................................... 25 

1.1.4 Clinical manifestations ...................................................................... 26 

1.1.5 Current therapeutic approaches for disease modification ................. 27 

1.2 The premanifest period ............................................................................ 28 

1.2.1 Predicting years to clinical onset ....................................................... 29 

1.2.2 Motor ................................................................................................ 31 

1.2.3 Cognition .......................................................................................... 31 

1.2.4 Psychiatric ........................................................................................ 33 

1.2.5 Biofluids ............................................................................................ 35 

1.2.6 Imaging ............................................................................................ 39 

1.3 Structural and functional connectivity in HD ............................................. 46 

1.3.1 Structural connectivity breakdown in preHD ..................................... 47 

1.3.2 Functional connectivity in preHD ...................................................... 48 

1.3.3 The relationship between structural and functional connectivity in preHD

 51 



8 
 
 

 

 

1.4 The Scope of this thesis ........................................................................... 51 

1.4.1 Towards a better understanding of the early premanifest period in HD

 51 

1.4.2 Thesis aims ...................................................................................... 53 

2 General methods ............................................................................................ 54 

2.1 Cohorts .................................................................................................... 55 

2.1.1 The HD Young Adult Study (HD-YAS) .............................................. 55 

2.1.2 The TrackOn-HD Study .................................................................... 57 

2.2 Genetic testing ......................................................................................... 57 

2.3 Demographic and general clinical assessments ....................................... 58 

2.4 Motor and functional assessments ........................................................... 58 

2.5 Cognitive assessments ............................................................................ 59 

2.6 Neuropsychiatric assessments ................................................................ 64 

2.7 Biofluid assessments ............................................................................... 66 

2.8 MRI .......................................................................................................... 68 

2.8.1 Acquisition of MRI data ..................................................................... 69 

2.8.2 Volumetric imaging ........................................................................... 69 

2.8.3 Multi-parametric mapping.................................................................. 70 

2.8.4 Resting state fMRI ............................................................................ 71 

2.8.5 Diffusion weighted imaging ............................................................... 71 

2.9 Diffusion MRI processing ......................................................................... 73 

2.9.1 Pre-processing .................................................................................. 73 

2.9.2 Constrained spherical deconvolution ................................................ 74 

2.9.3 Connectivity-based parcellations of the striatum and thalamus ......... 74 

2.9.4 Tractography..................................................................................... 77 

2.9.5 Fixel-based analysis ......................................................................... 77 



9 
 
 

 

 

2.9.6 Connectomics and graph theory ....................................................... 79 

2.9.7 Statistical considerations .................................................................. 82 

3 Clinical and biomarker profiling of gene carriers far from predicted onset: The 

HD Young Adult Study (HD-YAS) .......................................................................... 85 

3.1 Introduction .............................................................................................. 86 

3.2 Contributions and collaborators ............................................................... 88 

3.3 Methods................................................................................................... 89 

3.3.1 Study design and participants ........................................................... 89 

3.3.2 Procedures and outcomes ................................................................ 90 

3.3.3 Participant follow up ......................................................................... 99 

3.3.4 Statistical analysis ............................................................................ 99 

3.4 Results .................................................................................................. 101 

3.4.1 Cognition ........................................................................................ 103 

3.4.2 Neuropsychiatry .............................................................................. 105 

3.4.3 Imaging .......................................................................................... 107 

3.4.4 Biofluids .......................................................................................... 113 

3.5 Discussion ............................................................................................. 118 

3.5.1 No significant differences in cognition, but some trends of interest . 120 

3.5.2 No significant differences in behavioural or psychiatric symptoms .. 122 

3.5.3 Little evidence of change in brain structure ..................................... 123 

3.5.4 NfL is a promising biomarker of early neurodegeneration in HD ..... 125 

3.5.5 Measures of target engagement for huntingtin-lowering therapeutics

 126 

3.5.6 Evidence of astrocytic activation in the early premanifest period .... 127 

3.5.7 Other candidate fluid biomarkers for HD show limited change ........ 128 

3.5.8 Limitations ...................................................................................... 129 

3.5.9 Conclusion ...................................................................................... 132 



10 
 
 

 

 

4 Timing and specificity of basal ganglia white matter loss in premanifest HD . 133 

4.1 Introduction ............................................................................................ 134 

4.2 Contribution and Collaborators............................................................... 136 

4.3 Methods ................................................................................................. 136 

4.3.1 Cohorts ........................................................................................... 136 

4.3.2 Diffusion MRI processing ................................................................ 138 

4.3.3 Spatial correspondence .................................................................. 139 

4.3.4 Generating a fixel map and fixel metrics ......................................... 140 

4.3.5 Generating tracts for analysis ......................................................... 142 

4.3.6 Clinical scales ................................................................................. 143 

4.3.7 Statistical analysis .......................................................................... 144 

4.4 Results ................................................................................................... 145 

4.4.1 No significant differences in cortico-striatal and cortico-thalamic 

connections 25 years from predicted onset .................................................. 145 

4.4.2 Anatomically specific basal ganglia white matter loss in preHD ...... 147 

4.4.3 FDC changes using multi-shell acquisition at last time point in TrackOn-

HD 150 

4.4.4 Reductions in FDC correlate with a priori clinical measures ............ 153 

4.4.5 Changes in FD and FC when analysed separately ......................... 154 

4.5 Discussion ............................................................................................. 161 

4.5.1 Selective vulnerability of specific cortico-striatal connections .......... 164 

4.5.2 Selective vulnerability of cortico-thalamic connections .................... 166 

4.5.3 No longitudinal changes detectable over a two year period............. 167 

4.5.4 Relationships between changes in FDC and clinical measures ....... 168 

4.5.5 Higher b-values increase signal-to-noise in FBA ............................. 169 

4.5.6 Other methodological considerations .............................................. 170 

4.5.7 Limitations ...................................................................................... 171 



11 
 
 

 

 

4.5.8 Conclusion ...................................................................................... 173 

5 Relationships between structural and functional connectivity in gene carriers far 

from onset............................................................................................................ 174 

5.1 Introduction ............................................................................................ 175 

5.2 Contributions and collaborators ............................................................. 178 

5.3 Methods................................................................................................. 179 

5.3.1 Cohorts ........................................................................................... 179 

5.3.2 Imaging acquisitions ....................................................................... 179 

5.3.3 Atlases for brain segmentation ....................................................... 180 

5.4 Diffusion MRI processing ....................................................................... 181 

5.5 fMRI acquisition and processing ............................................................ 182 

5.6 Statistical analysis ................................................................................. 183 

5.7 Results .................................................................................................. 184 

5.7.1 No significant differences in structural and functional connections .. 184 

5.7.2 NfL subgroup analysis results ......................................................... 184 

5.7.3 Functional, but not structural connectivity, correlates with CSF NfL 185 

5.8 Discussion ............................................................................................. 189 

5.8.1 No significant differences in structural or functional networks in early 

preHD 189 

5.8.2 Negative results are robust to different methods of analysis ........... 190 

5.8.3 Structural and functional associations with NfL ............................... 191 

5.8.4 Future directions ............................................................................. 193 

5.8.5 Limitations ...................................................................................... 195 

5.8.6 Conclusion ...................................................................................... 195 

6 Discussion ................................................................................................... 197 

6.1 Uncovering the earliest markers of neurodegeneration in HD ................ 197 

6.2 Zeroing in on selectively vulnerable structural connections in preHD ..... 201 



12 
 
 

 

 

6.3 Whole brain structural and functional connectivity is preserved in early 

preHD, but rising NfL is associated with functional upregulation ....................... 202 

6.4 Implications for future therapeutic strategies and trial design ................. 202 

6.4.1 When to treat? ................................................................................ 203 

6.4.2 Which biomarkers? ......................................................................... 203 

6.4.3 Where to treat? ............................................................................... 205 

6.5 YAS as a resource for further research .................................................. 207 

6.6 General limitations and lessons learnt .................................................... 208 

6.6.1 A question of power ........................................................................ 208 

6.6.2 Selection bias ................................................................................. 209 

6.6.3 Biofluid collection in young cohorts ................................................. 210 

6.6.4 The power of collaboration .............................................................. 211 

6.7 Future directions .................................................................................... 211 

6.7.1 Longitudinal follow up in the HD-YAS ............................................. 211 

6.7.2 Future multi-site studies to maximise power and generalisability .... 212 

6.7.3 Combining the best established assessments with emerging techniques

 212 

6.7.4 Enhancing disease staging for natural history studies ..................... 214 

6.7.5 Translating from observational to interventional studies in premanifest 

HD 214 

6.8 Conclusion ............................................................................................. 215 

7 Publications .................................................................................................. 216 

8 References ................................................................................................... 218 

9 Appendix ...................................................................................................... 252 

9.1 Disease burden score (DBS) ................................................................. 252 

9.2 HD-YAS eligibility criteria ....................................................................... 252 

9.3 TrackOn-HD eligibility criteria ................................................................. 255 



13 
 
 

 

 

9.4 UHDRS total motor score (TMS)............................................................ 257 

9.5 UHDRS diagnostic confidence score (DCS) .......................................... 260 

9.6 Graph theory calculations ...................................................................... 261 

9.7 Chapter 4 missing data .......................................................................... 262 

 

List of Tables 

Table 2.1. Biofluid assay details ............................................................................. 67 

Table 3.1. Assessments in HD-YAS....................................................................... 91 

Table 3.2. Participant demographics .................................................................... 102 

Table 3.3 Number of assessments by modality .................................................... 103 

Table 3.4 Cognitive results .................................................................................. 104 

Table 3.5 Neuropsychiatric results ....................................................................... 106 

Table 3.6 Volumetric results ................................................................................ 108 

Table 3.7 Diffusion results ................................................................................... 109 

Table 3.8 Structural connectivity results ............................................................... 110 

Table 3.9 MPM results ......................................................................................... 112 

Table 3.10 Biofluid results .................................................................................... 115 

Table 4.1. Participant demographics .................................................................... 137 

Table 4.2. TrackOn-HD multi-shell acquisition subcohort ..................................... 138 

Table 4.3. MRI acquisitions .................................................................................. 139 

Table 4.4 Cortico-striatal FDC in HD-YAS ........................................................... 145 

Table 4.5 Cortico-thalamic FDC in HD-YAS ......................................................... 146 

Table 4.6 Cortico-striatal FDC in TrackOn-HD single-shell baseline .................... 147 

Table 4.7 Cortico-thalamic FDC in TrackOn-HD single-shell baseline .................. 148 

Table 4.8. Cortico-striatal FDC in TrackOn-HD single-shell longitudinal ............... 148 

Table 4.9 Cortico-thalamic FDC in TrackOn-HD single-shell longitudinal ............. 149 

Table 4.10 Cortico-striatal FDC TrackOn-HD multi-shell ...................................... 150 

Table 4.11 Cortico-thalamic FDC TrackOn-HD multi-shell ................................... 150 

Table 4.12 Correlations between a priori cortico-striatal and cortico-thalamic FDC 

and corresponding clinical task ..................................................................... 154 



14 
 
 

 

 

Table 4.13 Cortico-striatal FD and FC in HD-YAS ................................................ 155 

Table 4.14 Cortico-thalamic FD and FC in HD-YAS ............................................. 156 

Table 4.15 Cortico-striatal FD and FC in TrackOn-HD single-shell baseline ......... 157 

Table 4.16 Cortico-thalamic FD and FC in TrackOn-HD single-shell baseline ...... 158 

Table 4.17 Cortico-striatal FD and FC in TrackOn-HD multi-shell......................... 159 

Table 4.18 Cortico-thalamic FD and FC in TrackOn-HD multi-shell ...................... 160 

Table 5.1 Participant demographics ..................................................................... 179 

Table 5.2 Correlations between increasing functional connectivity and CSF NfL in 

preHD ........................................................................................................... 186 

  



15 
 
 

 

 

List of Figures 

Figure 1.1 Longitudinal changes in grey and white matter. .................................... 43 

Figure 1.2 Atlas-based white matter DTI analysis. ................................................. 44 

Figure 1.3 Example of limitation of tensor-based measures in regions with crossing 

fibres............................................................................................................... 45 

Figure 1.4 Functional connectivity changes in preHD. ........................................... 50 

Figure 1.5. Evidence-based schematic of disease trajectory in HD from early 

adulthood to manifest disease. ....................................................................... 52 

Figure 2.1. Overview of HD-YAS assessments. ..................................................... 56 

Figure 2.2. Composite image of CANTAB tests. .................................................... 62 

Figure 2.3. Composite image of EMOTICOM tests. ............................................... 63 

Figure 2.4. Examples of tensor shapes and DTI measures. ................................... 72 

Figure 2.5. Striatal connectivity-based atlas. .......................................................... 76 

Figure 2.6. Thalamic connectivity-based atlas. ...................................................... 77 

Figure 2.7. Fixel-based metrics. ............................................................................. 79 

Figure 2.8. Summary of global graph measures used in this thesis........................ 81 

Figure 3.1. MPM and interpretation. ....................................................................... 95 

Figure 3.2. Summary of connectivity processing pipeline. ...................................... 99 

Figure 3.3. Radar plot showing cognitive variables in HD-YAS. ........................... 104 

Figure 3.4. Radar plot showing neuropsychiatric variables in HD-YAS. ............... 106 

Figure 3.5. Volumetric MRI results. ...................................................................... 108 

Figure 3.6. Selected biofluid results. .................................................................... 114 

Figure 3.7 ROC curves for CSF NfL (A), plasma NfL (B) and YKL-40 (C). ........... 116 

Figure 3.8. NfL trajectories. .................................................................................. 117 

Figure 3.9. Updated evidence based schematic of disease trajectory in HD. ....... 119 

Figure 4.1 FOD-based directionally encoded colour map of population template. 140 

Figure 4.2 Varying the threshold of the raw peak FOD amplitudes to produce 

discrete set of fixels in TrackOn-HD. ............................................................. 141 

Figure 4.3 Thresholding tract density images to create concise non-overlapping 

tracts............................................................................................................. 143 



16 
 
 

 

 

Figure 4.4. Cortico-striatal tract fibre density and cross-section left and right in HD-

YAS (A+B), TrackOn-HD single-shell (B+C) and multi-shell (E+F) datasets. . 152 

Figure 4.5. Cortico-thalamic tract fibre density and cross-section left and right  in  

HD-YAS (A+B), TrackOn-HD single-shell (C+D) and multi-shell (E+F) datasets.

 ..................................................................................................................... 153 

Figure 4.6 Overview of study methodology and key cross-sectional results. ........ 162 

Figure 5.1 Functional connectivity-based striatal atlas subdivisions. .................... 181 

Figure 5.2 NBS correlation analysis of functional connections and CSF NfL. ....... 186 

 

  



17 
 
 

 

 

Abbreviations 

ACT  Anatomically constrained tractography 

AD  Axial diffusivity 

AE  Adverse event 

AMI  Apathy motivation index 

ASO  Antisense oligonucleotide 

AUC  Area under the curve 

BAIS  Baltimore irritability and apathy scale 

BIS  Barratt impulsivity scale 

BDNF  Brain derived neurotrophic factor 

CANTAB Cambridge neuropsychological test automated battery 

CAP  CAG-Age product 

CRISPR Clustered regularly interspaced short palindromic repeats 

CSD  Constrained spherical deconvolution 

CSF  Cerebrospinal fluid 

DBS  Disease burden score 

DCS  Diagnostic confidence score 

DIAN  Dominantly inherited Alzheimer’s disease 

DTI  Diffusion tensor imaging 

DWI  Diffusion weighted imaging 

ELISA  Enzyme-linked immunosorbent assay 

EMA  European Medicines Agency 

EPI  Echo planar imaging 

FA  Fractional anisotropy 

FBA   Fixel-based analysis 

FC  Fibre cross-section 

FD  Fibre density 

FDA  Food and drug administration 

FDC  Fibre density and cross-section 

fMRI  Functional magnetic resonance Imaging  

FOD  Fibre orientation distribution 



18 
 
 

 

 

FrSBE  Frontal systems behavioural scale 

FWE  Family-wise error 

FWF  Free water fraction 

GFAP  Glial fibrillary acidic protein 

GWAS  Genome-wide association studies 

HD  Huntington’s disease 

HD-YAS Huntington’s disease young adult study 

IED  Intra-extra dimensional set shifting 

IL  Interleukin 

MALP-EM Multi-atlas label propagation with expectation maximisation-based 

refinement 

MD  Mean diffusivity 

mHTT  Mutant huntingtin 

MOS  Medical outcomes study 

MIDAS  Metabolite imaging and data analysis system 

MNI  Montreal neurological institute 

MPM  Multi-parametric mapping 

MRI  Magnetic resonance imaging 

MT  Magnetisation transfer 

NART  National adult reading test 

NBS  Network-based statistics 

NDI  Neurite density index  

NfL  Neurofilament light 

NODDI  Neurite orientation dispersion and density imaging 

OCI  Obsessive-compulsive inventory 

ODI  Orientation dispersion index  

OTS  One-touch stockings of Cambridge 

PAL  Paired associates learning 

PBA  Problem behaviours assessment 

PCR  Polymerase chain reaction 

PD  Effective proton density 

PET  Positron emission tomography 

preHD  Premanifest Huntington’s disease 



19 
 
 

 

 

PSQI  Pittsburgh sleep quality index 

R1  Longitudinal relaxation rate 

R2*  Effective transverse relaxation rate 

RNAi  RNA interference 

RD  Radial diffusivity 

ROC  Receiver operating characteristic 

ROI  Region of interest 

RVP  Rapid visual information processing 

SDMT  Symbol digit modalities test 

SCL-90 Symptom checklist-90-revised 

SD  Standard deviation 

SDS  Zung self-rating depression scale 

SE  Standard error 

SF-36  Short-form health survey 

SIFT  Spherical-deconvolution informed filtering of tractograms 

SMC  Single molecule counting 

STAI  Spielberger state/trait anxiety 

SST  Stop signal test 

SWM  Spatial working memory 

SWRT  Stroop word reading test 

tHTT  Total huntingtin 

T  Tesla 

TE  Echo time 

TFC  Total functional capacity 

TMS  Total motor score 

TR  Repetition time 

UCH-L1 Ubiquitin C-terminal Hydrolase L1 

UHDRS Unified Huntington’s Disease Rating Scale 

 

 

  



20 
 
 

 

 

1 Introduction 

In this introduction, I provide an overview of Huntington’s disease (HD), with particular 

emphasis on the premanifest period. I reflect on recent progress in the search for 

disease modifying treatments and the currently unanswered questions that may help 

inform future treatment strategies.  
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1.1 Huntington’s disease 

Huntington’s disease (HD) is a progressive neurodegenerative disease characterised 

by neuropsychiatric symptoms, cognitive and motor impairment. Disease onset can 

occur at any time in life, but the incidence is highest between 50-70 years (Evans et 

al. 2013). Despite the identification of the causative mutation, a trinucleotide repeat 

expansion in the Huntingtin gene in 1993 (The Huntington's Disease Collaborative 

Research Group 1993), there are still no disease modifying therapies for this 

devastating disease. The prevalence of HD worldwide is 2.7 per 100,000 (Pringsheim 

et al. 2012). This varies between regions and is higher in Europe, North America and 

Australia (5.7 per 100,000) and lower in Asia at 0.4 per 100,000. In the UK, prevalence 

is 12.3 per 100,000 and it is estimated there are more than 5700 people, aged 21 or 

more, with HD (Evans et al. 2013).  

1.1.1 Genetics 

HD is an autosomal dominant monogenic disorder caused by a CAG repeat 

expansion within exon 1 of the HTT gene leading to the production of mutant 

huntingtin (mHTT) protein (Bates et al. 2015). HD is fully penetrant in mutation 

carriers with > 39 CAG repeats and the age of onset is inversely correlated with the 

length of the expansion (Langbehn et al. 2010; Ross et al. 2014). Repeat lengths in 

excess of 50 can lead to clinical onset before 21 years which is known as Juvenile 

HD (Fusilli et al. 2018). Juvenile HD is associated with a different phenotype to adult 

onset HD, presenting with a more rigid, bradykinetic clinical picture and faster 

progression. In addition, magnetic resonance imaging (MRI) and post-mortem studies 

show more severe striatal atrophy and less white matter involvement, underscoring 

the phenotypic differences that distinguish this group from adult-onset HD (Fusilli et 

al. 2018). Individuals with repeat lengths between 36-39 display reduced penetrance 

where individuals may or may not develop HD symptoms over a typical lifespan 

(Rubinsztein et al. 1996).  

CAG repeat length shows a strong relationship with age of onset, accounting for 50-

70% of variability in age of onset (Langbehn et al. 2004; Lee et al. 2012). Genome-
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wide association studies (GWAS) have uncovered other genes involved in DNA repair 

that may account for some of the remaining variability in age of onset as well as the 

rate of progression of HD (Hensman Moss et al. 2017; Goold et al. 2019). Recent 

work suggests that uninterrupted CAG repeats rather than polyglutamine length may 

be the dominant factor influencing age of onset (Genetic Modifiers of Huntington’s 

Disease Consortium 2019). 

Predictive testing via polymerase chain reaction (PCR) analysis is widely available in 

the UK and sizing is accurate within ±1 repeat for alleles ≤42 and ±3 repeats for alleles 

>42 (Losekoot et al. 2013). However current levels of uptake in the UK are low 

(17.4%) with a median age at testing of 37 years (Baig et al. 2016).  

1.1.2 Neurobiology 

Although huntingtin-lowering therapies are now in clinical development, the precise 

role of wild type huntingtin has yet to be fully characterised. It is an intracellular protein 

which is ubiquitously expressed throughout all cell types although its expression is 

higher in the central nervous system (CNS) than peripheral tissues (Saudou and 

Humbert 2016). It appears to be involved in several cellular functions including in 

vesicular trafficking, ciliogenesis, endocytosis, autophagy and transcriptional 

regulation (Saudou and Humbert 2016). HTT knock out models are embryonically 

lethal indicating it also has an essential role in neurodevelopment (Zeitlin et al. 1995; 

Liu and Zeitlin 2017).  

The HD mutation is thought to represent a toxic gain of function although the 

mechanism of how this results in neuronal death is multifactorial and incompletely 

understood (Bates et al. 2015). Full-length huntingtin is cleaved through proteolysis 

to generate additional protein fragments, some of which can enter the nucleus. These 

fragments can be retained in the nucleus forming inclusions and causing 

transcriptional dysregulation. Huntingtin fragments also oligomerise and aggregate in 

the cytoplasm (Bates et al. 2015). An amino-terminal HTT exon1 truncated protein 

formed by aberrant splicing may also contribute to aggregation (Sathasivam et al. 

2013). The presence of mutant huntingtin and its fragments leads to a diversity of 

cellular impairments including synaptic dysfunction (Reddy and Shirendeb 2012; 

Nithianantharajah and Hannan 2013), mitochondrial toxicity (Johri, Chandra et al. 
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2013), immune dysfunction (Ellrichmann et al. 2013) and decreased axonal transport 

(Reddy and Shirendeb 2012). Together, these dysfunctions result in progressive 

neuronal impairment, damage and death (Bates, Dorsey et al. 2015). 

Synaptic and immune dysfunction may be particularly relevant in the early disease 

process. Evidence for early synaptic dysfunction in HD includes altered transmission 

and excitability in HD brains and animal models (Smith-Dijak et al. 2019). The 

disruption of synaptic function and plasticity affects a variety of synaptic signalling 

molecules over a range of neuronal types and brain structures. The cortico-striatal 

synapse has been a particular focus of study and shows significant dysfunction before 

the degeneration of the medium spiny neurons which predominate in the striatum 

(Veldman and Yang 2018). Due to changes in subunit composition and localisation 

of the glutamatergic NMDA receptor, as well as reduced function of glutamate 

transporter 1, glutamatergic signalling at the cortico-striatal synapse more readily 

engages pro-death signalling pathways (Smith-Dijak et al. 2019). Medium spiny 

neurons also receive reduced trophic support from cortical projection neurons due to 

reduced expression and trafficking of brain derived neurotrophic factor (BDNF), 

resulting in pro-death rather than pro-survival plasticity pathways being activated. In 

addition, the medium spiny neurons may receive increased inhibitory signalling due 

to enhanced GABAergic input from striatal interneurons. Some of the alterations in 

signalling, such as reduced transcription and transport of BDNF, are thought to be a 

direct result of the effect of the CAG expansion on the function of mHTT, whilst others 

appear to be the consequence of mHTT-mediated disruption of other related 

pathways (Smith-Dijak et al. 2019). Collectively, such alterations increase neuronal 

vulnerability to cell death. These changes appear to occur early in the disease 

process, highlighted by the fact that premanifest Huntington’s disease (preHD) 

human subjects demonstrate altered motor cortex plasticity and excitability long 

before the onset of overt symptoms (Orth et al. 2010). 

Immune dysfunction has also been an area of increasing focus in HD. Glial cells have 

been shown to become dysregulated early in the disease course (Wilton and Stevens 

2020). Such dysregulation can lead to the disruption of normal biological processes, 

such as impaired myelination attributed to changes in oligodendrocyte biology (Jin et 

al. 2015; Garcia-Miralles et al. 2019), but can also cause reactive changes, such as 
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the increased secretion of inflammatory cytokines by microglia (Crotti et al. 2014). 

Several studies have demonstrated that cell-autonomous dysfunction driven by 

mHTT in specific glial types is able to induce HD pathology and disease-related 

impairments in motor and cognitive performance (Wilton and Stevens 2020). 

Transcriptional dysregulation as a result of mHTT expression has been observed in 

both oligodendrocytes and astrocytes and their common progenitor as well as earlier 

stages of neural development, suggesting that their dysfunctional biology is apparent 

at an early stage (Diaz-Castro et al. 2019; Osipovitch et al. 2019; Wilton and Stevens 

2020). Underlining this, recent work has demonstrated mHTT-driven transcriptional 

dysregulation in astrocytes becomes more pronounced over time and is reversed with 

mHTT lowering (Diaz-Castro et al. 2019). It is still unclear whether glia facilitate or 

mitigate HD pathogenesis, although the cell-autonomous pathology generated by 

selective expression of mHTT and evidence of glial dysfunction early in the disease 

course lends increasing weight that it is not simply a response to early neuronal 

damage (Wilton and Stevens 2020). Understanding how markers of glial activity relate 

to markers of neuronal damage in early preHD will be of specific interest in this regard. 

Finally, increasing evidence for the role of somatic instability in HD pathogenesis is 

emerging, supported by aforementioned findings that genetic variation in genes 

involved in DNA repair are closely related to age of onset and rate of progression in 

HD (Hensman Moss et al. 2017; Goold et al. 2019). Similar findings have been 

reported in other CAG-repeat disorders such as spinocerebellar ataxias, supporting 

somatic expansion as a driver of pathogenesis across multiple CAG expansion 

disorders (Sobczak and Krzyzosiak 2004). This somatic instability varies between cell 

and tissue types, and is particularly prominent in the striatum and cortex and may 

partly explain the selective vulnerability of these tissues (Telenius et al. 1994; Swami 

et al. 2009). Intriguingly, huntingtin-lowering was recently observed to reduce somatic 

instability of both Htt and Atxn2 CAG tracts in knock-in mouse models and the HTT 

CAG tract in human neurons, suggesting a role for HTT in regulating somatic 

instability (Coffey et al. 2020). 
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1.1.3 Pathology 

Post-mortem studies demonstrate that the striatum, comprising the ventral striatum, 

caudate and putamen, is a major site of pathology in HD (Vonsattel et al. 1985; 

Vonsattel and DiFiglia 1998). Striatal volume loss is mainly caused by an extensive 

reduction in GABA-ergic medium spiny stellate projection neurons (Graveland et al. 

1985; Vonsattel and DiFiglia 1998). These account for approximately 95% of all 

neurons in the striatum and are the main targets of striatal input and provide the main 

efferent output of the striatum. The neuropathological changes within the striatum 

appear to follow a dorso-ventral, medial-lateral caudal-rostral gradient (Vonsattel et 

al. 1985).  

Alongside the striatum, the thalamus is another central subcortical structure in basal-

ganglia loops providing efferent output from the basal ganglia back to the cortex 

(Haber 2016). Degeneration of the thalamus with global atrophy, neuronal loss and 

astrogliosis has been described in previous neuropathological studies (Heinsen et al. 

1996; Heinsen et al. 1999; Rub et al. 2016). This neurodegeneration appears to 

involve the different component nuclei of the thalamus including the motor 

ventrolateral nucleus, centromedian-parafascicular complex and mediodorsal 

nucleus. 

Over time, all four cerebral lobes undergo thinning of their cortical mantles, layer 

specific neuronal loss and severe atrophy (Rub et al. 2016). The degree of neuronal 

loss is closely association with the extent of reactive astrogliosis observed (Myers et 

al. 1991). The brainstem and cerebellum also show evidence of widespread 

neurodegeneration in HD, demonstrating that although the striatum shows early 

striking neurodegeneration, HD ultimately affects the whole brain (Rub et al. 2016). 

White matter pathology has been less well characterised in HD, but substantial white 

matter atrophy has been consistently described with evidence of axonal inclusions in 

the white matter tracts (de la Monte et al. 1988; Rub et al. 2016). In post-mortem 

brains of preHD subjects, increased oligodendrocyte densities were observed in the 

striatum alongside normal densities of other cell types (Gómez-Tortosa et al. 2001). 

Given the central role of oligodendrocytes in myelination, this result increases interest 

in disrupted myelination early in the disease processes. 
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Increased iron deposition is a common feature in other degenerative diseases 

affecting the basal ganglia (Rouault 2013). Iron deposition has also been described 

in early stage HD (Simmons et al. 2007; Rosas et al. 2012; Muller and Leavitt 2014), 

including in the putamen, pallidum and occipital cortex (Rosas et al. 2012). Whether 

such iron deposition contributes to pathogenesis or is a secondary phenomenon is 

unclear (Muller and Leavitt 2014). 

1.1.4 Clinical manifestations 

The diagnosis of manifest HD is based on a positive genetic test coupled with the 

onset of motor abnormalities typical of HD. The latter is defined by a diagnostic 

confidence score of 4 (unequivocal motor signs) on the standardised Unified HD 

rating scale (UHDRS) (Huntington Study Group 1996). 

One of the hallmarks of HD is chorea which increases in the early course of the 

disease before typically plateauing. Other motor abnormalities typically seen include 

dystonia, bradykinesia, motor impersistence and gait instability. Motor function is 

typically assessed on the UHDRS total motor score (TMS), which involves a focused 

examination of motor signs associated with HD. Though there is a degree of inter-

rater variability, it is sensitive to change over time (Hogarth et al. 2005; Tabrizi et al. 

2013; Biglan et al. 2016). More quantitative assessments include the Q-motor battery, 

which includes tongue force variability, grip force, speeded and self-paced tapping 

and also show sensitivity to longitudinal change in HD (Tabrizi et al. 2013). 

HD also causes progressive cognitive impairment (Papoutsi et al. 2014). In manifest 

HD there is a range of cognitive impairments demonstrable over many related 

domains including executive function, psychomotor speed, attention, episodic 

memory, working memory, learning, emotion recognition and odour perception 

(Paulsen 2011; Papoutsi et al. 2014). Domains such as semantic memory, language 

comprehension, spatial awareness and orientation remain relatively intact, 

highlighting the subcortical nature of neurodegeneration in the early stages of the 

disease (Papoutsi et al. 2014).  

Neuropsychiatric disturbance is the third cardinal feature of HD and can be the most 

problematic for patients and their families. Psychiatric symptoms have typically been 

assessed using either standardised self-report questionnaires (Epping et al. 2016) or 
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the problem behaviours assessment (PBA), where symptoms are assessed using a 

semi-structured interview (Craufurd et al. 2001). A number of different psychiatric 

symptoms can be seen at increased rates in HD compared to the general population, 

including apathy, anxiety, depression, irritability, obsessive compulsive symptoms 

and psychosis (Craufurd et al. 2001; van Duijn et al. 2014). Apathy and irritability are 

particularly common, occurring in approximately 70% and 40% of HD patients 

respectively (Craufurd et al. 2001). Apathy typically increases with disease duration 

and whilst affective symptoms such as depression and anxiety are very common, 

these do not typically associate with disease duration likely due to the availability of 

effective treatments for the latter (Craufurd et al. 2001; Tabrizi et al. 2013).  

1.1.5 Current therapeutic approaches for disease modification 

No disease modifying treatments currently exist for HD, however recent advances in 

DNA and RNA modifying therapies hold great promise. Most advanced in clinical 

development are anti-sense oligonucleotide (ASO) therapies. ASOs are short, 

synthetic, single-stranded oligonucleotide analogues that bind to complementary pre-

mRNA targets that lead to target protein reduction via a number of potential pathways 

including through RNase H1 recruitment (Tabrizi et al. 2019). A non-allele selective 

ASO has already been shown to effectively lower mHTT in humans (Tabrizi et al. 

2019) and is now in a phase 3 clinical trial whilst an allele selective approach is also 

in human trials (Hersch et al. 2017).  

Other RNA lowering approaches include RNA interference (RNAi) compounds. RNAi 

uses RNA-based therapeutic molecules including short hairpin RNA, microRNA and 

short interfering RNA (siRNA). These molecules bind to mature spliced cytosolic 

mRNA, promoting its removal by argonaute2, an enzyme within the RNA-induced 

silencing complex (Hutvagner and Simard 2008).  

Current DNA lowering approaches in preclinical development for HD include 

clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR 

associated protein 9 (CRISPR/Cas9) and zinc finger proteins (ZFNs) (Tabrizi et al. 

2019). Potential applications for HD include the excision of CAG repeats, inactivation 

of the mutant allele by insertion of stop codons or missense mutations (Cox et al. 

2015).  
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One aspect important to treatment success is the distribution of a disease-modifying 

therapy. ASOs are large molecules and do not effectively permeate the blood-brain-

barrier and hence are delivered intrathecally (Tabrizi et al. 2019). Meanwhile RNAi, 

ZFNs and certain CRISPR-Cas9 approaches using adenoviral vectors will require 

delivery by injection direct to the brain parenchyma. Although a more invasive 

procedure, adenoviral vector delivery should mean only a single dose is required to 

produce a lasting huntingtin-lowering effect. However distribution, which can occur in 

part through axonal transport with certain adenoviral vectors (Weiss et al. 2020), is 

often limited. Therefore, injection sites may need to be selected based on factors such 

as regions most vulnerable to degeneration or areas of high connectivity to other 

important brain regions to help facilitate therapeutic distribution. 

Collectively, these DNA and RNA editing approaches hold great promise for future 

disease modification in HD. Currently in preclinical development there are 3 RNAi 

candidates, 1 small molecule, 2 CRISPR/Cas9, 2 ZFPs and 1 ASO whilst 2 ASO 

candidates are currently in advanced clinical trials (Tabrizi et al. 2019). Such 

approaches are likely to have the most success if instituted early in the disease 

course before widespread neurodegeneration has occurred and preventing or 

delaying clinical onset will be a key goal of future treatments. Therefore, fully 

characterising the premanifest period, from the first detectable markers of 

neurodegeneration through the cascade of biomarker changes that lead to clinical 

onset, will be important in determining the optimal time to treat and biomarkers that 

may be helpful when there is little in the way of clinical impairments. The genetic basis 

of HD affords the possibility to study the course of disease in its entirety and trace 

neurodegeneration back to the very earliest timepoint. 

1.2 The premanifest period 

Current understanding of the premanifest period in HD has largely been shaped by 

TRACK-HD and PREDICT-HD, two large-scale longitudinal cohort studies. TRACK-

HD was a 4 site international study involving 366 individuals, including 120 preHD 

individuals and 120 controls who were followed up over 36 months collecting motor, 

cognitive, psychiatric and imaging data along with blood collection that was not used 

in the original analysis (Tabrizi et al. 2009; Tabrizi et al. 2011; Tabrizi et al. 2012; 
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Tabrizi et al. 2013). PreHD subjects were required to have a CAG repeat length of 

>39. The TrackOn-HD study was an extension of TRACK-HD but with only the preHD 

and control participants carried over (Kloppel et al. 2015). In addition to the clinical 

assessments, diffusion tensor imaging and resting state functional MRI (fMRI) were 

added to the imaging battery whilst neurite orientation dispersion and density imaging 

(NODDI) was added to the final timepoint.  

The PREDICT-HD study collected data from September 2001 to August 2012 from 

1314 participants including 1013 preHD and 301 controls at 32 worldwide sites 

(Paulsen et al. 2008; Paulsen et al. 2014). The average years in the study were six 

with a range of 1-10. Assessments included motor, cognitive, psychiatric and brain 

MRI. Unlike the TRACK-HD study, individuals with intermediate repeat lengths of 36-

39 were included in the preHD group. MRI assessments included either a 1.5T or 3T 

volumetric scan with diffusion tensor imaging added to the schedules later in the 

study.  

1.2.1 Predicting years to clinical onset 

To enable a detailed characterisation of the premanifest period, previous natural 

history studies have utilised models which aim to predict years to clinical onset or 

estimate disease burden in order to stratify subgroups according to proximity to onset. 

Such models leverage the strong association with CAG length on age of clinical onset 

by incorporating CAG length within the model.  

The Penney Disease Burden Score (DBS), used in TRACK-HD to recruit a preHD 

cohort likely to show demonstrable change in selected outcome measures, is 

calculated as age X [CAG length-35.5] (Appendix 9.1). This equation is based on the 

linear correlation observed between CAG repeat number and the degree of atrophy 

in the striatum for 89 HD patients (Penney et al. 1997). The score functions as a 

posteriori estimate of an individual’s lifetime exposure to mHTT at any given age. The 

DBS does not, however, directly predict the number of years to clinical onset. The 

Langbehn survival analysis formula (Langbehn et al. 2004) was derived using a 

cohort of 2913 individuals from 40 centres worldwide and uses a parametric survival 

model based on CAG repeat length to predict age of disease onset. This prediction 

is not perfect and suffers from referral and observation biases. It also cannot account 
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for the influence of other genetic determinants of age of onset that are beginning to 

be revealed as discussed earlier. Nevertheless, a prospective validation of the model 

reported reasonably accurate predictions in age of onset (Langbehn et al. 2010). This 

model was used in TRACK-HD to divide the preHD group in two based on being < or 

> 10.8 years from predicted onset. The study results demonstrated a striking 

relationship with numerous disease biomarkers and time to predicted onset (Tabrizi 

et al. 2009; Tabrizi et al. 2013), indicating that this model provides a meaningful 

predictor of time to clinical onset at the group level to enable preHD stratification. 

The PREDICT-HD study used the CAG-Age Product (CAP) score to split the 

premanifest group into near, mid and far stages which were <7.59, 7.59-12.78 and 

>12.78 years from predicted onset respectively (Paulsen et al. 2014). CAP is similar 

to DBS with both indexing the cumulative toxicity of mutant huntingtin by incorporating 

age and CAG repeat lengths within the model. The CAP score is calculated as 

CAP=100xAGEx[(CAG-L) ÷S], where AGE is the patient’s current age at time of study 

and L and S are constants (Zhang et al. 2011). S is a normalising constant chosen 

so that the CAP score is approximately 100 at the patient’s expected age of onset as 

estimated by the Langbehn formula (Langbehn et al. 2004). L is a scaling constant 

that represents the lower limit of CAG lengths for which some pathological effect 

might be expected. In the original CAP score, this was estimated at 33.66 (Zhang et 

al. 2011), contrasting to the DBS estimation which uses 35.5. Since the inception of 

the CAP score, the optimal L and S values have been found to be 30 and S of 627 

for correlation with a wide variety of clinical measures (Ross et al. 2014). Like the 

DBS, this model appeared to provide a meaningful measure of disease staging, with 

a variety of markers showing progressive changes from the far to near groups 

(Paulsen et al. 2008; Stout et al. 2011; Epping et al. 2016).  

Using the above models, all of which use age and CAG length to provide an estimate 

of years to expected onset, large observational studies such as PREDICT-HD and 

TRACK-HD have shed light on when certain disease markers first become abnormal 

in the premanifest period.  



31 
 
 

 

 

1.2.2 Motor 

Clinical diagnosis based on UHDRS requires ‘unequivocal motor signs’ on a focused 

clinical examination. Motor signs observed on the TMS typically gradually and subtly 

increase towards diagnosis (Biglan et al. 2009; Tabrizi et al. 2012; Tabrizi et al. 2013; 

Paulsen et al. 2014; Biglan et al. 2016). Paulsen et al. found that the total score on 

TMS, rather than the chorea, bradykinesia, ocular, rigidity and dystonia subscores, 

demonstrated the strongest effect size of the motor measures across the PREDICT-

HD cohort (Paulsen et al. 2014). This finding was extended by a recent study 

demonstrating that TMS had the largest longitudinal effect size over a 3-year 

timespan in preHD across five large observational studies, outperforming cognitive 

and functional measures included across studies (Langbehn and Hersch 2020). 

Quantitative motor tasks included in TRACK-HD such as tongue protrusion force and 

speeded tapping variability begin to show changes in those who are <10 years from 

predicted onset (Tabrizi et al. 2013). However, preHD individuals >10 years from 

onset do not appear to show any detectable motor changes (Tabrizi et al. 2009; 

Paulsen et al. 2014). Collectively, the evidence suggests that whilst motor changes 

may demonstrate large effect sizes in preHD close to predicted onset, they are not 

sensitive to disease effects in groups > 10 years from predicted onset. 

1.2.3 Cognition 

Subtle cognitive impairment is detectable in preHD at least 10 years away from onset 

(Stout et al. 2011) and cognitive deficits are predominantly based fronto-striatal 

dependent tasks (Papoutsi et al. 2014). Early deficits have been reported in executive 

function (Lawrence et al. 1998; Stout et al. 2011; Papp et al. 2013), visuomotor 

integration (Lemay et al. 2005; Say et al. 2011), psychomotor speed (Lawrence et al. 

1998; Snowden et al. 2002; Stout et al. 2011; Stout et al. 2012; Tabrizi et al. 2013) 

and emotion recognition (Stout et al. 2011; Harrington et al. 2014). 

A wide variety of cognitive tasks have been used to study cognition in the premanifest 

period. Among the most established measures are the symbol digit modalities test 

(SDMT) and Stroop word reading test (SWRT), which were included in both TRACK-

HD (Tabrizi et al. 2009) and PREDICT-HD (Paulsen et al. 2008) studies and continue 

to be utilised in the ongoing Enroll-HD study (Landwehrmeyer et al. 2016). As a 
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substitution task, the SDMT assesses attention, perceptual speed, motor speed and 

visual scanning. It has been shown to be sensitive to a variety of neurological 

conditions associated with impairments in processing speed (Van Schependom et al. 

2014; Fellows and Schmitter-Edgecombe 2019). In the PREDICT-HD study, it 

demonstrated the highest effect size in the “near” and “mid” groups up to 12 years 

from predicted onset, but displayed little difference in the group furthest from 

predicted onset (Stout et al. 2011). In TRACK-HD, longitudinal change was also 

demonstrated in the premanifest group close to predicted onset, but not the group 

further from predicted onset (Tabrizi et al. 2013). The Stroop word reading test also 

assesses processing speed and has demonstrated cross-sectional and longitudinal 

change in the premanifest period with relatively high effect sizes (Stout et al. 2011; 

Tabrizi et al. 2013). With respect to the other components of the Stroop test, colour 

naming and interference variables have been found to be less sensitive compared to 

the word reading component (Schobel et al. 2017).  

Tests of executive function that have been shown to be sensitive in the premanifest 

period include the trail making and verbal fluency tests (Lawrence et al. 1998; Stout 

et al. 2011). One previous study demonstrated significant impairments in semantic 

but not phonemic verbal fluency in preHD (Lawrence et al. 1998). Phonemic verbal 

fluency showed significant differences in the group closest to predicted onset in 

PREDICT-HD, but not in the groups further from onset, suggesting it is generally a 

less sensitive test of cognitive impairment in the early premanifest period. Although 

not previously included in either TRACK-HD, or PREDICT-HD cohorts, attentional set 

shifting has also been previously shown to be sensitive in the premanifest period 

(Lawrence et al. 1998). 

Social cognition is also of interest in HD. Emotion recognition has been assessed in 

a relatively large number of HD studies within the last 20 years, with particular focus 

on negative emotions (anger, disgust, fear, and sadness) that appear to be more 

affected (Johnson et al. 2007; Henley et al. 2012). Negative emotion recognition is 

the only task that has shown changes in the group further from onset in both TRACK-

HD and PREDICT-HD (Tabrizi et al. 2009; Stout et al. 2011), the latter with a relatively 

low effect size (Cohens d= -0.26).  
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Tasks sensitive to hippocampal dysfunction, such as the paired associates learning 

and virtual reality Morris maze task, do not appear to be sensitive to disease effects 

in the premanifest period (Begeti et al. 2016). 

Taken together, the existing literature suggests that cognitive deficits become 

increasingly prominent and widespread in individuals close to predicted onset, but 

there has been little evidence to date of cognitive impairment in gene carriers >15 

years from predicted onset. The lack of evidence for cognitive impairment in gene 

carriers further from onset suggests that HD is not associated with cognitive 

differences throughout the lifespan. However, it remains possible that cognitive 

changes may occur in individuals further from predicted onset, but have been so far 

undetected either because their effect sizes are too small, or due to a failure to target 

the affected cognitive functions with the right tests. 

1.2.4 Psychiatric  

Neuropsychiatric features are relatively common in the premanifest period but can 

also be observed in the general population. Most of the assessment tools used 

previously to examine for neuropsychiatric symptoms in preHD have quantified the 

degree of current neuropsychiatric symptoms, typically from the preceding days to 

weeks, rather than lifetime rates (Tabrizi et al. 2009; Duff et al. 2010; Epping et al. 

2013; Epping et al. 2016). 

Using the PBA, TRACK-HD reported significant cross-sectional differences in apathy 

and irritability in preHD but not in affective features (Tabrizi et al. 2009). Similarly, 

increased levels of apathy have also been reported in preHD using the frontal system 

behavioural Scale (FrsBe) (Duff et al. 2010).  

Depressive symptoms, as measured on the self-report symptom checklist-90-revised 

(SCL-90R) and the beck depression inventory, have also been found to be more 

prevalent in preHD (Epping et al. 2013). However this study did not find a relationship 

with depressive symptoms and proximity to predicted onset or time since genetic 

testing. A separate study using a diagnostic interview method also found increased 

depressive symptoms in preHD, with the rate of depression increasing with proximity 

to estimated clinical onset (Julien et al. 2007). However gene carriers and non-gene 
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carriers did not differ in lifetime history of psychiatric diagnoses or subclinical 

symptoms. 

Obsessive and compulsive symptoms, which are more common in HD than the 

general population (Beglinger et al. 2007), have also been studied in the premanifest 

period using a self-report questionnaire (Beglinger et al. 2008). There was evidence 

of increased symptoms in the preHD group overall, although mean scores were below 

those of patients with a clinical diagnosis of obsessive-compulsive disorder. There 

was also no evidence of this symptom increasing in the groups closer to predicted 

onset in this cohort.  

In a longitudinal analysis of 1305 PREDICT-HD subjects using scores on the SCL-

90R, significant cross-sectional and longitudinal increases were found in 19 out of the 

24 psychiatric measures in the group closest to onset (Epping et al. 2016). In the 

group >12 years from predicted onset there were significant cross-sectional increases 

in levels of depression, anxiety and obsessive-compulsive symptoms, although these 

did not show longitudinal change. Longitudinal increases in psychiatric symptoms 

have been observed in a smaller preHD sample, with the greatest changes noted in 

irritability and hostility (Kirkwood et al. 2002). In TRACK-HD, only apathy showed 

significant longitudinal changes in the preHD group close to predicted onset (Tabrizi 

et al. 2013). 

Since neuropsychiatric symptoms are often assessed using self-report scales, some 

studies have sought to establish how closely aligned HD gene carrier ratings are to 

companion ratings. In PREDICT-HD, companion ratings tended to be higher than 

preHD self-ratings, particularly in participants closest to expected onset (Epping et al. 

2016). However, another study found that preHD participants self-rated higher on the 

FrsBe compared their companion, and the reverse was true in the manifest 

participants (Andrews et al. 2018). This is consistent with previous findings of 

decreased awareness of symptoms in HD (Chatterjee et al. 2005; Ho et al. 2006) and 

in preHD close to predicted onset (Duff et al. 2010; McCusker et al. 2013). There is 

little evidence of a lack of symptom awareness in individuals further from onset 

however. 



35 
 
 

 

 

In the majority of previous studies, including TRACK-HD and PREDICT-HD, 

medication use has been not controlled for, creating a potential limitation in the report 

of symptoms that can be medicated. Indeed, it was proposed as a reason why 

affective symptoms might not demonstrate longitudinal change in TRACK-HD (Tabrizi 

et al. 2013). However, in the latter study, medication use was similar in both preHD 

and control groups whilst in PREDICT-HD, the proportion of participants taking 

antidepressants increased with depression severity in both groups (Epping et al. 

2013), suggesting that medication use may not substantially confound previously 

reported results. 

The cause of increased psychiatric symptoms observed in the premanifest period 

remains difficult to determine. Observations of increasing prevalence and severity of 

psychiatric symptoms in individuals closer to predicted onset (Julien et al. 2007; 

Epping et al. 2016) may suggest this to be a neurobiological effect, however this 

relationship has not always been observed in previous preHD studies (Beglinger et 

al. 2008; Epping et al. 2013; Tabrizi et al. 2013). Environmental factors, such as 

growing up in HD families could be relevant, however the control groups in previous 

studies have minimised this influence by including gene negative or family members 

as the control group. Finally, the impact of a positive predicted test is a relevant 

consideration. However collective evidence from previous studies on the impact of 

testing has suggested that a positive test result is not associated increased 

psychiatric symptoms compared to those testing negative over time (Crozier et al. 

2015). 

1.2.5 Biofluids 

The study of biofluid biomarkers in HD can further inform understanding of the 

premanifest period and has greatly accelerated over the past decade owing to several 

factors including: a greater understanding of the pathophysiology of HD, the 

development of new highly sensitive assays and improvements in the standardisation 

of sample collection and processing (Zeun et al. 2019). Cerebrospinal fluid (CSF), 

which is enriched with brain-derived substances, has been a focus of particular 

interest, but other biofluids have the potential to yield relevant biomarkers if their 

composition reflects that of the CNS. All biofluids, including CSF, may reflect 
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peripheral as well as central disease-related changes, especially since mHTT is 

ubiquitously expressed.  

1.2.5.1 Huntingtin 

The central role of mHTT in HD pathogenesis makes it a key biomarker of interest. 

For huntingtin-lowering therapeutics in development, it is also an important measure 

of target engagement and has already been successfully used as such in the first 

huntingtin-lowering therapy trialled in HD (Tabrizi et al. 2019). CSF mHTT can be 

quantified with a femtomolar-sensitive single molecule counting (SMC) immunoassay 

(Wild et al. 2015) which has been validated according to the guidelines for regulatory 

approval (Fodale et al. 2017). This assay uses the 2B7 antibody, which binds to the 

N-terminus of HTT; and the MW1 antibody, which binds to polyglutamine tracts for 

detection. As should be expected, there has been no detectable signal in control 

groups in previous studies (Wild et al. 2015; Byrne et al. 2018). There is a known 

correlation between mHTT and haemoglobin concentrations, however this only 

becomes significant at haemoglobin concentrations above 2µg/ml (Fodale et al. 

2017).  

CSF mHTT concentrations appear to increase from the premanifest to manifest stage 

of disease and correlate with clinical scores (Wild et al. 2015; Byrne et al. 2018). It 

has been shown to rise linearly with age and in a CAG-dependent fashion (Rodrigues 

et al. 2020). CSF mHTT is highly stable within individuals over short intervals (Byrne 

et al. 2018) and has been shown to be unaffected by batch, assay or storage effects 

(Rodrigues et al. 2020). 

Total huntingtin is also a potential biomarker of interest in HD. Due to the previous 

lack of an assay capable of measuring total huntingtin in biofluids, it is currently 

unknown whether the HD mutation affects concentrations of total huntingtin in 

humans. Recently a total huntingtin assay has become available using a 2B7-D7F7 

immunoassay on the SMC Erenna® platform, with D7F7 recognising a region 

surrounding Pro1220 of human HTT protein. With certain therapeutic approaches 

aimed at lowering total huntingtin, total huntingtin may also be a biomarker of interest 

to quantify target engagement for such approaches. 
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1.2.5.2 Neurofilament light 

Neurofilament light (NfL), a protein of the axonal cytoskeleton thought to be important 

for the radial growth and stability of axons, has been found to be a non-specific marker 

of neuronal damage with elevated NfL concentrations reported across a spectrum of 

neurological conditions (Khalil et al. 2018).  

CSF concentrations are elevated in both premanifest and manifest HD 

(Constantinescu et al. 2009; Niemela et al. 2017; Byrne et al. 2018) and are closely 

associated with CSF mHTT, suggesting both proteins are released together from 

damaged neurons (Wild et al. 2015; Byrne et al. 2018). Cross-sectionally, CSF NfL 

concentrations correlate with disease stage and motor, cognitive and functional 

impairment in HD (Vinther-Jensen et al. 2016; Niemela et al. 2017; Byrne et al. 2018). 

CSF NfL has also been shown to correlate with whole brain, white matter, grey matter 

and caudate volumes (Byrne et al. 2018).  

In a comparison with mHTT, NfL measures showed stronger independent predictive 

ability than mHTT for clinical measures and stronger correlations with clinical and 

imaging measures of disease (Byrne et al. 2018). 

NfL is also detectable at lower concentrations in blood and has been shown to closely 

correlate to CSF NfL, implying a CNS origin of NfL detected in plasma (Byrne et al. 

2017; Byrne et al. 2018). In the TRACK-HD cohort, plasma NfL concentrations rose 

with every subsequent disease stage compared to the control group and were closely 

associated with CAG repeat length (Byrne et al. 2017). Baseline plasma NfL values 

were shown to predict disease onset within 3 years in premanifest subjects as well 

as subsequent change in cognitive and functional measures and brain atrophy in 

preHD. 

These results suggest NfL is a robust biomarker of neuronal damage and progression 

in HD. Baseline values of NfL have been shown to be superior to their rate of change 

in predicting clinical disease status, subsequent clinical progression and brain atrophy 

(Rodrigues et al. 2020). Plasma NfL may represent a more appealing biomarker over 

CSF NfL due to sampling practicalities and cost, and current evidence suggests they 

have similar sensitivity and specificity in premanifest and manifest disease (Byrne et 

al. 2018).  
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1.2.5.3 Other biofluid markers studied in preHD 

Tau is an axonal protein that promotes microtubule assembly and stability (Zetterberg 

2017). Whilst total tau appears to be elevated in manifest HD (Constantinescu et al. 

2011; Rodrigues et al. 2016), few studies have investigated tau in preHD. Vinther-

Jensen et al. found tau was only elevated in manifest HD and not the preHD group 

(Vinther-Jensen et al. 2016). A head to head comparison of NfL with tau in a mixed 

group of premanifest and manifest HD reported that NfL is more strongly correlated 

with disease phenotype (Niemela et al. 2017) and hence appears to be a superior 

biomarker of HD. 

Central and peripheral immune system hyperactivity driven by the effects of mHTT in 

monocytes and microglia has been implicated in HD pathogenesis (Björkqvist et al. 

2009). Elevated concentrations of cytokines IL-6 and IL-8 have been reported in HD 

(Dalrymple et al. 2007; Bjorkqvist et al. 2008; Chang et al. 2015). Bjorkqvist et al. 

reported increased IL-6, but not IL-8 in plasma of preHD participants estimated to be 

approximately 16 years from predicted onset (Bjorkqvist et al. 2008). In the same 

study, IL-8 was increased in early HD subjects. Furthermore, concentrations of IL-6 

and IL-8 in plasma and CSF were shown to be closely correlated. IL-6, but not IL-8 

has been shown to be elevated in the CSF of a mixed premanifest and manifest HD 

cohort (Rodrigues et al. 2016). YKL-40, also known as chitinase-3-like 1 (CHI3L1) is 

a glycoprotein abundantly expressed in reactive astrocytes (Baldacci et al. 2017). 

Elevated YKL-40 concentrations have been reported in a number of 

neurodegenerative and neuroinflammatory diseases (Bonneh-Barkay et al. 2012; 

Llorens et al. 2017), reflecting a common detectable immune response to a variety of 

neuropathology. CSF concentrations of YKL-40 have shown mixed results in HD to 

date with two studies reporting no significant differences between controls and 

premanifest or manifest HD (Vinther-Jensen et al. 2016; Niemelä et al. 2018) and one 

finding increased concentrations of YKL-40 in a mixed premanifest and manifest HD 

cohort (Rodrigues et al. 2016). However the aforementioned studies of YKL-40 have 

been in relatively small sample sizes incorporating a mixture of preHD and HD 

participants and with the increasing evidence of astrocytic dysfunction in the early 

stages of HD (Ben Haim et al. 2015; Wilton and Stevens 2020), YKL-40 remains an 

important biomarker of interest. 
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1.2.5.4 Other promising biofluid biomarkers yet to be studied in HD 

The above represent what are currently the biofluid biomarkers with the most 

evidence in preHD. Neurodegenerative diseases often involve common pathways 

such as astrocytic activation (Ben Haim et al. 2015) and synaptic dysfunction 

(Merluzzi et al. 2018; Nguyen et al. 2019). Indeed, many of the known biomarkers of 

HD are not specific to HD pathology and were originally discovered in studies of other 

neurodegenerative diseases or traumatic brain injury and this continues to be a 

source of novel biomarkers sensitive to neuronal injury that may be of interest in HD. 

For example, glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, 

has been shown to be sensitive in frontal-temporal dementia (Heller et al. 2020), 

Friederichs ataxia (Zeitlberger et al. 2018) and traumatic brain injury (Bazarian et al. 

2018). Another source of potential biomarkers include proteins that are found in the 

neuronal cytoplasm. One example of this includes ubiquitin c-terminal hydrolase L1 

(UCH-L1), an abundant protein in neuronal cytoplasm (Wilkinson et al. 1989) shown 

to be elevated in several neurodegenerative conditions (Öhrfelt et al. 2016; 

Zeitlberger et al. 2018; Ng et al. 2020) and traumatic brain injury (Bazarian et al. 

2018). Such biomarkers are therefore of potential interest for study in HD. 

1.2.6 Imaging 

Early imaging studies in HD mainly focused on volumetric imaging, with the striatum 

being a particular focus of attention. Over the past decade, diffusion imaging and 

functional MRI, both resting state and task-based, have been increasingly studied to 

examine white matter microstructure and functional connectivity respectively.  

1.2.6.1 Volumetric imaging  

The most widely studied imaging acquisition in HD is the structural volumetric MRI 

scan. Typically, a T1-weighted image is used as it presents the best contrast between 

grey and white matter, which makes delineation of structures of interest more 

accurate.  

1.2.6.1.1 The striatum 

Cross-sectional and longitudinal studies have shown that atrophy of the caudate and 

putamen can be observed from 15-20 years prior to predicted disease onset, and this 
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atrophy increases in individuals closer to onset in a linear fashion (Paulsen et al. 

2008; Tabrizi et al. 2009; Aylward et al. 2011; Tabrizi et al. 2013). Caudate volumes 

have previously shown stronger effect sizes than putamen (Aylward et al. 2011; 

Tabrizi et al. 2013). The caudate is easier to delineate than the putamen due to its 

boundary with lateral ventricle, and this may contribute to measurements being more 

sensitive and less variable in the caudate. (Tabrizi et al. 2009; Tabrizi et al. 2013; 

Scahill et al. 2017). Striatal atrophy rates (Tabrizi et al. 2013; Paulsen et al. 2014) are 

predictors of conversion to manifest HD, highlighting the influence of striatal atrophy 

in emerging clinical signs. Striatal atrophy shows significant correlations with UHDRS 

TMS (Jurgens et al. 2008; Paulsen et al. 2010; Aylward et al. 2012), whilst paced 

finger tapping and tongue force also correlate with striatal volume (Tabrizi et al. 2009). 

Caudate volume loss is associated with deficits in verbal learning, working memory 

and emotion recognition (Aylward et al. 2013) whilst putaminal atrophy correlates with 

executive dysfunction and emotion recognition (Jurgens et al. 2008; Aylward et al. 

2013; Harrington et al. 2014). 

1.2.6.1.2 Other subcortical structures 

Volume reduction has been reported in the nucleus accumbens, pallidum and 

thalamus from the premanifest stage (van den Bogaard et al. 2011) and longitudinal 

studies have also highlighted thalamic atrophy in premanifest cohorts (Aylward et al. 

2011; Majid et al. 2011). However, effect sizes were small compared with the caudate 

and putamen. Thalamic volume has been shown to correlate with TMS (van den 

Bogaard et al. 2011). There is a relative lack of longitudinal studies of non-striatal 

subcortical structures, and no differences were found either cross-sectionally or 

longitudinally in any of these structures in one such study using an automated 

segmentation technique (Majid et al. 2011). The apparent lack of sensitivity of these 

structures to HD pathology compared with the caudate and putamen may be a real 

biological phenomenon or may just reflect the paucity of well-powered studies and/or 

the fact that these small structures have relatively poorly defined boundaries.  

1.2.6.1.3 Cortical structures  

Cortical volumes can be assessed using a number of manual (Aylward et al. 1998), 

semi-automated (Henley et al. 2006) and automated segmentation techniques (e.g. 

Statistical Parametric Mapping (https://www.fil.ion.ucl.ac.uk/spm/); Freesurfer 
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(https://surfer.nmr.mgh.harvard.edu/); FSL (https://fsl.fmrib.ox.ac.uk/fsl), although 

manual delineation of the cortex is generally more challenging than subcortical 

segmentation due to its convoluted structure.  

Whole brain and grey matter volume has been shown to be reduced cross-sectionally 

and longitudinally, including in the premanifest stages (Kipps et al. 2005; Tabrizi et 

al. 2011; Tabrizi et al. 2012). Effect sizes are smaller than for striatal or white matter 

measures in the early premanifest stage of the disease (Tabrizi et al. 2012; Tabrizi et 

al. 2013). Although it is possible that the higher complexity of measuring the 

convoluted structure of the cortex is contributing to reduced sensitivity of global 

atrophy, previous work suggests that striatal and white matter loss does indeed occur 

early in the disease prior to symptom manifestation and that there is an acceleration 

of grey matter loss around the time of clinical conversion (Tabrizi et al. 2013). 

Reductions in cortical thickness have been demonstrated in premanifest disease 

(Tabrizi et al. 2009). However, this fully automated technique can introduce errors 

and in particular, misclassification around the mid-sagittal plane has led to spurious 

results (Rosas et al. 2008; Hobbs et al. 2011). Longitudinal measures of cortical 

thinning appear to be less sensitive to change over time in HD than other structural 

measures (Hobbs et al. 2015). 
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Figure 1.1 Longitudinal changes in grey and white matter.  Parametric maps from the TRACK-HD 
study showing regions with statistically significant atrophy in (A) white matter and (B) grey matter over 
24 months, relative to controls (Tabrizi et al. 2012). Corresponding longitudinal plots show mean values 
at baseline, 12 months, and 24 months. Significant change differences relative to controls over 0-12, 12-
24, and 0-24 months are represented by *p<0.05, **p<0.01, and ***p0.001. Reprinted with permission 
from Elsevier.  

1.2.6.1.4 White matter  

The importance of white matter degeneration and resulting loss of brain connectivity 

has been increasingly recognised in both premanifest and manifest stages of the 

disease. Like grey matter, white matter volumes can be analysed using manual or 

automated techniques, either in specific regions of interest or looking at total white 

matter volume.  

Reduction of global white matter volume has been reported cross-sectionally and 

longitudinally and appears to be one of the earliest detectable changes in preHD 

alongside caudate volumes and certain biofluid biomarkers. Both TRACK-HD and 

PREDICT-HD demonstrated progressive white matter atrophy in preHD, including in 

the groups furthest from estimated onset (Aylward et al. 2011; Tabrizi et al. 2011; 

Tabrizi et al. 2012) with the most prominent changes around the striatum and 

posterior corpus callosum (Tabrizi et al. 2011; Crawford et al. 2013).  White matter 

atrophy has been shown to correlate with worsening motor function (Paulsen et al. 

2010; Aylward et al. 2011; Scahill et al. 2013) and cognitive function (Paulsen et al. 

2010; Scahill et al. 2013). 

1.2.6.2 Diffusion Imaging 

Diffusion MRI provides complementary information to volumetric MRI by being 

sensitive to microscopic, rather than macroscopic changes. This technique measures 

the diffusion of water in different directions within the brain and has been used in HD 

to study white matter microstructure. 

The most widely-studied diffusion technique in HD is diffusion tensor imaging (DTI). 

Typically, reductions in DTI measures of fractional anisotropy (FA) and increases in 

mean diffusivity (MD) are seen across various neurodegenerative diseases (Zhang 

et al. 2009; Atkinson-Clement et al. 2017; Slattery et al. 2017), attesting to their 

sensitivity but relative lack of specificity to the underlying neurodegenerative process. 
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These changes are generally considered to reflect one or more of axonal loss, 

demyelination and less coherent white matter tracts.  

In cross-sectional studies, tensor measure changes in preHD have been observed in 

the corpus callosum, internal capsule and thalamic radiations (Rosas et al. 2010; 

Stoffers et al. 2010; Poudel et al. 2014; Harrington et al. 2016). In the PREDICT-HD 

study, MD was found to be the most sensitive DTI metric of white matter change in 

preHD (Faria et al. 2016). It was increased in the white matter adjacent to the posterior 

thalamus in the mid subgroup (estimated 7.6-12.8 years from onset), whilst the group 

closest to onset demonstrated more widespread diffusion changes which were 

especially marked in the posterior white matter (Figure 1.2). However, there were no 

detectable differences in the group furthest from predicted onset in this study.  

 

Figure 1.2 Atlas-based white matter DTI analysis. Ascending axial slices of a template brain 
demonstrating regions of significant changes in white matter MD between controls and the subgroup 
closest to predicted onset in the PREDICT-HD cohort (Faria et al. 2016). The colours represent the 
degree of MD increase. Reprinted under creative commons license.  

Longitudinal findings using tensor measures have been inconsistent. In preHD, two 

studies have failed to find 12-30 month changes (Poudel et al. 2014; Odish et al. 

2015), whereas two larger studies demonstrated progressive changes over 1-5 years 

in preHD cohorts including those up to 10 years away from onset (Harrington et al. 

2016; Shaffer et al. 2017). Changes in regional tensor measures have correlated with 

a number of clinical measures including TMS, paced finger tapping, executive 

function (Poudel et al. 2014), apathy (Delmaire et al. 2013) and depression 

(Sprengelmeyer et al. 2014).  

A substantial limitation of the diffusion tensor model is that voxel averaged measures 

cannot account for the contribution of free water, crossing fibres or the orientation 

dispersion of fibres within that voxel. For example, the observation of a reduction in 
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FA can be attributable to a reduction in axonal density, an increase in the dispersion 

of axons, or a reduction in myelin (Zhang et al. 2012; Grussu et al. 2017). The inability 

to resolve crossing fibres can produce misleading DTI results. This was demonstrated 

in a study using DTI measures alongside a technique that is able to resolve crossing 

fibres, where increases in FA were seen in certain voxels containing crossing fibres 

(Mito et al. 2018). Whilst FA typically decreases with neurodegeneration, in this 

example the selective degeneration of only one of these crossing fibres produced a 

misleading increase in FA (Figure 1.3) 

 

Figure 1.3 Example of limitation of tensor-based measures in regions with crossing fibres. (A) In 
this study of Alzheimer’s subjects (Mito et al. 2018), voxels exhibit a significant (family-wise error-
corrected p-value <0.05) increase in FA in the Alzheimer’s group compared to healthy controls along 
coronal, axial and sagittal views. Increased FA typically reflects increasing white matter coherence and 
is the opposite of what would be expected in neurodegeneration. (B) The centrum semiovale contains 
fibre structures belonging to the cortico-spinal tract, superior longitudinal fasciculus, and corpus 
callosum, as demonstrated with probabilistic tractography. Alzheimer’s disease patients showed white 
matter degeneration specifically within the superior longitudinal fasciculus, with relative preservation of 
the corticospinal tract and body of the corpus callosum. (C) Using a DTI model, this difference would be 
detected as an increase in FA of the tensor, given the relative contribution of the superior longitudinal 
fasciculus to the tensor is decreased, resulting in a misleading increase in FA along the direction of the 
corticospinal tract. Modelling the equivalent voxel fibre orientation distribution (FOD), the different fibre 
orientations within the voxel can be resolved, highlighting a specific decrease in the longitudinal 
fasciculus, without any significant abnormality in the corticospinal tract and corpus callosum. Reprinted 
with permission from Oxford University Press.  
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More recent advances in diffusion acquisition and modelling techniques have aimed 

to address these limitations and provide more sensitive and biologically meaningful 

measures. One such example is Neurite Orientation Dispersion and Density Imaging 

(NODDI) (Zhang et al. 2012). By applying a three-compartment tissue model to DWI 

data, NODDI enables the examination of both intra- and extra-cellular properties of 

white matter tissue. In turn this enables differentiation of two key aspects of axonal 

organisation that can both contribute to tensor measures: axonal density and the 

spatial organisation of axons. By also estimating the amount of free water present, 

changes in axonal density can be distinguished from increasing dispersion of fibres, 

whilst accounting for the potentially confounding effect of free water. Using NODDI in 

the TrackOn-HD cohort, Zhang et al. found widespread reductions in axonal density 

in the peristriatal white matter of the preHD group compared to controls and this 

correlated with increasing motor signs on the TMS (Zhang et al. 2018). The peristriatal 

white matter also exhibited reduced fibre dispersion with the authors suggesting that 

this may reflect a process of reorganisation with selective pruning of fibres within 

tracts linking the striatum to the cortex (Zhang et al. 2018). This example 

demonstrates how improved diffusion modelling with more advanced MRI 

acquisitions can provide further insights into the underlying white matter 

microstructure by separating multiple factors that can collectively contribute to 

diffusion within a given voxel. 

1.3 Structural and functional connectivity in HD 

Both volumetric MRI and diffusion MRI studies using white matter atlases have shown 

that white matter appears to undergo degeneration at least 15 years prior to predicted 

disease onset and that the peristriatal matter appears particularly vulnerable. 

However, such studies cannot examine how this affects connectivity between 

different brain regions and what role this has on the emerging clinical signs of the 

disease.  Connectivity can be conceptualised as two interlinked elements; structural 

connectivity, referring to the white matter tracts consisting of bundles of axons 

between two regions, and functional connectivity, representing neural co-activation 

between two regions. Diffusion MRI and functional MRI can be used to investigate 

structural and functional connectivity respectively in the human brain. 
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1.3.1 Structural connectivity breakdown in preHD 

In addition to investigating diffusion metrics in atlas-derived major white matter 

pathways, diffusion MRI can also be utilised to delineate white matter pathways of 

the brain via tractography to investigate structural connectivity between different 

regions. Diffusion tractography can be used either to investigate a diffusion metric, 

such as FA, across reconstructed tracts, or to generate a connectome which 

quantifies connectivity across a network of brain regions. Details of these methods 

are discussed more extensively in the methods section. 

In an early study focusing on connections between the striatum and frontal cortex, 

Kloppel et al. reported reduced structural connectivity between the caudate body and 

frontal cortex in preHD relative to controls and this reduction in connectivity correlated 

with expected years to disease onset (Kloppel et al. 2008). Investigating whole brain 

connectivity in premanifest and manifest HD participants, McColgan et al. reported 

selective loss of cortico-striatal and cortical hub connections alongside increased 

network segregation in preHD with more widespread loss of connectivity in manifest 

HD (McColgan et al. 2015). These reductions in connection strength were shown to 

correlate with motor and cognitive deficits, suggesting pathophysiological relevance 

of this connectivity loss. In a follow up to this work looking at relative vulnerability 

between groups of connections, cortico-striatal connections displayed the greatest 

loss of connectivity both cross-sectionally and longitudinally, followed by 

interhemispheric and intrahemispheric cortical connections respectively (McColgan 

et al. 2017). The vulnerability of cortico-striatal connections in preHD has been 

reinforced by a longitudinal analysis of a separate cohort that focused specifically on 

tracts connecting the caudate and putamen to motor, premotor and somato-sensory 

regions of the cortex (Shaffer et al. 2017). This revealed change in DTI metrics across 

all tracts, both cross-sectionally and longitudinally, in preHD up to a decade before 

predicted disease onset with changes more pronounced in those closer to expected 

disease onset. Specifically, the right premotor-putamen tract was the only tract to 

show significant changes in the group furthest from onset. However other striatal 

connections such as to prefrontal, parietal and temporal cortices were not 

investigated in this work and it remains unclear whether specific cortico-striatal 

connections show greater change in preHD than others. 
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Outside cortico-striatal connectivity, very little is known about other specific 

subcortical connections in preHD.  In particular, the thalamus is central to the cortical-

basal ganglia feedback loops and cortico-thalamic connections have scarcely been 

studied to date. In a whole brain analysis, McColgan et al. found reduced thalamic 

connectivity to superior parietal, precuneus and superior frontal regions in manifest 

HD but not in preHD (McColgan et al. 2015). In a small study of 12 premanifest 

participants approximately 23 years from predicted onset, Gorges et al. found no 

significant difference in DTI metrics of a single reconstructed cortico-thalamic tract 

(Gorges et al. 2017). However, the thalamus has widespread connections to different 

cortical areas and it is currently unknown if and when these connections become 

abnormal in HD.  

1.3.2 Functional connectivity in preHD  

Functional MRI (fMRI) studies use regional cerebral blood flow to infer brain activity 

and connectivity at rest or during tasks. Functional connectivity is a descriptive 

measure of the temporal correlations between regional activity across the brain or in 

specific networks.  

In task-fMRI, participants perform a task or function whilst their brain activity is 

recorded, as compared to resting state fMRI where brain activity is recorded at rest. 

There have been a number of task-fMRI studies in preHD showing differences in 

activation patterns in preHD during motor, cognitive and behavioural tasks. Activation 

may be elevated or reduced and can vary according to disease stage, the task being 

presented and the regions of the brain being examined (Gregory and Scahill 2018). 

Variability in task performance can confound activation patterns, requiring studies to 

ensure that behavioural performance is matched between gene carriers and controls. 

Resting state fMRI avoids the issue of variability in task performance by examining 

activation patterns at rest and has been increasingly used to examine functional 

networks in preHD in recent years. There are different ways in which resting state 

data can be analysed, ranging from seed-based approaches to investigate specific 

networks of interest, to data-driven approaches to investigate whole brain 

connectivity. 
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Some studies have used seed-based approaches to investigate specific networks of 

interest in HD, such as motor or cognitive networks. In one early example, reduced 

connectivity was found between the posterior cingulate, a region of the default mode 

network, and ventromedial and dorsomedial prefrontal cortices, with the former 

correlating with Stroop test performance (Quarantelli et al. 2013). However results 

from such approaches are influenced by the choice and means of defining regions of 

interest which can introduce variability and limit generalisability to other studies. 

Highlighting this, another study found network-wide increased connectivity when 

using the posterior cingulate cortex and supplementary motor area as seed regions 

(Sánchez-Castañeda et al. 2017).  

Other studies have used data-driven approaches to investigate whole-brain 

connectivity. Using such an approach, reductions in putaminal and putamen-insula 

connectivity have been reported in preHD with increasing CAG length, with the latter 

correlating with motor and cognitive performance. Concurrently, visual networks 

showed increasing fronto-occipital connectivity with increasing CAG length (Espinoza 

et al. 2018). Reduced connectivity in the somatosensory cortex and dorsal attention 

network has also been reported in preHD, the latter correlating with motor 

performance (Poudel et al. 2014).  

Resting state fMRI has also been analysed using a connectomic approach to examine 

network characteristics. Using this approach, premanifest gene carriers have been 

shown to display reduced connectivity between highly connected “rich club” regions 

– hub areas that are key to integration of diverse processing (Harrington et al. 2015; 

Gargouri et al. 2016). Harrington et al. also found reduced connectivity in long-range 

frontostriatal and frontoparietal connections as disease burden increased whilst 

functional segregation, relating to distinct regions that work together to facilitate 

function, was maintained both locally and globally. However Gargouri et al. found no 

longitudinal changes in connectivity, raising the question of whether these results 

represented genuine change, limitations in test-retest reliability (Noble et al. 2019) or 

represent a process too subtle to detect change over a 3 year period.  

Relatively few studies have sought to examine how early changes in functional 

connectivity can be detected in preHD. In the PREDICT-HD cohort, no changes in 

functional connectivity were found in the group >12.8 years from predicted onset, 
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whilst reductions in connectivity were identified in the group 7.6-12.8 years from 

predicted onset and increased connectivity only in the group <7.6 years from onset 

(Figure 1.4). In a comparatively smaller study of preHD further from predicted onset, 

no differences in sensorimotor functional connectivity were reported in a 11 preHD 

participants approximately 23 years from predicted onset compared to 22 matched 

controls (Gorges et al. 2017). Hence, it is currently unclear where and when changes 

in functional connectivity can be detected in preHD and whether functional 

upregulation is seen before reductions in connectivity. 

 

Figure 1.4 Functional connectivity changes in preHD. Differences in functional connectivity in the 
PREDICT-HD cohort were investigated using network-based statistics (Harrington et al. 2015). The 
cohort were stratified based on predicted years to onset to low (>12.78 years), medium (12.78 to 7.59 
years) and high (<7.59 years) groups. Glass brains at the top show reductions in functional connectivity 
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(red lines). Brains at the bottom display connections that were stronger in each prodromal group (blue 
lines). Reprinted with permission from Oxford University Press.  

1.3.3 The relationship between structural and functional 

connectivity in preHD 

As detailed above, the majority of studies have investigated changes in structural or 

functional connectivity in HD separately, despite both being clearly interlinked in 

facilitating neural connectivity and function. This is partly due to the fact that many 

methods of analysis are not directly transferable between diffusion and fMRI data. 

One exception to this is the connectomic approach, where connectivity is examined 

between parcellated regions across the brain using graph theory. As previously 

detailed, this approach has been used to investigate structural and functional 

connectivity separately. Converging evidence from these studies has suggested that 

structural and functional connectivity to rich club regions is reduced in preHD 

(Harrington et al. 2015; McColgan et al. 2015; Gargouri et al. 2016). The only existing 

study to date that has sought to assess the relationship between structural and 

functional connectivity in HD found that strong structural connectivity predicted 

reduced functional connectivity in preHD (and vice versa) and that posterior regions 

showed reduced functional connectivity as compared to anterior regions (McColgan 

et al. 2017). The latter finding is consistent with previous structural connectivity results 

in preHD (McColgan et al. 2017).  

1.4 The Scope of this thesis 

1.4.1 Towards a better understanding of the early premanifest 

period in HD 

Recent progress in huntingtin-lowering techniques raises the prospect that the first 

effective disease modifying therapies for HD may become available in the near future. 

With this, the question of when such therapies should be initiated is timely. Ideally 

effective treatments would be administered prior to widespread neuronal damage and 

any future trials in premanifest cohorts will require biomarkers for recruitment, staging, 

target engagement and to evaluate efficacy.  
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Figure 1.5. Evidence-based schematic of disease trajectory in HD from early adulthood to 
manifest disease. Biofluid changes are shown in red, brain volumetrics in blue and functional 
performance in green. CSF NfL and mHTT are already elevated 15 years prior to onset (Byrne et al. 
2017; Byrne et al. 2018), with initial slow increases followed by an acceleration shortly prior to disease 
onset. Striatal volumes are already declining 15 years from onset (Tabrizi et al. 2011) and this is 
approximately linear with volume reduced by around 50% of control volume by the time of clinical onset 
(Georgiou-Karistianis et al. 2013; Langbehn et al. 2019). Peristriatal white matter volume is already 
reduced 15 years from onset (Tabrizi et al. 2009) and shows higher rates of atrophy in a non-linear 
fashion, becoming more generalised by time of onset (Aylward et al. 2011; Langbehn et al. 2019). Grey 
matter loss extends beyond the striatum later at around 10 years before symptom onset, after which it 
progresses non-linearly (Tabrizi et al. 2009; Langbehn et al. 2019). Soft motor signs in the form of 
increased variability in voluntary movements are apparent by 15 years prior to symptom onset and 
increase non-linearly (Biglan et al. 2009; Tabrizi et al. 2009; Long et al. 2014). Subtle selective cognitive 
changes are apparent approximately 15 years from expected symptom onset (Tabrizi et al. 2009; Stout 
et al. 2011), declining relatively slowly following a non-linear trajectory (Tabrizi et al. 2012; Langbehn et 
al. 2019). There have been no previous studies examining across these domains in cohorts >15 years 
from onset. 

As summarised in this introduction and Figure 1.5, the existing literature in preHD has 

consistently reported subtle motor, cognitive and neuropsychiatric impairments at 

least 10-15 years from onset. At this stage there is already evidence of striatal 

atrophy, white matter degeneration, altered structural and functional connectivity and 

elevations in biofluid markers of neuronal injury and immune activation. Since the 

preHD cohorts studied to date already show disease effects across these multiple 

domains, if we are to identify the earliest manifestations of HD pathology and indeed 

establish whether there is a time when they are undetectable, we need to look back 

even earlier in the disease process.  
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Meanwhile certain disease modifying approaches using viral-vectors such as RNAi 

and CRISPR/Cas9 therapeutics require direct injection into the brain parenchyma and 

their distribution, which can occur in part through axonal transport (Weiss et al. 2020), 

is often limited (Tabrizi et al. 2019). Therefore, targeting injections to areas most 

affected by early pathology, but before significant neurodegeneration and white 

matter loss has occurred, may represent an optimal treatment strategy. However it is 

not currently known when white matter connections begin to degenerate, which 

connections are affected first and how this affects functional connectivity in the early 

disease course. 

In this thesis, I detail the HD Young Adult Study (HD-YAS), which was established to 

look further back in the premanifest period to investigate how early HD 

neurodegeneration can be detected and which measures may prove most sensitive 

in early preHD. I then focus on how early basal ganglia white matter tract 

degeneration can be detected in preHD and whether specific tracts show selective 

vulnerability early in the disease course by performing a combined analysis in the HD-

YAS and TrackOn-HD cohorts, the latter representing preHD closer to expected 

disease onset. Finally, I characterise the relationship between structural and 

functional connectivity in early preHD and their relationship to the axonal marker NfL. 

1.4.2 Thesis aims 

1) To establish a cohort of young adult preHD individuals >18 years from 

predicted onset and a matched control group who have undergone state-of-

the-art imaging, cognitive, neuropsychiatric assessments with CSF and blood 

collection. 

2) To evaluate how early disease-related changes in preHD can be identified, 

and which measures are most sensitive in very early preHD. 

3) To identify how early degeneration of white matter connections can be 

detected in HD and which connections are most susceptible to early 

degeneration.  

4) To characterise the relationship between structural and functional connectivity 

and concentrations of NfL in far from onset preHD.  
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2 General methods 

This chapter introduces the methods used in this thesis which will then be expanded 

upon in each subsequent chapter. After detailing the cohorts, I will introduce the 

assessment methods used throughout this thesis. Processing and analytical methods 

for diffusion weighted imaging will be discussed in particular detail, given its 

prominence in chapters 4 and 5.  
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2.1 Cohorts  

The data used in this thesis were collected from two different patient cohorts as 

outlined below. I was the lead clinician for the HD young adult study (HD-YAS) which 

involved patient recruitment, assessing eligibility, collecting demographic details, 

performing functional scales and motor assessments, collecting blood and CSF 

samples and participant follow up to capture adverse events. All cohort studies were 

performed in accordance with the declaration of Helsinki with all participants providing 

written consent before enrolment.  

2.1.1 The HD Young Adult Study (HD-YAS) 

HD-YAS was a single-site cross-sectional study of 64 young adult gene carriers far 

from predicted onset with a closely matched control group (N=67). The minimum 

sample size of 60 gene carriers and 60 controls was derived from power calculations 

that the resulting effect size of 0.53 would be sufficient to detect striatal volume 

differences seen in the group furthest from onset in TRACK-HD restricted to those 

under 40 years of age. 

The study involved detailed cognitive, neuropsychiatric, and imaging assessments 

alongside blood and CSF collection for biofluid biomarker assessments, as 

summarised in Figure 2.1. By recruiting preHD participants who had a DBS of <240, 

approximating to ≥ 18 years from predicted onset, the study aimed to look further 

back in the premanifest period than previously studied to evaluate how early disease-

related changes can be identified, and which measures are most sensitive in very 

early preHD.  

PreHD participants required a previous positive HD genetic test (CAG ≥ 40)  that was 

performed on a clinical basis without clinical signs of the disease (UHDRS Diagnostic 

confidence score <4). CAG lengths were re-measured at a single lab for statistical 

analysis. Controls were either gene negative (family history of HD but negative 

genetic test), family members with no HD risk (partners/spouses of gene carriers) or 

members of the wider HD community (recruited through support groups or friends of 

participants).  
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Figure 2.1. Overview of HD-YAS assessments. Cognitive assessment included tasks from the 
CANTAB and EMOTICOM batteries to study multiple cognitive domains. 3T Multi-modal MRI was 
performed to investigate white and grey matter macro and microstructure and connectivity. Psychiatric 
domains were measured using validated self-report questionnaires. Several biofluid biomarkers were 
measured in CSF and plasma.  

Participants were initially screened via telephone against the study eligibility criteria 

(Appendix 9.2) before formal screening on the first day of the study. The study 

procedures took place over a day and a half for each participant at the National 
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Hospital of Neurology and Neurosurgery and UCL Institute of Neurology, United 

Kingdom. The study protocol is available at 

https://www.ucl.ac.uk/ion/sites/ion/files/hd-yas_protocol_v6.0_sep18_signed.pdf.  

2.1.2 The TrackOn-HD Study 

TrackOn-HD was an extension of the TRACK-HD study and aimed to investigate 

compensatory mechanisms that allow preHD individuals to maintain cognitive and 

motor performance despite grey and white matter brain atrophy as noted in the 

TRACK-HD study (Tabrizi et al. 2013). Data were collected over 3 annual time-points 

between 2012-2014 in 4 sites: London (UK), Leiden (Netherlands), Paris (France) 

and Vancouver (Canada). Assessments included 3T volumetric MRI, task and resting 

state fMRI and diffusion weighted imaging (DWI). Participants also underwent 

cognitive, motor and psychiatric assessment. 

The baseline cohort included 110 preHD, 21 early HD and 112 controls (Kloppel et 

al. 2015). Most preHD and control participants were also in TRACK-HD. PreHD 

participants were required to have a CAG repeat length ≥40, a DBS of ≥250, 

approximating to ≤ 15 years from predicted onset, and a TMS of ≤5 at recruitment. 

Participants were aged 18-65 years and other inclusion and exclusion criteria were 

similar to HD-YAS (Appendix 9.3).  

2.2 Genetic testing 

In both studies, preHD and gene negative participants required evidence of having 

previously had a genetic test on a clinical basis in an accredited UK laboratory. In HD-

YAS, CAG lengths were resized for to control for the slight variations in sizing that 

can occur between different laboratories in the statistical analysis. Genetic tests were 

performed at the National Hospital of Neurology and Neurosurgery Neurogenetics 

Laboratory according to standardised protocols (Losekoot et al. 2013). Testing 

involved DNA extraction and PCR amplification of the HTT CAG repeat region 

followed by size fractionation and fragment analysis. A total of 5 preHD participants’ 

CAG length changed on resizing, 4 of which changing ± 1 and the other increasing 

by 3 repeats. This result was not fed back to participants as detailed on the participant 

consent form as such differences are not clinically significant.  
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2.3 Demographic and general clinical assessments 

All participants had their demographics and medical history documented, including 

previous or current comorbidities. In HD-YAS, participants were also explicitly asked 

about a history of head injury including concussion or previous head injury requiring 

hospitalisation, due to potential influence on NfL or cognitive performance in 

particular. Medications, non-pharmacological therapies and recreational drug use 

were recorded for all participants.  

Gene carriers and controls were matched by monitoring group means for sex, age, 

years of education, and standard deviation (SD) for age and education as recruitment 

progressed, to assist targeted recruitment to match the groups as closely as possible 

for these demographics. 

In HD-YAS, participants also had a full neurological examination, principally to 

exclude contraindications for lumbar puncture. 

2.4 Motor and functional assessments 

The following motor and functional scales were performed in both studies and are 

derived from the Unified Huntington’s Disease Rating Scales (UDHRS) (Huntington 

Study Group 1996). All raters using the scale receive periodic training and 

assessment to optimise interrater reliability. 

Total Motor Score (TMS) 

The TMS (Appendix 9.4) is a combined score for all aspects of HD-related motor 

abnormalities derived from a standardised focus examination. This incorporates 

assessment of 31 items rated on a scale of zero to four, with a score of zero indicating 

no abnormalities and four indicating the most severe impairment. The assessment 

covers eye movements, motor impersistence, tone, bradykinesia, motor planning, 

chorea, dystonia, gait, balance and dysarthria. The maximum possible score is 124.  

Diagnostic Confidence Score (DCS) 

The DCS (Appendix 9.5) is a measure of how confident a rater is in classifying an 

individual as manifest HD based on the TMS. The rating ranges from: 0 = normal to 
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4 = unequivocal signs of HD (>99% confidence). Typically scores of ≥15 on the TMS 

will trigger a DCS of 4 and hence diagnosis of manifest HD, although this depends on 

which items are scoring and the judgement of the rater.  

Total Functional Capacity (TFC) 

The TFC is a combined score assessing the individual’s ability to work, complete 

household finances, perform activities of daily living and whether they can be cared 

for at home. A score of 13 = fully functional and independent whilst a score of 0 would 

indicate complete dependence for all care (Shoulson and Fahn 1979).  

2.5 Cognitive assessments 

All cognitive assessments discussed in this thesis were performed as part of HD-YAS. 

This included tests from the Cambridge Neuropsychological Test Automated Battery 

(CANTAB) (Sahakian and Owen 1992; Robbins et al. 1994; Robbins et al. 1998) as 

well as social and emotional cognition and motivation from the EMOTICOM battery 

(Bland et al. 2016). Tests were specifically chosen to measure performance across 

multiple domains in which there is previous evidence of impairment in preHD including 

cognitive flexibility (Lawrence et al. 1998), planning (Ho et al. 2003), verbal fluency 

(Paulsen and Long 2014), emotion recognition (Henley et al. 2008), inhibition (Hart et 

al. 2012), attention (Hart et al. 2012), learning (Begeti et al. 2016) and memory 

(Lawrence et al. 2000; Begeti et al. 2016). Stroop word reading, semantic verbal 

fluency, and symbol digit modalities testing, all part of the Enroll-HD study battery, 

were also included given previous literature of impairment in preHD (Lawrence et al. 

1998; Stout et al. 2011; Tabrizi et al. 2013).  

CANTAB intra-extra dimensional set shifting (IED)  

The IED (Figure 2.2A) is a 7-minute test measuring cognitive flexibility and is similar 

to a computerised version of the Wisconsin Card Sorting test. It initially features rule 

acquisition and reversal and then attentional set formation and set shifting. There are 

9 stages to the test. Initially the test presents simple stimuli with just one dimension 

(pink shapes). These later change to compound stimuli (white lines overlaid on pink 

shapes). Early in the test the shifts are intra-dimensional (ID) (pink shapes are 

relevant) to establish set formation. Then an extra-dimensional (ED) shift (white lines 
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become relevant) occurs (attentional set-shifting). This latter stage is followed by a 

final reversal of the rule. Outcomes measures include the number of pre-ED errors, 

ED shift errors, ED reversal errors and stages completed.  

CANTAB one-touch stockings of Cambridge (OTS)  

The OTS is a modified test of visuospatial planning and working memory based on 

the Tower of London which takes approximately 10 minutes to complete. Participants 

are shown example configurations of three coloured balls (Figure 2.2B). There are 

two displays and participants are asked the number of moves required to match their 

display to the example display without actually moving the balls. The problems differ 

in the number of moves required to match the example configuration, starting at one 

move progressing to six moves. The outcome measures include average response 

latency and number of problems solved efficiently at the first choice.  

CANTAB rapid visual information processing (RVP)  

The RVP is a 10 minute test which measures sustained attention by presenting a 

rapid stream of digits and requiring participants to detect target sequences. A white 

box is displayed in the centre of the screen in which digits 2-9 are rapidly presented 

at 100 digits per minute (Figure 2.2C). Participants are required to detect target 

sequences (e.g. 2-4-7, 3-5-7 or 4-6-8) and respond to this target sequence as quickly 

as possible. Outcome measures include A’, a signal detection theory measure of 

target sensitivity, and mean response latency. 

CANTAB stop signal test (SST)  

The SST is a test of response inhibition and takes 20 minutes to complete. The 

participant is shown an arrow in the centre of the screen and must respond with a 

button depending on the direction the arrow is pointing (left or right); (Figure 2.2D). If 

an audio tone is presented together with the arrow, the participant must withhold 

making the response. The outcome measures are stop signal reaction time (SSRT), 

mean reaction time on go trials and the proportion of successful stops. Only the SSRT 

from the last half of the trials was calculated.  

CANTAB paired associates learning (PAL)  
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The CANTAB PAL (Figure 2.2E) is an eight-minute test assessing visuospatial 

memory and learning. Boxes are displayed on the screen in a spatial array and 

opened in a random order. One or more boxes contain a visual pattern. The patterns 

are subsequently displayed one by one in the middle of the screen and the participant 

must select the box in which the pattern was previously presented. If the participant 

makes an error, the boxes are opened in the same order again to remind the 

participant of the locations of the patterns before they re-attempt. The outcome 

measure is the total number of errors adjusted (errors added for stages not 

completed).  

CANTAB spatial working memory (SWM)  

The CANTAB SWM (Figure 2.2F) is a nine-minute test assessing spatial working 

memory. The test requires the retention and manipulation of visuospatial information. 

Coloured boxes are shown on screen and participants must select a box with a token. 

The token is stored on the edge of the screen and will not appear in the same location 

for the rest of the trial. Returning to the same location on the next search constitutes 

an error. The colour and position of the boxes used are changed from trial to trial to 

discourage the use of stereotyped search strategies. The outcome measure is the 

total number of between search errors.  
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Figure 2.2. Composite image of CANTAB tests. A) CANTAB Intra-extra dimensional set shifting; B) 
CANTAB One Touch Stockings of Cambridge; C) CANTAB Rapid Visual Informational Visual 
Processing; D) CANTAB Stop Signal Test; E) CANTAB Paired Associate Leaning; F) CANTAB Spatial 
Working Memory.  

EMOTICOM emotional intensity face morphing  

The intensity morphing test (Figure 2.3A) measures the emotional intensity at which 

participants recognise a facial emotion. In a 10 minute test, participants are presented 

with faces that either increase or decrease in emotional intensity. Participants are 

required to respond when they either first see the emotion (increasing) or can no 

longer see the emotion (decreasing). The outcome measures were average detection 

threshold of sad faces, for the increasing and decreasing condition separately.  

EMOTICOM moral emotions test  

In the 20 minute moral emotions test (Figure 2.3B) participants view cartoon figures 

depicting moral scenarios. Participants are asked to rate their levels of guilt, shame, 

annoyance and feeling “bad” following each of the cartoons. Half of the cartoons are 

portrayed as deliberate harm and half as unintended harm. Participants are asked to 

rate their emotions from the perspective of both the victim and the perpetrator. The 

main outcome measure defined for this study was the guilt score collapsed across all 

conditions (deliberate vs unintentional and perpetrator vs victim).  

EMOTICOM progressive ratio  

The progressive ratio test (Figure 2.3C) is a measure of motivation and effort and is 

adapted from similar animal tests (Bland et al. 2016; Heath et al. 2019). Participants 

are shown four red squares and are asked to select the odd one out (i.e., the large 

square). Participants are rewarded progressively less per trial and each trial requires 

more effort (number of presses) for the reward. The total number of trials is 436. 

Participants are told they may end the test at any point, but they must stay and face 

the screen for the remaining time (for 20 minutes minus the time they performed the 

test). The outcome measure is the breakpoint, which is calculated as the maximum 

total number of trials performed before the participant no longer wishes to continue 

the test.  
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Figure 2.3. Composite image of EMOTICOM tests. A) EMOTICOM Emotional Intensity Face 
Morphing; B) EMOTICOM Moral Judgement; C) EMOTICOM Progressive Ratios  

Semantic verbal fluency  

The verbal fluency test is a short test of semantic verbal retrieval. Participants are 

asked to list as many items as possible in a particular category (animals) in 60 

seconds. The outcome measure is the number of words recited correctly.  

Stroop word reading test (SWRT) 

During the word reading test, participants are asked to read the words (colours) on 

the page as quickly possible. The outcome measure was the number of words read 

within 45 seconds. 

Stroop colour naming test  

During the colour naming test, participants are asked to name the colours on the page 

as quickly as possible. The outcome measure was the number of colours named 

within 45 seconds.  

Symbol digit modalities test (SDMT)  
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The SDMT is a short test of psychomotor speed. It involves a substitution task, 

whereby using a reference key, the participant has 90 seconds to pair specific 

numbers and geometric figures.  

Reinforcement learning  

This task aim requires participants to choose the best symbol from a pair of abstract 

symbols displayed on the screen (Palminteri et al. 2012). One of the symbols is 

associated with a favourable outcome with a probability of 0.8 and the other symbol 

is associated with the same outcome with a probability of only 0.2. Participants see 

three pairs of such symbols corresponding to the three conditions – gains, neutral 

and loss. With the gain frame the better outcome is to win fictional money (£1) as 

compared to earning no reward. In the loss frame, participants either receive no 

reward or lose £1. In the neutral conditions, both outcomes yielded no reward. In the 

gain condition if participants win, they see a high resolution image of a £1-coin with a 

green surrounding halo. If they lost, they see the same £1-coin image with a red cross 

superimposed over it indicating they had lost money. In the neutral condition the two 

outcomes were either an empty grey disc the same size as the pound coin or the 

word ‘Nothing’. Participants are shown each pair of stimuli 30 times with a total of 90 

choices per run. Participants are not paid for performance in this task. The outcome 

measure was total percentage correct over both gains and losses. 

2.6 Neuropsychiatric assessments 

Neuropsychiatric assessments included in this thesis are a series of well-validated 

self-report questionnaires, capturing the following domains: depression, anxiety, 

apathy, sleep, impulsivity, obsessive compulsion, frontal behaviour and general 

health. In each case, higher scores reflect higher levels of the domain being 

assessed. 

Apathy motivation index (AMI)  

The AMI (Ang et al. 2017) is a recently developed apathy scale (adapted from the 

Lille Apathy Rating Scale (Sockeel et al. 2006) assessing three distinct subtypes of 

apathy: 1) behavioural activation; 2) social motivation; and 3) emotional sensitivity. 
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The items are assessed on a five-point scale that represents how true each statement 

is over the past 2 weeks. 

Baltimore irritability and apathy scale (BAIS) 

The BAIS was designed to form a composite picture of an apathetic or irritability 

syndrome in HD (Chatterjee et al. 2005). The apathy scale consists of 14 items 

regarding different dimensions of apathetic behaviour. The irritability scale also 

consists of 14 items regarding various dimensions of irritable behaviour.  

Barratt impulsivity scale (BIS-11)  

The BIS (Patton et al. 1995) assesses the personality/behavioural construct of 

impulsiveness. It measures three factors, including attentional, motor and non-

planning impulsivity. Items are scored on a four-point scale relating to frequency of 

behaviours.  

Frontal systems behavioural scale (FrSBE)  

The FrSBE (Stout et al. 2003) is a 46-item rating scale of three frontal systems 

behavioural syndromes: apathy, disinhibition and executive dysfunction. In each 

domain, it provides a measure of frequency of the behaviour over the previous two 

weeks and the distressed caused. It includes a Total Score and scores across the 

three subscales, where 14 items relate to apathy, 15 items to disinhibition and 17 

items to executive dysfunction.  

MOS 36-Item short-form health survey (SF-36)  

The SF-36 (Ware and Sherbourne 1992) quantifies eight health concepts: 1) 

limitations in physical activities because of health problems; 2) limitations in social 

activities because of physical/emotional problems; 3) limitations in usual role because 

of physical health problems; 4) bodily pain; 5) general mental health (psychological 

distress and well-being); 6) limitations in usual role because of emotional problems; 

7) vitality (energy and fatigue); and 8) general health.  

Obsessive-compulsive inventory (OCI-R)  

The OCI (Foa et al. 2002) is a brief questionnaire to determine severity of obsessive 

and compulsive behaviours over the past month. The items are scored on a five-point 
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scale identifying how often an individual is distressed by behaviours relating to 

washing, checking, ordering, obsessing, hoarding and neutralising.  

Pittsburgh sleep quality index (PSQI)  

The PSQI (Buysse et al. 1989) assess several subcategories including; subjective 

quality of sleep, sleep onset latency, sleep duration, sleep efficiency, presence of 

sleep disturbances, use of hypnotic-sedative medication and presence of daytime 

sleepiness over the past month. 

Spielberger state/trait anxiety (STAI)  

The STAI (Spielberger et al. 1983) is a commonly used measure of anxiety, 

quantifying both state and trait levels of anxiety. Items are scored on a four-point scale 

that reflects usual frequency of anxious thoughts/behaviours.  

Zung self-rating depression scale (SDS)  

The SDS (Zung et al. 1965) is a self-rated scale for depression. It covers affective, 

psychological and somatic symptoms associated with depression. Items are scored 

on a four-point scale based on how often the participant has felt or behaved this way 

over the previous few days.  

2.7 Biofluid assessments 

All biofluids assessed in this thesis were collected as part of HD-YAS using 

standardised and well validated conditions, methods and equipment. Blood collection 

was performed between 0930-1030 without fasting, using up to four 10 ml lithium 

heparin tubes. Samples were placed on wet ice and processed within 30 minutes of 

collection. Plasma was isolated by centrifugation and frozen.  

CSF sample collection and processing was performed using standardised methods 

derived from previous HD studies (Wild et al. 2015; Byrne et al. 2018). Lumbar 

punctures were carried out between 0830-1030 after overnight fasting. Polypropylene 

tubes were precooled on ice prior to CSF collection. The lateral decubitus position 

was used as preference for the procedure. On occasions, if CSF collection was 

challenging, an upright position was used to obtain access, before reverting back to 
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the lateral decubitus position for collection. Lidocaine 2% was administered 

subcutaneously for local anaesthesia. Whitacre 22-gauge atraumatic spinal needles 

were used for the procedure to minimise post-lumbar puncture headaches (Nath et 

al. 2018). Upon access, CSF was collected without suctioning until 20 ml had been 

collected or 20 minutes had elapsed. If the CSF was initially macroscopically bloody, 

it was discarded until it had become clear, but no more than 20 ml was collected in 

total. The stylet was reinserted at the end of collection before the spinal needle was 

removed. Immediately after the lumbar puncture, an additional fasted blood sample 

was taken using up to four 10 ml lithium heparin tubes. Samples were placed on wet 

ice and processed within 30 minutes of collection by centrifugation and freezing using 

standard kits containing polypropylene plasticware supplied by the HDClarity study 

(Clinicaltrials.gov; NCT02855476 2016). All samples were stored at -80oC and 

analysed blinded to disease status and clinical data. Haemoglobin concentration was 

measured using a commercial ELISA to determine CSF contamination by blood.  

CSF concentrations of mHTT were quantified using the SMC Erenna Immunoassay 

system (Singulex) at a clinical research facility (Evotek), using a protocol previously 

described (Wild et al. 2015). The assay has been subsequently validated, where the 

signal generated by the assay was partially dependent on the polyglutamine length 

of the protein, the HTT fragment size as well as mHTT concentration (Fodale et al. 

2017). Capturing antibodies MW1 target the polyglutamine expansion whilst 2B7 

target the first 17 amino acids of huntingtin. Total huntingtin was quantified for the first 

time in human samples with the 2B7-D7F7 assay where D7F7 binds to the middle 

HTT region at Proline 1220 (Weiss et al. 2012; Cariulo et al. 2017).  

Neurogranin was quantified using an in-house ELISA at the Zetterberg lab in 

Gothenburg, as previously published (Wellington et al. 2016). All other analytes were 

quantified using commercially available assays as detailed in  

Table 2.1. Plasma UCH-L1 results were not included in the analysis in this thesis due 

to previously reported high variability in assay performance (Zeitlberger et al. 2018; 

Thelin et al. 2019). Haemoglobin, mutant and total huntingtin (tHTT) concentrations 

were measured in triplicate with the other analytes all measured in duplicate.  

Table 2.1. Biofluid assay details 
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Analyte Source Assay name Platform Manufacturer Performed 

by 

Median 

CV 

N CV 

>20% 

mHTT CSF 2B7-MW1 

immunoassay 

SMCTM 

Erenna® 

Singulex Evotek 9.9 6 

tHTT CSF 2B7-DF7 

immunoassay 

SMCTM 

Erenna® 

Singluex IRBM 9.2 10 

NfL CSF Neurology 4-Plex 

A 

SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 2.5 0 

NfL Plasma Neurology 4-Plex 

A 

SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 4.3 2 

Tau CSF Neurology 4-Plex 

A 

SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 2.6 0 

Tau Plasma Neurology 4-Plex 

A 

SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 4.1 2 

GFAP CSF Neurology 4-Plex 

A 

SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 2.0 0 

UCH-L1 CSF Neurology 4-Plex 

A 

SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 4.8 2 

IL-6 CSF IL-6 SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 2.4 0 

IL-8 CSF IL-8 SIMOA HD-1 

AnalyzerTM 

Qunaterix UCL 4.7 5 

Neurogranin CSF Neurogranin ELISA Euroimmun UCL 3.5 2 

YKL-40 CSF Human YKL-40 

Assay 

U-PLEX®  MSD UCL 1.8 2 

 

Coefficient of Variability; SMC = Single Molecule Counting, MSD = Mesoscale Discovery; SIMOA = Single 

Molecule Array. 
 

2.8 MRI 

MRI allows for visualisation of the structure and function of the brain in-vivo, enabling 

measurement of neuropathological change as it occurs over time without invasive 

procedures. This section will introduce the different imaging acquisitions referenced 

in this thesis before focusing in more detail on DWI which represents the main data 

analysed in chapters 4 and 5. 
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2.8.1 Acquisition of MRI data 

MRI scans use a magnet and radiofrequency pulses to change the state of hydrogen 

atoms in the body, with the energy created by these changes in state measured and 

outputted in the form of an image (Currie et al. 2013). The strength of this magnetic 

field is described in units of Tesla (T), with higher Tesla scanners typically resulting 

in higher resolution images. Most modern scanners are either 1.5T or 3T in strength. 

7T scanners are just starting to become available having been approved by the FDA 

in 2017 (FDA 2017).  

In the MRI scanner, there is a constant magnetic field in the longitudinal or “z” plane, 

prior to the administration of a pulse sequence. This causes protons to spin together 

about the direction of the magnetic field generating longitudinal magnetisation. To 

create a detectable signal, a second magnetic field is applied that moves protons into 

the “transverse” (x-y) plane. The longitudinal magnetisation is reduced to zero and 

the protons now spin due to magnetisation in the transverse plane. The ensuing 

movement induces an electromagnetic current which is measured as the MR signal. 

As soon as protons are moved into the transverse plane, longitudinal magnetisation 

begins to return to zero, known as longitudinal or T1 relaxation and characterised by 

the time constant, T1. When protons are moved into the transverse plane, they 

interact with each other and lose magnetisation; known as transverse relaxation and 

characterised by the T2 time constant. T1 relaxation can take several seconds whilst 

T2 relaxation just a few milliseconds.  T1 and T2 weighting determine the nature of 

the image contrast, where differences in signal intensity occur due to different 

physical properties of tissue types. The weighting is governed by two parameters: 

repetition time (TR), the time between pulse sequence repetitions; and echo time 

(TE), the duration between the initial pulse and the point at which the signal is 

measured. These parameters are then manipulated to produce different weightings 

based on the requirements of the scan (Currie et al. 2013; Gregory et al. 2018). 

2.8.2 Volumetric imaging 

Volumetric imaging is a form of structural MRI scan that quantifies volumes either in 

structures of interest or the whole brain. T1-weighted images are used, since they 

provide the best between-tissue contrast. Volumetric analysis can be performed on 



70 
 
 

 

 

regions of interest or the whole brain. Segmentation of regions of interests can be 

performed by manual delineation, using software that performs automated 

segmentations, or semi-automated approaches where a combination of the two are 

used. Automated techniques such as Multi Atlas Label Propagation with Expectation 

Maximisation-Based Refinement (MALP-EM) (Ledig et al. 2015) and Freesurfer 

(Fischl et al. 2002) can perform brain segmentations quickly and accurately, which is 

advantageous when multiple region segmentations are required for each scan in large 

datasets, such as in a structural connectivity analysis. Whilst semi-automated 

techniques such as the medical image display and analysis system (MIDAS) (Fox et 

al. 1996) take longer to process, they are well established within the field of 

neuroscience and are typically used when only segmenting select structures such as 

whole brain, or caudate for example. 

2.8.3 Multi-parametric mapping  

Multi-parametric mapping (MPM) was designed to provide absolute measures of 

select MR parameters and thus data that are comparable across sites and time points 

(Weiskopf et al. 2013). It provides maps of the longitudinal relaxation rate (R = 1/T1), 

effective proton density (PD), magnetisation transfer saturation (MT) and effective 

transverse relaxation rate (R2* = 1/T2*). The multiple parameter maps and high 

resolution allow for a detailed assessment of white and grey matter microstructure, 

including providing proxy estimates of iron and myelin (Stüber et al. 2014). MT 

measures macromolecular content, particularly myelin so a decrease in MT 

represents demyelination. PD is most sensitive to microstructural water content, R1 

detects the relative contribution of myelin and water content as well as paramagnetic 

content such as iron, and R2* is most sensitive to iron and myelin distribution. Hence, 

the study of MPM results in parallel facilitates biological interpretation, for example 

changes in R1 or R2* without congruent changes in PD would be suggestive of iron, 

rather than myelin changes.  

MPM has been previously validated showing good reproducibility (Weiskopf et al. 

2013). It has been used in contexts such as healthy aging (Draganski et al. 2011) and 

mapping cortical myelination (Sereno et al. 2013), but has not been used to study HD 

before.  
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2.8.4 Resting state fMRI  

fMRI measures signals related to the coupling of neuronal activity and blood flow. 

BOLD (blood oxygen level-dependent) fMRI measures a signal predominantly related 

to blood oxygen, a proxy measure of metabolic activation and thereby brain activity. 

The vascular origin of the change in signal has a time course known as the 

haemodynamic response function which is modelled to provide localization of 

neuronal activity (Gregory and Scahill 2018). Resting state fMRI analysis focuses on 

connectivity between regions in the brain at rest. In chapter five of this thesis, resting 

state fMRI is used to investigate temporal correlations in functional activity across the 

network. 

2.8.5 Diffusion weighted imaging  

Diffusion weighted imaging (DWI) is a method of signal contrast generation based on 

the differences in Brownian motion. The diffusion signal is generated from the phase 

change resulting from the displacement of spins along the axis of an applied field 

gradient. The longer the protons are allowed to diffuse (diffusion time, Δ) and the 

higher the mean squared displacement per unit time of the molecules (apparent 

diffusivity), the further molecules will distribute from their origin. The signal attenuation 

depends on two factors; the distribution of displacements during the diffusion time 

along the axis of the applied gradient, and the gradient strength and duration which 

determine the sensitivity of the signal phase towards displacement. For example, 

since water can freely diffuse in CSF, the signal is strongly attenuated. In white matter 

however, water diffusion is restricted by tightly packed axons and the signal is 

therefore higher (Jones et al. 2013). 

A single DWI image is created by a single pulse in a single direction. Thus, repeated 

pulses with multiple gradient directions create a more detailed diffusion image. A 

diffusion gradient can be represented as a 3D vector ‘q’, whose orientation is in the 

direction of diffusion and length is proportional to gradient strength. The gradient 

strength, also referred to as the diffusion weighting, can be expressed in terms of the 

b-value. This is a combined measure of gradient strength and diffusion time. 

Therefore, a larger b-value represents increased gradient amplitudes or duration 

and/or widened intervals between gradient pulses. As a result, increased b-values 
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result in greater diffusion contrast but lowered signal-to-noise ratio. Shells refer to a 

set of volumes with the same b-value. Adding multiple shells to an acquisition 

improves the ability to model the diffusion signal and to further probe tissue 

microstructure (Jones et al. 2013; Fritz et al. 2019) 

2.8.5.1 Diffusion Tensor Imaging (DTI) and Neurite Orientation 

Dispersion and Density Imaging (NODDI)  

The most commonly used diffusion imaging technique is DTI and because white 

matter diffusion is more easily modelled than grey matter, the majority of DTI studies 

in clinical neuroscience focus on the white matter. A tensor is a 3x3 matrix that 

represents water movement in the three dimensions in each voxel and can be 

represented as three eigenvectors (Figure 2.4) through eigenvalue decomposition (Le 

Bihan et al. 2001).  

 

Figure 2.4. Examples of tensor shapes and DTI measures. 

As shown in Figure 2.4, λ1 represents diffusivity along the principal axis of diffusion, 

whilst λ2 and λ3 measure diffusivity orthogonal to the principle axis of diffusion. The 

eigenvalues are then used to calculate measures of fractional anisotropy (FA), axial 

diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD). In the diffusion tensor 
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model, diffusion is assumed to be anisotropic in white matter which can be 

represented as an ellipsoid, where the principle direction of diffusion runs parallel to 

the axon. Increases in AD/RD/MD and reductions in FA are typically reported in 

neurodegeneration irrespective of cause (Zhang et al. 2009; Gregory et al. 2015; 

Atkinson-Clement et al. 2017) and is thought to represent axonal degeneration 

although several processes can influence these metrics, including demyelination and 

increases in water content (Jones et al. 2013; Grussu et al. 2017).  

Recent advances in MRI have facilitated new techniques that attempt to provide a 

more direct in vivo characterisation of white matter microstructure. One of the most 

commonly used models is NODDI (Zhang et al. 2012) which applies a three-

compartment tissue model to multi-shell DWI data. By modelling the packing density 

of axons (neurite density index; NDI), the spatial dispersion of axons (orientation 

dispersion index; ODI) and the amount of free water in each voxel (free water fraction; 

FWF), all of which can affect a diffusion tensor measure, it aims to quantify each 

process separately to provide more specificity to any white matter change observed. 

It has been previously successfully applied to study several neurodegenerative 

conditions (Slattery et al. 2017; Broad et al. 2019; Mitchell et al. 2019) including 

preHD, where reductions in NDI coupled with increased local organisation in 

peristriatal regions were found to be the dominant changes (Zhang et al. 2018). 

2.9 Diffusion MRI processing  

In this section, I explain the diffusion processing that relate to the following chapters 

in this thesis. 

2.9.1 Pre-processing 

Pre-processing of DWI data can be important to increase the signal-to-noise for 

subsequent analysis. Pre-processing steps were performed using tools within 

MRtrix3 following recommended guidelines (Tournier et al. 2019). This included 

denoising of data (Veraart et al. 2016), Gibbs-ringing artefact removal (Kellner et al. 

2016) eddy-current correction and motion correction (Andersson and Sotiropoulos 

2016), bias correction (Tustison et al. 2010) and up-sampling diffusion MRI spatial 

resolution in all 3 dimensions using cubic b-spline interpolation to  1.3×1.3×1.3 mm3 
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voxels (Dyrby et al. 2014). The up-sampling of data helps to increase the anatomical 

contrast, which improves downstream spatial normalisation and statistics (Raffelt et 

al. 2017).  

2.9.2 Constrained spherical deconvolution 

One of the major limitations of the previously widely used diffusion tensor model was 

that its voxel averaged measurement meant it was incapable of resolving crossing 

fibres within a voxel, a phenomenon estimated to occur in up to 90% of all voxels 

(Jeurissen et al. 2013). Constrained spherical deconvolution (CSD) enables the 

robust determination of the orientation of various fibre bundles present within an 

individual voxel and provides a better angular resolution than many other multiple-

fibre reconstructions whilst maintaining a modest computation time (Tournier et al. 

2007; Ramirez-Manzanares et al. 2011).  

The principle here is that the diffusion signal measured from a fibre population is 

proportional to the volume of that population. The response function corresponds to 

the diffusion signal measured for a single fibre bundle aligned with the z axis, and is 

assumed as constant in all 3 tissue types (Tournier et al. 2004). CSD involves the 

spherical deconvolution of the response function, which simply transforms the data 

such that the resulting amplitude along a particular direction is proportional to the 

measured signal that is orientated in that direction. CSD is performed on the DWI 

signal within each voxel for grey matter, white matter and CSF separately, to produce 

the fibre orientation density function (FOD). The white matter FOD then contains all 

the information regarding the fibre orientations present within a given voxel and their 

corresponding volume fractions which can then be used for tractography or estimating 

fibre density as described later.  

2.9.3 Connectivity-based parcellations of the striatum and 

thalamus 

In order to investigate structural connections between different brain regions, it is 

necessary to parcellate the structures of interest. In chapters three and four, I 

investigate cortico-striatal and cortico-thalamic white matter tract integrity using 

connectivity-based atlases. Previously, studies examining white matter connectivity 
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in HD have utilised parcellation schemes based on macrostructural properties 

(McColgan et al. 2015; McColgan et al. 2017; Shaffer et al. 2017; Zhang et al. 2018), 

typically splitting the striatum into a single caudate and putamen region. However this 

does not take into account structural connectivity patterns of the brain regions being 

studied, which can vary substantially across a single anatomical region. Indeed, 

several imaging and primate tracer studies have consistently demonstrated a distinct 

topographical organisation of cortical connections to the striatum and thalamus along 

a dorsal-ventral caudal-rostral gradient (Behrens et al. 2003; Haber 2003; Haber et 

al. 2006; Tziortzi et al. 2014; Fan et al. 2016; Parkes et al. 2017). Therefore one of 

the aims in this thesis was to examine these subconnections separately to further 

understanding of the patterns of structural connectivity breakdown in preHD. 

Three different striatal connectivity-based parcellation schemes were tested for use 

in this thesis; the Oxford-GSK-Imanova (Tziortzi et al. 2014), Brainnetome (Fan et al. 

2016) and Parkes striatal (Parkes et al. 2017) atlases. The Oxford-GSK-Imanova 

atlas (Figure 2.5), available in FSL (Jenkinson et al. 2012), was selected due to 

satisfactory registration to diffusion space and possessing enough granularity (option 

of three or seven divisions per hemisphere) to examine subregion tracts separately. 

In chapter three, the three subregion atlas was used to avoid too many comparisons 

given connectivity in several cortical regions was also investigated. In chapter four, 

the aim was to look in more detail at subnetworks and so the seven division atlas was 

used. In the seven striatal subregion parcellation, the limbic region connects to the 

orbital gyri, gyrus rectus and ventral anterior cingulate. The executive region connects 

to dorsal prefrontal cortex. The rostral motor region connects to the supplementary 

motor, pre-supplementary motor cortex and the frontal eye field region. The caudal 

motor region connects the post-commissural striatum to the pre- and primary motor 

cortex, whilst parietal, temporal and occipital regions connect to respective cortices 

as defined by the Harvard-Oxford cortical atlas (Tziortzi et al. 2014). The three 

subregion striatal atlas is comprised of limbic, executive and sensorimotor subregions 

only. 
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Figure 2.5. Striatal connectivity-based atlas. Showing the subdivisions of the striatal atlas used in this 
thesis. The atlas is based on cortico-striatal anatomical connectivity information derived from diffusion 
tractography in health human subjects (Tziortzi et al. 2014). The temporal and occipital subdivisions are 
the smallest subregions and are not shown in this figure. Reprinted with permission from Oxford 
University Press.  

As a key output structure in the cortico-basal ganglia network, cortico-thalamic 

connectivity was also examined in preHD as part of this thesis in chapter four. For 

consistency, the seven region per hemisphere connectivity based parcellation also 

available in FSL (Behrens et al. 2003; Johansen-Berg et al. 2005) was used (Figure 

2.6). Here, the medial and dorsal thalamus including the mediodorsal nucleus connect 

to prefrontal and temporal regions. The ventral posterior nucleus connects to sensory 

cortex. The ventral lateral and anterior nuclei connect to primary motor and premotor 

cortex. The lateral posterior nucleus and parts of the pulvinar connect to parietal 

cortex.  

In chapter five, a similar approach to segmenting the striatum is used, except the atlas 

selected was derived from fMRI data (Choi et al. 2012), rather than diffusion data, 

although the resulting subdivisions are similar to those derived from diffusion data. 
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Figure 2.6. Thalamic connectivity-based atlas. Showing subdivisons of the thalamus based on 
diffusion tractography in healthy human subjects (Behrens et al. 2003). a) Divisions of the cortex were 
based on anatomical landmarks. Blue is the prefrontal cortex, green is the premotor, orange primary-
motor, light blue sensory, yellow parietal, purple temporal and red occipital. b) showing the 
corresponding subregions of the thalamus that predominantly connect to the corresponding cortical 
region. Reprinted with permission from Springer Nature.  

2.9.4 Tractography 

Diffusion tractography is a method of using the DWI signal to reconstruct white matter 

tracts in-vivo and is utilised in all following chapters.  

Tractography was performed using the iFOD2 algorithm available in MRtrix3 

(Tournier et al. 2019). This is a probabilistic algorithm that uses the FOD as input to 

reconstruct white matter tracts. Candidate streamline paths are drawn and a 

streamline is more probable to follow a path where FOD amplitudes (relating to the 

estimated fibre density) is large. Similarly, a streamline will not follow a path where 

the FOD is very low, limiting false positive tract generation. Despite this however, 

probabilistic tractography does suffer from a significant false positive tract generation 

(Maier-Hein et al. 2017; Sarwar et al. 2019).  

In chapters using connectomic approaches, these streamlines are seeded throughout 

the white matter to provide whole brain tractograms. In chapter 4, streamlines are 

seeded in specific striatal and thalamic subregions to enable reconstruction of select 

tracts only.  

2.9.5 Fixel-based analysis  

In chapter 4, a recently developed technique known as fixel-based analysis (FBA) is 

utilised to assess cortico-striatal and cortico-thalamic white matter tract 

microstructure. FBA enables fibre tract-specific comparisons by generating measures 
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of fibre density and cross-section for a single fibre population within a voxel (termed 

fixel) (Raffelt et al. 2017). It generates measures of fibre density (FD), fibre cross-

section (FC) and fibre density and cross-section (FDC) (Figure 2.7). FD is a measure 

proportional to the intra-axonal volume of white matter axons aligned with a fibre 

population (Raffelt et al. 2012). It is derived from segmenting the FOD under the 

assumption that the integral of the FOD along a particular direction is proportional to 

the intra-axonal volume of axons aligned in that direction.  

While FD estimates changes in intra-axonal volume, another possibility in 

neurodegeneration is atrophy of a fibre bundle across its whole cross section. The 

FC metric is computed to capture such a change (Raffelt et al. 2017). Here, the 

morphological differences in the fixel cross-section (in the plane perpendicular to the 

fixel direction) are estimated for each fixel by using the non-linear warps required to 

spatially normalise the subject image to the template image to compute the change 

in fibre bundle cross-section. With respect to the population template, a FC of >1 

indicates a larger fibre cross-section in the subject, while FC values <1 indicate a 

smaller cross-section. 

To account for the possibility that white matter pathology may manifest as both 

changes in FD and FC, the FDC is computed by a multiplication of FD and FC to give 

a combined measure that captures both changes (Raffelt et al. 2017). 
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Figure 2.7. Fixel-based metrics. A schematic representing a fibre bundle cross-section with grey circles 
representing axons and the grid representing a voxel. A change in intra-axonal volume may be 
represented by a change in (a) fibre density, (b) reduction in fibre cross section or (c) a combination of 
both. Reprinted from (Raffelt et al. 2017) under creative commons license.  

2.9.6 Connectomics and graph theory 

Whilst the previously described methodology can interrogate microstructural changes 

in specific white matter connections, it is unable to characterise connectivity across a 

given network and cannot be used to study functional connectivity. Through the 

construction of structural and functional white matter networks, connectomics 

provides a framework to investigate connectivity on a broader scale. This approach 

will be used to investigate structural and functional connectivity in early preHD in 

chapters 3 and 5. 

Structural and functional brain networks can be constructed using diffusion 

tractography and resting state fMRI. The brain can be parcellated into a number of 

distinct regions using a brain atlas. Atlases may be based on structural (Desikan et 

al. 2006) or functional profiling (Yeo et al. 2011) or incorporating both structural and 
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functional aspects of brain regions (Fan et al. 2016; Glasser et al. 2016). Each 

parcellated brain region represents a node in a network of other nodes. In structural 

brain networks, these nodes are connected by white matter connections whereas in 

functional networks these connections represent temporal correlations from fMRI time 

series (Fornito and Bullmore 2015).  

The topological characteristics of these brain networks can be described using a 

mathematical approach known as graph theory (Rubinov and Sporns 2010). Graph 

theory measures can be classified as local or global, depending on whether they 

quantify connectivity within clusters, or across the network. An example of local 

measure includes degree and graph strength. Degree represents the number of 

binary connections a brain region has. However, this cannot capture the density of 

such connections which will strongly influence connectivity. Strength calculates the 

sum of connection weights to the rest of the network for a given brain region, providing 

a measure of density for each connection that is missing from degree. An example of 

a weight might be a fibre density measure across the connection estimated directly 

from the underlying diffusion signal (Smith et al. 2015).  

Whilst local measures can be useful in examining the connectivity of specific regions 

of interest, global measures can quantify connectivity across a whole network. Global 

measures used in this thesis are global efficiency and modularity (Figure 2.8). Global 

efficiency is the inverse of the average shortest path length (the average of shortest 

paths between brain regions in a network) and a decrease represents loss of network 

integration. Modularity refers to the community structure within brain networks. 

Modules are clusters of nodes with dense interconnectivity within the cluster but 

sparse connections between nodes in different clusters (Rubinov and Sporns 2010). 

As modularity increases, the network is more segregated with fewer connections 

between different modules. Calculations for these measures are detailed in the 

appendix 9.6.  
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Figure 2.8. Summary of global graph measures used in this thesis. On the left is an example of 
three interconnected modules. If this network lost the connection highlighted in the blue box, 
modularity would increase as the network is more segregated. On the right, highlights the shortest path 
through a network. If the connection within the blue box is lost, the shortest path increases and thus 
global efficiency of the network decreases. Adapted under creative commons license (Farahani et al. 
2019).  

 

2.9.6.1 Connectome considerations 

Connectivity matrices can be influenced by several factors including scale of the brain 

parcellation, tractography algorithm, weighting scheme, thresholding approach and 

streamline filtering (Bullmore and Sporns 2009; Smith et al. 2015). 

In choosing a parcellation scheme, using a higher number of brain regions can 

provide more detail whereas using lower numbers of brain regions can potentially 

improve reproducibility of results (Cammoun et al. 2012). In chapter three, 

reproducibility was prioritised and therefore the Freesurfer Desikan atlas (Desikan et 

al. 2006) was used since it has a relatively coarse parcellation and has been used in 

previous studies of structural connectivity in HD (McColgan et al. 2015; McColgan et 

al. 2017). In chapter five, I further investigate reproducibility of results by using a 100 

and 500 parcellation scheme in a connectivity analysis. 

Interpretation of the connectome relies on the assumption that streamlines have 

terminated at the right place (i.e. when it meets a grey matter boundary). Older 

methods included using a FOD or FA threshold, which is not always reliable, or using 

a cortical brain mask, which suffers from poor spatial resolution of diffusion images. 

Anatomically constrained tractography (ACT) is a newer method that utilises 

anatomical information from a co-registered T1 image (where the grey-white matter 

boundary is clearer) to define appropriate terminations of streamlines and rejecting 
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streamlines that pass through CSF for example, whilst still also using the FOD to help 

remove false positive tracks (Smith et al. 2015). 

Another potential problem in connectomics is that the density of reconstructed 

connections is not indicative of the density of underlying axonal connections (Jones 

et al. 2013) and false positive tractograms can occur. In order to address this, the 

second iteration of spherical deconvolution informed filtering of tractograms (SIFT2) 

was performed (Smith et al. 2015). This determines an appropriate cross-sectional 

area multiplier for each streamline, based on the underlying FOD, to provide a 

weighted measure of connectivity that is representative of the underlying axonal 

bundle density. This also limits the influence of any false positive tracts generated 

that can be assumed to have low FODs. 

2.9.6.2 Network based statistics 

Network-based statistics (NBS) is a statistical approach for graph analysis that aims 

to increase power to detect group differences by controlling the family-wise error 

(FWE) rate when mass univariate testing is performed at every connection in the 

graph (Zalesky et al. 2010). NBS is a well validated method that has been used to 

examine brain network dysfunction in neurological and psychiatric diseases (Fornito 

and Bullmore 2015). Here, a test statistic is calculated for each connection 

independently and a primary threshold (p < 0.05, uncorrected) is then applied to form 

a set of suprathreshold connections. Permutation testing is used to assign a p-value 

controlled for FWE to each set of suprathreshold connections. For each permutation 

the test statistic is recalculated, after which the same threshold is applied to define a 

set of suprathreshold connections. The maximal component size for each 

permutation is then determined to provide an empirical estimate of the null distribution 

of maximal component size. The FWE corrected p-value of the observed component 

size k is estimated by finding the proportion of permutations for which the maximal 

component is greater than k. The FWE adjusted p-value is set at 0.05.  

2.9.7 Statistical considerations 

In the HD-YAS, appropriately powering the study was an important consideration 

when any true disease effects in gene carriers far from predicted onset would likely 

be subtle. The study was powered based on the effect size of striatal volumes 
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between controls and the preHD group furthest from onset, limited to those under 40, 

in the TRACK-HD study. However, the study may be underpowered to detect more 

subtle differences in this measure in a group further from predicted onset and indeed 

in other measures who’s effect size, if there was a true difference, would be 

anticipated to be even smaller based on previous evidence. Therefore power across 

other domains and variables is unknown and likely to be relatively weak. An 

alternative route might have been to conduct power calculations for different 

modalities, such as one test from each modality with the largest observed effect size 

in previous premanifest studies such as TRACK-HD or PREDICT-HD. This would 

have likely concluded a larger sample size would be required to achieve sufficient 

power for these variables. However in planning the study, it was felt that recruiting a 

larger sample size would not be possible based on the known low levels of predictive 

testing in young adults in the UK. 

HD-YAS had 165 different measures analysed across the four domains of cognition, 

neuropsychiatry, imaging and biofluids and consideration of statistical adjustment for 

multiple comparisons was important. One approach is not correct for multiple 

comparisons and instead report individual P values and confidence intervals, 

acknowledging that 5% of significant values may be wrongly rejecting the null 

hypothesis. In this study, this approach was not pursued as it was felt to be more 

important to control for multiple comparisons and set a higher bar for reporting 

significant results.   

There are different methods for correcting for multiple comparisons. Family-wise error 

rates, such as the Bonferroni correction are often highly conservative, controlling the 

probability of type I errors at the cost of significantly reduced power to detect true 

positives (Korthauer et al. 2019). FDR is an alternative method that has been shown 

to have greater power to detect true positives, while still controlling the proportion of 

type I errors at a specified level (Benjamini and Hochberg 1995; Benjamini and 

Hochberg 2000). Therefore, given the limited power across the study, the Benjamini 

Hochberg false discovery rate (FDR) calculation was performed, correcting variables 

each domain separately, to maximise power to detect true positives in the study. 

Importantly, rigor is not diminished by performing these calculations at the domain 

level rather than in a single appraisal of the combined domains. Unlike correction for 
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family-wise error rate, FDR calculations depend on the distribution but not on the 

number of hypothesis test p values considered simultaneously, which is possibly 

advantageous in a study with a large number of hypotheses such as HD-YAS.  
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3 Clinical and biomarker profiling of gene carriers 

far from predicted onset: The HD Young Adult 

Study (HD-YAS) 

This chapter is based on data published in Lancet Neurology, where I was joint first 

author (Scahill et al. 2020). This study performed a cross-sectional deep phenotyping 

of HD gene carriers further from onset than previously examined, to identify how early 

HD related changes can be detected and which measures are most sensitive early in 

the disease course.  
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3.1 Introduction 

As discussed in the introductory chapter, the past decade has seen significant 

progress in the development of therapeutics that can target RNA and DNA. As a 

monogenetic disorder with onset typically in midlife, HD represents an appealing 

disease candidate for such approaches. A detailed characterisation of the early 

premanifest period in HD is crucial for disease staging, informing the optimum time to 

initiate treatments, and identifying biomarkers for future trials in preHD. Although 

dependent on the profile of a given therapeutic, one potential strategy would be to 

initiate treatment before neurodegeneration has affected clinical function, but at a time 

where there is a measurable biomarker of disease to measure efficacy.  

Previous large observational studies have characterised the premanifest stage of 

disease up to 15 years before expected clinical onset. Of the clinical features, 

cognitive impairment and increased neuropsychiatric symptoms appear to be the 

earliest detectable changes in the premanifest period, with motor signs emerging 

closer to expected disease onset (Tabrizi et al. 2013).  

Subtle cognitive impairments in domains such as executive function (Lawrence et al. 

1998; Stout et al. 2011; Papp et al. 2013), psychomotor speed (Lawrence et al. 1998; 

Snowden et al. 2002; Stout et al. 2011; Stout et al. 2012; Tabrizi et al. 2013), 

visuomotor integration (Lemay et al. 2005; Say et al. 2011) and emotion recognition 

(Stout et al. 2011; Harrington et al. 2014) have been previously reported in preHD. 

Among the most widely studied tasks, the SDMT, Stroop word reading, and emotion 

recognition have shown strong effect sizes in the premanifest period (Stout et al. 

2011; Tabrizi et al. 2013). Such cognitive impairments become increasingly 

pronounced in individuals close to predicted onset, but there is little previous evidence 

of cognitive impairment in gene carriers approximately 15 years from predicted onset 

(Stout et al. 2011; Tabrizi et al. 2013). 

Increased neuropsychiatric symptoms previously reported in the premanifest period 

include apathy, depression, anxiety, and obsessive-compulsive symptoms (Tabrizi et 

al. 2013; Epping et al. 2016). Similarly to cognitive features, these become more 

prevalent in groups closer to onset, although associations between affective 
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symptoms and disease stage are less consistent, possibly owing to their treatable 

nature. 

Progressive striatal atrophy has been consistently reported at the earliest stages 

studied in preHD (Paulsen et al. 2008; Aylward et al. 2011; Tabrizi et al. 2011) and 

striatal volumes have shown the largest effect size in the group furthest from onset in 

the TRACK-HD study (Tabrizi et al. 2013). Progressive white matter atrophy has also 

been detected in preHD in the groups furthest from onset in TRACK-HD and 

PREDICT HD (Aylward et al. 2011; Tabrizi et al. 2013), with prominent changes in 

the peristriatal white matter and corpus callosum. Reductions in whole brain and grey 

matter volumes have been reported in preHD, but with smaller effect sizes than for 

striatal or white matter measures in the early premanifest stage of the disease (Tabrizi 

et al. 2012; Tabrizi et al. 2013).  

Diffusion MRI has been utilised to examine white matter microstructure and structural 

connectivity in the premanifest period. Both DTI and the more recently developed 

NODDI model have shown the most prominent changes occurring in the corpus 

callosum, internal and external capsules (Rosas et al. 2010; Stoffers et al. 2010; 

Poudel et al. 2014; Harrington et al. 2016; Zhang et al. 2018). In previous structural 

connectivity analyses using the TRACK-HD and TrackOn-HD cohorts, cortical rich 

club and cortico-striatal connections have appeared particularly vulnerable to 

degeneration in the premanifest period (McColgan et al. 2015; McColgan et al. 2017). 

Similarly, network measures of reduced integration and increased segregation have 

also been reported at this stage (McColgan et al. 2015). 

Several biofluid biomarkers of neuronal damage or immune activation have also been 

reported in the premanifest period (Zeun et al. 2019). mHTT and NfL have been 

examined most extensively, the latter in blood and CSF. Both have been reported to 

be elevated in preHD and to track disease progression (Byrne et al. 2017; Byrne et 

al. 2018). Of other markers of neuronal damage, elevated concentrations of tau has 

also been reported in preHD, although it appears to be less related to disease 

progression than NfL (Niemela et al. 2017). Of the immune mediated markers, the 

astrocytic marker YKL-40 has been reported to be increased in the CSF of 

premanifest gene carriers (Rodrigues et al. 2016) whilst  elevated concentrations of 

cytokines IL-6 and IL-8 have also been observed in preHD in plasma (Bjorkqvist et 
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al. 2008). IL-6, but not IL-8, was found to be elevated in a mixed group of preHD and 

HD (Rodrigues et al. 2016). The studies above have previously examined select 

biomarkers together such as mHTT and NfL (Byrne et al. 2018), tau and NfL (Niemela 

et al. 2017), or select immune biomarkers (Bjorkqvist et al. 2008; Rodrigues et al. 

2016), but no previous study has evaluated across a series of biofluid markers in the 

premanifest period to establish which biofluid biomarkers may be most sensitive at 

this time.  

Recent results from the Kids-HD study have suggested there are 

neurodevelopmental differences in striatal volume and cerebellar-striatal connectivity 

of gene carriers (van der Plas et al. 2019; Tereshchenko et al. 2020), raising the 

consideration that any early differences in brain structure and function observed in 

preHD could potentially be as a result of either early neurodegeneration or a 

neurodevelopmental effect. 

It is currently unknown when these various manifestations of HD first arise in the 

premanifest period, or indeed whether there is ever a time in which they are 

undetectable. To address this, we need to look back earlier in the disease process. 

Using state-of-the-art methods to examine for potential group differences between 

healthy controls and a preHD cohort far from predicted onset, this study aimed to 

assess how early disease-related changes can be identified and which measures are 

most sensitive in early preHD. 

3.2 Contributions and collaborators 

I was the lead clinician on this study and led on initial participant screening and 

recruitment with support from Jessica Lowe, Sarah Gregory, Eileanoir Johnson and 

Rachael Scahill. I led on eligibility screening, demographic assessment, clinical 

examination and blood collection with support from Akshay Nair and cover from 

Carlos Estevez-Fraga. I performed CSF collection with cover from Carlos Estevez-

Fraga and Filipe Rodrigues and performed follow up to document and manage any 

adverse events. Initial biofluid processing was performed by Kate Fayer, with cover 

from myself and Jessica Lowe. I led on the diffusion MRI processing for structural 

connectivity analysis with support from Peter McColgan. I led on coordinating biofluid 

storage and analysis. Rachael Scahill and myself led on drafting the manuscript with 



89 
 
 

 

 

additional input from Ed Wild, Geraint Rees and Sarah Tabrizi, along with the help 

and review of all other co-authors. This work was published in the Lancet Neurology 

(Scahill et al. 2020), where I was equal first author. 

The study was conceived by Sarah Tabrizi who obtained funding and led as principal 

investigator with additional input on study design from Cristina Sampaio, Rachael 

Scahill, Geraint Rees, Trevor Robbins, Barbara Sahakian and Doug Langbehn. 

Imaging assessments were conceived by Sarah Gregory, Rachael Scahill, Eileanoir 

Johnson, Hui Zhang and Geraint Rees. Imaging acquisition was led by Sarah 

Gregory, Rachael Scahill, Eileanoir Johnson and Marina Papoutsi with support from 

the UCL Wellcome Centre for Human Neuroimaging. Further imaging processing was 

performed by Rachael Scahill, Eileanoir Johnson, Chris Parker and Sarah Gregory. 

Imaging safety reviews were done by Harpreet Hyare. Cognitive and neuropsychiatric 

batteries were designed by Trevor Robbins, Barbara Sahakian and Claire 

O’Callaghan and implemented by Katie Osbourne-Crowley and Eileanoir Johnson. 

Cognitive and neuropsychiatric processing and analysis was done by Katie 

Osbourne-Crowley, Christelle Langley, Trevor Robbins and Barbara Sahakian. The 

biofluid assay battery was designed by Ed Wild, Amanda Heslegrave, Henrik 

Zetterberg and Sarah Tabrizi. Biofluid assays were run by Henny Wellington and 

Amanda Heslegrave. Biofluid data sharing from HD-CSF was from Lauren Byrne, 

Filipe Rodrigues and Ed Wild. Statistical analysis design and execution was by Doug 

Langbehn.  

This study was supported by a Wellcome Trust Collaborative Award 200181/Z/15/Z. 

Funding for CSF collection was provided by the CHDI Foundation, a not-for-profit 

organisation dedicated to finding treatments for HD. 

3.3 Methods 

3.3.1 Study design and participants 

This was a single site cross-sectional study of preHD and control participants aged 

18-40 who were recruited from across the UK. PreHD participants required a previous 

positive HD genetic test (CAG ≥40), a DCS of <4 confirming premanifest status and 

a DBS of ≤240 (Appendix 9.1), approximating to more than 18 years from predicted 
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clinical onset. CAG lengths were re-measured at a single lab for statistical analysis. 

Controls were gene negative, partners of either gene carriers or someone at risk of 

HD, or members of the wider HD community (recruited through support groups or as 

friends of participants). Exclusion criteria included contraindication to MRI scanning, 

significant comorbidity likely to impair ability to complete study assessments and at 

risk status without a genetic test. Full inclusion and exclusion criteria are detailed in 

Appendix 9.2.  

Recruitment initially centred on searching HD clinic databases at the National Hospital 

or Neurology and Neurosurgery to identify gene negative participants and gene 

positive participants who met age and CAG criteria. Eligible participants from the 

Enroll-HD study at UCL were also identified and invited to participate. Health 

Research Authority approval was obtained to set up several regional genetic and HD 

centres as patient identification centres (PICs) to help identify eligible participants for 

this study nationally. PIC’s were asked to identify potentially eligible participants from 

the Enroll-HD study at their own site. HD-YAS study information material was 

provided to PICs to disseminate to eligible participants and participants then made 

contact with the UCL team directly. Recruitment was also facilitated through 

advertisement in newsletters and social medial channels of the HD Association and 

the HD Youth Organisation. Control subjects were recruited through the above 

channels, but also through recruiting partners, spouses and in some cases, friends of 

those from a HD family. 

Gene carriers and controls were matched by monitoring group means for sex, age, 

years of education, and standard deviation (SD) for age and education as recruitment 

progressed, to assist targeted recruitment. 

3.3.2 Procedures and outcomes 

3.3.2.1 Initial assessment, confirmation of eligibility 

Study assessments took place over a day and a half in a standardised order. 

Participants were pre-screened via telephone and eligibility was confirmed at the start 

of the study, including a physical examination to confirm the TMS and exclude motor 

signs of HD. A full neurological examination along with bloods for a full blood count 

and coagulation profile was performed to confirm safety of the lumbar puncture and 
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absence of any incidental neurology. Other demographic details including education, 

medical and medication history were obtained and TFC was assessed for all 

participants.  

All prespecified outcomes for analysis by modality are listed in Table 3.1. All study 

procedures were mandatory except for CSF collection, which was made an optional 

component in order to enhance recruitment rates to the study. 

Table 3.1. Assessments in HD-YAS 

Source of Measure Task/Measure 

Cognition  

CANTAB Intra-extra dimensional set shift 
Paired Associate Learning 
Rapid Visual Processing 
One Touch Stockings of Cambridge 
Spatial Working Memory 
Stop Signal Task 
 

EMOTICOM Emotion Intensity Face Morphing – Increasing 
and Decreasing 
Moral Judgement  
Progressive Ratio 

 
Other 

 
Stroop Colour 
Stroop Word 
Symbol Digit Modalities Test 
Verbal Fluency (Category) 
Reinforcement Learning 

Neuropsychiatric  

Self-report Questionnaires Apathy Motivation Index 
Barratt Impulsivity Scale 
Frontal systems behaviour scale   
MOS 36-Item Short-Form Health Survey  
Obsessive-Compulsive Inventory  
Pittsburgh Sleep Quality Index   
Speilberger State/Trait Anxiety Index 
Zung self-rating depression scale 
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Imaging 
Volumetric 
 
 
 
 
 
DTI 
 
 
 
 
 
NODDI 
 
 
 
MPM 
 
 
 
 
Structural Connectivity (Graph 
Theory) 

 
Caudate 
Putamen 
Grey Matter 
White Matter 
Whole Brain 
 
Axial Diffusivity 
Fractional Anisotropy 
Mean Diffusivity 
Radial Diffusivity 
Axial Diffusivity 
 
Free Water Fraction 
Neurite Density Index 
Orientation Dispersion Index 
 
MT 
PD 
R1  
R2* 
 
Connection Strength 
Efficiency 
Modularity 

Biofluids 
CSF 
 
 
 
 
 
 
 
 
 
 
Plasma 

 
Mutant Huntingtin 
Total Huntingtin 
GFAP 
IL-6 
IL-8 
Neurogranin 
NfL 
Total tau 
UCH-L1 
YKL-40 
 
GFAP 
NfL 
Total tau 

 

3.3.2.2 Cognitive and neuropsychiatric assessments 

Participants undertook a battery of neuropsychological tests in a standardised order, 

including from the CANTAB and EMOTICOM battery (General Methods 2.5). Tests 

were chosen to measure performance across multiple domains for which there was 
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previous evidence of impairment in HD, including cognitive flexibility (Lawrence et al. 

1998), planning (Ho et al. 2003), verbal fluency (Paulsen and Long 2014), emotion 

recognition (Henley et al. 2008), inhibition (Hart et al. 2012), attention (Hart et al. 

2012), learning (Begeti et al. 2016), and memory (Lawrence et al. 2000; Begeti et al. 

2016).  

A comprehensive battery of neuropsychiatric function was collected using well 

validated self-report questionnaires, capturing the following domains: depression, 

anxiety, apathy, sleep, impulsivity, obsessive-compulsive behaviour, frontal 

behaviour, and general health (General Methods 2.6). The UHDRS PBA short form 

was also performed as part of the study assessment protocol, along with other 

components of the Enroll-HD study for future comparability between studies, but was 

not included for this analysis. 

3.3.2.3 Biofluid assessments 

Plasma and CSF collection was performed using standardised, well validated 

conditions, methods, and equipment (General Methods 2.7). Total huntingtin, mHTT, 

NfL, YKL-40, total tau, neurogranin, IL-6, IL-8, GFAP, and UCH-L1 were measured in 

CSF; NfL, total tau, and GFAP were also measured in plasma. Total huntingtin has 

not yet been studied in humans whilst UCH-L1 and GFAP were included since they 

are included in the Quanterix 4-Plex assay used to generate NfL and Tau 

concentrations for analysis. Given the lack of prior evidence in HD, total huntingtin, 

GFAP and UCH-L1 were deemed exploratory in this analysis (see 3.3.4). The 

unfasted plasma samples were used in this analysis. CSF haemoglobin was also 

quantified to determine CSF contamination by blood. Red and white cell counts were 

measured in CSF via microscopy in the local lab, with a cut-off for flagging of > 1000 

and ≥ 5 cells/μl respectively. 

3.3.2.4 Neuroimaging assessments 

Neuroimaging was performed for all enrolled participants when possible. However, 

despite initial screening for MRI contraindications some participants did not undergo 

scanning on the day of their visit, either due to claustrophobia or another previously 

unidentified contraindication. Assessments included volumetric T1-weighted imaging, 

DWI, and MPM (General Methods 2.8).  
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3.3.2.4.1 Imaging acquisition 

All MRI data were acquired on a 3T Prisma scanner (Siemens Healthcare, Germany) 

with radiofrequency body coil for transmission and a 64-channel head coil for signal 

reception using a protocol optimised for this study. The T1-weighted images were 

acquired using a 3D magnetization prepared rapid gradient echo sequence with the 

following parameters: repetition time (TR) =2530ms; time to echo (TE) =3.34ms; 

inversion time =1100ms; flip angle = 7º; field of view = 256x256x176mm3 and a 

resolution of 1.0x1.0x1.0 mm3. DWI were acquired using a multiband spin-echo echo 

planar imaging sequence with TR=3260ms, TE=58ms, flip angle=88º, field of 

view=220x220mm2. Seventy-two slices were collected with a resolution of 2x2x2mm3. 

The multi-shell data consisted of b-values of 0 (n=10), 100 (n=8), 300 (n=8), 1000 

(n=64) and 2000 (n=64) s/mm2.  

The MPM acquisition protocol consisted of three differently weighted 3D multi-echo 

acquisitions: MT-weighted, PD-weighted and T1-weighted in addition to two scans 

collected to estimate participant-specific field inhomogeneities. The MT, PD and T1 

scans were all acquired using a field of view of 256x224x179 mm3, TR=25ms, flip 

angle of 6º and resolution of 0.8x0.8x0.8mm3. Field maps were acquired with 64 slices 

using TR=1020ms, TE1=10ms TE2=12.46ms, slice thickness=4 mm; field-of-view: 

192x192 mm3. 

3.3.2.4.2 Volumetric MRI 

Volumetric measures of whole brain, striatum (putamen and caudate), grey and white 

matter, and the ventricles were derived from T1-weighted images. Whole brain, total 

intracranial and ventricular volumes were measured using MIDAS with previously 

described semiautomated protocols (Fox et al. 1996; Whitwell et al. 2001). Putamen 

and caudate volumes were derived using MALP-EM software (Ledig et al. 2015) 

(version 1.2), after linear registration into standard space using the International 

Consortium of Brain Mapping 152 template. White and grey matter volumes were 

generated in native space using voxel-based morphometry (Ashburner and Friston 

2000) (Statistical Parametric Mapping version 12) with the Computational Anatomy 

Toolbox (version 12). All segmentations were visually inspected blind to disease 

status and no segmentations failed this quality control. 
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3.3.2.4.3 MPM 

Estimates of R1, R2*, PD and MT were generated from MPM as previously described 

(Weiskopf et al. 2013). R1 represents estimates of iron and myelin, R2* iron, PD 

sensitivity to water content and MT myelin (Figure 3.1). Eight regions of interest were 

specified a priori. The caudate and putamen regions generated by MALP-EM were 

registered and resampled to native MPM space for each participant via an affine 

registration using NiftyReg software (Ourselin et al. 2001). White matter regions from 

the John Hopkins University (JHU) White Matter Label Atlas (Mori et al. 2008) were 

used to generate values for the external capsule, posterior and anterior internal 

capsule, posterior- mid- and anterior- corpus callosum. These were registered and 

resampled to native MPM space for each participant via affine transformation, 

followed by non-linear registrations (Ourselin et al. 2001). Quantitative values 

representing the average value within each region were then extracted for each 

quantitative map, for every participant and values for the control group were found to 

be in line with previously published values (Kullmann et al. 2016). 

 

Figure 3.1. MPM and interpretation. Regions analysed in HD-YAS displayed in the MT image. Caudate 
blue, putamen red, anterior corpus callosum yellow, anterior internal capsule light blue, posterior internal 
capsule light orange, external capsule green. Mid and posterior corpus callosum were also included in 
the analysis but not shown in this image. Yellow arrows indicate whether the value would increase or 
decrease in neurodegeneration.  

3.3.2.4.4 DTI and NODDI 

White matter microstructure was also analysed using DTI (Basser et al. 1994) and 

NODDI (Zhang et al. 2012). DWI images were corrected for susceptibility-induced 

artefacts and motion using FSL’s eddy (version 5.0.11) (Andersson and Sotiropoulos 
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2016). Diffusion tensors were fitted to DWI data using FSL dtifit. DTI metrics FA, AD, 

MD and RD were then calculated using DTI-TK software (version 2.3.3). The NODDI 

model was fitted to DWI data using the accelerated microstructure imaging via convex 

optimization toolbox to output metrics of NDI, ODI and FWF. The average values of 

DTI and NODDI metrics were computed for the genu, splenium and mid-body of the 

corpus callosum, anterior and posterior limbs of the internal capsules, and the 

external capsules. For the internal and external capsules, the left and right 

hemispheric regions were combined as one. Regions of interest (ROIs) were 

extracted from the JHU white matter atlas (Mori et al. 2008) and each participant’s 

data was registered to the JHU atlas via a bootstrapped population template using 

linear and non-linear deformation in DTI-TK (Keihaninejad et al. 2013; Mahoney et al. 

2015). 

3.3.2.4.5 Structural connectivity 

Processing for the structural connectivity in HD-YAS is summarised in Figure 3.2. 

Seventy-six cortical ROIs were segmented on the T1-weighted images using 

FreeSurfer (version 6.0.0) (Desikan et al. 2006). The amygdala was not included as 

automatic segmentation of this structure is not sufficiently reliable (Hibar et al. 2015). 

The cerebellum was not included as diffusion data was incomplete. Tissue partial 

volume maps of the brain white matter, grey matter, and CSF were prepared for 

anatomically constrained tractography (ACT) (Smith et al. 2012).   

Twelve cortical rich club regions and six striatal regions were selected a priori based 

on previous evidence of selective rich club connectivity loss in HD (McColgan et al. 

2015). The striatum was segmented using the three subregion Oxford-GSK-Imanova 

striatal connectivity atlas (Tziortzi et al. 2014). These subregions are labelled limbic, 

executive and sensorimotor based on the dominant cortical connectivity to each 

striatal subregion (Tziortzi et al. 2014).  For this study, the equivalent seven subregion 

atlas was not used to minimise the number of multiple comparisons, anticipating these 

three regions would be the key regions of interest. A surface-based registration was 

used to register the atlas to participant T1 space before registering to participant 

diffusion space using the NiftyReg toolkit (Modat et al. 2010).  

FODs were computed using multi-shell, multi-tissue constrained spherical 

deconvolution with group averaged response functions for white matter, grey matter 
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and CSF (Jeurissen et al. 2014). Multi-tissue informed log-domain global intensity 

normalisation was then performed (Tournier et al. 2019). Whole-brain probabilistic 

tractography was performed in participant-space using a FOD threshold of 0.06. Ten 

million streamlines were generated for each scan. The ‘back-tracking’ mechanism 

was used within the ACT framework (Smith et al. 2012) to allow tracks to be truncated 

and re-tracked if poor structural termination was encountered. All diffusion processing 

steps were conducted using commands either implemented within MRtrix3 (version 

3.0) or using MRtrix scripts that interfaced with external software packages (Tournier 

et al. 2019).   

Connectomes were constructed by combining streamline tractograms with the 

participant’s grey matter parcellation. Streamlines were assigned to the closest node 

within a 2-mm radius of each streamline endpoint. Structural connections were 

weighted by streamline count and a cross-sectional area multiplier, as implemented 

in SIFT2 (Smith et al. 2015). Connections were then combined into an 82 x 82 

undirected and weighted matrix. SIFT2 was chosen in preference to SIFT as it can 

retain the full connectome and requires significantly less processing time.   

Graph metrics were calculated using the brain connectivity toolbox (version 2016-16-

01) (Rubinov and Sporns 2010). Connection strength of the 6 striatal regions, 12 

cortical rich club regions and whole brain network measures of modularity and global 

efficiency were measured. The strength of each connection is calculated by the sum 

of its connection weights. The 12 cortical rich club regions selected were those with 

the highest connection strength in the network. These were the superior frontal, 

precentral, superior parietal, thalamus, inferior parietal and rostral middle frontal 

regions from both hemispheres. The rich club regions were the same for gene carriers 

and controls and consistent with previous literature (Baggio et al. 2015; McColgan et 

al. 2015).   

Whole brain connectivity was assessed by using measures of modularity and global 

efficiency (General Methods 2.9.6). Average path length represents the average of 

shortest paths between brain regions in a network. Global efficiency is the inverse of 

the average shortest path length and a decrease represents loss of network 

integration. Modularity refers to the clustering of nodes with dense interconnectivity 

within the cluster but sparse connections between nodes in different clusters. As 
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modularity increases, the network is more segregated with fewer connections 

between different modules.  
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Figure 3.2. Summary of connectivity processing pipeline. QC = quality control. Pre-processing = 
Eddy current and motion correction, bias correction. CSD = Multi-shell multi-tissue constrained spherical 
deconvolution. FOD = fibre orientation distributions. Striatal atlas reprinted from FSL 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases/striatumconn  

3.3.3 Participant follow up 

A 24-72hr follow up call was performed for all participants to record any adverse 

events (AE) from the study. Those with AEs were followed up until completion of the 

AE. The T1 weighted MRI brain was also reviewed by an experienced consultant 

neuroradiologist and CSF white and red cell counts were also reviewed to further 

ensure absence of neurological comorbidity. 

3.3.4 Statistical analysis 

The study had 80% power and a 5% risk of type 1 error to reject the primary null 

hypothesis based on a sample size of 60 participants per group if, after statistical 

adjustment for covariates, the group difference was 0.53 within-group standard 

deviations. This hypothetical difference is based on the striatal volume difference 

between controls and the group furthest from onset in the TRACK-HD study (Tabrizi 

et al. 2009).  

All measures were processed and analysed blinded to disease status and clinical 

data. All CSF and serum measures were analysed after log transformation, given the 

skewed empirical distributions of the raw data. To test possible contamination by 

blood, CSF haemoglobin concentration was measured and for any CSF analyte with 

a significant association with haemoglobin, the analysis was repeated including 

haemoglobin concentration as an additional covariate. More than 10% of the 

combined case and control CSF data was missing, primarily due to participants 

declining to undergo the optional lumbar puncture. Multiple imputations generated via 

random forest predictions were used to estimate CSF-model parameter estimates for 

missing data and associated hypothesis test results.  

General least-squares linear models were used to assess for overall group 

differences and age interactions between groups. The primary analysis model had 

the generic form:   
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𝑦 = 𝑏0 + 𝐼𝑝𝐻𝐷 ∗ (𝑏1 + 𝑏2 ∗ 𝐶𝐴𝐺 + 𝑏3 ∗ 𝑎𝑔𝑒 + 𝑏4 ∗ 𝐶𝐴𝐺 ∗ 𝑎𝑔𝑒) + 𝑏5 ∗ 𝑎𝑔𝑒 + 𝑏6 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟  

+ 𝑏7 ∗ 𝑎𝑔𝑒 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑏8 ∗ 𝐼𝑄 + 𝑒  

Where y is an outcome variable, IpHD = 1 if a participant is from the preHD group and 

0 otherwise, the bi’s are linear regression coefficients, and e is the residual random 

error term, assumed to be independently, identically normally distributed among the 

participants with 0 mean. Two-tailed tests were performed. Within these same models 

possible differences driven by age-CAG interaction within the preHD group were 

controlled and tested for, since this interaction closely relates to predicted years to 

onset.  

Covariates included age, sex, and age interactions with sex. For cognitive measures, 

the national adult reading test score (NART), an estimate of premorbid IQ, and the 

International Standard Classification of Education (ISCED), an index of the highest 

level of education achieved, were also included as covariates. For volumetric imaging 

measures, total intracranial volume was included as a covariate.  

Within the preHD group, unadjusted correlations between mHTT and NfL were 

assessed. Further analysis of how well the clinical, neuroimaging and biofluid 

variables are predicted by CSF concentrations of mutant huntingtin and by CSF and 

plasma NfL was also performed. Analyses were performed one biomarker at a time, 

with the general form;  

𝛾 = 𝑏0 + 𝑏1 ∗ 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟 + 𝑏2 ∗ 𝑎𝑔𝑒 + 𝑏3 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑏4 ∗ 𝑎𝑔𝑒 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑏5 + 𝐼𝑄 + 

𝑒   

Multiple comparisons were addressed via the FDR, with an FDR estimate of less than 

0.05 deemed to be significant. Exceptions were the relationship of mutant huntingtin 

concentrations to age and CAG length - a fundamental a priori hypothesis which was 

assessed with traditional p values. The biofluid measures total huntingtin, GFAP, and 

UCH-L1 were deemed exploratory in this analysis based on the absence of previous 

published evidence in HD and therefore were excluded from FDR correction.  

Informed by primary hypothesis results, several further analyses were performed. 

First, a receiver operator characteristic (ROC) area under the curve analysis of YKL-

40, CSF, and plasma NfL to assess their ability to distinguish preHD participants from 
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controls. Second, an age-by-NfL concentration comparison combining the HD-YAS 

and HD-CSF study (Byrne et al. 2018) cohorts to generate CAG-specific curves 

across the adult lifespan. This was performed using backwards variable elimination 

from a saturated two-degree polynomial model of main effects and interactions of age 

and CAG-length. All HD-YAS NfL data was included in the modelling. HD-CSF had 

CSF and plasma NfL data from 40 manifest subjects, 20 preHD and 20 controls. 

These subjects were older than the HD-YAS cohort with average ages and standard 

deviations of 50.7 +/- 11.0, 42.4 +/- 11.1 and 56.0 +/- 9.4 respectively. Therefore 

combining the two datasets enabled modelling NfL trajectories from 20-70 years for 

commonly occurring CAG repeat lengths of 40-45. The mean age of onset for each 

given CAG was annotated using estimates provided from previously published data 

of 2913 HD individuals using the Langbehn equation (Langbehn et al. 2004). Finally, 

a nonparametric bootstrapped comparison of caudate and putamen volumes to test 

for a relative significant difference between the two volumes (i.e. if one was more 

affected than the other) in the relationship to gene-carrier status. In each bootstrap 

replication, regression models were separately fitted for caudate and putamen 

volumes. After controlling for age and sex, the adjusted preHD versus control ratios 

of both caudate and putamen volumes were calculated. The null hypothesis is that 

these caudate and putamen ratios are equal. The bootstrapped statistic was the ratio 

of these two ratios, which would equal 1 under the null. Two-sided p-values were 

calculated by inverting bias corrected interval estimates from a set of 5,000 bootstrap 

replications.  

All analyses were performed in R (versions 3.5.1 and 3.5.3). SAP models were fit via 

the lm() function, and false discovery rates were calculated via the p.adjust() function 

with option ‘BH’. The boot library was used for model-comparison boot-strapping and 

the mouse library for multiple imputation generation and summarization. A 

combination of the ggROC and pROC packages were used to generate ROC curves 

and to calculate associated summary statistics. 

3.4 Results 

In total, 314 individuals were screened to recruit 131 individuals between August 2017 

and April 2019. Of the 183 individuals excluded, common reasons included a DBS of 
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> 240 (n=75), contraindications for MRI (n=41), at-risk genetic status (n=23), and 

significant comorbidity (n=11; four of which were psychiatric). Twenty-three 

individuals were not included owing to inadequate matching. One participant was 

excluded on the basis of an incidental finding of probable demyelinating lesions on 

the MRI. The final cohort comprised of 64 preHD and 67 controls, closely matched 

for age, sex, and education (Table 3.2). Controls were gene negative (28), partners 

with no known risk of HD (29), or HD community members (10). The preHD cohort 

was estimated to be a mean 23.6 years (SD 5.8, range 10.6-38.4) from clinical 

disease onset. Although all participants were required to be over 18 years from onset 

based on their original CAG repeat length, due to one participants resized CAG 

increasing by +3 repeats, one participant was estimated to be 10.6 years from 

predicted onset.  

Sixty-one (91%) controls and 62 (97%) preHD participants were assessed to be 

suitable for MRI scanning on the day of the procedure and underwent neuroimaging. 

Since DWI and MPMs occurred after the T1, occasionally the sequences were not 

acquired if participants were unable to tolerate the whole session. All but one 

participant had plasma for analysis; 109 (83%) participants also underwent optional 

CSF collection obtained via lumbar puncture. The final recruitment number ensured 

there was a minimum of 60 participants complete datasets, not including CSF, 

according to prior power calculations. The total number of assessments by modality 

is detailed in Table 3.3. 

Table 3.2. Participant demographics 

 PreHD 

(N =64) 

Control 

(N=67) 

P value 

Age (years) 29.0 ± 5.6 29.1 ± 5.7 0.95 

Male sex (%) 47 42 0.81 

Education (years) 16.2 ± 2.1 16.3 ± 2.2 0.93 

NART 102.4 ± 7.5 103.5 ± 8.3 0.42 

UHDRS TMS (range)* 0 (0-5) 0 (0-1)  

TFC (range)** 13 (13-13) 13 (13-13)  

CAG Repeat Length 42.2 ± 1.6 N/A  
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Data presented are means ± standard deviation unless otherwise specified. Group comparisons 

were made using t tests (age, education, NART) or chi-squared test (sex). *Motor scores in both 

groups were low and within previously reported control ranges (Biglan et al. 2009; 

Landwehrmeyer et al. 2016), confirming the absence of early HD-related motor signs.**All 

participants in both groups had a TFC of 13/13, representing no functional impairment.  

Table 3.3 Number of assessments by modality 

Assessment Gene Carriers (N=64) Controls (N=67) 

T1 Volumetric 62 61 

DTI 60 60 

NODDI 60 60 

MPMs (all acquisitions) 56 58 

MPM R2* only 56 56 

Structural Connectivity 55 54 

Plasma 63 67 

CSF 58 51 

Showing complete, usable datasets in the study. For imaging, this includes having passed 

quality checks. 

3.4.1 Cognition 

There were no significant differences between preHD and controls in any cognitive 

measures (FDR 0.22–0.86; Figure 3.3; Table 3.4). A number of tasks did show non-

significant trends in the direction of more impairment in preHD however. The PreHD 

group made more ED reversal errors (p=0.01), although this did not survive FDR 

correction for multiple comparisons (FDR=0.22). The RVP task showed some 

evidence of impaired attention in the preHD group (p=0.05) but this did not survive 

FDR correction (FDR=0.38). PreHD recognised sad faces for longer in the emotion 

intensity decreasing task, although this did not survive correction with FDR (p=0.05; 

FDR=0.28) and recognition of sad faces (emotion intensity increasing) was 

unchanged compared to controls (FDR=0.74). Semantic verbal fluency also showed 

a non-significant trend of reduced performance in the preHD group (p=0.09; 

Estimated years to onset 23.6 ± 5.8 N/A  
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FDR=0.35). No further variables showed any notable evidence of group effects and 

no cognitive measures showed any association with age-CAG (FDR=0.10-0.98). 

 

Figure 3.3. Radar plot showing cognitive variables in HD-YAS. The black line is the standardised 
mean difference between preHD and controls, with conventional frequentist 95% confidence intervals 
(CI) shaded in light blue. The red line represents no difference between means and a value within this 
line represents greater impairment in the preHD group. After FDR correction for multiple comparisons, 
there were no significant group differences in any cognitive  measures.  

Table 3.4 Cognitive results 

Outcome Measure  Control 

Mean 

HD Mean Effect size  (CL) p FDR 

IED Pre ED Errors  5.87 5.64 0.10 (-0.25, 0.46) 0.35 0.74 

IED ED Errors  5.06 7.09 -0.29 (-0.64, 0.06) 0.13 0.47 

IED ED Reversal Errors  2.71 5.40 -0.37 (-0.73, -0.02) 0.01 0.22 

IED Stages completed  8.92 8.73 0.37 (0.01, 0.72) 0.1 0.44 
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Intensity Morphing 

Decreasing  

11.7 11.2 0.35 (0.00, 0.71) 0.05 0.28 

Intensity Morphing 

Increasing  

10.1 10.3 -0.16 (-0.51, 0.19) 0.37 0.74 

Moral Emotions Guilt Score  6.06 6.12 -0.10 (-0.45, 0.26) 0.58 0.80 

OTS Mean Latency  11.7 11.8 -0.05 (-0.40, 0.30) 0.78 0.86 

OTS Problems Solved  11.5 11.6 -0.05 (-0.41, 0.30) 0.75 0.86 

PAL Total Errors   19.3 22.3 -0.15 (-0.50, 0.21) 0.42 0.80 

Reinforcement Learning Rate  0.81 0.81 -0.04 (-0.39, 0.31) 0.82 0.86 

Progressive Ratio Breakpoint  391 388 0.03 (-0.32, 0.38) 0.24 0.58 

RVP A'  0.93 0.92 0.36 (0.00, 0.71) 0.05 0.38 

RVP Mean Latency  445 450 -0.07 (-0.43, 0.28) 0.68 0.83 

SDMT  60.7 59.7 0.11 (-0.24, 0.46) 0.53 0.80 

SST Proportion Successful 

Stops 

0.44 0.43 0.09 (-0.26, 0.44) 0.62 0.80 

SST RT 191 201 -0.22(-0.58, 0.14) 0.23 0.58 

SST Mean RT on Correct Go 

Trials 

522 512 0.10 (-0.25, 0.45) 0.56 0.80 

Stroop Colour Naming 87.5 84.0 0.25 (-0.10, 0.61) 0.16 0.51 

Stroop Word Reading 106 104 0.25 (-0.10, 0.61) 0.16 0.51 

SWM Between Errors 69.3 68.2 0.03 (-0.32, 0.38) 0.87 0.87 

Verbal Fluency 25.0 23.3 0.30 (-0.05, 0.65) 0.09 0.44 

CL = confidence levels; t = t-test; Effect size is the standardised mean difference between preHD 

and control groups; FDR = false discovery rate. RVP A’ = a signal detection theory measure of 

target sensitivity, and mean response latency. Outcomes measures are described in General 

Methods 2.5. 

3.4.2 Neuropsychiatry 

There were no significant differences between preHD and controls in any 

neuropsychiatric measure (FDR=0.31–0.91; Figure 3.4; Table 3.5), although there 

was a general trend of higher levels of neuropsychiatric symptoms in the control 

group. Controls had higher scores in FrsBe disinhibition, but this did not survive 

correction (p=0.04, FDR=0.31). None of these measures showed a significant 

relationship with age-CAG in the preHD group (FDR 0.31–0.88). 
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Figure 3.4. Radar plot showing neuropsychiatric variables in HD-YAS. The black line is the 
standardised mean difference between preHD and controls, with conventional frequentist 95% 
confidence intervals (CI) shaded in light blue. The red line represents no difference between means and 
a value within this line represents higher levels of symptoms in the preHD group. After FDR correction 
for multiple comparisons, there were no significant group differences in any neuropsychiatric measures.  

Table 3.5 Neuropsychiatric results 

Outcome Measure 
Control 

Mean 

HD Mean Effect size (CL) p FDR 

PSQI 5.02 4.38 0.25 (-0.10, 0.60) 0.16 0.36 

BIS 61.7 60.8 0.09 (-0.26, 0.44) 0.60 0.76 

STAI Trait 40.2 38.8 0.15 (-0.20, 0.50) 0.41 0.61 

STAI State 35.1 33.0 0.24 (-0.11, 0.59) 0.18 0.36 

OCI 10.3 7.79 0.31 (-0.04, 0.66) 0.08 0.33 
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SDS 33.2 33.4 -0.02 (-0.37, 0.33) 0.91 0.91 

AMI 1.25 1.27 -0.04 (-0.39, 0.31) 0.82 0.91 

FrsBe Apathy 27.6 26.4 0.08 (-0.27, 0.43) 0.65 0.76 

FrsBe Disinhibition 29.8 25.3 0.36 (0.01, 0.71) 0.04 0.31 

FrsBe Executive Functioning 32.8 29.8 0.19 (-0.16, 0.54) 0.29 0.52 

SF36 Physical Functioning 95.4 98.1 -0.28 (-0.64, 0.07) 0.11 0.33 

SF36 Physical Health 

Limitations 

93.5 97.5 -0.27 (-0.62, 0.08) 0.13 0.33 

SF36 Emotional Limitations 83.1 92.5 -0.35 (-0.70, 0.00) 0.05 0.31 

SF36 Energy/Fatigue 59.6 61.0 -0.08 (-0.43, 0.28) 0.67 0.76 

SF36 Emotional Wellbeing 75.3 77.6 -0.15 (-0.50, 0.20) 0.40 0.61 

SF36 Social Functioning 87.9 89.5 -0.10 (-0.45, 0.25) 0.56 0.76 

SF36 Pain 88.5 93.1 -0.38 (-0.73, -0.03) 0.03 0.31 

SF36 General Health 73.0 67.9 0.30 (-0.05, 0.65) 0.09 0.33 

Outcome measures described in General Methods 2.6. 

3.4.3 Imaging  

Putamen volumes were significantly smaller in preHD participants compared with 

controls after FDR correction (FDR=0.03; Figure 3.5). Uncorrected caudate volumes 

were also smaller in preHD participants (p=0.05), but the corresponding FDR was 

non-significant (FDR=0.20). These differences were small: the preHD group had 

5.5% smaller putamen and 4.0% smaller caudate volumes. Putamen and caudate 

volumes did not show a significant relationship with age-CAG in preHD (FDR 

corrected value 0.54 for both). The nonparametric bootstrapped comparison of 

caudate and putamen volumes showed no significant differences between the two 

(p=0.30), suggesting that the putamen volumes did not appear more affected than 

the caudate volumes. There were no significant group differences in volumes of whole 

brain, grey or white matter, or ventricles (Figure 3.5, Table 3.6). 
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Figure 3.5. Volumetric MRI results. Boxplots of covariate adjusted standardised residuals of a) 
Putamen b) Caudate c) Whole Brain d) Grey Matter e) White Matter and f) Ventricle volumes corrected 
for intracranial volume. Horizontal lines are median; boxes are upper and lower quartiles; whiskers are 
1.5 x interquartile range.  

 

 

Table 3.6 Volumetric results  

Outcome 

Measure 

Controls 

Mean 

HD Mean Effect size  (CL) p FDR 

Putamen 0.66 0.62 0.53 (0.16, 0.89) 0.005 0.03 

Caudate 0.50 0.48 0.37 (0.00, 0.74) 0.05 0.20 

Grey matter 43.7 43.5 0.10 (-0.27, 0.46) 0.60 0.92 

White matter 34.5 34.6 -0.02 (-0.39, 0.35) 0.91 0.92 

Whole brain 80.3 80.2 0.06 (-0.31, 0.42) 0.76 0.92 

Ventricles 0.86 0.88 -0.05 (-0.41, 0.32) 0.81 0.92 

All measures are expressed as a percentage of intracranial volume  



109 
 
 

 

 

There were no significant differences in white matter microstructure as assessed by 

diffusion tensor imaging and NODDI (FDR 0.27–0.98; Table 3.7). Axial diffusivity in 

the genu of the corpus callosum was lower in the preHD group than controls (p=0.01), 

although this did not survive correction for FDR (FDR=0.27). The free water fraction 

in this region also showed uncorrected group differences (p=0.04; FDR=0.54), being 

increased in controls. In addition, the orientation dispersion in the posterior limb of 

the internal capsule was reduced in the preHD group (p=0.04) but this did not survive 

FDR correction (FDR=0.54).  

Table 3.7 Diffusion results 

Outcome 

Measure 

 

Controls 

Mean 

HD Mean Effect size (CL) p FDR 

AD CC Genu 1.27 1.26 0.53 (0.16, 0.91) 0.006 0.27 

AD CC Spl 1.33 1.32 0.28 (-0.10, 0.66) 0.15 0.75 

AD CC mid 1.27 1.27 0.17 (-0.20, 0.55) 0.37 0.86 

AD IC ant 1.00 1.00 -0.26 (-0.63, 0.11) 0.17 0.75 

AD IC post 1.05 1.05 -0.15 (-0.52, 0.23) 0.46 0.87 

AD EC 0.95 0.95 -0.21 (-0.59, 0.17) 0.27 0.75 

FA CC Genu 0.69 0.69 -0.01 (-0.30, 0.36) 0.95 0.98 

FA CC Spl 0.75 0.75 -0.03 (-0.40, 0.35) 0.89 0.98 

FA CC mid 0.67 0.67 -0.07 (-0.45, 0.30) 0.70 0.92 

FA IC ant 0.58 0.58 -0.19 (-0.56, 0.19) 0.32 0.84 

FA IC post 0.68 0.68 -0.23 (-0.60, 0.15) 0.23 0.75 

FA EC 0.45 0.45 -0.25 (-0.62, 0.13) 0.19 0.75 

MD CC Genu 0.64 0.63 0.33 (-0.04, 0.71) 0.09 0.75 

MD CC Spl 0.63 0.63 0.24 (-0.14, 0.61) 0.21 0.75 

MD CC Mid 0.65 0.65 0.13 (-0.25, 0.50) 0.51 0.87 

MD IC ant 0.57 0.57 -0.09 (-0.46, 0.29) 0.64 0.92 

MD IC post 0.54 0.54 0.07 (-0.30, 0.45) 0.70 0.92 

RD CC Genu 0.32 0.32 0.12 (-0.25, 0.50) 0.53 0.87 

RD CC Spl 0.28 0.28 0.15 (-0.23, 0.53) 0.43 0.86 

RD CC Mid 0.34 0.34 0.08 (-0.30, 0.46) 0.67 0.92 

RD IC ant 0.35 0.35 0.09 (-0.28, 0.47) 0.63 0.92 

RD IC post 0.29 0.29 0.23 (-0.14, 0.61) 0.22 0.75 
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RD EC 0.45 0.45 0.12 (-0.25, 0.50) 0.54 0.87 

ND CC Genu 0.62 0.62 0.02 (-0.36, 0.40) 0.91 0.98 

NDI CC Spl 0.67 0.67 -0.04 (-0.42, 0.33) 0.82 0.98 

NDI CC Mid 0.64 0.63 0.16 (-0.22, 0.53) 0.41 0.86 

NDI IC Ant 0.63 0.63 -0.01 (-0.39, 0.36) 0.94 0.98 

NDI IC Post 0.69 0.70 -0.16 (-0.53, 0.22) 0.41 0.86 

NDI EC 0.52 0.52 -0.06 (-0.44, 0.31) 0.74 0.92 

FWF CC Genu 0.12 0.11 0.40 (0.02, 0.77) 0.04 0.54 

FWF CC Spl 0.14 0.13 0.25 (-0.12, 0.63) 0.18 0.75 

FWF CC Mid 0.15 0.15 0.21 (-0.16, 0.59) 0.27 0.75 

FWF IC ant 0.15 0.15 0.21 (-0.16, 0.59) 0.27 0.75 

FWF IC post 0.08 0.08 -0.07 (-0.44, 0.31) 0.73 0.92 

FWF EC 0.03 0.03 -0.24 (-0.61, 0.14) 0.22 0.75 

ODI CC Genu 0.08 0.08 -0.07 (-0.45, 0.30) 0.70 0.92 

ODI CC Spl 0.07 0.07 0.15 (-0.23, 0.52) 0.43 0.86 

ODI CC Mid 0.09 0.09 0.02 (-0.35, 0.40) 0.90 0.98 

ODI IC ant 0.12 0.11 0.12 (-0.26, 0.49) 0.54 0.87 

ODI IC post 0.11 0.11 0.40 (0.02, 0.78) 0.04 0.54 

ODI EC 0.21 0.20 0.30 (-0.07, 0.68) 0.11 0.75 

AD = axial diffusivity; MD = mean diffusivity; RD = radial diffusivity; FA = fractional anisotropy; 

NDI = neurite density index; MD = mean diffusivity; ODI  = orientation dispersion index; FWF = 

free water fraction CC = corpus callosum; IC = internal capsule; EC = external capsule; ant = 

anterior; post = posterior; mid = mid-body; Spl = splenium 

Using diffusion tractography and graph theory measures, there were no significant 

group differences in connection strength for any hub or striatal region, nor any 

difference in network measures of integration or segregation between preHD and 

controls (FDR=0.71-0.99; Table 3.8). 

Table 3.8 Structural connectivity results  

Outcome 

Measure 

Controls 

Mean 

HD Mean Effect Size (CL) p FDR 

L Limbic 0.01 0.01 -0.31 (-0.71, 0.08) 0.12 0.77 

R Limbic 0.01 0.01 -0.05 (-0.45, 0.34) 0.80 0.99 

L Executive 0.01 0.01 0.01 (-0.38, 0.40) 0.96 0.99 
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R Executive 0.01 0.01 0.07 (-0.32, 0.47) 0.71 0.99 

L Sensorimotor 0.01 0.01 0.00 (-0.39, 0.40) 0.99 0.99 

R Sensorimotor 0.01 0.01 -0.33 (-0.72, 0.07) 0.11 0.77 

L Superior 

Frontal 

0.05 0.05 0.01 (-0.38, 0.41) 0.94 0.99 

R Superior 

Frontal 

0.05 0.05 -0.19 (-0.58, 0.21) 0.36 0.87 

L Precentral 0.04 0.04 -0.02 (-0.41, 0.37) 0.92 0.99 

R Precentral 0.04 0.04 -0.21 (-0.60, 0.19) 0.30 0.87 

L Superior 

Parietal 

0.03 0.03 -0.17 (-0.57, 0.22) 0.39 0.87 

R Superior 

Parietal 

0.03 0.03 0.12 (-0.28, 0.51) 0.56 0.99 

L Thalamus 0.03 0.03 -0.03 (-0.43, 0.36) 0.86 0.99 

R Thalamus 0.03 0.03 0.21 (-0.19, 0.60) 0.29 0.87 

L Inferior Parietal 0.02 0.02 0.19 (-0.20, 0.59) 0.33 0.87 

R Inferior 

Parietal 

0.03 0.03 0.12 (-0.28, 0.51) 0.54 0.99 

L Rostral Middle 

Frontal 

0.02 0.02 0.42 (0.03, 0.82) 0.04 0.71 

R Rostral Middle 

Frontal 

0.02 0.02 -0.02 (-0.41, 0.38) 0.92 0.99 

Efficiency 0.00 0.00 -0.02 (-0.41, 0.38) 0.92 0.99 

Modularity 0.46 0.46 0.25 (-0.14, 0.65) 0.20 0.87 

Efficiency is a measure of network integration whilst Modularity is a measure of network 

segregation. All other measures represent connection strength of each respective region. 

Limbic, executive and sensorimotor are divisions of the striatum. Other measures are cortical 

hub regions. L = Left, R = Right.  

There were no significant differences between preHD and controls in MPM measures 

(FDR=0.17-0.98; Table 3.9). There were trends of increased R1 and R2 in the 

putamen (p=0.006 and 0.03 respectively) and external capsule (p=0.04 and 0.03 

respectively), whilst R2 was also increased in the posterior limb of the internal capsule 

(p=0.03) in preHD. None of these differences survived FDR correction however. 

Within the preHD group, there were no significant relationships between any imaging 

measure and age-CAG (FDR 0.44–0.96).  
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Table 3.9 MPM results 

Outcome 

Measure  

Controls 

Mean 

HD Mean Effect size (CL) p FDR 

R2*  Putamen 21.5 22.4 -0.42 (-0.81, -0.04) 0.03 0.20 

R1  Putamen 0.75 0.77 -0.54 (-0.92, -0.15) 0.005 0.17 

PD  Putamen 77.9 77.9 -0.01 (-0.39, 0.38) 0.91 0.98 

MT  Putamen 0.90 0.89 0.25 (-0.14, 0.63) 0.21 0.36 

R2*  Caudate 18.7 19.2 -0.34 (-0.73, 0.05) 0.09 0.36 

R1  Caudate 0.71 0.72 -0.38 (-0.76, 0.01) 0.06 0.36 

PD  Caudate 80.0 80.2 -0.19 (-0.57, 0.20) 0.34 0.78 

MT  Caudate 0.83 0.83 0.24 (-0.14, 0.63) 0.21 0.38 

R2*  CC  Spl 23.3 23.5 -0.13 (-0.52, 0.26) 0.51 0.78 

R1   CC  Spl 1.02 1.03 -0.13 (-0.51, 0.26) 0.51 0.99 

PD   CC  Spl 68.6 68.7 -0.04 (-0.43, 0.34) 0.83 0.98 

MT   CC  Spl 1.58 1.59 -0.08 (-0.46, 0.31) 0.69 0.98 

R2*  CC  Genu 22.3 22.5 -0.15 (-0.54, 0.24) 0.45 0.78 

R1   CC  Genu 1.07 1.08 -0.21 (-0.60, 0.17) 0.27 0.78 

PD CC Genu 67.8 68.0 -0.22 (-0.61, 0.16) 0.26 0.67 

MT   CC  Genu 1.67 1.66 0.13 (-0.25, 0.52) 0.49 0.67 

R2*  CC  mid 20.6 20.8 --0.32, (-0.71, 0.07) 0.11 0.39 

R1 CC mid 1.01 1.02 -0.31 (-0.70. 0.07) 0.11 0.59 

PD CC mid 68.7 68.8 -0.14 (-0.52, 0.25) 0.48 0.85 

MT CC mid 1.55 1.55 -0.07 (-0.45, 0.32) 0.73 0.98 

R2* IC pos 20.4 20.8 -0.43 (-0.82, -0.04) 0.03 0.20 

R1 IC pos 1.00 1.01 -0.21 (-0.60, 0.17) 0.28 0.78 

PD IC pos 67.6 67.7 -0.11 (-0.49, 0.28) 0.58 0.78 

MT IC pos 1.52 1.52 0.01 (-0.38, 0.39) 0.96 0.84 
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R2* IC ant 22.5 22.5 -0.03 (-0.41, 0.36) 0.90 0.99 

R1 IC ant 1.00 1.01 -0.29 (0.67, 0.10) 0.15 0.67 

PD IC ant 69.7 69.8 -0.04 (-0.43, 0.34) 0.83 0.98 

MT IC ant 1.49 1.47 0.23 (-0.15, 0.62) 0.23 0.36 

R2* EC 18.5 18.8 (-0.43 (0.82, -0.04) 0.03 0.20 

R1 EC 0.89 0.91 -0.30 (-0.79, -0.02) 0.04 0.29 

PD EC 71.1 71.0 0.09 (-0.30, 0.47) 0.66 0.81 

MT EC 71.1 71.0 0.09 (-0.30, 0.47) 0.65 0.98 

CC = corpus callosum; IC = internal capsule; EC = external capsule; ant = anterior; post = 

posterior; mid = mid-body; Spl = splenium. R1 = longitudinal relaxation rate; R2* = the effective 

transverse relaxation rate; MT = magnetization transfer. PD = proton density. 

3.4.4 Biofluids 

The CSF quality of the study was good, with no CSF samples above the predefined 

cut-off for red cell count. Only one participant’s white cell count was above the white 

cell cut-off, being mildly raised at 8 cells/μl. Given the non-specificity of the count with 

a normal neurological examination and T1-weighted MRI, this control was kept in the 

analysis. The median and inter-quartile range for CSF white cell count across the 

cohort was 0 and 1 cells/μl respectively. For red cell count, it was 1 and 5 cells/μl 

respectively, indicating minimal blood contamination across samples. Similarly, no 

participants had significant abnormalities on full blood count or coagulation, prior to 

lumbar puncture. 

CSF haemoglobin was associated with mHTT (p=0.03) and YKL-40 (p=0.01) and was 

controlled for in the subsequent analyses for these analytes. CSF haemoglobin was 

not associated with any other analyte. One control outlier for CSF NfL was noted. 

They had a normal T1 brain scan, normal CSF white cell and red cell counts and did 

not outlie in other biofluid or cognitive parameters and so were not excluded from the 

analysis.  

CSF mHTT was detectable at low concentrations for all mutation carriers except in 

three participants, all of whom had a low disease burden score. mHTT was 
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undetectable in all controls. Higher mHTT concentrations were associated with 

increasing age-CAG (p=0.05). However, 53% of preHD mHTT values were between 

the limit of detection and limit of reliable quantification (8–25 fM), a range in which the 

output from the assay is not linear. Total huntingtin concentrations were not 

significantly different between controls and preHD (p=0.23) (Figure 3.6).  

 

Figure 3.6. Selected biofluid results. Boxplots of standardised residuals (covariate adjusted) of a) CSF 
mHTT b) CSF NfL c) plasma NfL d) YKL-40 e) CSF total tau f) CSF neurogranin g) CSF IL-6 h) IL-8, i) 
CSF total huntingtin. All analytes were log transformed. As expected mHTT was undetectable in all 
controls. There were significant differences between preHD and controls in CSF NfL, plasma NfL, and 
CSF YKL-40. No other analytes showed significant group differences (FDR>0.5).  
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The preHD cohort had significantly higher concentrations of CSF NfL, plasma NfL, 

and CSF YKL-40 than the control cohort (FDR <0.0001, FDR=0.01, and FDR=0.03, 

respectively; Figure 3.6). In the preHD group, 53% had CSF NfL concentrations within 

the normal control range (95th percentile of controls) whilst 87% had plasma NfL 

concentrations within this range. 

There were no significant differences between the preHD and control cohorts for CSF 

and plasma tau and GFAP, nor for CSF neurogranin, IL-6 or IL-8 (FDR 0.48–0.94; 

Table 3.10). 

Table 3.10 Biofluid results   

Outcome Measure Controls 

Mean 

HD Mean Effect Size (CL) p FDR 

NfL CSF 5.79 6.40 -1.17 (-1.56, -0.79) <0.0001 <0.0001 

NfL plasma 2.02 2.28 -0.55 (-0.90, -0.20) 0.003 0.01 

YKL-40 CSF 10.97 11.12 -0.50 (-0.89, -0.12) 0.01 0.03 

IL6 CSF 1.01 0.98 0.07 (-0.31, 0.46) 0.68 0.77 

IL8 CSF 4.14 4.19 -0.15 (-0.54, 0.23) 0.41 0.54 

Neurogranin CSF 5.68 5.68 0.00 (-0.38, 0.39) 0.94 0.94 

Tau CSF 4.16 4.22 -0.20 (-0.58, 0.19) 0.34 0.54 

Tau plasma 1.57 1.44 0.20 (-0.14, 0.56) 0.26 0.52 

UCH-L1 CSF 7.14 7.17 -0.16 (-0.55, 0.22) 0.41 0.48 

GFAP CSF 9.43 9.37 0.14 (-0.25, 0.52) 0.48 N/A 

GFAP Plasma 4.38 4.51 -0.23 (-0.58, 0.12) 0.20 N/A 

tHTT CSF (log fM) 3.85 3.75 0.24 (-0.15, 0.62) 0.22 N/A 

mHTT CSF (log fM) 0 3.08 N/A N/A N/A 

All values in log pg/ml unless otherwise stated.  

Only CSF NfL concentrations showed a strong positive association with age-CAG in 

preHD (FDR<0.0001). Plasma NfL showed a weaker association that did not reach 

statistical significance (p=0.07, FDR=0.18).  
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ROC analysis of CSF NfL, plasma NfL, and CSF YKL-40 gave areas under the curve 

of 0.79, 0.65, and 0.64 respectively, implying superior discriminatory ability of CSF 

NfL over plasma NfL and YKL-40 in preHD far from predicted clinical onset (Figure 

3.7). 

 

Figure 3.7 ROC curves for CSF NfL (A), plasma NfL (B) and YKL-40 (C). AUC = area under the 
curve.  

NfL trajectories across an age range of 20–70 years were modelled by combining 

HD-YAS data with baseline values from the HD-CSF study (Byrne et al. 2018), 

showing the age at which NfL is predicted to rise above the 95th percentile of controls 

for each given CAG count (Figure 3.8). CSF NfL concentrations showed a sigmoid 

trajectory, increasing slowly initially before accelerating as individuals moved close to 
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predicted clinical onset, followed by a deceleration later in the disease. Plasma NfL 

showed a similar trajectory, but with concentrations remaining within the normal range 

for longer.  

 

Figure 3.8. NfL trajectories. Associations of NfL concentration in (a) CSF and (b) plasma with age and 
CAG repeat count (right of figure) from combined datasets of HD-YAS and HD-CSF (Byrne et al. 2018). 
Data were modelled with a polynomial function of age, CAG repeat counts, their squares, and their 
interactions. NfL concentrations were reverse-transformed from log NfL values. CAG repeat counts are 
coloured separately and labelled on the right of the image. Shaded in grey is the range between the 
control curve (dark grey line) and the 95th prediction interval of controls. Coloured dotted lines show the 
intercept of NfL trajectory in HD and the 95th prediction interval of controls, representing the age at which 
NfL concentrations become abnormal. Diamonds show mean age of onset for each CAG based on the 
Langbehn equation using previously published data (Langbehn et al. 2004).  
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3.4.4.1 Associations of mHTT and NfL with other measures in HD-YAS 

Associations between CSF mHTT, NfL and plasma NfL with other biofluid, imaging, 

cognitive and psychiatric measures were investigated. CSF NfL was highly correlated 

with plasma NfL and CSF mHTT (r=0.68 and 0.57; p=<0.0001) whilst plasma NfL also 

correlated with mHTT to a lesser extent (r=0.31, p=0.02). There were significant 

associations between CSF mHTT and CSF YKL-40, CSF tau, and CSF UCH-L1 

(r=0.54, 0.50 and 0.50 respectively, FDR=0.003). CSF NfL significantly correlated 

with CSF YKL-40 (r=0.37; FDR=0.04).  

NfL and mHTT did not significantly correlate with any imaging, cognitive, or 

neuropsychiatric measure. Of particular interest given the above results, caudate 

volumes showed a negative correlation with NfL in plasma (r=-0.35, FDR=0.06), and 

CSF (r=-0.19, FDR=0.24). Putamen volumes also showed a negative correlation with 

NfL in plasma (r=-0.22, FDR=0.21) and CSF (r=-0.15, FDR=0.36).  

3.5 Discussion 

The results of HD-YAS provide crucial new insights in early preHD and suggest that 

cognitive and psychiatric function, as measured using the above scales,  are 

preserved in gene carriers approximately 24 years from predicted onset. At this stage, 

there is little evidence of brain imaging changes, yet elevations of NfL and YKL-40 

are suggestive of subtle early neuronal injury in this cohort. The results indicate CSF 

NfL, mHTT and YKL-40 may be the earliest detectable markers of neurodegeneration 

in HD. By combining the results of HD-YAS with pre-existing literature on the later 

stages of HD, an evidence-based schematic of disease trajectory was generated 

(Figure 3.9), extending the timeline of pathological changes back to the very start of 

adulthood. It should be noted however that there remains a gap in the literature 

between HD-YAS and previous studies characterising disease-related changes <15 

years from predicted onset. Hence this schematic would need further validation from 

follow up in the HD-YAS and/or other studies in the range between 20-15 years from 

predicted onset.  
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Figure 3.9. Updated evidence based schematic of disease trajectory in HD. With results from the 
HD-YAS, we can now extend our understanding of disease-related changes from those presented in 
Figure 1.5. CSF NfL and mHTT are among the earliest pathological changes, occurring around 24 years 
before expected clinical onset (data from the HD-YAS), with slow increases for approximately 10 years, 
followed by an acceleration prior to expected onset already elevated 15 years prior to onset (Byrne et 
al. 2017; Byrne et al. 2018). Striatal volumes are slightly smaller than those of age-matched controls at 
the beginning of adulthood (data from the HD-YAS) and start a linear decline around 18 years before 
expected symptom onset (Tabrizi et al. 2011) with volume reduced by around 50% of control volumes 
by the time of clinical onset (Georgiou-Karistianis et al. 2013; Langbehn et al. 2019). Peristriatal white 
matter volume shows reductions approximately 15 years from onset (Tabrizi et al. 2009) and shows 
higher rates of atrophy in a non-linear fashion, becoming more generalised by time of onset (Aylward et 
al. 2011; Langbehn et al. 2019). Grey matter loss extends beyond the striatum later at around 10 years 
before symptom onset, after which it progresses non-linearly (Tabrizi et al. 2009; Langbehn et al. 2019). 
Soft motor signs in the form of increased variability in voluntary movements are apparent by 15 years 
prior to symptom onset and increase non-linearly (Biglan et al. 2009; Tabrizi et al. 2009; Long et al. 
2014). Subtle selective cognitive changes are apparent approximately 15 years from expected symptom 
onset (Tabrizi et al. 2009; Stout et al. 2011), declining relatively slowly following a non-linear trajectory 
(Tabrizi et al. 2012; Langbehn et al. 2019).  



120 
 
 

 

 

3.5.1 No significant differences in cognition, but some trends of 

interest  

Cognitive deficits centred around executive function and emotion processing have 

been reported previously in premanifest cohorts (Tabrizi et al. 2009), with the 

PREDICT-HD study suggesting that cognitive function starts to decline around 15 

years before clinical onset (Paulsen et al. 2008; Paulsen and Long 2014). The 

cognitive battery in HD-YAS represents a targeted assessment of cognitive domains 

that are known to be vulnerable in HD, including tasks that have not previously been 

studied in the premanifest stage. Although there were no measures that showed 

corrected significant differences, there were some small group differences in 

measures of cognitive flexibility, sustained attention, and emotion processing trending 

in the direction of greater impairment in preHD that will be of interest for further study. 

Cognitive flexibility is a key component of executive function and can be measured at 

the extra-dimensional shift stage of the IED task. Although not as widely investigated 

as other cognitive tasks in HD, the ED set shifting stage of the IED has previously 

been shown to be sensitive in early HD (Lawrence et al. 1996) and preHD up to 10 

years prior to onset (Lawrence et al. 1998). ED shift errors have previously been 

associated with reduced functional connectivity in fronto-striatal networks in healthy 

controls (Morris et al. 2016). These networks have also been shown to be disrupted 

in HD (Enzi et al. 2012; McColgan et al. 2017). Therefore, although not reaching 

corrected significance in this study, the ED set shift may be a sensitive measure of 

emerging cognitive impairment in preHD closer to predicted onset. 

Deficits in semantic verbal fluency in preHD have also been demonstrated previously 

(Lawrence et al. 1998), and the subthreshold group difference in this task may be 

suggestive of a small subset of individuals showing very mild impairment in this task. 

Sustained visual attention has been comparatively understudied in HD. The trail 

making test has been shown to be sensitive in preHD and involves visual attention 

(Paulsen and Long 2014), but also it also involves other cognitive components such 

as set-shifting, perceptual processing and working memory (O'Rourke et al. 2011). A 

comparatively small study using a simple go/no-go task found some evidence of 

attentional deficits in the HD, but not preHD group (Hart et al. 2012). Here, the preHD 
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group showed subtle reductions in sustained attention as measured in the RVP task, 

however this did not reach statistical significance. As with the other subthreshold 

trends, the RVP may be a task of interest for future studies of early preHD. 

Although impaired performance on the OTS, PAL and SWM have been shown in early 

HD previously (Lawrence et al. 2000; Ho et al. 2003; Begeti et al. 2016), studies in 

preHD have not found evidence significant impairments in these tasks (Lawrence et 

al. 1998; Begeti et al. 2016). The results here are consistent with these tasks not 

being sensitive in the premanifest period. 

The SDMT and SWRT have proved to be among  the most robust measures of early 

cognitive deficits in HD (Tabrizi et al. 2013; Paulsen and Long 2014). In TRACK-HD, 

both had relatively high longitudinal signal-to-noise ratios compared to other 

measures (Tabrizi et al. 2013) and have subsequently been incorporated into a 

composite measure of disease progression (Schobel et al. 2017). This composite is 

currently being used as a primary outcome measure in huntingtin-lowering clinical 

trial (Clinicaltrials.gov; NCT03761849 2018), reflecting the relative sensitivity of these 

two cognitive tasks in HD. Both tasks have also demonstrated progressive declines 

in preHD as individuals moved closer to predicted onset (Tabrizi et al. 2013; Paulsen 

and Long 2014). It is striking then, just how similar preHD performance was to controls 

for these tasks in the current results and is supportive but not confirmatory of the 

hypothesis that cognition may be preserved at this early stage in preHD. 

Of the cognitive assessments performed in this study, social cognition, motivational 

and emotional functioning was investigated using the recently developed EMOTICOM 

battery (Bland et al. 2016). Among these domains, emotion recognition has been 

most widely studied, with evidence that recognition of negative emotions is impaired 

in both preHD and HD (Tabrizi et al. 2009; Henley et al. 2012). Previous studies have 

tended to use either static, or morphing images with the outcome measure of 

detecting the emotion in question (Henley et al. 2012). In this study, preHD 

participants showed no differences in detecting the emotion in the increasing task, 

but recognised the sad face for longer in the decreasing task. Comparatively little is 

known about the implications of this observation, but inability to disengage from 

negative stimuli has previously been observed in depression (Dam et al. 2020). Our 

neuropsychiatric data suggests this would not explain the small observed effect 
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however. The emotion intensity decreasing condition has not been previously studied 

before in HD, and so it will be interesting to see if this subtle difference remains or 

increases over time in preHD. 

Decreased breakpoints have been recently described in humans and animal models 

of HD (Heath et al. 2019). However there were no differences observed in the 

progressive ratio breakpoint in this cohort, suggesting motivational deficits likely occur 

later in the disease course.  

Reinforcement learning was included in this study since it has been shown to be 

sensitive to pharmacological manipulation with a D2 receptor antagonist (Eisenegger 

et al. 2014) and was anticipated to be sensitive to any early indirect pathway 

dysfunction that has been observed in HD previously (Albin et al. 1992; Waldvogel et 

al. 2015). Furthermore, reward learning has been shown to be impaired in HD 

(Palminteri et al. 2012) and other diseases of the basal ganglia (Frank et al. 2004). 

However, reinforcement scores in this group were virtually identical in this study, 

showing no evidence of impaired learning by reinforcement at this stage of disease. 

Collectively, there was no evidence of significantly impaired cognition across a broad 

spectrum of assessments. Although some non-significant differences appeared to be 

trending in the direction of more impairment in the preHD group, there were no 

significant associations with age-CAG to support the notion these differences are 

driven by those closer to expected clinical onset. Longitudinal follow up will be 

important in examining whether these trends persist or increase at this stage, 

although little cognitive change has been previously detected in preHD over a 24 

month period (Stout et al. 2012), suggesting that a longer interval will likely be 

required to detect any longitudinal changes in this group. 

3.5.2 No significant differences in behavioural or psychiatric 

symptoms 

Using validated self-report questionnaires, current behavioural and neuropsychiatric 

symptoms were assessed across both groups. Increased neuropsychiatric symptoms 

have been reported in preHD (Kirkwood et al. 2002; Beglinger et al. 2008; Tabrizi et 

al. 2009; Epping et al. 2013), including in those more than 12 years from predicted 
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onset (Epping et al. 2016). The reported progressive nature of these symptoms has 

given credence to this being as a result of neurodegeneration. The results reported 

here suggest that neuropsychiatric features of the disease are not increased 

comparative to controls 24 years from predicted onset, and is a phenomenon that 

becomes observable approximately 15 years from predicted onset.  

There was a non-significant trend towards higher pain scores and emotional 

limitations on the SF-36 in preHD. This scale has been previously used in manifest 

participants where the pain subsection has not shown notable differences between 

groups (Helder et al. 2002; Ho et al. 2004), and it is unlikely this is a meaningful 

difference.  

These results also add to previous literature on neuropsychiatric outcomes following 

a positive predictive test. In a systematic review of the literature, Crozier et al. found 

that the psychological impact of predictive testing was not associated with test result 

(Crozier et al. 2015), although some studies have reported an increase in 

neuropsychiatric symptoms following a positive test result (Crozier et al. 2015; Quaid 

et al. 2017). However, the mean age across all studies included in this review ranged 

from 36.9 to 41.9 years, with no studies previously investigating outcomes of 

predictive testing in younger adults. Although the HD-YAS was not specifically set up 

to investigate the impact of predictive testing, the neuropsychiatric profiling included 

similar assessments to previous studies in this area (Crozier et al. 2015). The findings 

in the HD-YAS are therefore consistent with previous reports of no significant changes 

in the extent of neuropsychiatric symptoms in those with a positive predictive test, 

even at younger ages. These results may further support current clinical approaches 

to predictive testing in young adults. 

3.5.3 Little evidence of change in brain structure  

There was little evidence of differences in brain structure assessed by multi-modal 

imaging at this stage of HD, with the only significant finding across a wide range of 

measures being a subtle reduction in preHD putamen volumes. Volumetric imaging 

is the most established imaging method in HD and brain atrophy has been widely 

reported in premanifest cohorts closer to predicted onset (Paulsen et al. 2008; Tabrizi 

et al. 2012). Both TRACK-HD (Tabrizi et al. 2009) and PREDICT-HD (Paulsen et al. 
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2008) studies suggested that striatal volumes are reduced compared with controls at 

least 15 years from expected disease onset. Although gene carriers in this study were 

found to have significantly smaller putamen volumes, a statistical comparison of 

volume reduction between striatal subregions did not provide evidence for the 

putamen being more affected than the caudate. The lack of significant associations 

between striatal volumes and age-CAG or NfL points towards a possible 

neurodevelopmental constitutive difference in striatal volumes, supported by 

previously published work in child and adolescent HD gene carriers (van der Plas et 

al. 2019). Alternatively, reduced striatal volumes might be a result of 

neurodegeneration that is too subtle and variable to show robust associations with 

age-CAG or subtle elevations in NfL at this stage; longitudinal follow up might help to 

resolve this question. Nevertheless, the small effect size and absence of association 

with disease burden indicates striatal atrophy might be limited as a marker of 

progression at this stage of HD.  

Whole brain, grey matter and white matter atrophy has also been observed previously 

in the premanifest period (Kipps et al. 2005; Tabrizi et al. 2012). White matter atrophy 

is particularly pronounced, and is detectable around 15 years from symptom onset, 

whereas grey and whole brain atrophy typically become detectable closer to predicted 

onset (Aylward et al. 2011; Tabrizi et al. 2011). It is notable then, that not only was 

there no significant between-group differences in whole brain, grey matter and white 

matter volumes in this study, but how similar the two groups were in these measures, 

with corresponding FDR values all over 0.9.  

Previous literature had reported changes in peristriatal white matter microstructure 

(Zhang et al. 2018) and loss of cortico-striatal connections (McColgan et al. 2015; 

McColgan et al. 2017) in preHD closer to onset. Here, there were uncorrected 

differences observed in the corpus callosum for AD and FWF, although these were in 

the opposite direction to what is typically observed later in the disease course 

(Gregory et al. 2015; Shaffer et al. 2017; Zhang et al. 2018). Other diffusion metrics 

and structural connectivity measures were remarkably similar with no consistent 

directional trends, indicative of there being very little detectable change in white 

matter microstructure and connectivity at this timepoint despite using varied and well 

established methods. 
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MPM was included in this study to investigate evidence of abnormalities in iron or 

myelin in the striatum and peristriatal white matter. Abnormalities in myelin producing 

oligodendrocytes have been described previously in neuropathological studies in 

humans (Myers et al. 1991; Gómez-Tortosa et al. 2001) and HD animal models 

(Huang et al. 2015; Peng et al. 2016). A previous imaging study using MT and DTI 

imaging has provided additional support for myelin breakdown in the basal ganglia 

white matter tracts of HD participants (Bourbon-Teles et al. 2017). Iron dysregulation 

has also been described in HD neuropathology (Muller and Leavitt 2014), including 

evidence of increasing striatal iron deposition (Dexter et al. 1992; Simmons et al. 

2007; Rosas et al. 2012) with HD progression. MRI studies, typically using T2-based 

or susceptibility weighted imaging, have also reported indirect evidence of subcortical 

iron accumulation which appears to be detectable in preHD (Rosas et al. 2012; 

Domínguez et al. 2016) and increases with disease progression (Dumas et al. 2012; 

Rosas et al. 2012). MPM, used here for the first time in HD, did not identify any 

regional differences between preHD participants and controls at this stage of the 

disease process. However, the subthreshold R1 and R2 signal changes in the 

putamen, caudate and external capsule, in the absence of changes in MT, may 

indicate that iron is starting to accumulate at this early stage. Similarly, these results 

indicate that oligodendrocyte dysfunction and myelin abnormalities previously 

observed are a feature of later disease progression, rather than a 

neurodevelopmental effect as previously suggested (Myers et al. 1991). 

3.5.4 NfL is a promising biomarker of early neurodegeneration in 

HD 

NfL concentrations are closely associated with brain volumes, clinical scores, and 

subsequent clinical onset and progression in HD (Byrne et al. 2017; Byrne et al. 

2018). CSF and plasma NfL were both significantly elevated in this cohort 24 years 

from predicted onset. CSF NfL had the highest effect size of any measure in this study 

and was the only measure showing a significant association with age-CAG. However, 

53% of preHD participants had CSF NfL concentrations within the 95th percentile of 

controls and 87% had plasma NfL concentrations within this range, suggesting a 

crucial point where NfL begins to rise has been identified. The ROC analysis indicated 

that CSF NfL is more sensitive and specific for early preHD compared to plasma NfL, 
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in contrast to their near-equivalence in manifest HD (Byrne et al. 2018). These results 

advance NfL as a potential candidate to measure disease progression in early preHD 

and might eventually be used as a marker of response to treatment in future 

preventive trials. Importantly, our results suggest that despite its practical and cost 

advantages, plasma NfL may not be as sensitive as CSF NfL in early preHD, although 

even more highly sensitive assays may improve plasma performance. Future trials 

targeting early preHD might enrich recruitment by combining an age-CAG score (e.g. 

DBS) with NfL above a predefined cut-off to increase the likelihood of seeing 

measurable change over a typical trial timeframe. Through modelling NfL with age, 

the approximate age at which NfL becomes abnormal for a given CAG length is 

highlighted and may serve to guide future studies and trials in HD which may consider 

the use of NfL as a biomarker. The use of NfL as an enrichment marker requires 

further validation however, as does its possible use as a treatment-response marker. 

Although non-specific to HD, the usefulness of NfL is strengthened in this case since 

individuals with HD can be reliably identified by genetic testing and other neurological 

diseases are rare in the age ranges studied in this cohort.  

3.5.5 Measures of target engagement for huntingtin-lowering 

therapeutics 

A central aim of current therapies in development for HD is to reduce mHTT in the 

nervous system. Accordingly, CSF mHTT represents a marker of target engagement 

for these trials and has already been successfully used as such in the first huntingtin-

lowering trial in manifest HD (Tabrizi et al. 2019). In this cohort further from predicted 

onset, mHTT concentrations were lower than previous reports (Wild et al. 2015; Byrne 

et al. 2018); only 40% had concentrations above the limit of reliable quantification. 

This finding suggests that, although suppression of mHTT could be a viable measure 

of target engagement for clinical trials at this early stage, it would not be possible to 

quantify the percentage of huntingtin-lowering to assess dose-response. 

Alternatively, with concentrations consistently well above the limit of quantification, 

total huntingtin might provide a more reliably quantifiable marker of target 

engagement in non-allele selective huntingtin-lowering therapies than mHTT at this 

early stage. This is the first study to examine total huntingtin concentration in humans. 

That concentrations are consistently detectable above the lower limit of quantification 
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would suggest that huntingtin is naturally released from neurons into CSF. mHTT on 

the other hand is known to aggregate within neurons (Bates et al. 2015) and is 

believed to be released with neuronal damage, based on observations of rising mHTT 

with disease progression and its close association with NfL (Byrne et al. 2018). 

Therefore this discrepancy between mHTT and total huntingtin concentrations in this 

cohort suggests that mHTT may be aggregating at this early stage, but not to a level 

sufficient to cause significant neuronal death and subsequent widespread release into 

the CSF. 

3.5.6 Evidence of astrocytic activation in the early premanifest 

period 

The astrocytic marker YKL-40 has previously been investigated in HD with 

inconsistent results. Rodrigues et al. found increased YKL-40 in a mixed preHD/HD 

group (Rodrigues et al. 2016), whilst two other studies found non-significant increases 

in the HD group, but no differences in the preHD group (Vinther-Jensen et al. 2014; 

Niemelä et al. 2018). Here in a larger sample size, YKL-40 was found to be 

significantly elevated in the preHD group. YKL-40 concentrations were also closely 

associated with CSF mHTT and NfL, suggesting astrocytic activation may be 

occurring in response mHTT-induced neuronal injury or cell-autonomous effects of 

mHTT in astrocytes. Its utility as a marker of early disease progression may be limited 

however, since concentrations do not appear to associate with age-CAG at this stage 

and results from the ROC analysis show that YKL-40 is less sensitive and specific 

than plasma and CSF NfL in early preHD.  

YKl-40 is known to be elevated in a number of neurodegenerative and 

neuroinflammatory diseases (Bonneh-Barkay et al. 2012; Olsson et al. 2016; Llorens 

et al. 2017). Its transcription in astrocytes is associated with cell migration and 

morphological changes characteristic of reactive gliosis (Bonneh-Barkay et al. 2012). 

In Alzheimer’s disease, YKL-40 positive astrocytes have been found around β-

amyloid plaques and surrounding vessels with β-amyloid angiopathy, highlighting 

how their activation is often closely related to pathological events (Llorens et al. 2017). 

YKL-40 activation also appears as a preclinical event in experimental models of prion 

diseases and Alzheimer’s pathology (Llorens et al. 2017). Although YKL-40’s role in 
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neurodegenerative disease pathogenesis remains unclear, dysregulated 

neuroinflammation can be contributory to the pathogenesis of various neurological 

diseases (Tansey and Goldberg 2010; Heneka et al. 2015; Wilton and Stevens 2020). 

However, in two previous in-vivo studies of controlled cortical impact (Wiley et al. 

2015) and autoimmune encephalitis (Bonneh-Barkay et al. 2012), YKL-40 knock-out 

mice presented with more severe neuropathology and gliosis than wild-type 

littermates. Therefore YKL-40 may, in certain circumstances, be neuroprotective in 

modulating the neuroinflammatory response in response to injury.  

In HD, astrocytic activation has been reported in the moderate, but not the earliest 

pathological grades of HD in humans (Myers et al. 1991). Mouse models have 

similarly reported elevations in GFAP expressing astrocytes in the moderate to late 

disease stages (Tong et al. 2014). However, the role of astrocytes and other glial cells 

in HD pathology is complex and incompletely understood (Wilton and Stevens 2020). 

For example, there is evidence that mHTT expression in certain glial cells is sufficient 

to generate cell-autonomous pathology in HD (Benraiss et al. 2016). Furthermore, 

astrocyte biology seems to be disrupted by mHTT expression. In a recent study, 

mHTT was found to alter the expression of many genes associated with basic 

astrocytic functions which was then restored with huntingtin-lowering (Diaz-Castro et 

al. 2019). Whilst the complexities of glial and astrocytic biology are outside the scope 

of this study, the current results provide the first evidence of detectable astrocytic 

activation very early in the premanifest period. 

The absence of corresponding elevations in GFAP, another marker of astrocytic 

activation, may reflect the limited nature of astrocytic activation at this stage and/or 

GFAPs relative insensitivity as an early disease biomarker. This is consistent with 

previous findings from a meta-analysis in Alzheimer’s cohorts where YKL-40 has 

been found to be increased without corresponding elevations in GFAP (Olsson et al. 

2016). 

3.5.7 Other candidate fluid biomarkers for HD show limited change  

Concentrations of total tau have been previously reported to be increased in HD 

(Constantinescu et al. 2011; Rodrigues et al. 2016), although two previous studies 

have found no significant differences in preHD (Vinther-Jensen et al. 2016; Niemela 
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et al. 2017). Results here, with a larger sample size than previous studies, corroborate 

previous findings that total-tau is not elevated in preHD, and that elevations of tau 

occur later in the disease course.  

Increases in plasma IL-6 and IL-8 have been reported previously in preHD (Bjorkqvist 

et al. 2008), whilst IL-6, but not IL-8 was found to be elevated in the CSF (Rodrigues 

et al. 2016). In the latter study, IL-6 elevations were not as marked as elevations of 

YKL-40. IL-6 has been also been shown to correlate with YKL-40 in several mouse 

models of neuroinflammation and with IL-1, upregulates YKL-40 expression in human 

astrocytes (Bhardwaj et al. 2015). The results here suggest that these cytokines are 

not elevated centrally early in the disease process and that YKL-40 elevation is not 

seemingly being driven by increased IL-6 production. 

Neurogranin was included as the only measure of synaptic function in the study 

biofluid battery since there is evidence for a role of synaptic dysfunction in HD (Sepers 

and Raymond 2014) and neurogranin has previously been shown to be increased in 

Alzheimer’s disease (Blennow et al. 2010; Tarawneh et al. 2016). Furthermore, a post 

mortem study found neurogranin gene expression to be robustly downregulated in 

HD (Hodges et al. 2006). The conclusively negative result here for CSF neurogranin 

alongside a previous negative result in HD (Byrne et al. 2018) suggests that 

neurogranin is not a biomarker of HD. 

UCH-L1 has not been studied in HD before. However as an abundant protein in the 

neuronal cytoplasm, it has been shown to be elevated in several neurodegenerative 

conditions and traumatic brain injury (Öhrfelt et al. 2016; Bazarian et al. 2018; 

Zeitlberger et al. 2018; Ng et al. 2020). The negative result in this cohort therefore 

supports the lack of significant neuronal dysfunction or death in this cohort. Based on 

the aforementioned results in other neurological diseases, it is still possible that UCH-

L1 may be a biomarker of later stage disease progression however. 

3.5.8 Limitations 

With respect to limitations, this study was powered to detect plausible disease-related 

changes in striatal volumes and might have been underpowered to detect more subtle 

changes across the range of measures studied. Therefore it cannot be confidently 

concluded that an absence of significant differences is proof of normality in preHD in 
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any given measure. Longitudinal follow up of this cohort will be important, particularly 

in re-examining subthreshold trends in the data, whilst also providing further clarity 

on the biomarkers that are most suitable for clinical trials in such far-from-onset 

cohorts.  

The uptake of predictive testing in the UK is 17.4% (Baig et al. 2016) and there may 

be factors unique to those obtaining genetic testing, particularly at an early age, which 

may be a source of selection bias limiting the generalisability of the cognitive and 

psychiatric results in particular. Although factors that influence those pursuing a 

predictive testing has been previously described, little is known about differences 

between individuals who choose to have predictive testing and those who do not 

(Crozier et al. 2015). For example, it is unknown whether those who undergo 

predictive testing show demographic differences with respect to socioeconomic 

status, education level, mental health or other less easily defined personal 

characteristics that may influence the measures included in this study. Selection bias 

is particularly relevant to the interpretation of neuropsychiatric results, since it can be 

reasonably expected that those with active mental health problems such as 

depression, anxiety or apathy would be significantly less likely to volunteer for such a 

demanding study. The latter is a general limitation to any observational study of 

mental health, but may be particularly relevant given this study’s demanding schedule 

of procedures that included extensive cognitive assessments, a long scanning time, 

venepuncture and lumbar puncture.  

Education levels for both groups in this study were fairly high (61% with university 

education), and this is higher than in the general UK population of similar ages where 

50% undertake university education (UK Government Department for Education 

2019). It is possible that higher education levels may conceal any emerging subtle 

cognitive deficits that could have otherwise been present by means of an early 

compensatory effect (Brayne et al. 2010). Whilst significant neuropsychiatric disease 

was an exclusion criterion for this study to guard against confounding the cognitive 

results, only four gene carriers were excluded on this basis. This suggests our 

neuropsychiatric results are not unduly influenced by excluding potential preHD 

participants on this criteria, particularly given the trend of higher psychiatric symptoms 

in the control group.  
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The neuropsychiatric self-report questionnaires used in this study were selected to 

provide a broader coverage of neuropsychiatric symptoms than is achieved on the 

PBA, with good evidence that these tools can be sensitive in the premanifest period 

(Beglinger et al. 2008; Epping et al. 2013; Epping et al. 2016). However these 

assessment tools ask participants to provide ratings for items over recent days, weeks 

or the past month depending on the questionnaire. As such, the results do not capture 

behavioural or psychiatric symptoms over a longer period and so would miss any 

differences in psychopathology that have occurred prior to the point of assessment. 

Analysing the ‘worst’ scores on PBA items collected may be a future avenue to 

provide further insights on this point. Longitudinal follow up may also help establish 

trends overtime, but would suffer from the same problem of potentially missing 

psychopathology that has occurred in-between assessment visits. Further, although 

medication use was not factored into this analysis, the rates of antidepressant use 

across the cohort was low, being 9% in preHD and 5% in the control group, and hence 

would be unlikely to influence the neuropsychiatric results. No participants were on 

other forms of psychiatric medication. Whilst some studies have previously included 

companion ratings in neuropsychiatric assessments to minimise the potential of lack 

of awareness, evidence suggests that such lack of awareness only becomes evident 

in manifest HD or preHD close to predicted onset and so is unlikely to confound the 

neuropsychiatric results (Epping et al. 2016; Andrews et al. 2018).  

The control group were specifically required to be from a HD-background, either as a 

gene-negative, family member or friend, to control for any influence of being from a 

HD-environment. It also provides an effective way of matching groups, since such 

controls are likely to share similar demographics to the gene carriers included in the 

study. However the trade-off is that this control group cannot be directly inferred to be 

representative of the general population. 

The cognitive assessments included in this study were designed to interrogate a 

broad range of cognitive functions known to be affected in preHD, as well as more 

exploratory tests such as some EMOTICOM tasks. However, this battery of tasks is 

not exhaustive in coverage of all cognitive domains. Although there is some 

provisional evidence from small scale studies for preHD deficits in language (Nemeth 

et al. 2012; Hinzen et al. 2018) and calculation (Nanetti et al. 2018) for example, larger 
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replication studies in manifest groups may be helpful before warranting their inclusion 

in studies of preHD cohorts far from predicted onset. 

Similarly, the biofluid assessments were selected largely on the basis of previous 

evidence in preHD, with some exploratory markers with evidence of sensitivity in other 

neurodegenerative diseases. GFAP and UCH-L1 were included within this study 

because their regulatory acceptance as biomarkers for head injury (Bazarian et al. 

2018) has resulted in their inclusion in the Quanterix Neurology 4-Plex ultrasensitive 

immunoassay kit that was used here to generate results for NfL and tau. Other 

candidate biomarkers of neurodegeneration are increasingly being uncovered 

(Schindler et al. 2019) that could also be tested in HD. However, as a general principle 

it would be prudent to evaluate such exploratory markers in larger cohorts with 

manifest HD (Clinicaltrials.gov; NCT02855476 2016; Byrne et al. 2018), since biofluid 

resources are more abundant in these groups and because of the likely futility of 

evaluating markers in early preHD that do not show evident effects in manifest 

cohorts. 

Finally, whilst our imaging assessments have shown very little evidence of change in 

brain structure at this early stage, it is possible that with continuing advances, 

techniques such as 7T imaging might provide higher signal-to-noise ratios that could 

help uncover early disease effects that may be otherwise undetectable and this will 

be a future avenue of interest in the field (Springer et al. 2016).  

3.5.9 Conclusion 

In summary, these results highlight a timepoint in preHD where subtle elevations in 

select biological measures of neurodegeneration occur in the absence of detectable 

functional impairment. This therefore may represent the very beginnings of the 

neurodegenerative process in HD. Treatments initiated at this stage may offer the 

prospect of delaying or preventing further neurodegeneration while function is intact, 

giving gene carriers many more years of life without impairment. 
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4 Timing and specificity of basal ganglia white 

matter loss in premanifest HD 

Having described some of the earliest detectable changes in preHD, this chapter 

focuses more specifically on cortical-basal ganglia white matter connections known 

to be susceptible to early HD pathology. By combining the HD-YAS dataset with the 

TrackOn-HD dataset, I sought to evaluate whether specific cortico-striatal and cortico-

thalamic connections show differential vulnerability in preHD and if so, how far before 

predicted onset this could be detected. 
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4.1 Introduction 

The striatum has long been recognised as a central region in HD pathology with 

atrophy detectable early in the disease course (Aylward et al. 1994; Kipps et al. 2005; 

Tabrizi et al. 2011). However, it has been increasingly recognised that the white 

matter also undergoes significant atrophy early in the premanifest period (Aylward et 

al. 2011; Tabrizi et al. 2011). 

Several studies using DTI have described the vulnerability of cortico-striatal 

connections in manifest HD (Bohanna et al. 2011; Marrakchi-Kacem et al. 2013; 

McColgan et al. 2015; Novak et al. 2015), with sensorimotor connections showing the 

greatest HD-related changes and the limbic connections appearing relatively 

preserved. Some studies have failed to detect such DTI metric changes in 

premanifest groups (Novak et al. 2015; Gorges et al. 2017; Gregory et al. 2018), 

whilst others have reported significant differences in these tracts (Dumas et al. 2012; 

McColgan et al. 2015; Orth et al. 2016; McColgan et al. 2017). Studies that have 

investigated specific cortico-striatal subnetworks in the premanifest period have 

reported changes in sensorimotor (Dumas et al. 2012; Poudel et al. 2014; Orth et al. 

2016) and prefrontal tracts (Poudel et al. 2014).  

Few previous studies have characterised how early in the premanifest period these 

changes can be detected however. In the PREDICT cohort, cross-sectional 

differences in tensor measures of cortico-striatal tracts were apparent predominantly 

in the group closest to predicted onset, with no tracts showing change in the group 

estimated to be >13 years from predicted onset (Shaffer et al. 2017). Longitudinal 

findings using tensor measures have been inconsistent. In preHD, two studies have 

failed to find 12-30 month changes (Poudel et al. 2014; Odish et al. 2015), whereas 

two larger studies demonstrated progressive changes over 1-5 years in premanifest 

HD cohorts (Harrington et al. 2016; Shaffer et al. 2017). 

Whilst the striatum is the major input in cortico-basal ganglia circuits, its output back 

to the cortex is predominantly via cortico-thalamic white matter connections (Haber 

2016). The thalamus has received comparatively less attention than the striatum in 

HD, although its involvement in HD pathology has been well described (Heinsen et 

al. 1996; Heinsen et al. 1999; Rub et al. 2016). Cortico-thalamic connections are 
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thought to be relatively preserved in preHD (Dumas et al. 2012; Poudel et al. 2014; 

McColgan et al. 2015; Gorges et al. 2017), although changes in posterior thalamic 

radiations have been described (Stoffers et al. 2010).  

Previous studies investigating cortico-striatal or cortico-thalamic connections have 

typically investigated these as one homogenous group of connections (McColgan et 

al. 2015) or have focused on select motor and sensory connections (Dumas et al. 

2012; Orth et al. 2016; Gorges et al. 2017; Shaffer et al. 2017; Scahill et al. 2020). 

However, the striatum and thalamus have a distinct topographical organisation of 

cortical connections forming individual subnetworks (Behrens et al. 2003; Tziortzi et 

al. 2014). It is currently unknown when these connections are first affected in HD and 

whether specific subregional connections are more vulnerable in the early disease 

course.  

The majority of the previous literature on this topic comes from DTI, where voxel-

averaged measures are unable to account for crossing fibres and have poor 

interpretability as measures of structural connectivity (Jones, Knosche et al. 2013; 

Raffelt, Tournier et al. 2017; Mito, Raffelt et al. 2018). FBA is a more recently 

developed diffusion technique which can resolve crossing fibre populations to provide 

more reliable tractograms whilst also providing more biologically specific measures 

of fibre density and cross-section (Raffelt et al. 2017). Similarly, whereby the majority 

of previous diffusion imaging studies in HD have used single-shell acquisitions, there 

is an increasing trend towards acquisitions using multiple-shells with higher b-values, 

which can improve the ability to model the diffusion signal and further probe tissue 

microstructure (Zhang et al. 2018; Genc et al. 2020). It is possible that such modern 

acquisitions may increase signal-to-noise when searching for early disease effects 

using diffusion MRI. 

Understanding the timing and pattern of white matter connection degeneration in HD 

has particular relevance to emerging viral-vector based therapeutics such as RNAi 

approaches. These therapeutics typically require direct injection into the brain 

parenchyma and drug distribution, which can occur through axonal transport (Salegio 

et al. 2013; Weiss et al. 2020), may be limited. Therefore, targeting injections to 

vulnerable subregions before significant white matter loss has occurred may 

represent a potential treatment strategy for these therapeutics.  
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I tested the hypothesis that cortico-striatal and cortico-thalamic connections may be 

preserved early in preHD and that subregions of the striatum and thalamus might 

show differential vulnerability to degeneration in a group closer to expected clinical 

onset. To test this hypothesis, diffusion MRI tractography with fixel-based analysis 

(FBA) of specific cortico-striatal and cortico-thalamic connections was performed 

using datasets from two cohorts with preHD participants approximately 11 and 25 

years before expected clinical onset. 

4.2 Contribution and Collaborators 

I led on project conception and design along with Peter McColgan. Contributors for 

data collection for HD-YAS and TrackOn-HD has been descripted previously in 

Chapter 3 and by Kloppel et al. (Kloppel et al. 2015) respectively. Sarah Gregory and 

Peter McColgan provided original quality checks of diffusion data. I performed further 

scan and processing quality checks, including registrations for all subjects in the 

study. I conducted all data processing, except for single-shell multi-tissue CSD, with 

supervision from Peter McColgan. Thijs Dhollander performed the single-shell multi-

tissue CSD, a technique not available in the public domain at the time. I performed 

statistical analysis with support from Peter McColgan and further input from Marina 

Papoutsi. Thijs Dhollander, Sarah Gregory, Eileanoir Johnson, Akshay Nair, Marina 

Papoutsi, Rachael Scahill, Geraint Rees and Sarah Tabrizi have all provided critique 

and input into study design, execution and interpretation. I have written up the results 

for publication, including all tables, figures and collating edits from co-authors. 

Supervision for the project has been provided by Peter McColgan, Rachael Scahill, 

Geraint Rees and Sarah Tabrizi.  

4.3 Methods 

4.3.1 Cohorts 

To investigate how early basal ganglia white matter loss could be detected, MRI data 

from HD-YAS (Scahill et al. 2020) were utilised. PreHD participants required a DBS 

of ≤ 240, approximating to ≥ 18 years from predicted clinical onset. Multi-shell 

diffusion MRI data were analysed from 54 preHD and 53 control participants. 
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To investigate whether there is selective loss of specific basal ganglia white matter 

connections in preHD closer to predicted onset, MRI data from the TrackOn-HD study 

(Kloppel et al. 2015) was used. This included single-shell diffusion data acquired at 

three timepoints over 24 months from four sites (London, Paris, Leiden, and 

Vancouver). Gene carriers were required to have a disease burden score of > 250, 

approximating to < 17 years from predicted onset. The total number of participants 

each year was as follows: year one (72 gene carriers, 85 controls), year two (81 gene 

carriers, 87 controls) and year three (80 gene carriers, 78 controls). Participant 

demographics are summarised in Table 4.1. 

Table 4.1. Participant demographics 

 TrackON-HD HD-YAS 

 PreHD 

N=72 

Control 

N=85 

p PreHD 

N=54 

Control 

N=53 

p 

Age 43.3 ± 9.2 48.8 ± 9.8 4.0 x 10-4 29.8 ± 5.6 29.3 ± 5.5 0.67 

Male (%) 53 38 0.06 48 43 0.49 

Education  4.0 ± 1.0 4.0 ± 1.0 0.94 4.9 ± 1.8 4.8 ± 1.6 0.71 

CAG  42.9 ± 2.3   42.2 ± 1.7   

Years to 

Onset 

11.3 ± 3.9   24.7 ± 6.3   

Unless otherwise specified, values are means ± standard deviations. Group comparisons were 

made using t tests (age, education) or chi-squared (sex and education). Education was measured 

using ISCED. Years to predicted onset was calculated using the Langbehn equation (Langbehn, 

Brinkman et al. 2004). TrackOn-HD demographics presented for baseline visit. 

At the last TrackOn-HD visit, participants at London and Paris sites had an additional 

multi-shell diffusion MRI scan, similar to the HD-YAS acquisition, which included 33 

gene carriers and 40 healthy control participants (Table 4.2). The existence of multiple 

shells, including some with higher b-values, is a more common feature in modern 

DWI acquisitions and was added to the final time-point assessments in TrackON-HD 

as a relatively new technique of interest to detect early disease effects. The MRI 

acquisitions used for this study are summarised in Table 4.3. 
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Participants were excluded if they were left-handed, ambidextrous, or had poor quality 

diffusion MRI data, as defined by visual quality control performed (Appendix 9.7).  

Table 4.2. TrackOn-HD multi-shell acquisition subcohort 

 PreHD 

N=33 

Control 

N=40 

p 

Age 42.1 ± 9.5 47.2 ± 10.6 0.03 

Male (%) 42 63 0.09 

Education 3.9 ± 1.2 4.0 ± 0.9 0.28 

CAG  43.0 ± 1.9   

Years to Onset  11.5 ± 4.0   

A multi-shell diffusion MRI scan was performed for a subgroup of TrackOn-HD participants at the 

final time point. Education was measured using the ISCED Years to predicted onset was 

calculated using the Langbehn equation (Langbehn et al. 2004). 

4.3.2 Diffusion MRI processing 

Pre-processing of diffusion data was performed with a combination of tools in the 

MRtrix3 (Tournier et al. 2019) and FSL (Jenkinson et al. 2012) software packages. 

This included denoising of data (Veraart et al. 2016), Gibbs-ringing artefact removal 

(Kellner et al. 2016), eddy-current correction and motion correction (Andersson and 

Sotiropoulos 2016) and up-sampling diffusion MRI spatial resolution in all 3 

dimensions using cubic b-spline interpolation to  1.3×1.3×1.3 mm3 voxels (Dyrby et 

al. 2014). The up-sampling of data helps to increase the anatomical contrast, which 

improves downstream spatial normalisation and statistics (Raffelt et al. 2017).  

Three-tissue CSD modelling of diffusion data was performed using MRtrix3Tissue 

(https://3Tissue.github.io), a fork of MRtrix3. For all data, response functions for 

single-fibre white matter as well as grey matter and CSF were estimated from the 

data themselves using an unsupervised method (Dhollander et al. 2019). For the 

single-shell TrackOn-HD data, FODs for the three tissues were computed using 

single-shell three-tissue CSD (Dhollander and Connelly 2016) whilst multi-shell multi-
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tissue CSD (Jeurissen et al. 2014) was utilised for the TrackOn-HD multi-shell and 

HD-YAS data. 

Table 4.3. MRI acquisitions 

 
TrackOn-HD single-

shell 

TrackOn-HD multi-

shell 

HD-YAS 

Manufacturer Tim Trio, Siemens 

Achieva, Phillips 

Tim Trio, Siemens Prisma, Siemens 

Tesla 3T 3T 3T 

b-Value 0, 1000 0, 300, 700, 2000 0, 300, 1000, 2000 

Gradient 

Directions 

8, 42 (Siemens) 

1, 42 (Phillips) 

14, 8, 32, 64 10, 8, 64, 64 

Voxel-size (mm) 2 x 2 x 2 (Siemens) 

1.96 x 1.96 x 1.96 

(Philips) 

2.5 x 2.5 x 2.5 2 x 2 x 2 

TR/TE (ms) 13100/88  (Siemens) 

11000/56  (Philips) 

7000 /90.8 3260/58 

Slices 75 55 72 

Acquisition time 10 mins 15 mins 15 mins 

3T=3 Tesla, TR=repetition time, TE=echo time. 

4.3.3 Spatial correspondence 

Spatial correspondence was achieved by generating a study-specific population 

template (i.e. separate template for TrackOn-HD and HD-YAS analyses) with an 

iterative registration and averaging approach using WM FOD images for 40 subjects 

(20 preHD and 20 controls). Each subject’s WM FOD image was then registered to 

the template via a FOD-guided non-linear registration (Raffelt et al. 2011; Raffelt et 

al. 2012). For longitudinal data, an intra-subject template was produced using scans 

from all 3 time points before creating a common population template using the same 
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registration approach. The resulting template was visually quality checked by creating 

a FOD-based directionally encoded colour map (Figure 4.1) and inspecting 

consistency of core structures such as the corpus callosum and anterior and posterior 

commissures. A template mask was then created by warping all individual subject 

masks into template space and computing the mask as an intersection of all subject 

masks in template space. The resulting mask ensures that subsequent analysis is 

only performed in voxels that contain data from all participants. 

 

Figure 4.1 FOD-based directionally encoded colour map of population template. To quality check 
the population template for alignment, a FOD-based directionally colour encoded map was produced. 
Colour indicates orientation of fibres with red for mediolateral, green for anteroposterior, blue for 
superoinferior. (A) Sagittal view showing that even small structures like the anterior commissure (red) 
remain visible within the template. (B) Axial view with FODs overlaid. The FOD lobes of the anterior 
commissure inspected at focus (white box, left side of image) showing correct transverse alignment. 
These checks indicate good alignment of structures within the population template.  

4.3.4 Generating a fixel map and fixel metrics 

Fixels were then segmented from the FOD template to create a fixel mask that acts 

as a grid for subsequent analysis. The FOD lobe threshold recommended for 

segmentation is 0.06 (Tournier et al. 2019). However at this threshold, particularly in 

the single-shell datasets, there was a considerable number of spurious fixels in the 

grey matter and CSF. Hence the threshold was optimised to 0.1 which removed the 

vast majority of spurious fixels from grey matter and CSF to produce a fixel map more 

in line with known anatomy and white matter tracts (Figure 4.2).  
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Figure 4.2 Varying the threshold of the raw peak FOD amplitudes to produce discrete set of fixels 
in TrackOn-HD. (A) A fixel map with a 0.06 threshold where there are many spurious fixels in the grey 
matter and CSF. (B) With a raised threshold of 0.1 many of these spurious fixels are now removed. 
Below – images displaying fixel count per voxel. Blue/Cyan/Yellow/Orange/Red = 1,2,3,4 and 5 
fixels/voxel respectively. (C) At a threshold of 0.06, more voxels contain 4-5 fixels which are likely 
spurious given known normal anatomy. (D) Using the 0.1 threshold, these excess fixels are removed 
giving more reliable fixel counts and better contours of certain white matter structures. Each participant’s 
FOD image was then warped to template space before each FOD lobe was segmented to identify the 
number and orientation of fixels in each voxel and compute FD. Fixels were reoriented for all participants 
in template space based on the local transformation at each voxel in the warps used previously. 
Participant fixels were then assigned to template fixels to achieve alignment for all participant fixels and 
FC was derived from the warps generated during registration.  

FBA was used to interrogate changes in white matter (General Methods 2.9.5). For 

the main analysis, to avoid excessive multiple comparisons only FDC is reported as 

it can be expected that neurodegeneration will cause combined reductions in both 

fibre density and bundle atrophy, supported by results in other neurodegenerative 

diseases (Mito et al. 2018; Rau et al. 2019). However, results of FD and FC were also 

analysed and discussed separately to provide a more complete overview of fixel 

metric change in preHD. 
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4.3.5 Generating tracts for analysis 

Connectivity-based atlases of the striatum and thalamus were used to segment each 

structure into seven subregions per hemisphere based on the dominant area of 

cortical connectivity in each subregion (General Methods 2.9.3). For the striatum, 

subregions included limbic, executive, rostral motor, caudal motor, parietal, temporal 

and occipital regions (Tziortzi et al. 2014). For the thalamic segmentation, subregions 

included prefrontal, premotor, primary motor, sensory, parietal, temporal and occipital 

cortices (Behrens et al. 2003). The striatal and thalamic atlases were registered to 

the population template with a linear registration using NiftyReg (Modat et al. 2010). 

Registrations were visually checked to ensure accurate alignment.  

The objective for tractography was to create tractograms for each subregion that were 

consistent with the original connectivity-based atlases, with each striatal and thalamic 

subregion having a tract connecting to its target cortical region and with minimal 

overlap between regions. A tractogram for each striatal and thalamic subregion was 

generated using probabilistic tractography on the population template using tools 

within MRtrix3 (Tournier et al. 2019). Twenty thousand streamlines were seeded in 

each striatal subregion. This streamline count was selected as it produced well 

reconstructed tracts in all regions with a modest computation time and further 

increases in streamline seed counts did not appear to produce superior 

reconstructions. Streamlines were initiated in each subregion, with all other 

subregions excluded to avoid streamlines traversing other subregions and creating 

large amounts of overlap between the tracts. An inter-hemisphere mask was also 

used to stop streamlines traversing to the contralateral hemisphere and creating 

overlapping tracts. Since the striatal atlas also had corresponding cortical target 

regions, tracks were only included if they traversed their corresponding cortical target 

region. Although the thalamic atlas did not have corresponding cortical target regions, 

the tractograms generated appeared to adequately reach their cortical targets without 

the need for further constraints. The minimum FOD amplitude for seeding tracts was 

set at 0.08. This was above the recommended threshold of 0.05 for FBA and was 

selected after inspecting tractograms thresholded between 0.05-0.18, with the raised 

threshold removing some likely spurious and isolated streamlines. 
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The result was a single fibre bundle for each subregion connecting to its respective 

main cortical region. A track density image was then created from each tractogram 

by mapping the tractograms to the template fixel map. This track density image is 

then converted to a mask for each tract to compute fixel metrics within. Here, after 

some experimentation, the threshold was set at 50, since this provided non-

overlapping but well-constructed tracts that were consistent with the original 

connectivity-based parcellation atlases. Fixel-based metrics were then calculated for 

all fixels within each tract and averaged to generate a single measure of FDC for each 

tract. 

 

Figure 4.3 Thresholding tract density images to create concise non-overlapping tracts. (A) 
Showing the initial track density image for the cortico-striatal limbic tract on the group template. Here 
there are relatively dense tracts towards the medial prefrontal cortex. However there are more sparse 
tracts elsewhere, including some tracking through the corpus callosum. (B) By applying a threshold, the 
less dense tracts have been removed and there is now one concise tract running from the ventral 
striatum to the target medial prefrontal cortex. This now forms a mask for the subsequent analysis and 
the FDC can be computed for all fixels within this mask to generate a result for the limbic cortico-striatal 
tract. 

4.3.6 Clinical scales 

To investigate whether reductions in FDC observed in the TrackOn-HD baseline 

results were associated with clinical findings, correlations were performed with these 

tracts and specific a priori clinical tasks in preHD. For limbic cortico-striatal tracts, 

relationships with apathy using the BAIS (General Methods 2.6) were investigated 

given the known clinical relevance of these tracts in neurological conditions causing 

apathy (Levy and Dubois 2006; Le Heron et al. 2018; Prange et al. 2019). Only the 
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apathy scale was used in this study where higher scores indicate higher levels of 

apathy.  

For caudal cortico-striatal connections and thalamic premotor and motor cortical 

connections, relationships between FDC and motor signs on the UHDRS TMS 

(Huntington Study Group 1996) (General Methods 2.4) were investigated. 

4.3.7 Statistical analysis 

Statistical analysis was performed in MATLAB R2018a and box plots were generated 

in R using the ggplot function (version 3.63). Analysis of the single time point HD-YAS 

and TrackOn-HD multi-shell data involved permutation testing (10,000 permutations) 

with two-tailed t-tests to investigate group differences.  

For the longitudinal TrackOn-HD analysis, linear mixed effects regression was used 

as it provides unbiased estimates under the assumption that the missing data is 

ignorable whilst accounting for dependence due to repeated measures. The model 

was defined as: 

Yij = α + βtij + γ (groupi) + δ (groupi) (tij) + θXi + ai + bi tij + eij 

Where Yij is FDC for the ith participant ( i = 1, ... , N) at the jth time point (j = 1, ... , ni), 

with time metric tij = visitij – 1, so that ti1 = 0 . Groupi  is a dummy variable taking the 

value of 0 if a participant is in the control group and the value of 1 if a gene carrier. 

Greek letters denote fixed effects; α is the control group mean at the first visit, β is the 

control group linear slope, γ is the mean difference among the preHD and control 

groups at the first visit (difference of intercepts), δ is the slope difference among the 

groups (rate of change difference), Xi is the matrix of covariates with associated 

regression coefficient vector θ; ai and bi are random effects (random intercepts and 

slopes), and eij is random error. Maximum likelihood methods are used for estimation 

under the assumption that the random effects have a joint-normal distribution with 

zero-means and non-singular covariance matrix, and the random error is normally 

distributed with zero mean and constant nonzero variance. The objects of inference 

were γ and δ, with the former being the baseline cross-sectional mean difference 

among the groups adjusting for the covariates and the latter being the group 

difference in the rate of change (slope difference) adjusting for the covariates. The 
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null hypothesis of interest were H0: γ = 0 (no initial mean group difference) and H0: δ 

= 0 (no group difference in rate of change), which were tested with the z-values of z 

= γ /̂SE(γ )̂ and z = δ  ̂/ SE (δ )̂.  

Age, sex, study site and education were included as covariates in each analysis. 

Multiple comparisons were addressed by applying a false discovery rate (FDR) 

approach to each separate cohort analysis and considered an FDR estimate < 0.05 

to be significant.  

To investigate whether changes in FDC show a relationship with clinical measures in 

preHD, a priori clinical correlations were performed for the tracts showing baseline 

change in the TrackOn-HD single-shell results and selected clinical scores from the 

baseline data. Partial correlations were performed using Spearman’s rank-order 

correlations due to the non-normal distribution of the clinical data. Age, sex and site 

were included as covariates for correlations.  

4.4 Results 

4.4.1 No significant differences in cortico-striatal and cortico-

thalamic connections 25 years from predicted onset 

In the group of gene carriers approximately 25 years from predicted onset, no 

significant changes were seen in any cortico-striatal or cortico-thalamic tract 

compared to matched controls after FDR correction (Table 4.4 and Table 4.5; Figure 

4.4 and Figure 4.5 A-B respectively). The preHD group had reductions in striatal left 

caudal motor (p=0.04) and right temporal FDC (p=0.01) that did not survive correction 

(FDR=0.35 and FDR=0.22 respectively). This suggests that cortico-basal ganglia 

white matter connections are structurally preserved approximately 25 years from 

predicted disease onset in preHD. 

Table 4.4 Cortico-striatal FDC in HD-YAS 

Cortico-striatal 
Tract 

Control 
Mean 

PreHD 
Mean 

SE P FDR 

L Limbic 0.55 0.55 0.001 0.31 0.38 

R  Limbic 0.54 0.53 0.001 0.16 0.35 
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L Cognitive 0.58 0.57 0.001 0.32 0.38 

R  Cognitive 0.56 0.57 0.001 0.49 0.53 

L Rostral Motor 0.58 0.59 0.001 0.54 0.54 

R  Rostral Motor 0.59 0.59 0.001 0.33 0.38 

L Caudal Motor 0.62 0.60 0.001 0.04 0.35 

R  Caudal Motor 0.61 0.60 0.001 0.16 0.35 

L Parietal 0.67 0.67 0.001 0.33 0.38 

R  Parietal 0.68 0.68 0.001 0.34 0.38 

L Temporal 0.60 0.60 0.001 0.18 0.35 

R  Temporal 0.64 0.61 0.001 0.01 0.22 

L Occipital 0.73 0.71 0.001 0.07 0.35 

R  Occipital 0.71 0.70 0.001 0.18 0.35 

Unadjusted means displayed. SE = standard error. 

Table 4.5 Cortico-thalamic FDC in HD-YAS  

Cortico-thalamic 
Tract 

Control 
Mean 

PreHD 
Mean 

SE p FDR 

L Prefrontal 0.61 0.61 0.001 0.18 0.35 

R Prefrontal 0.62 0.62 0.001 0.32 0.38 

L Premotor 0.65 0.63 0.001 0.08 0.35 

R Premotor 0.63 0.62 0.001 0.30 0.35 

L Primary Motor 0.61 0.61 0.001 0.34 0.38 

R Primary Motor 0.60 0.60 0.001 0.34 0.38 

L Sensory  0.62 0.62 0.001 0.52 0.54 

R Sensory  0.58 0.58 0.001 0.33 0.38 

L Parietal 0.68 0.67 0.001 0.09 0.35 

R Parietal 0.65 0.64 0.001 0.17 0.35 

L Temporal 0.52 0.51 0.0004 0.13 0.35 

R Temporal 0.51 0.50 0.0004 0.05 0.35 

L Occipital 0.51 0.50 0.0004 0.08 0.35 

R Occipital 0.55 0.54 0.0004 0.18 0.35 

Unadjusted means displayed. SE = standard error. 
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4.4.2  Anatomically specific basal ganglia white matter loss in 

preHD 

To establish whether particular connections showed selective vulnerability in preHD 

closer to predicted onset, the same technique was applied to the TrackOn-HD single-

shell baseline dataset. For cortico-striatal tracts, significant reductions were seen 

bilaterally in limbic (left FDR=0.002, right FDR=0.02) and caudal motor (left 

FDR=0.002, right FDR=0.006) FDC (Table 4.6; Figure 4.4 C-D respectively). For 

cortico-thalamic tracts, significant reductions were seen bilaterally in premotor (left 

FDR=0.005, right FDR=0.02), primary motor (left FDR=0.001, right FDR=0.02) and 

left sensory (FDR=0.006) FDC (Table 4.7; Figure 4.5 C-D).  

Table 4.6 Cortico-striatal FDC in TrackOn-HD single-shell baseline  

Cortico-striatal 
Tract 

Control 
Mean 

PreHD 
Mean 

γ SE p FDR 

L Limbic 0.42 0.41 -0.03 0.008 3.0 x 10-4 0.002 

R Limbic 0.40 0.39 -0.02 0.007 0.005 0.02 

L Cognitive 0.42 0.42 -0.01 0.006 0.05 0.08 

R Cognitive 0.41 0.42 -0.01 0.006 0.13 0.15 

L Rostral Motor 0.49 0.50 -0.007 0.008 0.38 0.55 

R Rostral Motor 0.52 0.52 -0.02 0.008 0.04 0.09 

L Caudal Motor 0.55 0.53 -0.03 0.008 4.9 x 10-4 0.002 

R Caudal Motor 0.56 0.54 -0.03 0.008 0.001 0.006 

L Parietal 0.55 0.55 -0.02 0.008 0.02 0.06 

R Parietal 0.57 0.56 -0.02 0.008 0.07 0.11 

L Temporal 0.41 0.41 2.2 x 10-4 0.006 0.97 0.97 

R Temporal 0.43 0.44 0.001 0.006 0.84 0.84 

L Occipital 0.55 0.55 -0.004 0.007 0.53 0.62 

R Occipital 0.56 0.56 -0.01 0.007 0.08 0.11 

Unadjusted means displayed. γ=estimated group intercept difference (preHD minus control); 

SE=standard error. 
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Table 4.7 Cortico-thalamic FDC in TrackOn-HD single-shell baseline 

Cortico-thalamic 
Tract 

Control 
Mean 

PreHD 
Mean 

γ SE P FDR 

L Prefrontal 0.49 0.49 -0.02 0.007 0.03 0.05 

R Prefrontal 0.48 0.48 -0.01 0.007 0.08 0.08 

L Premotor 0.58 0.55 -0.03 0.009 0.002 0.005 

R Premotor 0.51 0.51 -0.03 0.009 0.002 0.02 

L Primary Motor 0.57 0.55 -0.03 0.008 1.30 x 10-4 0.001 

R Primary Motor 0.57 0.55 -0.02 0.009 0.007 0.02 

L Sensory  0.55 0.53 -0.02 0.008 0.003 0.006 

R Sensory  0.53 0.52 -0.01 0.007 0.08 0.08 

L Parietal 0.51 0.51 -0.006 0.006 0.35 0.40 

R Parietal 0.51 0.51 -0.01 0.006 0.05 0.08 

L Temporal 0.36 0.36 -0.007 0.005 0.15 0.21 

R Temporal 0.36 0.36 -0.008 0.004 0.06 0.08 

L Occipital 0.52 0.52 -0.002 0.007 0.08 0.35 

R Occipital 0.54 0.53 -0.01 0.008 0.06 0.08 

Unadjusted means displayed. γ=estimated group intercept difference (preHD minus control), 

SE=standard error. 

4.4.2.1 No longitudinal changes in preHD 11 years from predicted onset 

The next step in analysis investigated whether there was significant change over a 2-

year time period at this stage using the TrackOn-HD longitudinal dataset. Although 

there was a trend towards slight reductions in FDC, there were no significant changes 

in any cortico-striatal or cortico-thalamic tracts after FDR correction (Table 4.8 and 

Table 4.9). 

Table 4.8. Cortico-striatal FDC in TrackOn-HD single-shell longitudinal  

Cortico-striatal 
Tract 

δ SE p FDR 

L Limbic -0.002 0.003 0.52 0.60 

R Limbic -0.003 0.002 0.26 0.45 

L Cognitive -0.002 0.001 0.20 0.36 

R Cognitive -0.002 0.001 0.25 0.45 
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L Rostral Motor -0.003 0.002 0.14 0.33 

R Rostral Motor -0.001 0.002 0.70 0.82 

L Caudal Motor -0.004 0.002 0.09 0.30 

R Caudal Motor 0.002 0.002 0.42 0.58 

L Parietal -0.002 0.002 0.37 0.51 

R Parietal 0.001 0.002 0.82 0.82 

L Temporal 3.0 x 10-4 0.002 0.80 0.89 

R Temporal -0.003 0.002 0.12 0.45 

L Occipital -0.003 0.002 0.08 0.30 

R Occipital -0.003 0.002 0.17 0.45 

δ = estimated group slope difference (preHD minus controls), SE=standard error. 

Table 4.9 Cortico-thalamic FDC in TrackOn-HD single-shell longitudinal  

Cortico-thalamic 
Tract 

δ SE p FDR 

L Prefrontal 0.000 0.002 0.81 0.81 

R Prefrontal -0.001 0.001 0.64 0.75 

L Premotor -0.002 0.002 0.40 0.48 

R Premotor 0.002 0.002 0.39 0.75 

L Primary Motor -0.002 0.003 0.37 0.48 

R Primary Motor 0.001 0.002 0.59 0.75 

L Sensory -0.002 0.002 0.41 0.48 

R Sensory 0.000 0.002 0.95 0.95 

L Parietal -0.001 0.002 0.34 0.48 

R Parietal -0.002 0.002 0.28 0.75 

L Temporal -0.001 0.001 0.32 0.48 

R Temporal -0.001 0.001 0.44 0.75 

L Occipital -0.004 0.002 0.03 0.24 

R Occipital -0.004 0.002 0.04 0.28 

δ = estimated group slope difference (preHD minus controls), SE=standard error. 
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4.4.3 FDC changes using multi-shell acquisition at last time point 

in TrackOn-HD 

The impact of diffusion MRI acquisition on these results was investigated by repeating 

the analysis in the TrackOn-HD final time-point subgroup who had an additional multi-

shell diffusion MRI scan as part of the protocol. In this subgroup, there were 

widespread significant FDC reductions in cortico-striatal and cortico-thalamic tracts 

(Table 4.10 and Table 4.11; Figure 4.4 and Figure 4.5 E-F respectively) despite the 

number of participants being fewer.  

Table 4.10 Cortico-striatal FDC TrackOn-HD multi-shell  

Cortico-striatal 
Tract 

Control Mean PreHD Mean SE p FDR 

L Limbic 0.39 0.38 0.001 0.008 0.01 

R  Limbic 0.41 0.40 0.001 0.005 0.01 

L Cognitive 0.43 0.42 0.001 0.02 0.02 

R  Cognitive 0.43 0.42 0.001 0.002 0.01 

L Rostral Motor 0.50 0.50 0.001 0.04 0.05 

R  Rostral Motor 0.51 0.51 0.001 0.19 0.19 

L Caudal Motor 0.59 0.55 0.001 0.002 0.01 

R  Caudal Motor 0.60 0.58 0.001 0.02 0.02 

L Parietal 0.58 0.56 0.001 0.005 0.01 

R  Parietal 0.56 0.55 0.001 0.01 0.02 

L Temporal 0.41 0.40 0.001 0.01 0.10 

R  Temporal 0.41 0.40 0.001 0.04 0.05 

L Occipital 0.58 0.57 0.001 0.008 0.01 

R  Occipital 0.59 0.56 0.001 0.006 0.01 

Unadjusted means displayed. SE = standard error. 

Table 4.11 Cortico-thalamic FDC TrackOn-HD multi-shell  

Cortico-thalamic 
Tract 

Control 
Mean 

PreHD 
Mean 

SE p FDR 

L Prefrontal 0.49 0.47 0.001 0.001 0.01 

R Prefrontal 0.54 0.52 0.001 0.006 0.01 

L Premotor 0.58 0.54 0.001 3.0 x 10-4 0.01 
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R Premotor 0.56 0.54 0.001 0.04 0.05 

L Primary Motor 0.49 0.47 0.001 0.01 0.02 

R Primary Motor 0.45 0.43 0.001 0.02 0.03 

L Sensory  0.46 0.45 0.001 0.06 0.07 

R Sensory  0.44 0.42 0.001 0.007 0.01 

L Parietal 0.50 0.48 0.001 0.006 0.01 

R Parietal 0.52 0.49 0.001 0.001 0.01 

L Temporal 0.52 0.51 0.001 0.02 0.02 

R Temporal 0.53 0.50 0.001 0.002 0.01 

L Occipital 0.50 0.48 0.001 0.04 0.05 

R Occipital 0.44 0.41 0.001 0.001 0.01 

Unadjusted means displayed. SE = standard error. 



152 
 
 

 

 

 

Figure 4.4. Cortico-striatal tract fibre density and cross-section left and right in HD-YAS (A+B), 
TrackOn-HD single-shell (B+C) and multi-shell (E+F) datasets. FDC = Fibre density and cross-
section. Cortico-striatal tracts are displayed on the x-axis. Lim = Limbic, Cog = Cognitive, Rmot = Rostral 
motor, Cmot = Caudal motor, Par = Parietal, Temp = Temporal, Occ = Occipital. * FDR= < 0.05.  
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Figure 4.5. Cortico-thalamic tract fibre density and cross-section left and right  in  HD-YAS (A+B), 
TrackOn-HD single-shell (C+D) and multi-shell (E+F) datasets. FDC = Fibre density and cross-
section. Cortico-thalamic tracts are displayed on the x-axis. Pfront = Prefrontal, Premot = Premotor, 
Primot = Primary motor, Sens = Sensory, Par = Parietal, Temp = Temporal, Occ = Occipital. * FDR = < 
0.05.  

4.4.4 Reductions in FDC correlate with a priori clinical measures 

The next step of analysis assessed whether TrackOn-HD baseline FDC changes 

were associated with relevant clinical measures in preHD. There were significant 

positive correlations between limbic cortico-striatal FDC and apathy (left r=0.25, 

p=0.03, right r=0.34, p=0.004). Reductions in caudal motor-striatal FDC correlated 
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with increasing motor signs (left r=-0.21, p=0.08, right r=-0.22, p=0.07) after 

adjustment for age, sex and site. There were also correlations between increasing 

motor scores and reductions in premotor thalamic FDC (left r=- 0.23, p=0.06, right r 

=-0.22, p=0.07) and primary motor-thalamic FDC (left r=-0.20, p=0.10, right r=-0.30, 

p=0.01). Neither apathy or TMS showed notable correlations with DBS (r=-0.05, 

p=0.67 and r = 0.04, p=0.75). 

Table 4.12 Correlations between a priori cortico-striatal and cortico-thalamic 

FDC and corresponding clinical task  

Correlation Track – Clinical measure r p 

L Limbic - apathy 0.25 0.03 

R Limbic - apathy 0.34 0.004 

L Caudal Motor  – TMS -0.21 0.08 

R Caudal Motor – TMS -0.22 0.07 

L Premotor - TMS -0.23 0.06 

R Premotor - TMS -0.22 0.07 

L Primary Motor - TMS -0.20 0.10 

R Primary Motor - TMS -0.30 0.01 

DBS – apathy -0.05 0.67 

DBS – TMS 0.04 0.75 

Correlations were performed using partial correlations with age, gender, and site as covariates. 

Apathy scores were from the Baltimore apathy/irritability scale. Caudal motor and limbic are 

cortico-striatal tracts. Premotor and primary motor are cortico-thalamic tracts. 

4.4.5 Changes in FD and FC when analysed separately 

For the primary analysis, only changes in FDC are reported since this provides a 

single measure incorporating changes in FD and FC to enable comparisons across 

the range of tracts investigated whilst limiting the extent of multiple comparisons. 

However to understand their relative contributions to the FDC results observed, 

changes in FD and FC were also analysed separately (Tables 4.13 - 4.18). As per 

the primary analysis, there were no significant differences in FD or FC in gene carriers 
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approximately 25 years from predicted onset (Table 4.13 and Table 4.14) after FDR 

correction. However, there were uncorrected reductions in cortico-striatal left and 

right caudal motor FC (p=0.03 and p=0.08 respectively), right temporal FD and FC 

(p=0.03, p=0.06 respectively) and left occipital FC (p=0.04). For the cortico-thalamic 

connections, there were also reductions in left premotor FC (p=0.05), right temporal 

FD (p=0.05) and left occipital FD (p=0.04) that did not reach significance after 

correction for multiple comparisons. 

The TrackOn-HD single-shell results show a trend of greater change in FC driving the 

previously observed changes in FDC, with comparatively little change in FD (Table 

4.15 and Table 4.16). In the multi-shell TrackOn-HD results, similar FC reductions 

were seen with more substantial FD reductions, leading to the more substantial FDC 

changes observed in the main analysis (Table 4.17 and Table 4.18). 

Table 4.13 Cortico-striatal FD and FC in HD-YAS  

Cortico-Striatal 
Tract 

Control 
Mean 

PreHD 
Mean 

SE p FDR 

L Limbic FD 0.50 0.50 2.3 x 10-4 0.44 0.57 

L Limbic FC 0.07 0.06 8.5 x 10-4 0.20 0.49 

R Limbic FD 0.49 0.49 2.1 x 10-4 0.19 0.49 

R Limbic FC 0.08 0.07 8.8 x 10-4 0.17 0.49 

L Cognitive FD 0.54 0.54 2.0 x 10-4 0.37 0.52 

L Cognitive FC 0.06 0.06 9.3 x 10-4 0.33 0.50 

R Cognitive FD 0.53 0.53 1.9 x 10-4 0.51 0.59 

R Cognitive FC 0.05 0.06 8.6 x 10-4 0.47 0.59 

L Rostral Motor FD 0.55 0.55 2.2 x 10-4 0.14 0.49 

L Rostral Motor FC 0.04 0.06 9.2 x 10-4 0.78 0.79 

R Rostral Motor FD 0.56 0.55 2.3 x 10-4 0.36 0.51 

R Rostral Motor FC 0.05 0.05 8.2 x 10-4 0.32 0.50 

L Caudal Motor FD 0.58 0.58 2.3 x 10-4 0.48 0.59 

L Caudal Motor FC 0.06 0.03 8.9 x 10-4 0.03 0.48 

R Caudal Motor FD 0.58 0.58 2.4 x 10-4 0.73 0.75 

R Caudal Motor FC 0.05 0.03 7.7 x 10-4 0.08 0.48 

L Parietal FD 0.66 0.66 3.0 x 10-4 0.42 0.55 

L Parietal FC 0.01 0.01 8.1 x 10-4 0.38 0.52 

R Parietal FD 0.67 0.67 3.1 x 10-4 0.55 0.60 
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R Parietal FC 0.01 0.01 8.1 x 10-4 0.28 0.50 

L Temporal FD 0.56 0.56 2.4 x 10-4 0.63 0.67 

L Temporal FC 0.05 0.04 7.5 x 10-4 0.10 0.48 

R Temporal FD 0.59 0.58 2.7 x 10-4 0.03 0.48 

R Temporal FC 0.07 0.05 7.0 x 10-4 0.06 0.48 

L Occipital FD 0.65 0.65 2.2 x 10-4 0.57 0.63 

L Occipital FC 0.11 0.09 7.1 x 10-4 0.04 0.48 

R Occipital FD 0.65 0.65 2.3 x 10-4 0.32 0.50 

R Occipital FC 0.08 0.07 6.7 x 10-4 0.21 0.49 

Unadjusted means displayed. SE = standard error. 

Table 4.14 Cortico-thalamic FD and FC in HD-YAS 

Cortico-thalamic 
Tract 

Control 
Mean 

PreHD 
Mean 

SE p FDR 

L Prefrontal FD 0.59 0.59 2.2 x 10-4 0.17 0.49 

L Prefrontal FC 0.02 0.01 7.9 x 10-4 0.25 0.50 

R Prefrontal FD 0.6 0.6 2.3 x 10-4 0.28 0.50 

R Prefrontal FC 0.02 0.02 7.6 x 10-4 0.38 0.52 

L Premotor FD 0.62 0.62 2.5 x 10-4 0.53 0.60 

L Premotor FC 0.04 0.02 8.2 x 10-4 0.05 0.48 

R Premotor FD 0.6 0.61 2.5 x 10-4 0.81 0.81 

R Premotor FC 0.03 0.03 7.8 x 10-4 0.19 0.49 

L Primary Motor 
FD 

0.59 0.6 2.6 x 10-4 0.62 0.66 

L Primary Motor 
FC 

0.02 0.02 7.9 x 10-4 0.27 0.50 

R Primary Motor 
FD 

0.58 0.58 2.7 x 10-4 0.69 0.72 

R Primary Motor 
FC 

0.02 0.02 8.5 x 10-4 0.26 0.50 

L Sensory  FD 0.61 0.61 3.0 x 10-4 0.51 0.59 

L Sensory  FC 0.02 0.02 8.3 x 10-4 0.49 0.59 

R Sensory FD 0.56 0.56 3.2 x 10-4 0.46 0.59 

R Sensory FC 0.03 0.03 9.0 x 10-4 0.26 0.50 

L Parietal FD 0.64 0.64 2.5 x 10-4 0.21 0.49 

L Parietal FC 0.06 0.05 7.2 x 10-4 0.15 0.49 

R Parietal FD 0.62 0.61 2.6 x 10-4 0.12 0.49 

R Parietal FC 0.03 0.04 6.6 x 10-4 0.36 0.51 
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L Temporal FD 0.51 0.5 3.0 x 10-4 0.42 0.55 

L Temporal FC 0.01 3.0 x 10-4 8.3 x 10-4 0.10 0.48 

R Temporal FD 0.51 0.49 3.4 x 10-4 0.05 0.48 

R Temporal FC 0.001 0.007 8.0 x 10-4 0.55 0.60 

L Occipital FD 0.47 0.46 1.4 x 10-4 0.04 0.48 

L Occipital FC 0.08 0.08 7.2 x 10-4 0.23 0.50 

R Occipital FD 0.51 0.5 1.6 x 10-4 0.10 0.48 

R Occipital FC 0.07 0.07 7.2 x 10-4 0.32 0.50 

Unadjusted means displayed. SE = standard error. 

Table 4.15 Cortico-striatal FD and FC in TrackOn-HD single-shell baseline  

Cortico-Striatal 
Tract 

Control 
Mean 

PreHD 
Mean 

γ SE p FDR 

L Limbic FD 0.38 0.38 -0.005 0.004 0.28 0.39 

L Limbic FC   0.09 0.06 -0.06 0.01 1.2 x 10-7 1.6 x 10-5 

R Limbic FD 0.36 0.36 1.7 x 10-4 0.005 0.97 0.97 

R Limbic FC   0.10 0.07 -0.06 0.01 4.9 x 10-7 6.9 x10-6 

L Cognitive FD 0.40 0.41 -0.001 0.003 0.79 0.79 

L Cognitive FC   0.03 0.03 -0.03 0.01 0.01 0.02 

R Cognitive FD 0.40 0.41 0.003 0.003 0.35 0.46 

R Cognitive FC   0.03 0.02 -0.03 0.01 0.006 0.01 

L Rostral Motor FD 0.46 0.46 0.003 0.004 0.37 0.44 

L Rostral Motor FC   0.07 0.07 -0.03 0.01 0.02 0.04 

R Rostral Motor FD 0.47 0.47 0.002 0.003 0.59 0.63 

R Rostral Motor FC   0.10 0.08 -0.04 0.01 0.001 0.003 

L Caudal Motor FD 0.50 0.50 -0.003 0.004 0.37 0.44 

L Caudal Motor FC   0.09 0.06 -0.04 0.01 8.9 x 10-5 6.3 x 10-4 

R Caudal Motor FD 0.51 0.50 -0.003 0.004 0.39 0.46 

R Caudal Motor FC   0.09 0.06 -0.04 0.01 0.001 0.003 

L Parietal FD 0.53 0.53 -0.002 0.004 0.67 0.73 

L Parietal FC   0.04 0.03 -0.03 0.01 0.008 0.02 

R Parietal FD 0.54 0.53 -0.004 0.004 0.40 0.46 

R Parietal FC   0.05 0.05 -0.02 0.01 0.10 0.18 

L Temporal FD 0.40 0.41 0.01 0.004 3.9 x 10-4 0.001 

L Temporal FC   0.01 -0.01 -0.04 0.01 1.3x10-4 6.5 x 10-4 
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R Temporal FD 0.42 0.44 0.01 0.004 0.001 0.003 

R Temporal FC   0.02 0.01 -0.03 0.01 0.004 0.009 

L Occipital FD 0.52 0.52 0.008 0.003 0.007 0.02 

L Occipital FC   0.05 0.05 -0.03 0.01 0.009 0.02 

R Occipital FD 0.52 0.53 0.003 0.003 0.35 0.46 

R Occipital FC   0.05 0.05 -0.03 0.01 0.003 0.009 

γ=estimated group intercept difference (preHD minus control); SE=standard error. 

Table 4.16 Cortico-thalamic FD and FC in TrackOn-HD single-shell baseline 

Cortico-Thalamic 
Tract 

Control 
Mean 

PreHD 
Mean 

γ SE P FDR 

L Prefrontal FD 0.47 0.47 -0.003 0.003 0.32 0.35 

L Prefrontal FC  0.02 0.01 -0.03 0.01 0.02 0.06 

R Prefrontal FD 0.47 0.47 0.001 0.003 0.75 0.79 

R Prefrontal FC  0.02 0.01 -0.03 0.01 0.02 0.06 

L Premotor FD 0.52 0.51 -0.008 0.004 0.06 0.08 

L Premotor FC  0.09 0.07 -0.03 0.01 0.006 0.02 

R Premotor FD 0.51 0.51 -0.007 0.004 0.08 0.16 

R Premotor FC  0.09 0.08 -0.03 0.01 0.02 0.06 

L Primary Motor 
FD 

0.53 0.52 -0.009 0.004 0.05 0.08 

L Primary Motor 
FC  

0.08 0.05 -0.04 0.01 3.3 x10-4 0.005 

R Primary Motor 
FD 

0.52 0.52 -0.006 0.004 0.21 0.29 

R Primary Motor 
FC  

0.07 0.06 -0.02 0.01 0.04 0.11 

L Sensory FD 0.52 0.51 -0.005 0.004 0.12 0.21 

L Sensory FC  0.05 0.04 -0.03 0.01 0.003 0.02 

R Sensory FD 0.50 0.49 -0.003 0.004 0.45 0.53 

R Sensory FC  0.07 0.07 -0.01 0.01 0.21 0.29 

L Parietal FD 0.48 0.48 0.002 0.004 0.06 0.08 

L Parietal FC  0.05 0.06 -0.02 0.01 0.006 0.02 

R Parietal FD 0.47 0.47 -0.003 0.004 0.08 0.16 

R Parietal FC  0.07 0.08 -0.02 0.01 0.02 0.06 

L Temporal FD 0.38 0.37 -0.006 0.004 0.15 0.19 

L Temporal FC  -0.05 -0.03 -0.002 0.01 0.85 0.85 

R Temporal FD 0.38 0.37 -0.006 0.004 0.12 0.20 
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R Temporal FC  -0.04 -0.03 -0.008 0.01 0.45 0.53 

L Occipital FD 0.47 0.48 0.007 0.003 0.03 0.08 

L Occipital FC  0.09 0.10 -0.02 0.01 0.05 0.08 

R Occipital FD 0.48 0.48 0.001 0.004 0.79 0.79 

R Occipital FC  0.12 0.11 -0.03 0.01 0.01 0.06 

Unadjusted means displayed. γ=estimated group intercept difference (preHD minus control); 

SE=standard error. 

Table 4.17 Cortico-striatal FD and FC in TrackOn-HD multi-shell 

Cortico-Striatal 
Tract 

Control 
Mean 

PreHD 
Mean 

SE p FDR 

L Limbic FD 0.36 0.36 4.1 x 10-4 0.05 0.08 

L Limbic FC 0.06 0.05 0.001 0.01 0.03 

R Limbic FD 0.38 0.37 3.4 x 10-4 0.10 0.13 

R Limbic FC 0.06 0.05 0.001 0.005 0.02 

L Cognitive FD 0.41 0.41 3.12 x 10-4 0.11 0.14 

L Cognitive FC 0.02 0.01 0.001 0.01 0.02 

R Cognitive FD 0.42 0.42 3.9 x 10-4 0.30 0.31 

R Cognitive FC 0.03 -0.007 0.001 9.0 x 10-4 0.01 

L Rostral Motor FD 0.49 0.48 3.2 x 10-4 0.07 0.10 

L Rostral Motor FC 0.02 0.01 0.001 0.08 0.11 

R Rostral Motor FD 0.49 0.49 3.2 x 10-4 0.28 0.29 

R Rostral Motor FC 0.03 0.03 0.001 0.19 0.22 

L Caudal Motor FD 0.56 0.54 4.6 x 10-4 0.10 0.12 

L Caudal Motor FC 0.04 1.6 0.001 0.01 0.03 

R Caudal Motor FD 0.58 0.57 4.6 x 10-4 0.03 0.05 

R Caudal Motor FC 0.02 0.01 0.001 0.16 0.20 

L Parietal FD 0.58 0.57 4.2 x 10-4 0.07 0.10 

L Parietal FC -0.009 -0.02 0.001 0.02 0.04 

R Parietal FD 0.556 0.55 4.4 x 10-4 0.06 0.09 

R Parietal FC -0.001 -0.001 0.001 0.08 0.10 

L Temporal FD 0.36 0.36 3.9 x 10-4 0.27 0.28 

L Temporal FC 0.1 0.09 0.001 0.03 0.06 

R Temporal FD 0.37 0.37 3.6 x 10-4 0.44 0.44 

R Temporal FC 0.09 0.07 0.001 0.01 0.02 
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L Occipital FD 0.53 0.53 3.6 x 10-4 0.46 0.46 

L Occipital FC 0.09 0.05 0.001 0.001 0.01 

R Occipital FD 0.52 0.52 4.3 x 10-4 0.23 0.25 

R Occipital FC 0.1 0.06 0.001 0.001 0.01 

 Unadjusted means displayed. SE = standard error. 

Table 4.18 Cortico-thalamic FD and FC in TrackOn-HD multi-shell 

Cortico-thalamic 
Tract 

Control 
Mean 

PreHD 
Mean 

SE P FDR 

L Prefrontal FD  0.49 0.47 3 x 10-4 0.002 0.02 

L Prefrontal FC -0.002 -0.02 0.001 0.01 0.03 

R Prefrontal FD  0.52 0.52 2.9 x 10-4 0.02 0.04 

R Prefrontal FC 0.01 1.9 0.001 0.02 0.04 

L Premotor FD  0.56 0.54 4.4 x 10-4 0.01 0.02 

L Premotor FC 0.01 -0.02 0.001 0.01 0.02 

R Premotor FD  0.55 0.54 4.6 x 10-4 0.05 0.09 

R Premotor FC -0.001 0.007 0.001 0.27 0.28 

L Primary Motor 
FD  

0.5 0.48 4.1 x 10-4 0.06 0.10 

L Primary Motor 
FC 

-0.02 -0.03 0.010 0.05 0.07 

R Primary Motor 
FD  

0.45 0.44 3.8 x 10-4 0.02 0.04 

R Primary Motor 
FC 

-0.02 -0.03 0.001 0.07 0.10 

L Sensory Motor 
FD  

0.46 0.45 3.9 x 10-4 0.20 0.23 

L Sensory Motor 
FC 

-0.01 -0.01 0.002 0.12 0.14 

R Sensory Motor 
FD  

0.42 0.41 3.8 x 10-4 0.02 0.04 

R Sensory Motor 
FC 

0.01 -0.02 0.001 0.02 0.04 

L Parietal FD  0.47 0.47 3.5 x 10-4 0.25 0.27 

L Parietal FC 0.05 0.02 0.001 0.004 0.02 

R Parietal FD  0.48 0.48 3.7 x 10-4 0.22 0.24 

R Parietal FC 0.06 0.02 0.001 5.0 x 10-4 0.01 

L Temporal FD  0.49 0.49 6.0 x 10-4 0.27 0.28 

L Temporal FC 0.04 0.02 0.001 0.02 0.04 

R Temporal FD  0.5 0.49 4.9 x 10-4 0.09 0.12 

R Temporal FC 0.04 0.003 0.001 0.003 0.02 

L Occipital FD  0.44 0.44 4.1 x 10-4 0.21 0.23 
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L Occipital FC 0.11 0.09 0.001 0.004 0.02 

R Occipital FD  0.37 0.36 3.1 x 10-4 0.09 0.12 

R Occipital FC 0.16 0.12 0.001 2.00 0.01 

Unadjusted means displayed. SE = standard error. 

4.5 Discussion 

By studying two unique cohorts, these results provide insight into the timing and 

anatomical specificity of basal ganglia white matter loss in preHD. As summarised in 

Figure 4.6, cortico-striatal and cortico-thalamic white matter connections appear 

structurally preserved in preHD 25 years from clinical onset. However, in preHD 

closer to clinical onset, specific cortico-striatal and cortico-thalamic tracts appear 

more vulnerable than others to early degeneration.  
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Figure 4.6 Overview of study methodology and key cross-sectional results.  

 For each study, scans were registered to a common template. Connectivity-based atlases of the 
striatum and thalamus were registered to the group template. Diffusion tractography was performed on 
the group template to reconstruct each of the cortico-thalamic and cortico-striatal tracts in right and left 
hemispheres. Measures of FDC were then computed for each tract. In gene carriers 25 years from 
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predicted onset, there were no differences in any cortico-striatal or cortico-thalamic tract. In gene carriers 
11 years from predicted onset, reductions in FDC were seen in limbic and caudal motor cortico-striatal 
tracts and premotor, primary motor and sensory cortico-thalamic tracts cross-sectionally. There were no 
significant longitudinal changes in gene carriers 11 years from predicted onset. GC = Gene Carriers, 
FDC = Fibre density and cross-section. No evidence of neurodevelopmental differences in the integrity 
of white matter connections 

Recent evidence has suggested that the HD mutation may lead to abnormalities in 

striatal and cortical development (Molina-Calavita et al. 2014; van der Plas et al. 2019; 

Barnat et al. 2020). One of the functions attributed to HTT is the promotion of striatal 

cell survival by ensuring the anterograde delivery of the pro-survival factor BDNF to 

cortico-striatal synapses, since the striatum is unable to produce BDNF independently 

(Saudou and Humbert 2016). Evidence for abnormal cortical development as a result 

of mHTT expression has stemmed from animal work, with Molina-Calvita et al. 

reporting defects in cortical progenitor cell division and development of the mouse 

neocortex (Molina-Calavita et al. 2014). More recently, cortical cellular abnormalities 

in neural progenitor cell differentiation, mitosis and cell cycle progression were 

reported using tissue from human foetuses that carry the HD mutation at 13 weeks 

gestation (Barnat et al. 2020). Evidence of abnormal striatal development also has 

come from the Kids-HD study which recruited at risk participants < 18 years of age 

and subsequently performed research genotyping to study differences in preHD and 

gene negative participants. In the initial analysis, gene carriers were reported to show 

striatal hypertrophy up to 14 years of age, followed by more rapid atrophy in the older 

preHD participants (van der Plas et al. 2019). However, the study included children 

with CAG repeats up to 59 which is in the juvenile HD range, limiting the 

interpretability of this result. In this context, the current findings suggest that there is 

no detectable developmental abnormality in the microstructure of cortico-striatal and 

cortico-thalamic white matter connections in preHD, consistent with results in the 

previous chapter (Scahill et al. 2020). This may suggest that any of the 

aforementioned neurodevelopmental effects of mHTT do not affect the microstructure 

of these white matter pathways, or that diffusion imaging may lack the resolution to 

detect more subtle effects. Importantly, this result also suggests that the initiation of 

disease modifying therapies early in the premanifest period could potentially preserve 

these important connections. Furthermore, with viral-vector based therapeutics such 
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as RNAi capable of axonal propagation (Weiss et al. 2020), this period may represent 

the best time to achieve widespread distribution in the brain for such therapeutics.  

4.5.1 Selective vulnerability of specific cortico-striatal connections 

The results in the TrackOn-HD cohort who are closer to predicted onset suggest 

certain basal ganglia subregions are more susceptible to early degeneration. 

Previous literature examining the integrity of cortico-striatal connections in the 

premanifest period has been conflicting, with some studies failing to detect 

differences (Novak et al. 2015; Gorges et al. 2017; Gregory et al. 2018), whilst others 

have reported significant differences in these tracts (McColgan et al. 2015; McColgan 

et al. 2017; Shaffer et al. 2017). The likely reason for these discrepancies is differing 

analysis techniques and the comparatively low sample sizes in those reporting 

negative results.  

The largest study to date in this area came from the PREDICT-HD cohort. Shaffer et 

al. studied 191 preHD and 70 healthy controls and stratified the preHD group into 3 

subgroups based on proximity to predicted onset, with the far group >13 years from 

predicted onset (Shaffer et al. 2017) and the middle group most comparable to the 

TrackOn-HD cohort. Tensor metrics FA, MD, AD and RD were investigated for twelve 

tracts predominantly focused on sensorimotor cortical connections to both the 

caudate and putamen. No differences were found in the group furthest from onset, 

and only the group closest to onset displayed substantial changes across the different 

tensor measures. Despite the large sample size, several limitations may have 

affected the power to detect significant change in the groups further from onset. The 

single control group was low in number and poorly matched for the preHD groups, 

being on average over 10 years older than the far preHD group. As a large multi-site 

study, there was also significant variability in DWI scanners and acquisitions across 

the 33 sites, including scanner upgrades occurring over the course of the study and 

a mixture of 1.5 and 3T MRI (Paulsen et al. 2014). Finally, the analysis focused largely 

on sensorimotor connections and did not specifically investigate limbic connections. 

Poudel et al. also investigated cortico-striatal connectivity using deterministic 

tractography to generate a connectivity matrix of 40 regions that included the striatum 

and thalamus (Poudel et al. 2014). They found reduced tractography streamlines in 
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a tract connecting the putamen to the prefrontal and motor cortex using NBS. Using 

tensor based measures to further investigate, the only significant difference was an 

increase in putamen-prefrontal RD. However, like the Shaffer et al. study, this study 

did not look specifically at subregions of the striatum or thalamus and also suffers 

from several methodological issues such as the false positives generated by 

tractography, limitations of DTI measures and deterministic tractography. 

Another limitation of previous research in investigating the selective vulnerability of 

specific cortico-striatal connections is the analysis of caudate and putamen as 

separate entities, when accumulating evidence demonstrates that both structures 

display overlapping topographical organisation of their cortical inputs (Tziortzi et al. 

2014; Haber 2016; Parkes et al. 2017). For example the ventral caudate shares a 

similar connectivity profile to the ventral putamen, but a very different profile to the 

dorsal-caudal caudate. Given the reported observed gradient of neuropathological 

changes observed in the striatum (Vonsattel et al. 1985), it is possible that 

connectivity breakdown may follow a similar topographical distribution which would 

affect the caudate and putamen in a similar fashion. Therefore, the use of a 

connectivity-based parcellation to reconstruct the full spectrum of cortico-striatal 

connections is more directly interpretable when looking for such gradients of change 

in white matter organisation. 

This study expands on previous literature by providing a comprehensive analysis of 

individual cortico-striatal connection networks in two different premanifest cohorts 

with a mode of analysis that resolves many of the limitations of previously used 

tensor-based analyses. The results of the cortico-striatal analysis indicates that 

caudal motor tracts connecting the dorsal-caudal striatum to the primary motor cortex 

are particularly vulnerable in early preHD, consistent with previous results (Poudel et 

al. 2014; Shaffer et al. 2017). The connections to the rostral motor region, including 

the supplementary motor cortex and frontal eye field regions, have not been 

previously investigated in preHD. The results here show that the striatal connections 

to these regions are relatively preserved, compared to the primary motor cortical 

connections. 

Previously, neuropathological studies have described HD neurodegeneration 

progressing along a dorsal-caudal rostral-ventral gradient, though most cases already 
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had manifest disease (Roos et al. 1985; Vonsattel et al. 1985). Clinically there is 

considerable psychiatric comorbidity in HD with increases in levels of depression, 

anxiety, irritability and apathy reported in the premanifest period (Tabrizi et al. 2013; 

Epping et al. 2016; Martinez-Horta et al. 2016). Functional neuroimaging studies have 

shown disrupted striato-prefrontal connectivity in premanifest cohorts (Enzi et al. 

2012; McColgan et al. 2017), however little was previously known about the structural 

integrity of these connections in preHD. The current results suggest that limbic 

cortico-striatal connections undergo early structural degeneration in preHD, adding 

further weight to the selective vulnerability of these tracts early in the premanifest 

period.  

4.5.2 Selective vulnerability of cortico-thalamic connections 

Whilst the striatum has long been a key target for disease-modifying therapies, the 

thalamus is a major connection hub in the human brain and hence may represent a 

target for RNAi injections to achieve widespread cortical and striatal coverage (Evers 

et al. 2018). The thalamus and its white matter connections have been comparatively 

understudied in preHD to date. Whilst neuronal loss and astrogliosis of the thalamus 

has been reported in neuropathological studies (Heinsen et al. 1996; Heinsen et al. 

1999; Rub et al. 2016), volumetric imaging studies have found the thalamus to be 

relatively preserved in the premanifest period (Majid et al. 2011; van den Bogaard et 

al. 2011). However, this may partly be explained by the difficulties in segmenting the 

thalamus at lower field strengths with less clear anatomical boundaries than the 

striatum.  

Few studies have investigated the structural integrity of cortico-thalamic connections 

in preHD. In a whole brain connectomic analysis, McColgan et al. found evidence of 

a reduction in connectivity in manifest but not premanifest groups (McColgan et al. 

2015). Similarly, Dumas et al. found higher apparent diffusion coefficient in white 

matter connections traversing the thalamus in manifest but not premanifest HD 

(Dumas et al. 2012). In a multi-modal study using DTI to investigate the sensorimotor 

network in preHD far from onset, there were no differences in the FA of a connection 

between the thalamus and the somatosensory cortex in 12 preHD and 22 control 

participants (Gorges et al. 2017).  
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Like the striatum, the thalamus is a large subcortical structure and has an extensive 

range of cortical connections that are highly organised with specific subregions being 

connected to specific cortical regions (Behrens et al. 2003; Johansen-Berg et al. 

2005). No study has previously investigated differences across the range of different 

cortico-thalamic subnetworks in HD or preHD. By studying specific subregional 

connections using advanced diffusion techniques in a relatively large cohort, the 

current results suggest that thalamic connections are affected in the premanifest 

period, with the premotor, primary motor and sensory connections appearing 

particularly vulnerable to early degeneration. Consequently, the thalamus may also 

prove to be an important therapeutic target to prevent such early neurodegeneration 

and maximise cortical coverage for viral-vector based therapeutics. 

4.5.3 No longitudinal changes detectable over a two year period 

Using data from the TrackOn-HD cohort who had three scans over a two year time 

period, there was no evidence of longitudinal changes across cortico-striatal and 

cortico-thalamic tracts at this stage of disease. Previous longitudinal studies using 

DTI have fared differently in detecting longitudinal changes. Using a whole brain 

analysis, Poudel et al. found evidence of longitudinal change over an 18 month period 

in manifest but not preHD groups (Poudel et al. 2015). Gregory et al. also found subtle 

longitudinal white matter changes in early HD patients (Gregory et al. 2015). 

However, longitudinal changes in cortico-striatal tracts were detected in the 

premanifest PREDICT-HD cohort over a one to five year follow up period, 

predominantly in the group closest to onset (Shaffer et al. 2017). In a study comparing 

longitudinal effect sizes across different MRI measures in HD over a 15 month time 

period, DTI metrics showed notably smaller effect sizes compared to volumetric 

imaging (Hobbs et al. 2015). Collectively, these results suggest that changes in white 

matter microstructure occur slowly over time in preHD and a large sample size with a 

longer follow up period of >2 years would likely be required to detect such changes. 
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4.5.4 Relationships between changes in FDC and clinical 

measures 

To investigate the clinical significance of these findings, correlations were performed 

between tracts showing changes in FDC at baseline in the TrackOn-HD cohort and 

selected clinical measures.  

For limbic cortico-striatal tracts, apathy scores were chosen given their known close 

relationship in a number of neurological diseases (Le Heron et al. 2018). In addition, 

apathy was the only neuropsychiatric measure to show significant change in the 

premanifest period in Track-HD (Tabrizi et al. 2013) and cannot be modified by 

pharmacological treatment to confound such comparisons. Previously, using DTI in a 

small group of early HD subjects, FA in the bilateral gyrus rectus negatively correlated 

with apathy score (Delmaire et al. 2013). This area contains fibres connecting the 

orbitofrontal cortex and subcortical structures including the ventral striatum. The 

observed correlation would be consistent with white matter tract breakdown resulting 

in reduced FA and higher apathy scores in HD. However, two other studies have not 

found any associations with apathy and white matter microstructure using whole brain 

approaches (Gregory et al. 2015; McColgan et al. 2017). The whole brain nature of 

the aforementioned studies and use of tract based spatial statistics, which 

skeletonises the major white matter tracts, may limit the ability to detect significant 

relationships between white matter microstructure and apathy. No study has 

previously specifically investigated the association between limbic cortico-striatal tract 

microstructure and apathy in HD. In the current study, there was an unexpected 

significant positive correlation between limbic cortical-striatal FDC and levels of 

apathy. However, apathy scores in this preHD cohort were low, with a mean score of 

10/42. Furthermore, preHD scores were similar to the control group and did not 

correlate with disease burden. Hence this association should be interpreted with 

caution. Nevertheless, converging literature across other neurodegenerative and 

cerebrovascular diseases associated with apathy has clearly demonstrated that 

degeneration or injury to this white matter pathway or connecting cortical/sub-cortical 

structures is associated with the emergence of apathy (Le Heron et al. 2018; Prange 

et al. 2019). It is therefore likely that the observed reductions in limbic cortico-striatal 
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tract FDC does contribute to the emergence of apathy in HD later in the disease 

course. 

Motor symptoms have been previously associated with connectivity in the 

sensorimotor striatum and associated white matter tracts in HD participants (Bohanna 

et al. 2011; Dumas et al. 2012; Novak et al. 2015). In a preHD cohort using a network-

based analysis, speeded tapping was not found to correlate white matter tract 

microstructure in premanifest groups (Poudel et al. 2014). A separate study 

investigating cortico-thalamic connections using DTI reported correlations between 

thalamic motor connections and grip force (Orth et al. 2016). In this study, reductions 

in striatal caudal motor, thalamic premotor and primary motor FDC were associated 

with increasing motor signs on the TMS. Although only the right primary motor-

thalamic association reached statistical significance, other associations were all close 

to statistical significance. Furthermore, motor scores were generally low and not 

associated with DBS, likely reflecting the variability of this measure at this stage. 

Collectively, the results indicate that degeneration of these motor connections is likely 

to be significant in the emergence of the diagnostic motor signs of the disease. 

4.5.5 Higher b-values increase signal-to-noise in FBA 

The majority of previous DWI studies in HD have utilised single-shell DTI acquisitions 

with low b-values that were prevailing around the period up until around 2012. 

However since then, DWI acquisitions have increasingly moved towards multi-shell 

acquisitions with higher b-values that improve diffusion modelling (Zhang et al. 2012). 

Indeed, in TrackOn-HD, the multi-shell acquisition was only added to the final 

timepoint in 2014, reflecting the emergence of improved DWI acquisitions at that time. 

There have been very few cohort studies in HD conducted since this time to 

investigate the relative sensitivity of more modern DWI acquisitions to disease effects. 

To investigate the influence of different acquisition parameters in this current study, 

the analysis was repeated in the subset of the TrackOn-HD cohort who had additional 

multi-shell diffusion MRI at the final time point with b-values of up to 2,000 s/mm². 

These results replicated findings from the single-shell analyses and in addition 

revealed more widespread changes in FDC, which appeared driven by greater 

reductions in the FD metric. This suggests improved sensitivity to white matter 
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differences in FBA using a multi-shell acquisition with higher b-values and also further 

strengthens the null result in the HD-YAS cohort which had a comparable acquisition 

and a larger sample size.  

The apparent improved sensitivity to HD-related changes with the multi-shell 

acquisition can likely be explained by the origins of the FD measurement and its 

partial dependence on the b-values of the acquisition. In FBA, the measure of FD is 

derived from the amplitude of the FOD. This is based on the observation that intra-

axonal water is restricted in the radial direction and that at high b-values the extra-

axonal water signal is strongly attenuated (Raffelt et al. 2012). Therefore the total 

radial DW signal is approximately proportional to the density of fibres. Since the FOD 

amplitude is also approximately proportional to the radial DW signal for the 

corresponding fibre orientation, it provides a relative measure of the intra-axonal 

volume occupied by fibres aligned in that direction. However, simulations have 

demonstrated that whilst extra-axonal water is strongly attenuated at b-values ≥ 3,000 

s/mm2, with decreasing b-values there is an increasing extra-axonal component to 

the FD measure (Raffelt et al. 2012). Therefore, it can be anticipated that the 

sensitivity of the FD measure will decrease with falling b-values due to the increasing 

influence of extra-axonal water, even though it is still expected to provide a useful 

measure at b-values as low as 1,000 mm/s, as used in the TrackON-HD single shell 

analysis (Raffelt et al. 2017). The improved sensitivity of FD at higher b-values 

observed here is also consistent with recent findings in a study of adolescent brain 

development, which demonstrated improved sensitivity of the FD measure to detect 

age-related changes with increasing b-values (Genc et al. 2020). Collectively this 

suggests that in future studies in HD, the use of improved diffusion acquisitions and 

analysis techniques as used here may aid the early detection of white matter 

pathology. Furthermore, the advent of multi-slice accelerated imaging has shortened 

acquisition times for multi-shell acquisitions, removing a previous barrier to 

populations that may not withstand longer acquisition times (Barth et al. 2016). 

4.5.6 Other methodological considerations 

This is the first application of FBA in HD. The majority of previous diffusion MRI 

studies in HD have utilised the diffusion tensor model for tractogram generation and 

interpretation of white matter microstructure. The diffusion tensor model has major 
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limitations in its interpretability since most white matter voxels contain contributions 

from multiple fibre populations. Hence, in these regions voxel-averaged DTI 

measures cannot provide reliable tractograms, are not fibre-specific and have poor 

interpretability as measures of structural connectivity (Jones, Knosche et al. 2013; 

Raffelt, Tournier et al. 2017; Mito, Raffelt et al. 2018). Furthermore, many previous 

diffusion MRI studies in HD have used a tract-based spatial statistics approach which 

skeletonises the white matter and so only analyses white matter microstructure in the 

very centre of each major white matter bundle. It is also unable to study specific white 

matter connections of interest, as done here. FBA accounts for crossing fibre 

populations to provide more reliable tractograms and account for the differing ways 

in which changes to intra-axonal volume may manifest by quantifying both a measure 

of fibre density and a measure of fibre bundle cross-section. As such, it enables a 

more comprehensive evaluation of white matter changes and has been successfully 

applied in other disease states for more directly interpretable measures of white 

matter connectivity (Vaughan, Raffelt et al. 2017; Mito, Raffelt et al. 2018; Pecheva, 

Tournier et al. 2019; Zarkali, McColgan et al. 2020).  

In the previous chapter using a connectomics approach, I did not find any evidence 

of detectable abnormalities in cortico-striatal, cortico-cortical or cortico-thalamic 

connections (Scahill et al. 2020) in the HD-YAS cohort. However, this analysis did not 

fully investigate all subnetworks of the striatum and thalamus to minimise the extent 

of multiple comparisons. Further, whilst useful in studying global network properties, 

the connectomic approach cannot fully negate the influence of false positive 

connections within the network that occur with whole brain diffusion tractography 

(General Methods 2.9.6.1). Here, by focusing on the dominant cortical tract in each 

subregion, informed by previous non-human primate tracer studies (McFarland and 

Haber 2002; Haber 2003) and focused diffusion tractography studies in humans 

(Behrens et al. 2003; Johansen-Berg et al. 2005; Tziortzi et al. 2011), the potential 

issue of false positive connections is negated, and a more detailed view of striatal 

and thalamic subnetworks is provided. 

4.5.7 Limitations 

Having discussed the benefits of FBA, it is important to recognise that reductions in 

the FD measure do not necessarily fully correspond to reductions in axonal density. 
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Notably demyelination has been shown to result in increased radial diffusivity and 

could therefore also lead to a reduction in the FD measure (Winklewski et al. 2018). 

This is true of any diffusion model and represents a limitation of diffusion imaging, in 

that it cannot provide measures that have a singular and precise biological correlate. 

For example, a validation of NODDI in post-mortem spinal cords with multiple 

sclerosis demonstrated that both axonal density and demyelination influence the 

NODDI neurite density measure (Grussu et al. 2017). For this reason, multi-modal 

imaging approaches are best placed to relate imaging changes to neurobiological 

changes such as demyelination or axonal loss. Despite the lack of biological 

specificity, reductions in FD whether reflecting axonal loss and/or demyelination, still 

represent a meaningful pathological change indicative of neurodegeneration that will 

decrease the ability of a fibre bundle’s ability to transfer information. 

Direct comparisons between these two cohorts are limited by differences in MRI 

acquisition, participant numbers and study design between the two cohorts that 

required different statistical methodology. The findings of no significant difference 

between controls and early preHD does not exclude the possibility of subtle early 

changes in the latter. HD-YAS included fewer participants than TrackOn-HD cohort 

owing partly to the limited number of at-risk individuals undergoing genetic testing at 

an early age (also see 3.5.8) and therefore has comparatively reduced statistical 

power. Indeed, HD-YAS was powered to detect striatal atrophy based on the findings 

of Track-HD and it’s power to detect differences in FDC here is unknown. The finding 

of widespread FDC changes in the TrackOn-HD subgroup with a similar acquisition 

to HD-YAS does however demonstrate the improved signal-to-noise with a multi-shell 

acquisition as used in HD-YAS compared that maximises the possibility of detecting 

early changes using such techniques. Longitudinal follow up of this cohort will also be 

important to further interrogate these important connections in early preHD, although 

the longitudinal results here suggest an interval of several years might be required to 

detect any significant changes. It is also possible that these connections, whilst 

appearing structurally intact, could exhibit functional differences as could be 

measured by functional MRI or neurophysiological studies, and this warrants further 

investigation. Finally, whilst it is suggested that both striatal and thalamic connections 

show change in this study, there is inevitably some overlap between thalamic and 

striatal white matter tracts in this analysis which cannot be overcome using diffusion 
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MRI. However on inspection of all tracts in the data, such overlap is minimal and 

confined to the portion close to the target cortical region. Nevertheless at these 

cortical convergence points, it is not possible to separate the striatal from thalamic 

connections and so the possibility that the observed thalamic changes may be partly 

influenced by striatal changes or vice versa cannot be excluded.  

4.5.8  Conclusion 

These findings suggest that cortico-striatal and cortico-thalamic white matter 

connections remain intact in HD gene-carriers approximately 25 years prior to 

predicted onset and that these connections have begun to degenerate by 11 years 

from predicted onset. Connections to limbic and motor cortices appear particularly 

vulnerable in the early disease course. This indicates that initiation of disease 

modifying therapies in the early premanifest period could protect such structural 

connections from undergoing neurodegeneration and highlights selectively 

vulnerable subregions of the striatum and thalamus that may be important targets for 

future therapies.   
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5 Relationships between structural and functional 

connectivity in gene carriers far from onset 

Reflecting on the results of the previous two chapters, it appears that cortico-basal 

ganglia connections, rich club cortical connections and whole brain network structure 

are preserved at this early stage of preHD. However, it is also apparent that this 

preHD cohort have detectable rises in the axonal marker neurofilament light, 

particularly in those closer to onset suggestive of early axonal injury or loss. With this 

in mind, I next sought to evaluate whether these gene carriers displayed any 

differences in whole brain functional and structural connectivity at this early stage, 

and to evaluate the relationship between connectivity and NfL in this cohort.   
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5.1 Introduction 

The topographical structure of the cerebral cortex and its connections provides an 

organising principle that, coupled with regional gene expression, shapes functional 

connectivity (van den Heuvel and Sporns 2013; Suárez et al. 2020). Advances in the 

field of human connectomics have revealed multiple largescale networks that each 

demonstrate distinct functional profiles (Suárez et al. 2020). Some of these functional 

profiles help serve core functions such as movement or sensation, whilst some 

networks are less well-understood such as the default mode network. Whilst studying 

structural and functional connectivity has provided insights into the basis of 

neurological function, understanding when and how early neurodegeneration affects 

structural and functional connectivity of the brain may also help piece together the 

sequence of events that lead to the emergence of early clinical symptoms for 

diseases like HD and further inform decisions on when to initiate treatments. 

So far in this thesis, I have closely examined the integrity of white matter connections 

in the premanifest period of HD and its associations with the clinical features of the 

disease. In studying data from the HD-YAS cohort, I have found no evidence of 

alterations in the structural integrity of cortico-basal ganglia connections, rich club 

connectivity or integration and segregation of the network, in gene carriers 

approximately 24 years from predicted onset. However, I have not yet examined 

whole brain structural connectivity in this cohort. A potential limitation of this approach 

is the vast number of multiple comparisons that can be required. For example, 

assessing connections strength for each pair of connections across an 80 region brain 

parcellation would require 6,400 separate tests. However cluster-based thresholding 

approaches such as NBS (General Methods 2.9.6.2) can be used to gain statistical 

power when performing mass univariate testing to isolate network connections that 

are altered by disease in the connectivity matrix. This approach has been previously 

used to provide important insights in structural connectivity breakdown in preHD 

(Poudel et al. 2014; McColgan et al. 2015; McColgan et al. 2017). Furthermore, I have 

not yet examined functional connectivity in this early premanifest cohort, where 

resting state fMRI data is available for most subjects. 
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Resting state fMRI has been increasingly used to examine functional networks in 

preHD to understand how functional connectivity changes in response to increasing 

HD pathology. Some studies have used seed-based approaches to investigate 

specific networks of interest in HD, with some inconsistent results across studies. For 

example, reduced connectivity between the posterior cingulate, a region of the default 

mode network, and ventromedial and dorsomedial prefrontal cortices has been 

reported, with the former correlating with Stroop test performance (Quarantelli et al. 

2013). However another study found network-wide increased connectivity when using 

the posterior cingulate cortex and supplementary motor area as seed regions 

(Sánchez-Castañeda et al. 2017). The findings from such seed-based approaches 

are difficult to directly compare however, since connectivity findings likely vary by 

seed location. 

Given some of the inconsistent findings in terms of resting state changes using seed-

based approaches, a data driven approach that interrogates all networks may provide 

a more standardised way of trying to understand functional changes in HD. However, 

similar to the network focused seed-based studies, there is mixed evidence in HD 

cohorts, who demonstrate both increases and decreases in functional connectivity 

across a series of networks, and sometimes with conflicting clinical correlations 

(Gregory and Scahill 2018). Examples of reduced connectivity have been reported in 

visual networks correlating with SDMT performance and DBS (Wolf et al. 2014), in 

the default mode network correlating with worsening cognitive function (Dumas et al. 

2013) and in the sensorimotor network correlating with increasing motor signs 

(Poudel et al. 2014). However, the same studies have also detected increases in 

functional connectivity including in frontoparietal (Poudel et al. 2014) and left anterior 

prefrontal cortex (Wolf et al. 2014). Increased connectivity in motor and parietal 

cortices has also been correlated with motor impairment, whilst increased striatal, 

frontal, thalamic and insular connectivity correlated with worsening function on the 

TFC scale (Werner et al. 2014). 

Several studies have previously reported altered functional connectivity in the 

premanifest period (Dumas et al. 2013; Harrington et al. 2015; Poudel et al. 2015; 

Espinoza et al. 2018). Again however, findings have varied across studies likely due 

to the varied cohorts and methods used. Reduced connectivity in motor and 
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subcortical networks has been reported in preHD (Poudel et al. 2015; Espinoza et al. 

2018) which associated with increasing CAG length and worsening motor 

performance. However, Espinoza et al. also found increased fronto-occipital 

connectivity with increasing CAG (Espinoza et al. 2018). Using a connectomic 

approach in the PREDICT-HD cohort, Harrington et al. found patterns of decreased 

frontostriatal connectivity and strengthened frontal-posterior connectivity as disease 

burden increased (Harrington et al. 2015). However the increases in functional 

connectivity were only observed in the group closest to predicted onset whilst 

decreased connectivity was found in the mid and near groups, but not the group 

furthest from predicted onset. Longitudinal studies assessing functional connectivity 

can also help to unravel how functional connectivity changes with disease 

progression, although two such studies to date in preHD have both failed to find 

longitudinal changes over a 2-3 year time period in preHD (Odish et al. 2015; Gargouri 

et al. 2016). It therefore remains unclear how early changes in functional connectivity 

can be detected in preHD, and whether increases in functional connectivity precede 

decreases or vice versa. 

The basis of disrupted functional connectivity in preHD is not fully understood. 

Reductions in functional connectivity may occur as a result of neuroaxonal loss 

between regions. Increases in functional connectivity may be attributable to 

neuroaxonal loss within that network and subsequent upregulation of the remaining 

connections as they work harder to support normal functions. Conversely, the 

upregulation may be taking place in regions unaffected by early pathology that are 

compensating for early neurodegenerative effects in another network (Kloppel et al. 

2015; Gregory et al. 2017). Hence, studying the relationship between structural and 

functional connectivity may provide further insights by characterising how disrupted 

functional connectivity relates to underlying structural connectivity. Few studies have 

previously characterised the relationship between structural and functional 

connectivity in HD. In one previous study of the TrackOn-HD cohort, brain areas with 

strong structural connectivity were found to show decreases in functional connectivity 

and vice versa (McColgan et al. 2017). In addition, increased functional upregulation 

was observed in anterior regions, whilst decreased functional connections were 

observed in posterior regions. These findings are in keeping with the vulnerability of 

rich club regions (McColgan et al. 2015) and posterior white matter atrophy in early 
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preHD (Tabrizi et al. 2009; McColgan et al. 2017) and suggests that the earliest 

connectivity changes may be increased functional connectivity in regions that are 

relatively spared by early disease effects. 

Previous studies in preHD have sought to contextualise changes in functional 

connectivity to disease burden by studying associations with CAG repeat length 

(Espinoza et al. 2018), or models estimating proximity to onset (Harrington et al. 

2015). However, these are indirect proxy measures of true disease burden and hence 

may be limited in this sense. As previously discussed in this thesis, NfL has emerged 

as a sensitive marker of HD progression and is directly related to axonal integrity. It 

is therefore likely to be a more relevant and sensitive marker of disease progression 

when investigating structural and functional connectivity in HD. In the primary analysis 

of HD-YAS, despite reporting largely intact brain structure and function, NfL was 

increased in the blood and CSF of gene carriers (Scahill et al. 2020), with CSF 

concentrations showing greater sensitivity and specificity over plasma NfL. CSF NfL 

concentrations were strongly associated with age-CAG and approximately half the 

preHD cohort had CSF NfL concentrations above the 95th percentile of controls. It is 

therefore of interest to understand if and how structural and functional connectivity is 

affected as NfL begins to rise in preHD.  

I therefore hypothesised that in early preHD, increases in functional connectivity may 

be detectable in the context of normal or reduced structural connectivity and that this 

is related to increasing concentrations of NfL. To test this hypothesis, corresponding 

functional and structural networks were constructed to examine both functional and 

structural connectivity. Associations between structural and functional connectivity 

and NfL were then examined. 

5.2 Contributions and collaborators 

The study design and execution was performed in collaboration with Sarah Gregory 

and Peter McColgan. Data came from the HD-YAS cohort and recruitment and data 

collection for this cohort was described in Chapter 3. I performed the processing and 

analysis for the structural connectivity component of the study. Sarah Gregory 

performed data collection and fMRI processing. Peter McColgan analysed the fMRI 
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connectivity data and performed the correlations with NfL. The project was supervised 

by Geraint Rees and Sarah Tabrizi. 

5.3 Methods 

5.3.1 Cohorts 

Participants included for this study were from the HD-YAS (See sections 2.1.1 and 

3.3.1 for further details). Participants who had both DWI and resting-state data were 

included in the analysis, with left-handed participants excluded. Five participants were 

also excluded after scan quality checks.  

Table 5.1 Participant demographics 

 PreHD 

N=49 

Control 

N=53 

p 

Age 29.4 ± 5.7 29.4 ± 5.5 0.96 

Male (%) 46.9 43.4 0.72 

Education ISCED 4.7 ± 1.7 5.0 ± 1.8 0.55 

CAG repeat length 42.2 ± 1.7   

Years to Onset 25.1 ± 6.2   

Data presented are means ± standard deviation unless otherwise specified. Group comparisons 

were made using t tests (age, education, NART) or chi-squared test (sex). 

5.3.2 Imaging acquisitions 

Acquisition details for DWI have been provided previously (See sections 3.3.2.4.1 

and 4.3.2). Resting state fMRI data were collected using a standard 2D echo planar 

imaging (EPI) sequence: TR=70ms; TE=30ms; 48 slices were acquired with 2.5mm 

slice thickness with in-plane field of view of 192×192 mm2 with 3×3 mm2 resolution.  

Field maps were collected to correct for inhomogeneity in the B0 field of the EPI fMRI 

images: TR=1020ms; TE1=10ms; TE2=12.46ms,  64 slices were acquired with 2mm 

slice thickness with in-plane field of view of 192×192 mm2 with 3×3 mm2 resolution. 

Pulsatile information was collected using the Nonin 8600FO pulse-oximeter and a 

Siemens breathing belt for respiratory data. Both were recorded along with scanner 
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pulses using Cambridge Electronics Device CED Micro 1401 Mk II connected to a 

laptop running Spike v2. 

5.3.3 Atlases for brain segmentation 

In contrast to previous chapters, the cortical and subcortical atlases selected for this 

study were derived from fMRI datasets and therefore represent regions parcellated 

on this basis of their functional connections. The Shaeffer cortical atlas (Schaefer et 

al. 2018) is derived from task and resting state fMRI data from 1489 healthy 

participants and is available in both 100 region and 500 region parcellations. The atlas 

was derived using a combination of a local gradient approach, which detects abrupt 

transitions in functional connectivity patterns, along with the global similarity 

approach, which clusters similar functional connectivity patterns regardless of spatial 

proximity resulting in parcels with similar resting state fMRI signals. In the validation 

of this atlas, the generated parcellations and boundaries were found to be in 

agreement with known histological data (Schaefer et al. 2018).  

For the striatum, the Choi atlas (Choi et al. 2012) (Figure 5.1) was used. The approach 

taken to generate these subdivisions was similar to previously utilised structural 

connectivity-based atlases, whereby each voxel in the striatum was assigned to the 

most strongly correlated cortical region on the basis of its functional connectivity. The 

parcellation was validated using two independent groups of 500 subjects. Its 

parcellations are consistent with anatomical studies in non-human primates with a 

dorsolateral to ventromedial organisation (Yeterian and Van Hoesen 1978; Selemon 

and Goldman-Rakic 1985) and similar to the structural connectivity-based atlas 

regions derived from diffusion tractography used in Chapters 3 and 4. Regions include 

a limbic subdivision localised in the ventral striatum, a central territory of the dorsal 

anterior caudate and putamen projecting to the association cortex and a motor-related 

subdivisions located in the posterior putamen (Figure 5.1).  
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Figure 5.1 Functional connectivity-based striatal atlas subdivisions. Schematic illustrating the 
striatal subdivisions and corresponding cortical regions (above/middle), displayed on lateral and ventral 
surfaces of the left hemisphere (Anderson et al. 2018). Regions are default, frontoparietal control, limbic, 
ventral attention, somato/motor, dorsal attention, and visual networks. The latter two networks are not 
illustrated here and have sparse representation in the striatal atlas. Figure adapted under creative 
commons license 

The Shaeffer cortical and Choi subcortical atlases were registered to a standard 

space (Montreal Neurological Institute (MNI) space), before being combined into one 

atlas. To investigate the influence of parcellation granularity on the results, one atlas 

was created using the 100 parcellation cortical atlas and one with the 500 parcellation 

atlas.  

5.4 Diffusion MRI processing 

Pre-processed images from the HD-YAS structural connectivity analysis were used. 

This included eddy-current (FSL 5.0.11) and motion correction (Andersson and 
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Sotiropoulos 2016) and bias field correction (Smith et al. 2004). Following these 

steps, fibre orientation distributions (FODs) were computed using multi-shell, multi-

tissue constrained spherical deconvolution with group averaged response functions 

for white matter, grey matter and CSF (Jeurissen et al. 2014). Multi-tissue informed 

log-domain global intensity normalisation was then performed. Whole-brain 

probabilistic tractography was done in subject-space using the 2nd order integration 

over fibre orientation distributions (iFOD2) algorithm (Tournier et al. 2010) with length 

= 10-250 mm and FOD threshold of 0.06. Ten million streamlines were generated for 

each scan using dynamic seeding in the white matter (Smith et al. 2015).  

The functional atlas was then registered to each participants FOD image using a 

linear registration (Modat et al. 2010). Connectomes were constructed by combining 

streamline tractograms with the participant’s grey matter parcellation. Streamlines 

were assigned to the closest node within a 2-mm radius of each streamline endpoint. 

Structural connections were weighted by streamline count and a cross-sectional area 

multiplier, as implemented in SIFT2 (Smith et al. 2015). Connections were then 

combined into 114 x114 and 514 x 514 undirected and weighted matrices.  

5.5 fMRI acquisition and processing 

Functional MRI data pre-processing was performed using SPM12 and the using the 

CONN toolbox version 14 (Whitfield-Gabrieli and Nieto-Castanon 2012) running 

under MATLAB (ver R.2012b.) Segmented images were used to create an improved 

anatomical scan for coregistration. The first five EPI images were discarded to allow 

for steady state equilibrium. 

Functional images were first slice-timing corrected, realigned incorporating field maps 

used for inhomogeneity correction and then coregistered to the functional atlas 

(Modat et al. 2010). Using the CONN toolbox, EPI images and  ROIs were denoised 

using the anatomical Compcorr method, along with 6 movement parameters, using a 

band pass filter (0.008-0.9) and linear detrending, calculation of bivariate correlations 

and application of a Fisher transform.  

Subsequent statistical analyses were performed performed using the CONN toolbox 

(Whitfield-Gabrieli and Nieto-Castanon 2012). Smoothed, normalised EPI images 
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were included with corresponding structural images (combined, segmented grey and 

white matter). Connections were then combined into 114 x 144 and 514 x 514 

undirected and weighted matrices, matching the corresponding structural connectivity 

matrices. ROIs were defined as functionally connected if there was a correlation 

between the time series of ROI 1 and ROI 2. 

5.6 Statistical analysis 

To assess whether specific structural and functional connections showed group 

differences between preHD and controls, the NBS method was used (Zalesky et al. 

2010) (see also section 2.9.6.2). This involves creation of a general linear model with 

age and gender as covariates. Permutation testing was then performed using 

unpaired t-tests and 5000 permutations. A test statistic was then computed for each 

connection and a threshold applied (t=3.1) to produce a set of suprathreshold 

connections, thereby identifying networks, which show significant differences in 

connectivity between groups. A FWE correction was also applied (p=<0.05). 

Functional and structural connectivity were investigated separately, in both the 114 

and 514 region parcellations.  

The functional connectivity analysis was then repeated by constraining the functional 

connectome by the structural connectome. This was motivated by the known high 

rate of false positive rates in fMRI connectivity analyses when using cluster-based 

inferences (Eklund et al. 2016). To do so, the functional matrix was simply multiplied 

by the structural matrix to remove any functional connections that do not have a 

supporting structural connection and the NBS analysis was repeated on the new 

constrained connectome. 

Next, to investigate whether preHD participants with high CSF NfL showed 

differences in structural or functional connectivity compared to preHD participants 

with normal CSF NfL, a subgroup analysis was performed where the preHD group 

was split in two on the basis of the CSF NfL result in the study. The low group had 

NfL values within the 95th percentile of controls (<951 pg/mL), whereas the high group 

had NfL values above this. Differences between both groups were investigated for 

both structural and functional connectivity using both 114 and 514 parcellations.  
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Finally, correlations between CSF NfL and structural and functional connections 

within the preHD group were investigated by including NfL as the contrast in the NBS 

for both structural and functional connectivity matrices. The lowest cluster p-values 

are reported for each analysis. 

5.7 Results 

5.7.1 No significant differences in structural and functional 

connections 

Using NBS, there were no significant differences in structural connectivity between 

preHD and control groups in either the 114 or 514 region network parcellation, with 

the lowest cluster p-value 0.35 and 0.14 respectively. Similarly, there were no 

significant differences in functional connectivity in either the 114 or 514 region 

network with lowest cluster p-values of 0.40 and 0.48 respectively. Given the lack of 

significant differences at either resolution, the remainder of the analysis was 

performed for the 114 region network only. 

The functional analysis was repeated after constraining the functional connectome by 

the structural connectome, thereby removing functional connections without a 

corresponding structural connection. This repeat analysis similarly revealed no 

significant differences in functional connectivity between preHD and controls 

(p=0.39). 

5.7.2 NfL subgroup analysis results 

Next, the analysis was repeated to investigate whether preHD participants with high 

CSF NfL (N=22) demonstrated altered structural and functional connectivity 

compared to preHD participants with CSF NfL concentrations in the control range (< 

95th percentile of controls; N=24). There were no significant differences in structural 

connectivity between the low and high NfL groups (p=0.13). Similarly there were no 

significant differences in functional connectivity between the low and high NfL group 

(p=0.56). 
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5.7.3 Functional, but not structural connectivity, correlates with 

CSF NfL 

Correlations between connectivity and NfL were performed for both structural and 

functional connections separately. There were no significant correlations between NfL 

and structural connectivity within the network (p=0.19). Similarly, there were no 

significant correlations between NfL and reducing functional connectivity (p=0.69). 

However, there were significant correlations between NfL and increasing functional 

connectivity in the preHD group (p=0.03) (Figure 5.2; Table 5.2). Within this network, 

there was a preponderance of posterior connections and a similar number of 

intrahemispheric and interhemispheric connections. There was no obvious left or right 

dominance. Of the significant correlations, the dorsal attention network was most well 

represented whilst the ventral attention and control networks had the least number of 

connections within this subnetwork of connections correlating with NfL. 
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Figure 5.2 NBS correlation analysis of functional connections and CSF NfL. This network of 58 
nodes and 112 connections showed significant increases in functional connectivity with increasing NfL 
(p=0.03). Significant connections also tabulated in Table 5.2.  

Table 5.2 Correlations between increasing functional connectivity and CSF NfL 

in preHD 

ROI 1 ROI 2 t 

L Cont pCun 1 R Default Temp 3 3.2 

L Cont pCun 1 R SomMot 2 5.02 

L Cont pCun 1 R SomMot 5 4.72 

L Cont pCun 1 R SomMot 6 4.94 

L Default Par 1 R DorsAttn Post 5 3.33 

L Default Par 1 R Vis 2 4.18 

L Default PFC 1 R DorsAttn Post 5 3.73 

L Default PFC 1 R SomMot 4 3.63 

L Default PFC 4 R SomMot 6 3.38 

L Default PFC 6 R DorsAttn Post 2 3.21 

L Default PFC 6 R DorsAttn Post 5 3.51 

L Default PFC 6 R SomMot 2 3.23 

L Default PFC 6 R Vis 7 3.26 

L Default Temp 1 R DorsAttn FEF 1 3.63 

L Default Temp 1 R DorsAttn Post 5 5.01 

L Default Temp 1 R Vis 2 3.39 

L Default Temp 1 R Vis 7 3.48 

L Default Temp 2 R DorsAttn FEF 1 3.26 

L Default Temp 2 R DorsAttn Post 2 3.12 

L Default Temp 2 R DorsAttn Post 5 4.27 

L Default Temp 2 R Vis 2 3.61 

L Default Temp 2 R Vis 3 3.2 

L Default Temp 2 R Vis 7 3.64 

L DorsAttn FEF 1 L Default PFC 2 3.93 

L DorsAttn FEF 1 L Default Temp 1 3.27 

L DorsAttn FEF 1 L Default Temp 2 3.39 

L DorsAttn FEF 1 L Limbic TempPole 1 4.94 

L DorsAttn FEF 1 R Limbic TempPole 1 5.06 

L DorsAttn FEF 1 R Vis 8 3.61 

L DorsAttn Post 3 L Default Temp 2 3.18 

L DorsAttn Post 3 L Limbic TempPole 1 3.11 

L DorsAttn Post 5 L Striatal Somatomotor 3.16 

L DorsAttn Post 5 R SomMot 1 3.33 

L DorsAttn Post 6 L Default PFC 2 4.44 
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L DorsAttn Post 6 L Default Temp 1 4.31 

L DorsAttn Post 6 L Default Temp 2 4.33 

L DorsAttn Post 6 L Limbic TempPole 1 3.18 

L DorsAttn Post 6 R DorsAttn Post 2 3.24 

L DorsAttn Post 6 R Limbic OFC 1 3.16 

L DorsAttn Post 6 R Limbic TempPole 1 3.45 

L DorsAttn Post 6 R Striatal Default 3.21 

L DorsAttn PrCv 1 R Limbic TempPole 1 3.37 

L Limbic TempPole 1 L Default PFC 6 3.31 

L Limbic TempPole 1 R DorsAttn FEF 1 4.23 

L Limbic TempPole 1 R DorsAttn Post 1 3.4 

L Limbic TempPole 1 R DorsAttn Post 2 3.25 

L Limbic TempPole 1 R DorsAttn Post 5 3.84 

L Limbic TempPole 1 R SomMot 3 3.48 

L Limbic TempPole 1 R SomMot 4 4.25 

L Limbic TempPole 1 R SomMot 6 3.13 

L Limbic TempPole 1 R SomMot 7 3.69 

L Limbic TempPole 1 R SomMot 8 5.28 

L VentAttn Med 1 R Vis 7 3.51 

L VentAttn Med 2 R Limbic TempPole 1 3.96 

L VentAttn Med 3 L Limbic TempPole 1 3.41 

L VentAttn Med 3 R DorsAttn Post 1 3.54 

L VentAttn Med 3 R Limbic TempPole 1 3.21 

L SomMot 3 R Vis 7 3.27 

L SomMot 4 L DorsAttn Post 6 3.36 

L SomMot 4 L Limbic TempPole 1 3.16 

L SomMot 4 R DorsAttn Post 5 3.48 

L SomMot 5 R DorsAttn Post 1 3.48 

L SomMot 6 L Default PFC 6 3.62 

L SomMot 6 L Limbic TempPole 1 5.32 

L SomMot 6 R DorsAttn Post 1 3.61 

L SomMot 6 R Limbic TempPole 1 5.72 

L Vis 3 R DorsAttn FEF 1 3.38 

L Vis 3 R DorsAttn Post 2 4.09 

L Vis 5 R Default Temp 3 3.12 

L Vis 5 R VentAttn TempOccPar 1 4.43 

L Vis 7 L Default Temp 1 3.43 

L Vis 7 L Limbic TempPole 1 3.81 

L Vis 7 R Default Temp 2 3.2 

L Vis 7 R Limbic TempPole 1 3.28 

L Vis 7 R SomMot 6 3.12 

L Vis 8 L SomMot 5 3.17 

L Vis 8 L SomMot 6 3.29 
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L Vis 9 L Default PFC 6 3.25 

L Vis 9 L Default Temp 1 3.96 

L Vis 9 L Default Temp 2 3.85 

R DorsAttn Post 1 R DorsAttn Post 2 3.62 

R DorsAttn Post 1 R VentAttn Med 2 3.6 

R DorsAttn Post 2 R DorsAttn Post 5 4.79 

R DorsAttn Post 5 L Striatal Frontoparietal 4.48 

R DorsAttn Post 5 R Default PFCv 2 4.45 

R DorsAttn Post 5 R Default Temp 3 3.12 

R DorsAttn Post 5 R DorsAttn PrCv 1 3.63 

R DorsAttn Post 5 R Limbic TempPole 1 3.27 

R DorsAttn Post 5 R Striatal Default 3.17 

R DorsAttn Post 5 R Striatal Frontoparietal 4.25 

R VentAttn Med 1 R Limbic TempPole 1 5.11 

R SomMot 4 R DorsAttn Post 5 3.43 

R SomMot 5 R DorsAttn Post 1 3.36 

R SomMot 6 R DorsAttn Post 1 5.55 

R SomMot 7 R DorsAttn Post 1 3.51 

R SomMot 7 R DorsAttn Post 5 3.28 

R SomMot 7 R Limbic TempPole 1 4.36 

R SomMot 8 R DorsAttn Post 1 4.73 

R SomMot 8 R Limbic TempPole 1 4.42 

R Vis 1 R SomMot 7 3.27 

R Vis 2 R DorsAttn Post 1 3.36 

R Vis 2 R VentAttn Med 2 3.51 

R Vis 2 R SomMot 8 3.99 

R Vis 3 R DorsAttn Post 1 3.43 

R Vis 5 R DorsAttn Post 2 3.41 

R Vis 5 R VentAttn TempOccPar 1 3.99 

R Vis 6 R DorsAttn Post 2 3.35 

R Vis 6 R Striatal Default 3.55 

R Vis 7 L Striatal Somatomotor 3.14 

R Vis 7 R SomMot 3 3.12 

R Vis 7 R SomMot 8 3.44 

R Vis 8 R DorsAttn FEF 1 3.66 

Correlations are listed in alphabetical order of left, then right regions of the first connection. t = 

test statistic; L = Left; R = Right; Cont = Control network; Default = Default mode network; 

DorsAttn = Dorsal attention network; VentAttn = Ventral attention network; SomMot = 

Somatomotor network; Vis = Visual network; pCun = Precuneus; PFC = Prefrontal; OFC = 

Orbitofrontal; Temp = Temporal; FEF = Frontal eye field; PrCv = Precentral ventral; TempPole = 

Temporal pole; Med = Medial; Post = Posterior. 
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5.8 Discussion 

Expanding on results from previous chapters, this study demonstrates that both 

structural and functional connectivity appear preserved at the group level in HD gene 

carriers approximately 25 years from predicted onset. However, by linking CSF NfL 

into a HD connectivity analysis for the first time, I show that the functional connectivity 

of certain connections increases with increasing NfL. This may represent the 

beginning of compensatory functional upregulation in the very early stages of 

neurodegeneration. 

5.8.1 No significant differences in structural or functional networks 

in early preHD 

Whilst previous literature has demonstrated changes in functional connectivity in both 

HD and preHD, the direction of changes and connections affected has been variable 

between studies. Data-driven approaches can help standardise some aspects of 

analysis by avoiding focusing on select networks where there can be considerable 

variability between the choice of networks and their definition. However, even data-

driven approaches have previously recorded varying results in preHD with decreases 

in striatal and rich club connectivity (Poudel et al. 2014; Harrington et al. 2015; 

Espinoza et al. 2018) and increases in fronto-occpital, fronto-striatal and fronto-

parietal regions (Harrington et al. 2015; Espinoza et al. 2018) having been reported 

previously. 

In this study, both structural and functional connectivity across a standardised 

network were investigated so that any alterations in functional connectivity could be 

related back to any changes in their underpinning structural connections. However, 

there were no significant differences in structural or functional connectivity between 

this preHD group far from predicted onset and a well matched control group. These 

results build upon those from previous chapters by solidifying the evidence for 

preserved structural connectivity at this stage of preHD, whilst also providing 

evidence of no underlying changes in whole brain functional connectivity.  
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5.8.2 Negative results are robust to different methods of analysis 

When assessing structural and functional connectivity, the method of analysis can 

have a significant influence on results. This study used varying but complementary 

approaches to investigate how robust the initial findings were to variations in analyses 

methods.  

Connectivity analyses can be sensitive to the resolution of the parcellation scheme 

employed. Using parcellations with lower numbers of regions may be beneficial to 

maximise inter-subject correlation, however significant changes in connectivity may 

be lost due to large spatial averaging. Alternatively, using matrices that are too large 

may lead to variability due to registration errors and MRI noise that may be larger 

than the functional connectivity difference between the two groups (Cammoun et al. 

2012). To address this issue, a validated cortical atlas with 100 and 500 region 

parcellations was used in this analysis to assess the influence of parcellation 

resolution on the results. There were no significant differences in structural or 

functional connectivity in using either the 100 and 500 region parcellation, 

demonstrating that the null result is robust to the influence of varying parcellation 

resolution. 

In connectome construction, false positives have been shown to be a significant 

problem in functional connectivity analyses (Eklund et al. 2016). Utilising the 

existence of both structural and functional connectivity data in this analysis, functional 

connectivity was reassessed after removing all functional connections without an 

underlying structural connection. Although it is not the case that functional 

connections cannot exist without a direct structural link, since indirect connections 

can exist in the network, repeating the analysis in this way may help remove a 

significant proportion of false positive connections and affords another opportunity to 

assess how robust the null result is to differing modes of analysis. The result of no 

significant differences across the functional network, after constraining by structure, 

again strengthens the previous findings of no significant differences in structural and 

functional connectivity between the preHD and control groups. 
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5.8.3 Structural and functional associations with NfL 

NfL has emerged as a leading prognostic and disease progression biomarker in 

preHD (Zeun et al. 2019). As a major component of the axonal cytoskeleton, it can 

be presumed that increases in NfL seen across a spectrum of traumatic, inflammatory 

or degenerative neurological diseases originate from axonal damage and/or loss. 

Recent studies have begun to link imaging with NfL to understand how elevations in 

NfL relate to changes in white matter macro- and micro-structure seen using MRI. In 

HD, significant associations between plasma NfL and white matter volume loss in 

peristriatal white matter and within the corpus callosum has been observed previously 

in the TRACK-HD cohort (Johnson et al. 2018). Plasma NfL also significantly 

predicted subsequent white matter atrophy and occipital grey matter atrophy in this 

cohort. In a study of a mixed preHD/HD cohort, no significant associations were found 

between standard DTI or NODDI metrics and CSF or plasma NfL concentrations, 

although there was a consistent non-significant trend of diffusion metric changes 

characteristic of white matter degeneration disorganisation and higher NfL 

concentrations (Gregory et al. 2020). The failure to find significance between diffusion 

measures and NfL in this cohort might be due to the relatively low sample size ( 30 

HD and 19 controls), since a similar larger study of autosomal dominant Alzheimer’s 

disease mutation carriers found significant associations between DTI measures and 

plasma NfL both cross-sectionally and longitudinally (Schultz et al. 2020). Similar 

associations between DTI measures and NfL has also been reported in amyotrophic 

lateral sclerosis (Menke et al. 2015). 

Whilst NfL has previously been related to microstructural changes in white matter 

tracts, its impact on structural and functional connectivity has not been previously 

explored in HD. Since connectivity depends on axonal integrity, it should be expected 

that as NfL rises, structural connectivity will decrease. However, functional 

connectivity may increase for several possible reasons including as compensatory 

effect (Gregory et al. 2018) or as a result of pathological hyperexcitability (Orth et al. 

2010) and therefore it is less predictable how functional connectivity may change in 

response to increasing concentrations of NfL. In the initial HD-YAS analysis, CSF NfL 

concentrations were found to be elevated in the preHD group and strongly associated 

with age-CAG. However, 53% of preHD participants had CSF NfL concentrations 
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within the 95th percentile of controls, suggesting that early axonal loss was becoming 

apparent in approximately half of the cohort closer to predicted onset. Therefore, it is 

possible that such changes in structural and functional connectivity might only be 

apparent in preHD participants closer to onset who show elevated CSF NfL 

concentrations. However, there was no evidence of significant changes in structural 

and functional connectivity between gene carriers with NfL concentrations within the 

normal range and gene carriers with concentrations above this range. This may 

signify that early elevations in CSF NfL are not associated with axonal loss, or more 

likely, that the imaging methods employed are not sensitive enough to detect early 

axonal loss that might only be occurring in a limited number of white matter regions 

at this time. This is consistent with the results in chapter three, where no significant 

differences or correlations with NfL were observed across a variety of white matter 

imaging measures in the preHD group. 

Despite not finding significant group differences in this study, the correlation analysis 

revealed a significant correlation between CSF NfL and functional, but not structural 

connectivity. This subnetwork of increased functional connectivity consisted of 

predominantly posterior connections. The dorsal attention network was particularly 

well represented in this subnetwork with comparatively few connections in ventral 

attention and frontoparietal networks. Whilst this study was not designed to detect 

whether this correlation with increased functional connectivity is compensatory or as 

a result of early pathology, the prominence of connections in the dorsal attention 

network and the normal clinical profile of this preHD group as described in chapter 

three, might suggest that this is early evidence of compensatory upregulation in these 

functional connections. The finding of increased functional connectivity in posterior 

regions with increasing NfL is consistent with results from a previous study in the 

PREDICT-HD cohort that found upregulation in posterior connections in preHD 

participants closer to predicted onset also using NBS (Harrington et al. 2015). 

However, a separate study using a different method of analysis found a pattern of 

reduced connectivity in posterior regions and upregulation in anterior regions 

(McColgan et al. 2017). Since this observation was in a cohort closer to predicted 

onset, one possible explanation for this discrepancy with the current result is that 

regions most affected by early pathology show an initial increase in neuronal activity 

that subsequently leads to reduced neuronal activity and death with disease 
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progression. In support of this, mHTT has been shown to cause widespread synaptic 

dysfunction which may lead to a failure to regulate excitatory drive as a contributor of 

neuronal death (Smith-Dijak et al. 2019).  

Looking to other neurodegenerative diseases, Alzheimer’s studies have also 

demonstrated concurrent increases and decreases in functional connectivity in the 

early disease process but with more consistent widespread decreases in functional 

connectivity occurring with disease progression (Chhatwal et al. 2013; Badhwar et al. 

2017; Demirtaş et al. 2017). A recent study using a computational model of 

connectivity change over time in Alzheimer’s disease suggested that observed 

temporary excessive neuronal activity may be an early pathological event that 

subsequently leads to neurodegeneration and reduced functional connectivity in the 

same regions (de Haan et al. 2012). Considering the collective evidence, the 

observed correlations between NfL and increasing functional connectivity may 

represent an early compensatory effect, but the alternate hypothesis of representing 

early pathological change cannot be excluded. Further longitudinal study of well 

stratified cohorts will be required to better characterise the topographical and 

temporal nature of increased functional connectivity in preHD and its relationship to 

rising concentrations of NfL.  

5.8.4 Future directions 

There have been very few studies investigating the relationship between structural 

and functional connectivity in HD. Direct structural connectivity accounts for much of 

the variance observed in functional connectivity (Suárez et al. 2020), hence 

examining structural and functional connectivity in tandem can lead to further insights 

than the study of each in isolation. In this study, both were analysed separately to be 

able to relate any changes observed in functional connectivity to the corresponding 

underlying structural connections. However, the relationship between the structural 

and functional connectivity is imperfect since some functional connections may not 

be directly linked by a structural connection and where a corresponding structural 

connection exists, there is still a degree of variance between the functional and 

structural strength of that connection (Suárez et al. 2020).  
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The study of how structural connectivity constrains function has been increasingly 

studied. Recent studies using different methods have provided converging evidence 

that structure-function relationships are organised around a hierarchical gradient 

spanning from unimodal to transmodal cortex (Margulies et al. 2016; Preti and Van 

De Ville 2019; Baum et al. 2020), consistent with the spatial hierarchy established in 

earlier primate tract-tracing work (Mesulam 2012). Within this organisation, structure 

and function appear to be closely coupled in unimodal sensory and motor areas, but 

systematically decouple towards transmodal cortex. This decoupling appears to 

increase through development and is associated with age-related improvements in 

executive function (Baum et al. 2020). This underscores how the structure-function 

hierarchy reorganises during development to support key functions that are known to 

be disrupted in neurodegenerative diseases like HD. If there is indeed 

neurodevelopmental effects of mHTT on striatal and cortical development, it is 

possible that the normal structure-function relationship may be altered in HD gene 

carriers, which in turn could affect clinical performance in more subtle ways. Hence, 

studying structure-function coupling in this way may be of interest in future studies of 

early preHD. 

Previous research using fMRI has found evidence of compensation in preHD, 

whereby maintenance of clinical performance despite detectable early disease 

markers is associated with increased functional connectivity in certain networks 

(Kloppel et al. 2015; Gregory et al. 2018). This study was not designed to study 

evidence of compensation, but since this preHD cohort demonstrate normal clinical 

function, coupled with elevations in NfL, further investigation for evidence of 

compensation within this cohort is warranted.  

The use of the Allen transcriptome brain atlas (Hawrylycz et al. 2012) which maps 

regional gene expression in the brain to imaging space, also affords the opportunity 

to investigate relationships between regional gene expression and observed changes 

in functional connectivity (Anderson et al. 2018) that may help understand biological 

basis of altered functional connectivity in certain networks in preHD. 
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5.8.5 Limitations 

There are several limitations to this study. Since HD-YAS was powered to detect 

disease-related striatal volume changes, it may be underpowered for detecting 

differences in structural and functional connectivity as studied here. Furthermore, 

whilst NBS aims to boost statistical power by cluster-thresholding, whole brain 

approaches are unlikely to detect any subtle, regional specific changes in 

connectivity, should they be present. However a whole-brain approach was 

necessary, since previous literature has not converged on where, when and how 

functional connectivity changes in preHD.  

To facilitate group comparisons, a uniform parcellation was applied to all participants 

in this study and hence assumes that regions can be mapped to identical spatial 

locations in each participant. There is likely to be some individual variation in 

structural and functional boundaries within each subject, with functional boundaries 

particular likely to vary in this respect. Indeed, functional boundaries can 

systematically vary across individuals and cortical regions and such variability may 

limit the ability to detect early disease effects in preHD (Mueller et al. 2013).  

Finally, whilst correlations observed between NfL and functional connectivity in this 

study may represent possible evidence of compensation, this study was not designed 

to specifically investigate for evidence of compensation in this cohort and so cannot 

confidently advance this hypothesis. Validated models of compensation incorporating 

clinical measures are best placed to test this specific hypothesis in such cohorts 

(Gregory et al. 2017; Gregory et al. 2018). 

5.8.6 Conclusion 

These results suggest that both structural and functional whole-brain connectivity is 

intact in HD gene carriers approximately 25 years from predicted onset. This result 

extends the findings from previous chapters, demonstrating that brain structure and 

function is largely preserved approximately 25 years from predicted onset in preHD. 

However, the correlations between increasing NfL and functional connectivity in 

certain connections may be early evidence of compensatory upregulation in this 

cohort. Future studies will seek to specifically test this hypothesis to build an ever 
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more complete picture of changes in brain structure and function through the 

premanifest period and further inform future therapeutic strategies for HD. 
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6 Discussion 

The overarching aim of this thesis was to characterise brain structure and function in 

young adult HD gene carriers far from predicted onset. First, a novel cohort of gene 

carriers further from predicted onset than previously studied were recruited along with 

a matched control group. A state-of-the-art battery covering cognition, psychiatric 

symptoms, multi-modal imaging alongside blood and CSF collection was performed 

to provide a deep phenotyping of this cohort. Analysis of the data then aimed to 

evaluate how early disease-related changes in preHD could be identified, and which 

measures were most sensitive at this early stage of disease. The thesis then turned 

specifically towards further characterising structural and functional connectivity in the 

early premanifest period. By combining diffusion MRI data from the HD-YAS cohort 

with a previously recruited preHD cohort closer to expected onset, I aimed to identify 

how early degeneration of white matter connections could be detected in HD and 

which connections were most susceptible to early degeneration. Finally, I aimed to 

characterise the relationship between structural and functional connectivity in early 

preHD by performing a combined analysis of diffusion and functional MRI datasets 

from HD-YAS, and utilising a biofluid marker of axonal degeneration to further 

understand its relationship to imaging measures of connectivity. Collectively, by 

providing a more detailed view of brain structure and function in the early premanifest 

period, these results will inform future treatment strategies that aim to delay or prevent 

the emergence of HD signs and symptoms. 

6.1 Uncovering the earliest markers of neurodegeneration 

in HD 

Previous cohort studies in preHD had characterised the premanifest period up until 

approximately 15 years from predicted onset, at which time there are still detectable 

and progressive changes in brain structure, biofluid biomarkers, neuropsychiatric 

symptoms and cognition (Paulsen et al. 2008; Stout et al. 2011; Tabrizi et al. 2013; 

Epping et al. 2016). In order to wind back the clock further to trace how early such 

changes could be detected, the HD-YAS recruited participants who were 18 years or 
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more from predicted onset by targeting a young age group with low CAG repeat 

lengths. Of particular importance when searching for subtle disease-effects, was 

combining the previous literature with advances in methodology to create a 

comprehensive yet targeted assessment battery best placed to detect any early 

changes. The assessment battery in HD-YAS was devised on these principles and 

as a single-site study, afforded the ability to execute a standardised protocol without 

the possible confound of inter-site variability in assessors or methodological 

equipment such as MRI scanners. 

Of the clinical features of disease, subtle cognitive impairments and increased 

neuropsychiatric symptoms have been shown to be the most consistently detectable 

features in the premanifest period (Duff et al. 2010; Stout et al. 2011; Tabrizi et al. 

2013; Epping et al. 2016). Even subtle cognitive impairments observed in the 

premanifest period, such as executive dysfunction and attentional deficits can affect 

functional abilities such as work performance, driving and financial management 

(Beglinger et al. 2010). Similarly, neuropsychiatric symptoms that are more common 

in preHD, such as depression, anxiety or apathy, can have a significant impact on an 

individual’s functioning and sense of well-being (Duff et al. 2007). It is important then 

for clinical practice, to understand when these features can first be detected.  

Results from HD-YAS suggest that gene carriers approximately 24 years from 

predicted onset, show no significant cognitive or neuropsychiatric differences 

compared to controls. The finding of no significant cognitive differences, despite a 

wide range of targeted cognitive assessments, is in keeping with previous literature 

that has found minimal cognitive deficits in preHD further than 10 years from predicted 

onset (Stout et al. 2011; Papoutsi et al. 2014). It also extends this literature in scope, 

particularly by incorporating tests of social cognition that have not been widely studied 

in preHD previously. 

The findings of no neuropsychiatric differences between the preHD and control 

groups is similarly significant. Firstly, it indicates that the previously observed increase 

in neuropsychiatric symptoms is a feature that may begin to emerge from 

approximately 15 years from predicted onset. It also adds to previous literature on 

neuropsychiatric outcomes following a positive predictive test, where the results are 

consistent with previous reports of no significant changes in the extent of 
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neuropsychiatric symptoms in those with a positive predictive test, even at younger 

ages. These results demonstrate that neuropsychiatric symptoms are common in the 

young adult population and supports a hypothesis that neuropsychiatric symptoms in 

preHD may only begin to increase later in the premanifest period as a result of 

neurodegeneration rather than being related to carrying the gene. However this study 

was not specifically designed to address the question of neuropsychiatric effects of 

genetic testing and the significant limitation of selection bias in this study makes it 

difficult to draw definitive conclusions regarding the susceptibility to and cause of 

neuropsychiatric symptoms in preHD. 

Previous research had suggested that changes in brain structure can be detected via 

imaging at least 15 years from predicted onset. Striatal volume loss, peristriatal white 

matter degeneration, loss of cortico-striatal and rich club connectivity and changes in 

functional connectivity have all been consistently described in preHD (Tabrizi et al. 

2013; Kloppel et al. 2015; McColgan et al. 2015; Zhang et al. 2018). In HD-YAS, the 

only imaging measure showing significant change in preHD was reduced putaminal 

volumes, although caudate volumes did also show a volume reduction to a lesser 

extent. Whether this slight reduction is due to early neurodegeneration or as a result 

of abnormal development is not clear, although there was no significant association 

with age-CAG or NfL in this measure. Hence, reduction of striatal volumes appears 

to be the earliest detectable imaging feature of HD, with other described changes 

beginning to appear closer to expected onset. 

With no detectable changes in cognition, neuropsychiatric symptoms and brain 

structure appearing largely intact on MRI, it is of particular interest that increases in 

NfL and YKL-40 can be detected at this early stage in HD-YAS. Over the past decade, 

NfL has emerged as a sensitive marker of neuronal damage across a wide-spectrum 

of neurological diseases (Khalil et al. 2018; Bridel et al. 2019) and is already known 

to be track disease-progression, predict onset and closely associate with clinical 

measures of disease in HD (Byrne et al. 2017; Niemela et al. 2017; Byrne et al. 2018). 

The findings of elevated NfL indicate that neuroaxonal injury is occurring at this early 

stage. Concurrent increases in YKL-40 and its close association with NfL 

concentrations is suggestive of a detectable astrocytic response to early neuronal 

injury. However, that 53% of preHD had CSF NfL concentrations within the control 
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range, along with its strong association with age-CAG, suggests that a timepoint has 

been identified where a marker of neurodegeneration may be beginning to emerge 

before significant changes in brain structure and function have occurred.  

Finally it is important to consider how the results of HD-YAS relate to emerging 

evidence suggesting that the HD mutation may confer to neurodevelopmental 

differences in brain structure and function. Data from mouse models (Molina-Calavita 

et al. 2014), human induced pluripotent stem cells (HD iPSC Consortium 2017) and 

more recently human foetal tissue (Barnat et al. 2020) have suggested that the HD 

mutation causes abnormalities in the developing cortex, including defects in neural 

progenitor cell differentiation, changes in mitosis and cell cycle progression. It is 

difficult to predict how this might influence the clinical, imaging and biofluid phenotype 

in preHD however. Data from the Kids-HD study, in some respects the antecedent 

study to HD-YAS, found an age-related striatal volume difference in HD mutation 

carriers, with initial hypertrophy followed by a more rapid volume decline. In HD-YAS, 

the observed reduced putaminal and caudate volumes in preHD could be construed 

to be consistent with a neurodevelopmental difference in striatal development in HD 

mutation carriers, particularly given the lack of age-CAG association. However, the 

observation in Kids-HD was that striatal volumes were already quickly declining 

having started larger than controls. If that were true, one would have expected to see 

a more significant association with age-CAG in striatal volumes in HD-YAS, which 

was not the case. Therefore it may be more likely that the reduced striatal volumes in 

HD-YAS are a reflection of atrophy over time which is too subtle to show a significant 

association with age-CAG, which is an imperfect proxy of disease stage in preHD. In 

support of this theory, is the observation that NfL is already elevated in CSF and 

plasma of preHD in HD-YAS and is associated with age-CAG, suggesting that there 

is detectable neuronal damage occurring at this point related to disease stage. 

Overall, the results included within this thesis provide little evidence of developmental 

differences in brain structure and function in early preHD, which is perhaps surprising 

if there are such pronounced differences in the developing cortex as observed in the 

aforementioned studies. It is possible however, that developmental differences in HD 

mutation carriers may manifest as making certain cell types more susceptible to 

damage later in this disease course as the harmful effects of the mutation accumulate 

(Molero et al. 2016), rather than causing fundamental differences in brain structure 
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and function that may be expected to be detected by neuroimaging, biofluid 

assessments and functional measures. Given important connotations for the 

development of HD therapeutics, the impact of the HD mutation in neurodevelopment 

remains a key area of interest in the field.  

6.2 Zeroing in on selectively vulnerable structural 

connections in preHD 

In chapter 3 as part of the initial analysis of HD-YAS, select rich club and cortico-

striatal connection strengths were investigated, alongside network measures of 

integration and segregation. These measures were selected based on previous 

evidence that they were sensitive to early changes in preHD (McColgan et al. 2015; 

McColgan et al. 2017). No differences between gene carriers and controls were found 

in any of these measures however (Scahill et al. 2020). In chapter 4, by utilising an 

advanced diffusion analysis technique and focusing specifically on cortico-striatal and 

cortico-thalamic subnetworks in both HD-YAS and TrackOn-HD cohorts, I have 

provided further insights in the timing and anatomical specificity of basal ganglia white 

matter degeneration in preHD. Whilst the vulnerability of motor cortico-striatal 

connections has been described previously, the selectively vulnerability of limbic 

cortico-striatal connections has not been previously described and may be important 

in understanding the biological basis of how neuropsychiatric symptoms such as 

irritability and apathy begin to arise in the premanifest period (Le Heron et al. 2018). 

Similarly, the apparent vulnerability of thalamic connections to premotor and primary 

motor cortex is a novel finding in the field and may help broaden future research focus 

to continue to investigate these central connections in basal ganglia-cortical loops. 

Whilst select connections showed changes in the group 11 years from onset, findings 

in the preHD group 25 years from predicted onset extended previous findings in 

chapter 3, suggesting that these vulnerable connections are preserved at this early 

stage of the premanifest period. By using a cohort who had two different acquisition 

protocols, I demonstrated that a more advanced multi-shell diffusion acquisition with 

higher b-values can improve signal-to-noise in FBA, likely through providing a more 

sensitive measure of FD. This suggests that the use of improved diffusion acquisitions 
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and techniques may be more able to detect the early effects of neurodegeneration 

than techniques that had been used previously in HD cohorts. 

6.3 Whole brain structural and functional connectivity is 

preserved in early preHD, but rising NfL is associated 

with functional upregulation 

Although preHD participants 24 years from predicted onset showed no discernible 

change in cortico-striatal and cortical rich club connections, the elevations in NfL, a 

protein of the axonal cytoskeleton, suggests that there may be some early axonal 

degeneration in this preHD cohort. A whole brain network-based statistical analysis 

of functional connectivity and its underlying structural connections in the HD-YAS 

cohort revealed no significant differences in either functional or structural connections 

between preHD and controls. This finding was robust to the granularity of the network 

reconstructed, with neither the 114 nor 514 region network showing significant 

differences. It was also robust when constraining the functional network by structural 

connectivity, i.e. removing functional connections from the network if they did not have 

a corresponding structural connection in the network. In a subgroup analysis, preHD 

with elevated concentrations of CSF NfL did not show any differences in structural or 

functional connectivity compared to preHD with NfL concentrations within the control 

range. However there were correlations between increasing CSF NfL and increased 

functional connectivity in a subnetwork of connections. Collectively, these results 

suggest that whilst structural and functional connectivity appear broadly preserved at 

the group level, certain functional connections may begin upregulating as CSF NfL 

rises, potentially in a compensatory process to counteract early neuroaxonal loss and 

preserve clinical function.  

6.4 Implications for future therapeutic strategies and trial 

design 

Central to the work in this thesis, is furthering our understanding of the early 

premanifest period in HD to inform future therapeutic strategies and trial design. 
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6.4.1 When to treat? 

Common to all dementias is that by the time symptoms have manifested, there has 

been many years of unchecked neurodegeneration that may not be reversible 

(Bateman et al. 2012; Rohrer et al. 2015). To date, all trials of disease-modifying 

therapeutics for dementias have been unsuccessful. One factor speculated to be 

contributory is a failure to initiate treatments early enough in the disease course 

(Gauthier et al. 2016).  In this respect, the genetic basis of HD, its tendency to affect 

individuals in the fourth to sixth decades of life and availability of predictive testing 

affords an advantage, since treatments could in theory be initiated at any stage of the 

disease, including long in advance of likely symptom onset. Although dependent on 

the profile of a given therapeutic, one potential treatment strategy would be to initiate 

a therapeutic in the premanifest period with an aim to delay or prevent the emergence 

of clinical features of the disease. The HD-YAS reveals a time whereby treatments 

aiming to prevent or delay emerging clinical features could be given, since there was 

no detectable functional impairment and brain structure also appeared largely intact. 

6.4.2 Which biomarkers? 

For trials in the premanifest period to become viable, there is a need for biomarkers 

to stratify or enrich recruitment, demonstrate target engagement and also an efficacy 

biomarker that will show measurable change over the course of typical trial period 

and is closely related to relevant clinical features of disease.  

Results detailed in this thesis provide valuable information regarding potential target 

engagement markers for huntingtin-lowering therapies currently in development. 

Although successfully used to demonstrate target engagement in the first huntingtin-

lowering trial (Tabrizi et al. 2019), the reported low and near undetectable 

concentrations of mHTT observed in HD-YAS indicate that mHTT is unlikely to offer 

a measure of target engagement that will be informative for assessing dose-response 

relationships in early preHD, since concentrations will quickly fall to undetectable. 

However, the significantly higher concentrations of total huntingtin in this group should 

provide a more granular dose-response for total huntingtin therapies at this early 

stage of disease. 
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Results from this thesis also advance NfL as a potential candidate biomarker in far 

from onset preHD. Favourable attributes include its relatively strong effect size 

compared to the few other changes detected in the preHD group, its close association 

with age-CAG and previously described ability to predict disease onset and clinical 

change (Byrne et al. 2017; Niemela et al. 2017; Byrne et al. 2018; Johnson et al. 

2018). Significantly, the HD-YAS results show that CSF NfL is more sensitive and 

specific at this early stage than plasma NfL, in contrast to their near equivalence in 

early manifest disease (Byrne et al. 2018). However, the wide distribution of years to 

predicted onset (11-38 years) in a relatively small cohort with biofluid data limits 

inferences about how NfL changes within this time-frame and when NfL first begins 

to rise. These questions are particularly important to address before NfL can become 

a prognostic biomarker to facilitate clinical trials in such far from onset groups in the 

future.  

In a future preHD clinical trial, one approach might be to enrich recruitment by having 

a predefined CSF NfL cut-off to increase the likelihood of seeing measurable change 

over a typical trial timeframe. The validity of this approach is strengthened by the 

recent findings that baseline CSF and plasma NfL values appear to have superior 

prognostic value than the rate of change in NfL over a 24 month period in a mixed 

premanifest and manifest HD cohort (Rodrigues et al. 2020). Furthermore, 

computational clinical trial simulations in this study demonstrated the use of CSF or 

plasma NfL could substantially reduce the number of participants or trial duration 

required to obtain a prespecified effect size compared to currently used clinical 

measures. Alternatively surrogate endpoints could include time to elevation in NfL, 

rate of increase in NfL concentration or change from baseline. The NfL curves 

produced from combining HD-YAS results with a cohort later in the disease process 

provide an anticipated trajectory of this biomarker and the age at which NfL is 

predicted to rise above the 95th percentile of controls for a given CAG in both CSF 

and plasma.  

The use of NfL as an efficacy marker will require further evaluation of its response to 

treatment. It has already shown ability to track therapeutic response in other 

neurological diseases (Kuhle et al. 2019; Olsson et al. 2019), including those 

delivered by intrathecal injection (Olsson et al. 2019). In HD, CSF NfL values 
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unexpectedly increased in response to a phase 1 trial of huntingtin-lowering ASO 

(Tabrizi et al. 2019). Hence, an improved understanding of NfL’s response to 

therapeutic interventions in HD will be required as its performance in numerous 

clinical trial programmes becomes apparent, alongside the performance of each 

therapy. 

Finally, it’s notable that clinical improvement has typically been a requirement for 

regulatory approval of therapeutics, with the United States food and drug 

administration (FDA) being particularly stringent on requiring demonstrable clinical 

benefit that encompasses how a patient feels, functions or survives (Bous Hufnagel 

2019). This is exemplified by the current phase III trial of tominersen, a non-allelle 

selective huntingtin-lowering ASO, where the composite UHDRS measure which 

includes cognitive test performance has been permitted as a primary endpoint for 

European medicines agency (EMA) but not the FDA who have required that the 

UHDRS total functional capacity scale serves as the primary endpoint. Although the 

approval of therapeutics based on validated biomarkers is likely to increase in the 

future, it will be essential to have robust evidence that biomarker change predicts 

clinical benefit or improvement. Hence before biomarkers such as NfL can be 

permitted as surrogate endpoints, it will be necessary to demonstrate that reducing 

NfL either is associated symptomatic improvement or delays clinical diagnosis in 

preHD. For the latter, a trial would need to recruit a preHD cohort who are closer to 

predicted onset than the HD-YAS to minimise the necessary trial duration period. 

Beyond this, further characterisation of when NfL begins to rise and it’s early trajectory 

in preHD will be important before it can be used as a potential efficacy marker in any 

future far from onset preHD trials.  

6.4.3 Where to treat? 

Viral-vector delivered therapeutics are currently in development for HD (Tabrizi et al. 

2019), with the first RNAi therapeutic now in phase 1 human trials (Clinicaltrials.gov; 

NCT04120493 2019; Uniqure N.V 2020). A significant advantage of viral-vector 

based therapeutics is that a single administration can provide a long-term therapeutic 

effect. However, a key potential limitation is the invasive intra-parenchymal nature of 

delivery and that limited tissue distribution following injection may necessitate 

choosing only certain sites for injection. Importantly, viral-vectors commonly used 
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show evidence of retrograde axonal transport. Notably, in a HD-minipig widespread 

adenoviral-vector 5 based RNAi distribution was seen in the cortex following 

putaminal injection (Evers et al. 2018), suggesting retrograde axonal transport is a 

key mechanism of distribution for such therapeutics.   

The striatum is an important target for such an approach given its notable involvement 

in disease pathology, however its significant anterior-to-posterior length may make it 

difficult to target both anterior and posterior striatum in one injection. Injection of the 

thalamus, a central hub region with extensive cortical connections, has been shown 

to achieve widespread cortical and subcortical coverage in preclinical models (Evers 

et al. 2018; Naidoo et al. 2018; Tabrizi et al. 2019) and is also a possible target site 

for such treatment approaches. However, a limitation of preclinical biodistribution 

studies in animal models such as HD-minipigs (Evers et al. 2018) or macaques 

(Weiss et al. 2020), is that they do not display the white matter pathology seen in 

humans with HD. It can be expected given the above, that as white matter 

degeneration and axonal loss occurs, the distribution of the drug to the cortex will be 

reduced. Therefore, understanding the temporal and topographical evolution of 

axonal degeneration in humans will be informative to selecting injection sites for such 

approaches. In particular, one approach may be to target areas most affected by early 

pathology, but before significant neurodegeneration and white matter loss has 

occurred, to maximise biodistribution and prevent white matter degeneration.  

The findings in chapter 4 highlight the vulnerability of the caudal motor striatal 

connections in preHD. But the concurrent findings of early limbic striatal tract 

vulnerability and the likely significance of this to neuropsychiatric symptoms seen in 

HD suggest that coverage of the ventral striatum may also be important to prevent 

the onset of clinical symptoms, rather than only targeting the dorsal striatum. 

Similarly, there has been little previous attention to cortico-thalamic connections in 

preHD which are believed to be relatively preserved at this stage of disease. However 

the results of this thesis suggest that motor-thalamic connections are affected early 

in HD and that these thalamic subregions may also be an important injection site, not 

just to achieve widespread biodistribution, but to prevent further degeneration of 

connections that may be influential in the emergence of motor signs of the disease. 

Finally, results from this chapter suggest that these important connections are 
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preserved approximately 25 years from predicted onset, highlighting a time at which 

viral-vector based therapeutics should have maximal coverage in the brain to help 

prevent early neurodegeneration. 

6.5 YAS as a resource for further research 

The significant advances in understanding the natural history of HD over the past two 

decades owe a great deal to previous cohort studies TRACK-HD, PREDICT-HD, 

PHAROS and Enroll-HD. In each case, a multitude of studies providing new insights 

have followed the initial main analyses of the cohorts, facilitated in part by open data 

sharing with research groups worldwide. Similarly, the uniqueness of the cohort and 

extensive range of assessments in HD-YAS has generated a rich dataset that stands 

to generate many future studies that further our understanding of the early 

premanifest period.  

The cohort is unique for its young age ranges and the distance from predicted onset 

in the preHD group. Among its strengths include an advanced 3T imaging protocol, 

combining well established acquisitions with novel promising acquisitions such as 

MPMs, which if combined can offer further in-vivo insights into brain structure than 

any single modality. The existence of resting state fMRI data with an extensive array 

of cognitive and neuropsychiatric assessments may provide the tools to further 

investigate the relationships between brain connectivity and clinical function, 

including searching for evidence of compensation in this cohort (Gregory et al. 2018).  

Meanwhile the study also collected demographic and medication history as well as 

data from the UHDRS PBA. Unlike the neuropsychiatric questionnaires used in the 

main HD-YAS analysis, the PBA also measures previous worst, as well as current 

levels of neuropsychiatric symptoms. Hence the PBA data may be well placed to 

further investigate for any past or present neuropsychiatric differences between 

preHD and different control subgroups, including in gene negative participants.  

Biofluid collection was performed using standardised and well validated conditions, 

methods and equipment to facilitate generalisability to previous biofluid collection 

studies within HD. The biofluids collected as part of HD-YAS will continue to be stored 

and made available for future research both internally and externally. It is also 
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reassuring that mHTT and NfL have recently been shown to be unaffected by batch, 

assay or storage effects (Rodrigues et al. 2020). Hence, this resource maybe useful 

for any novel promising biomarkers that emerge in the future. In an example of how 

this approach has already been beneficial, the first large-scale study to demonstrate 

the potential utility of NfL as a biomarker for HD came from using plasma samples 

stored from the TRACK-HD study years after it had completed (Byrne et al. 2017). In 

addition, all preHD participants in HD-YAS had DNA storage performed as part of the 

protocol. Though not analysed to date, these samples may be used in the future to 

further emerging research around somatic instability that is increasingly appearing 

central to HD pathogenesis and progression (Swami et al. 2009; Hensman Moss et 

al. 2017; Genetic Modifiers of Huntington’s Disease Consortium 2019). 

Collectively, further research using this rich dataset may provide many further 

important insights into the early premanifest period of HD and could even be used to 

study brain structure and function in young controls. 

6.6 General limitations and lessons learnt 

6.6.1 A question of power 

One limitation of the HD-YAS is that it was not possible to increase power above and 

beyond detecting the largest effect size in the group furthest from onset in TRACK-

HD. Naturally, when looking further back in a disease process it can be expected that 

effect sizes will become smaller and smaller until true no difference is reached. 

Furthermore, since the power calculation was based on one measure (striatal volume) 

from a previous study, it cannot necessarily be extrapolated that the study was 

powered to assess for differences in other domains such as cognitive tasks or 

assessing associations with age-CAG. These limitations temper the interpretation of 

the HD-YAS results of no significant group differences across many of the measures 

included. However it would be a challenge for any single-site study targeting preHD 

this far from onset to recruit a significantly larger cohort due to the current low uptake 

of predictive testing worldwide, particularly in those aged 18-30 (Baig et al. 2016). 

Furthermore, the low CAG lengths required for this study would further exclude many 

premanifest gene carriers in this age range from such a study. Instead, in addition to 
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using the immediate resource of a national HD clinic, recruitment was boosted by 

setting up regional genetic centre patient identification sites across the UK, and 

through broader efforts such as advertising via the HD Association and HD youth 

organisation. The population density and research infrastructure in the UK likely aided 

this recruitment, as did close connections with other regional HD centres and the 

collective visibility and reach of the HD charitable groups to meet the recruitment 

target and establish this immensely valuable cohort.  

6.6.2 Selection bias  

As discussed in section 3.5.8, the generalisability of the results of this thesis are 

potentially limited by selection bias of which, there are multiple considerations that 

may be a source of such bias. To take part in HD-YAS, participants needed to be a 

UK resident and have an awareness of the study that typically came from 

engagement in other studies or activity in patient support groups. They often were 

required to take time off work, travel long distances and tolerate a challenging two 

day study assessment period that included a physical examination looking for 

diagnostic signs of HD, extensive cognitive testing, a long MRI scanning period, 

venepuncture and lumbar puncture. Motivation for the study may have also included 

those seeking positive feedback from being included in the study and individuals with 

active mental health problems such as depression or apathy would be unlikely to 

volunteer for such a study. All of the above considerations could possibly lead to 

selection bias and a sample not necessarily representative of the general population. 

The most important potential source of such bias however, is the requirement of 

preHD participants having previously undergone a HD genetic test, where it is 

estimated that less than 20% of the wider at-risk population choose to have a 

predictive test (Baig et al. 2016) in the UK. The limited evidence base of differences 

between those who choose to undergo predictive testing and those who do not 

represents a significant potential limitation in the generalisability of these results to 

the wider at-risk/premanifest population.  

One possible solution to address this selection bias a would have been to recruit 

those at risk and subsequently perform predictive testing for the study without 

disclosing to the participants. This approach has been used in previous studies of 

inheritable neurodegenerative diseases (Bateman et al. 2012; van der Plas et al. 
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2019) and is beneficial in eliminating such bias that may arise from requiring a 

predictive test to be enrolled. It would also facilitate recruitment for such a study and 

potentially enable many more participants to be studied. The limitation of such an 

approach includes the difficulty of establishing balanced groups and there would have 

been no way of avoiding recruitment of those who were likely to be less than 18 years 

from predicted onset given that CAG repeat length would be unknown. Although both 

limitations could be largely addressed by significantly expanding the numbers 

recruited, a further limitation that would follow would have beena obtaining funding to 

recruit large numbers of participants with such an extensive range of assessments 

which may have precluded such a study getting off the ground.  

6.6.3 Biofluid collection in young cohorts 

The results of HD-YAS illustrate the importance of blood and CSF biomarkers in 

characterising the early effects of neurodegeneration, consistent with findings from 

other neurodegenerative diseases. On this note, another potential barrier to 

recruitment was the willingness of participants to undergo CSF collection. Given their 

young age, many participants had no or limited prior experience with any type of 

invasive procedure, including blood collection and it was uncertain at the start of the 

study how many participants would be willing to donate CSF. Therefore, the CSF 

collection was made optional since recruitment was already likely to be challenging 

for reasons detailed above. Nevertheless, on reflection the high numbers undergoing 

CSF collection were testament to the bravery and motivation of those involved, and 

indicative that CSF collection can be a viable part of a young adult study. On this note 

however, the incidence of post-lumbar puncture headaches (22% of cohort) was 

higher than previously described in other, albeit older cohorts using the same 

equipment and approach (Nath et al. 2018; Rodrigues 2018). This is likely reflective 

of the known association of younger age groups being more susceptible to this 

adverse event (Amorim et al. 2012; Monserrate et al. 2015). It was however 

reassuring that such headaches were short lived and all resolved spontaneously 

without the need for a blood patch. The tolerability of lumbar punctures in age groups 

this young has not been well characterised previously and further study will be helpful 

to inform future use of CSF as biomarkers in trials or in the clinic for young adults.  
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6.6.4 The power of collaboration 

The HD-YAS, funded by a Wellcome Collaborative award, is a positive example of 

the benefits of collaboration. To fully characterise early disease effects, a combination 

of imaging, cognitive, neuropsychiatric and biofluid assessment was required. Hence, 

the study was set up with experts in each field, not restricted to the arena of HD 

research, to help inform the study design and methods of assessment. The outcome 

of the study and interpretation of results was greatly enhanced by the collaborative 

approach taken. On a similar theme, it is notable that a key result was the finding of 

elevated NfL in the preHD group. Tracing the origins of NfL as biomarker back, it first 

description as potential biomarker in neurology was in a mixed amyotrophic lateral 

sclerosis and Alzheimer’s disease cohort in 1996 (Rosengren et al. 1996). The fact it 

has become a leading candidate biomarker for HD reflects that many neurological 

diseases share similar hallmarks and that discoveries in one disease can greatly 

inform research in another. This potential for shared learning has been influential in 

the establishment of initiatives such as the UK Dementia Research Institute (Hesse 

and Henstridge 2018). Specifically, comparable research is ongoing with similar 

premanifest cohorts such as the dominantly inherited Alzheimer’s disease (DIAN) 

(Bateman et al. 2012) and the genetic frontotemporal initiative (Rohrer et al. 2015) 

and it is likely that future research progress in HD will continue to be influenced by 

research in other neurological diseases. 

6.7 Future directions 

6.7.1 Longitudinal follow up in the HD-YAS 

The HD-YAS was established as a cross-sectional study. Whilst some inferences 

were made based the influence of disease burden on the measures studied, inevitably 

the results raised further questions that will require longitudinal follow up to resolve. 

Whilst results advanced NfL as a potential biomarker of early disease, further 

characterisation of the longitudinal dynamics of NfL this early in the disease course 

and whether values are predictive of other disease related changes that arise later in 

the premanifest course will be important. Similarly, whether the observed reduced 

striatal volumes are as a result of ongoing subtle neurodegeneration, or a possible 
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neurodevelopmental effect can be further clarified with longitudinal follow-up. Finally, 

there were several sub-threshold trends in the results, including reduced performance 

in cognitive tasks and certain imaging changes in DTI, NODDI and MPMs. 

Longitudinal follow up to see if these trends persist or increase may help clarify 

whether they represent very early HD-related changes or not. Given that the preHD 

individuals are far from onset and the known slow progressive changes that occur in 

HD across all modalities (Witjes-Ané et al. 2007; Stout et al. 2012; Barker et al. 2013; 

Tabrizi et al. 2013; Gregory et al. 2015), any such follow up would benefit from a 

reasonable gap between visits. 

6.7.2 Future multi-site studies to maximise power and 

generalisability 

As previously discussed, single-site studies confer certain advantages when 

searching for subtle disease effects. This first investigation in gene carriers >18 years 

from predicted onset has already provided valuable insights into the very early 

premanifest period and will continue to help shape which assessments may be most 

useful for future studies wishing to build and extend upon this knowledge. In the 

future, recruitment of a multi-site, multi-national study of a similarly young premanifest 

cohort may be important to maximise power and generalisability of findings to further 

inform future clinical trials in early premanifest groups. In such a study, it may be 

advantageous to include those at risk to minimise selection bias and extend 

generalisability of the results, as previously discussed in section 6.6.2. 

6.7.3 Combining the best established assessments with emerging 

techniques 

As done in the HD-YAS, future studies of the early premanifest period will similarly 

look to combine existing assessment tools shown to be most sensitive in this early 

period with emerging techniques that either increase signal-to-noise or tap into 

previously unchartered neurobiology. Similarly, future studies will need to balance 

comprehensiveness of assessments with minimising unnecessary loss of power 

through multiple-comparisons of an extensive assessment battery. 
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The results of this thesis highlight assessments to include, and some that may be 

dropped in future premanifest studies. For example, amongst biofluids, clear null 

results for biomarkers such as neurogranin, UCHL-1 and GFAP may be dropped in 

exchange for any new emerging biomarkers that demonstrate significant potential in 

this area. 

Among advancing techniques that may provide utility in this area are 7T imaging and 

huntingtin radioligand positron emission tomography (PET). To date, study of 

structural changes in the cortex has been limited by the inability of 3T imaging to 

resolve the many cortical layers and it’s convoluted structure. By enhancing spatial 

and anatomical resolution, 7T imaging may be used to investigate the susceptibility 

of specific cortical layers in the early disease process and its relationship with axonal 

loss and microcircuit dysfunction in preHD (McColgan et al. 2020). 7T imaging may 

also improve signal to noise of current assessments (Springer et al. 2016; McKiernan 

and O’Brien 2017). This could help interrogate for early disease pathology in 

potentially key structures of interest that are unable to be fully delineated at 3T, such 

as the globus pallidus whilst also enhancing the ability to detect early atrophy in key 

structures of interest such as the caudate and putamen which may inform decisions 

about when to initiate treatments in the future. However at present biofluid biomarkers 

such as NfL have shown superior potential as biomarkers (e.g. sensitivity, cost, 

reproducibility) that may help facilitate clinical trials over 3T imaging techniques and 

it is unlikely that 7T imaging will reverse this trend. Furthermore, 7T imaging comes 

with ever stricter eligibility criteria, including for tattoos. The experience from HD-YAS, 

where 29 potential participants screen failed due to tattoos and a further 60 study 

participants had tattoos that met eligibility for 3T scanning, but might fail stricter 

criteria, illustrates a potential limitation for 7T imaging in young cohorts. This, along 

with the relative scarcity of 7T scanners across the world at present, would limit the 

prospect of 7T imaging being used in large scale clinical trials in the near future.  

With a first-in-human open-label study of novel candidate ligands now underway 

(Clinicaltrials.gov; NCT03810898 2020), mHTT-PET imaging may open new 

possibilities to quantify in-vivo mHTT aggregation in preHD and thus provide crucial 

insights into the relationship of mHTT aggregation to other early disease biomarkers. 

It may also be used to quantify regional target engagement in the same way as 
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Alzheimer’s trials have done (Klein et al. 2019). Further development of PET imaging 

may provide further in-vivo insights that can complement biofluid biomarkers, such as 

mapping astrocyte and microglial activation for example (Cybulska et al. 2020). 

6.7.4 Enhancing disease staging for natural history studies 

Throughout this thesis, use has been made of models which predict years to clinical 

onset or estimate disease burden based on age-CAG interactions, in order to stratify 

subgroups according to proximity to onset. The ability to accurately stratify groups is 

crucial to map the evolution of disease markers over time. However current models 

are known to be limited, since CAG length only explains approximately 60% of the 

variability in age of onset. This underlines why it cannot affirmatively be concluded 

that the absence of age-CAG associations with e.g. reduced putamen volumes, is 

evidence of a static neurodevelopmental change as opposed to subtle 

neurodegeneration. Whilst longitudinal follow up can help address such problems, the 

slow nature of change poses an additional challenge for such approaches. It will be 

important then, to combine other genetic modifiers that are being increasingly 

uncovered (Hensman Moss et al. 2017; Genetic Modifiers of Huntington’s Disease 

Consortium 2019; Goold et al. 2019) into new predictive models to enhance the ability 

to make inferences about biomarker changes in natural history studies in HD that feed 

into clinical trial design. 

6.7.5 Translating from observational to interventional studies in 

premanifest HD 

Finally, it is hoped that in addition to informing future premanifest trial design, well 

phenotyped premanifest cohorts such as HD-YAS may represent ideal cohorts for 

future clinical trials in preHD. As an example, the DIAN study was a pioneering study 

established in 2008 to track longitudinal change in dominantly inherited Alzheimer’s 

disease. The results of which has subsequently informed the DIAN trials unit (DIAN-

TU) (Clinicaltrials.gov; NCT01760005 2013) an adaptive platform trial which aims to 

implement clinical trials aimed at delaying or preventing onset whilst advancing 

scientific understanding of both the disease and proposed therapies (Mills et al. 2013; 

Bateman et al. 2017). DIAN-TU has become the forebearer for premanifest trials in 

neurodegeneration, notable for using longer trial durations than had been the norm 
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previously with dose-adjustment algorithms informed by combined safety and 

biomarker-target analyses to maximise target engagement. Whilst recent top line data 

of the first two drug arms fell short of primary endpoints, there were positive target 

engagement and other biomarker signals in one arm. Other themes emerging include 

a suggestion that presymptomatic participants did notably better than symptomatic 

participants, the importance of longer follow up and having a robust disease model to 

devise the best endpoints (https://www.alzforum.org/news/conference-

coverage/dian-tu-gantenerumab-brings-down-tau-lot-open-extension-planned). This 

further strengthens the case for early interventions in HD and the importance in 

furthering understanding of the premanifest course to inform trial design and 

endpoints that are most likely to provide definitive answers and further insights into 

disease pathogenesis. 

6.8 Conclusion 

In closing, this thesis has provided evidence that early neurodegeneration can be 

detected in HD approximately 25 years from predicted onset. Despite elevations in 

NfL, YKL-40, and slightly reduced striatal volumes, gene carriers at this stage 

demonstrate no clinical impairments, and brain structure and function that is almost 

indistinguishable from controls. In addition, characterising the timing and anatomical 

specificity of basal ganglia white matter loss in preHD may inform the optimal timing 

and injection sites for future viral-vector based therapeutics. I argue that with the right 

therapeutic or combination of therapeutics, interventions at this stage may be best 

placed to delay or prevent further neurodegeneration, affording gene carriers many 

more years of life without impairment.  
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9 Appendix 

9.1 Disease burden score (DBS) 

DBS is calculated as age X [CAG length-35.5]. The score functions as a posteriori 

estimate of an individual’s lifetime exposure to mHTT at any given age (Penney et al. 

1997). 

In HD-YAS, gene carriers with DBS scores of ≤ 240 were eligible. The below chart 

demonstrates the range of ages and CAG lengths (shaded in green) within this DBS 

criterion. 

 

 

9.2 HD-YAS eligibility criteria 

Inclusion criteria  
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a. Are 18-40 years of age, inclusive; and   

b. Are capable of providing informed consent and   

c. Are capable of complying with study procedures and   

For the Healthy Control group, participants eligible are persons who meet the 

following criteria:   

d. Have no known family history of Huntington’s disease (family control or 

community control)*; or   

e. Have known family history of Hungington’s disease but have been tested for the 

huntingtin gene CAG expansion and are not at genetic risk for Huntington’s 

disease (CAG < 36) (gene negative).   

  

For the Young Adult Premanifest Huntington’s disease group, participants eligible 

are persons who meet the additional following criteria:   

f. Do not have clinical diagnostic motor features of Huntington’s disease, defined as 

Unified Huntington's Disease Rating Scale (UHDRS) Diagnostic Confidence 

Score1 < 4; and   

g. Have CAG expansion ≥ 40 and   

h. A disease burden score (DBS) ≤ 2402 **  

* Family controls were partners or spouses of someone either with the Huntington’s 

disease gene or at risk of Huntington’s disease due to having a 1st degree relative 

with Huntington’s disease. Community controls were either friends of someone with 

or at risk of Huntington’s disease, or from the wider Huntington’s disease community 

recruited via advertisement through Huntington’s disease support groups. 

** The rationale for this DBS cut-off is that this boundary corresponds approximately 

to >18 years to estimated disease onset according to the Langbehn formula3.    
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Exclusion criteria  

a. Current use of investigational drugs or participation in a clinical drug trial within 30 

days prior to study visit; or   

b. Current intoxication, drug or alcohol abuse or dependence; or   

c. If using any antidepressant, psychoactive, psychotropic or other medications or 

nutraceuticals used to treat Huntington’s disease, the use of inappropriate (e.g., 

non-therapeutically high) or unstable dose within 30 days prior to study visit; or   

d. Significant medical, neurological or psychiatric co-morbidity likely***, in the 

judgment of the Principal  

Investigator, to impair participant’s ability to complete essential study procedures; or   

e. Predictable non-compliance as assessed by the Principal Investigator; or   

f. Inability or unwillingness to undertake any of the essential study procedures; or  g. 

Needle phobia; or   

h. Contraindication to MRI, including, but not limited to, MR-incompatible 

pacemakers, recent metallic implants, foreign body in the eye or other 

indications, as assessed by a standard pre-MRI questionnaire; or   

i. Pregnant (as confirmed by urine pregnancy test); or   

j. Claustrophobia, or any other condition that would make the subject incapable of 

undergoing an MRI.   

For the optional cerebrospinal fluid (CSF) collection only   

k. Needle phobia, frequent headache, significant lower spinal deformity or major 

surgery; or   

l. Antiplatelet or anticoagulant therapy within the 14 days prior to sampling visit, 

including but not limited to:  

aspirin, clopidogrel, dipyridamole, warfarin, dabigatran, rivaroxaban and apixaban; or   

m. Clotting or bruising disorder; or   
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n. Screening blood test results outside the clinical laboratory’s normal range for the 

following: white cell count, neutrophil count, lymphocyte count, haemoglobin 

(Hb), platelets, prothrombin time or activated partial thromboplastin time; or   

o. Screening blood test results for C-reactive protein >2× upper limit of normal; or   

p. Exclusion during history or physical examination, final decision to be made by the 

Principal Investigator; including but not limited to:   

i any reason to suspect abnormal bleeding tendency, e.g. easy bruising, petechial 

rash; or  ii any reason to suspect new focal neurological lesion, e.g. new headache, 

optic disc swelling, asymmetric focal long tract signs; or  iii any other reason that, in 

the clinical judgment of the operator or the Principal Investigator, it is felt that lumbar 

puncture is unsafe.  

*** Comorbidities are assessed for during an interview asking about current and 

previous medical and drug history. The T1 weighted MRI brain was reviewed by 

an experienced consultant neuroradiologist and CSF white and red cell counts 

were also reviewed to further ensure absence of neurological comorbidity.  

 

9.3 TrackOn-HD eligibility criteria 

Inclusion Criteria 

Written informed consent must be obtained from the participant, who must agree to 

all the assessments. In addition:  

1. All participants should be able to tolerate MRI and sample donation  

2. Participants will be either  

a. Control participant  

i. An existing control participant previously enrolled in TRACK-HD  

ii. A newly recruited control participant who is either  
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• Partner/spouse of a participant, not at risk of HD (note these participants will not 

have CAG repeat testing)  

• HD Normal repeat length sibling or HD normal repeat length control volunteer  

b. Premanifest gene carrier  

i. An existing premanifest gene carrier previously enrolled in TRACK-HD  

ii. A newly recruited premanifest gene carrier with:  

• Positive genetic test with CAG repeat length ≥ 40 and  

• Burden of pathology score (CAG-35.5) × age >250 and  

Exclusion Criteria 

1. Stage 1 (UHDRS diagnostic confidence score of 4) or greater at time of enrolment, 

unless previously enrolled as a premanifest participant in TRACK-HD  

2. Less than 18 years of age  

3. More than 65 years of age (unless previously enrolled in TRACK-HD)  

4. Major psychiatric disorder at time of enrolment  

5. Concomitant significant neurological disorder  

6. Concomitant significant medical illness  

7. Unsuitability for MRI, e.g. claustrophobia, metal implants  

8. Unwillingness to donate blood  

9. History of significant head injury  

10. Predictable non–compliance by drug and/or alcohol abuse  

11. Significant hand injuries that preclude either writing or rapid computerized 

responding  

12. Participant in Predict-HD  

13. Currently participating in a clinical drug trial  
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9.4 UHDRS total motor score (TMS)  

The TMS is a score out of 124 based on a clinical assessment on the presence or 

absence of motor signs that can be seen in HD observed on examination. Each sign 

is scored 0-4 based on whether the sign is absent, or present. Where present, scores 

ascend from 1-4 based on whether the sign is subtle or more prominent/severe. 

Ocular pursuit: 

0 = complete (normal) 

1 = jerky movement 

2 = interrupted pursuits/full range 

3 = incomplete range 

4 = cannot pursue 

Saccade initiation: 

0 = normal 

1 = increased latency only 

2 = suppressible blinks or head movements to initiate 

3 = unsupressable head movements 

4 = cannot initiate saccades 

Horizontal and vertical scored separately 

Saccade velocity:  

0 = normal 

1 = mild slowing 

2 = moderate slowing 

3 = severely slow, full range 

4 = incomplete range 

Horizontal and vertical scored separately 

Dysarthria: 

0 = normal 

1 = unclear, no need to repeat 

2 = must repeat to be understood 
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3 = mostly incomprehensible 

4 = anarthria 

Tongue protrusion: 

0 = can hold tongue fully protruded for 10 sec 

1 = cannot keep fully protruded for 10 sec 

2 = cannot keep fully protruded for 5 sec 

3 = cannot fully protrude tongue 

4 = cannot protrude tongue beyond lips 

Finger taps:  

0 = normal (≥15/5 sec.) 

1 = mild slowing, reduction in amplitude (11-14/5 sec.) 

2 = moderately impaired (7-10/5 sec.) 

3 = severely impaired (3-6/5 sec.) 

4 = can barely perform task (0-2/5 sec.) 

Right and left scored separately 

Pronate/supinate-hands:  

0 = normal 

1 = mild slowing and/or irregular 

2 = moderate slowing and irregular 

3 = severe slowing and irregular 

4 = cannot perform 

Right and left scored separately 

Luria: 

0 = ≥4 in 10 sec, no cue 

1 = <4 in 10 sec, no cue 

2 = ≥4 in 10 sec with cues 

3 = <4 in 10 sec with cues 

4 = cannot perform 

Rigidity-arms:  

0 = absent 
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1 = slight or present only with activation 

2 = mild to moderate 

3 = severe, full range of motion 

4 = severe with limited range 

Right and left scored separately 

Bradykinesia-body: 

0 = normal 

1 = minimally slow (?normal) 

2 = mildly but clearly slow 

3 = moderately slow, some hesitation 

4 = markedly slow, long delays in initiation 

Maximal dystonia: 

0 = absent 

1 = slight/intermittent 

2 = mild/common or moderate/intermittent 

3 = moderate/common 

4 = marked/prolonged 

Trunk, right upper extremity, left upper extremity, right lower extremity, left lower 
extremity scored separately 

Maximal chorea: 

0 = absent 

1 = slight/intermittent 

2 = mild/common or moderate/intermittent 

3 = moderate/common 

4 = marked/prolonged 

Face, buccal-oral, trunk, right upper extremity, left upper extremity, right lower 
extremity, left lower extremity scored separately 

Gait: 

0 = normal gait, narrow base 

1 = wide base and/or slow 

2 = wide base and walks with difficulty 
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3 = walks only with assistance 

4 = cannot attempt 

Tandem walking: 

0 = normal for 10 steps 

1 = 1 to 3 deviations from straight line 

2 = >3 deviations 

3 = cannot complete 

4 = cannot attempt 

Retropulsion pull test: 

0 = normal 

1 = recovers spontaneously 

2 = would fall if not caught 

3 = tends to fall spontaneously 

4 = cannot stand 

 

Maximal TMS score / 124 

 

9.5 UHDRS diagnostic confidence score (DCS) 

The DCS is based on a clinical assessment in which a clinician rates how confident 

they are in classifying the HD mutation carrier as motor manifest HD.  

 

0 = Normal (no abnormalities) 

1 = non-specific motor abnormalities (less than 50 % confidence) 

2 = motor abnormalities that may be signs of HD (50 - 89 % confidence) 

3 = motor abnormalities that are likely signs of HD (90 - 98 % confidence) 

4 = motor abnormalities that are unequivocal signs of HD ≥ 99 % confidence) 
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9.6 Graph theory calculations 

Graph theory metrics were calculated using the brain connectivity toolbox  (Rubinov 

and Sporns 2010).  

The degree of a node i is calculated as follows: 

 𝑘𝑖 = ∑ 𝑎𝑖𝑗 

𝑗𝜀𝑁

 

where N is the set of all nodes in the network and 𝑎𝑖𝑗 is the connection between nodes 

i and j.  

Nodal strength (graph strength or connection strength) is calculated using the 

weighted connection (Eq. 2): 

𝑠𝑖 = ∑ 𝑤𝑖𝑗 

𝑗𝜀𝑁

 

The path length of a node is defined as follows, where 𝑑𝑖𝑗 is the (weighted) shortest 

path length between two nodes: 

𝐿𝑖 =  
1

𝑛
 ∑

∑ 𝑑𝑖𝑗𝑗𝜀𝑁,𝑗≠𝑖

𝑛 − 1
𝑖𝜀𝑁

 

The average path length for the network is calculated by taking the average across 

all nodes: 

𝐿 =
1

𝑛
 ∑ 𝐿𝑖 

𝑖𝜀𝑁

  

Modularity is where the network is fully subdivided into a set of nonoverlapping 

modules M. It is calculated as follows, where 𝑒𝑢𝑣 is the portion of connections that link 

nodes in module u with nodes in module v: 

𝑄 = ∑ ⌈𝑒𝑢𝑢 −  (∑ 𝑒𝑢𝑣

𝑢ε𝑀

) 2⌉

𝑢ε𝑀
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9.7 Chapter 4 missing data 

Study Total 
number 

QC Fail Left handed or 
ambidexterous 

Total 

HD-YAS  122 1 14 107 

TrackOn-HD Single-shell 
2012  

222 41 24 157 

TrackOn-HD Single-shell 
2013  

222 30 24 168 

TrackOn-HD Single-shell 
2014  

222 40 24 158 

TrackOn-HD Multi-shell 
2014 

80 0 7 73 

For TrackOn-HD single shell data, 56 gene carriers and 65 controls had data at 3 time points, 28 

premanifest and 24 controls had data at 2-time points, and 10 gene carriers and 9 controls had 

data at one time point. The TrackOn-HD multi-shell acquisition was only performed at 2 of the 4 

sites (London and Paris).  

 


