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ABSTRACT
In this paper, we propose an energy-efficient radar beam-
pattern design framework for a Millimeter Wave (mmWave)
massive multi-input multi-output (mMIMO) system, equipped
with a hybrid analog-digital (HAD) beamforming structure.
Aiming to reduce the power consumption and hardware cost
of the mMIMO system, we employ a machine learning ap-
proach to synthesize the probing beampattern based on a
small number of RF chains and antennas. By leveraging a
combination of softmax neural networks, the proposed so-
lution is able to achieve a desirable beampattern with high
accuracy.

Index Terms— Hybrid beamforming, radar beampattern
design, learn to select, Softmax selection

1. INTRODUCTION

Sensing has been envisioned as an essential feature in the
next-generation wireless communication system [1], which is
desirable in many location-aware applications, e.g., vehicular
networks, WLAN indoor positioning, and unmanned aerial
vehicle (UAV) networks [2]. Indeed, in all of these applica-
tion scenarios, sensing and communication are a pair of inter-
twined functionalities, often required to be operated simulta-
neously for the purpose of increasing the spectral efficiency
and reducing costs.

In order to promote both high-throughput communi-
cation and high-accuracy sensing performance, mmWave
signalling and mMIMO have emerged as two promising
approaches [3–5]. In particular, the large bandwidth avail-
able at the mmWave spectrum provides not only consider-
able improvement in communication rate, but also better
range resolution for target localization. Moreover, the large-
scale antenna array can compensate for the path-loss of the
mmWave signals by formulating “pencil-like” beams towards
the communication users. In the meantime, it offers enhanced
performance in terms of the angular resolution for radar sens-
ing. However, fully-digital mMIMO systems require as many
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RF chains as antenna elements. This requirement translates
into high power consumption and hardware cost, which limit
the applicability or fully-digital mMIMO in a practical set-
ting, especially when the antennas and RF chains are operated
in the mmWave band.

The hybrid analog-digital (HAD) beamforming struc-
ture is a low-cost solution for tackling the above issues [6],
and for reaping the performance gains of both mMIMO and
mmWave signalling. A HAD architecture comprises a small
number of RF chains, which are connected to a large num-
ber of antennas through a network of phase shifters. While
the HAD beamforming for communication has already been
well-studied [7–10], its application towards radar sensing re-
mains to be explored. To this end, previous research efforts
focused on the design of a phased-MIMO radar, which was
proposed as a tradeoff between the phased-array and MIMO
radars [11]. However, due to the exponentially increasing
complexity and energy consumption in terms of both antennas
and RF chains, the state-of-the-art research on phased-MIMO
radar is restricted to small-scale antenna arrays [11–13], and
thus cannot take advantage of the mMIMO technique. To
address this issue, it is necessary to exploit a limited number
of RF chains and/or antennas instead of using the full HAD
array. Again, to the best of our knowledge, the antenna/RF
chain selection problems for phased-MIMO/HAD radar has
been rarely investigated in the existing literature.

To further reduce the cost and improve energy efficiency
of the conventional phased-MIMO radar [11], we propose a
novel approach for optimally selecting a small number of RF
chains and/or antennas from a dense hybrid analog-digital ar-
ray, along with optimally designing the phase shifter network
matrix and the beamforming matrix, so that the correspond-
ing probing beampattern is close to that of a fully populated
HAD structure. The optimization problem is solved by mod-
ifying the softmax machine learning approach of [14]. The
proposed approach is effective in formulating any desirable
radar beampattern, and can scale to a large number of RF
chains and/or antennas to select from.

While machine learning for antenna selection has been in-
vestigated in [15–17], the problem in those works was treated
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as a classification problem. However, the combinatorial ex-
plosion problem renders those methods impractical even in
cases with a moderate number of antennas. On the other hand,
L2S in [14] can be efficiently scaled to larger problems as it
avoids the combinatorial explosion of the selection problem.
It also offers a flexible array design framework as the selec-
tion problem can be easily formulated for any metric. For
clarity, we note here that [14] considers a sparse array design
problem. The problem considered in this paper is different
than that of [14], in that it involves two selection matrices,
a phase-shifter network matrix that has unit modulus, and
a beamforming matrix, all of which are parameters in the
optimization problem.

2. PROBLEM FORMULATION

Let us consider a massive MIMO system that is equipped with
Nt antennas and NRF RF chains. The antennas formulate a
uniform linear array, with spacing between adjacent antennas
denoted by d. In the fully digital MIMO system, we typically
have NRF = Nt, which incurs huge costs when a large num-
ber of antennas are needed, especially in the case of RF chains
operating in the mmWave band. To tackle this issue, HAD
employs a smaller number of RF chains, i.e., NRF ≤ Nt, and
the antennas and the RF chains are connected via a phase-
shifter network.

The phase-shifter network between antennas and RF
chains can be modeled as a matrix FRF ∈ CNt×NRF , where
all the entries in FRF have constant modulus (CM), i.e.,
|FRF (i, j)| = 1,∀i, j. We assume that the antennas transmit
narrow-band signals with carrier wavelength λ. The array
output at angle θ is

y(t; θ) = a(θ)Hv(t), (1)

where a(θ) is the steering vector at direction θ, and v(t) ∈
CNt is the transmitted array snapshot at time t. Let

v(t) = FRFQe(t) (2)

where Q ∈ CNRF×NRF is a baseband precoding matrix
and e(t) ∈ CNRF×1 is a white signal vector in which
e(t)eH(t) = I. The array output vector at K different
angles is

y , [y(t; θ1), . . . , y(t; θK)]T (3)
= AHv(t) = AHFRFQe(t) (4)

with A = [a(θ1), . . . ,a(θK)] ∈ CNt×K being the steering
matrix. In order to achieve a lower power consumption and
hardware cost, we want to select MRF RF chains (MRF <
NRF ) and Mt array antennas (Mt < Nt), so that the HAD
system approximates the desired power pattern at K angles.
To proceed, let us first select MRF out of NRF RF chains by
multiplying FRF with a selection matrix S1 ∈ CMRF×NRF ,

where all the elements in S1 are zero, except for exactly one
element per row which is equal to one. The transmitted snap-
shot from the selected RF chains can be expressed as

vs(t) = FRFS
T
1 S1Qe(t) (5)

Each column in S1 contains at most one element that is equal
to one so that we do not choose the same RF chain twice.

In general, if we select RF chains of indices l1, . . . , lMRF

then the elements of S1 will be s1ij = 1 for li = j, and 0
otherwise. Correspondingly, matrix ST

1 S1 will be an NRF ×
NRF diagonal matrix where the diagonal entries are one if
the corresponding RF chains are active and zero otherwise.
Similarly, another selection matrix S2 ∈ CMt×Nt can be in-
troduced to select Mt out of Nt antennas.

The output of the sparse array can be expressed as

ys(t) , [ys(t; θ1), . . . , ys(t; θK)]T (6)
= AHST

2 S2vs(t) = AHST
2 S2FRFS

T
1 S1Qe(t) (7)

Let pi = p(θi) be the desirable signal power at di-
rection θi, so that the desired beampattern vector is p =
[p1, . . . , pK ]T . The sparse array output power at θi is

p̂i = E{ys(t; θi)∗ys(t; θi)} (8)
= aH(θi)S

T
2 S2FRFS

T
1 S1Q

×QHST
1 S1F

H
RFS

T
2 S2a(θi) (9)

The goal is to find the two selection matrices S1, S2, mapping
matrix FRF and the precoding matrix Q such that minimize
the beam-pattern error

min
S1,S2,FRF ,Q

K∑
i=1

(pi − p̂i)2

s.t. |FRF (i, j)|2 = 1,∀i, j;
S1S

T
1 = IMRF

; S2S
T
2 = IMt

where
∑K

i=1(pi − p̂i)2 = ‖p− diag{AHST
2 S2FRFS

T
1 S1 ×

QQHST
1 S1F

H
RFS

T
2 S2A}‖2 and IM is an M by M identity

matrix.

3. SOFTMAX CO-DESIGN

We propose to use the machine learning approach in [14] for
the co-design of S1, S2, FRF and Q. The loss function is
defined as:

L(S1,S2,FRF ,Q) =‖p− diag{AHST
2 S2FRFS

T
1 S1

×QQHST
1 S1F

H
RFS

T
2 S2A}‖2 (10)

Each row of selection matrices S1 and S2 can be modeled by
a separate softmax neural network [18]. Taking the RF chain



selection matrix S1 as an example, the outputs of the m-th
network will be

sm,i =
exp(wT

i x+ bi)∑NRF

j=1 exp(wT
j x+ bj)

, i = 1, . . . , NRF (11)

where wi, bi are respectively the weights and biases, and x is
the input. Note that 0 ≤ sm,j ≤ 1 and

NRF∑
j=1

sm,j = 1. (12)

Essentially, sm,i represents the probability that RF chain i
will be our m-th selected RF chain.

Since the selection matrix does not depend on time t, the
input x should be constant, and thus, the constant value b′i =
wT

i x can be merged into the bias term bi. Without loss of
generality, such a model is equivalent to a softmax model with
x = 0 where the only trainable parameters are the biases.

The approximated selection matrix, Ŝ1 is formed based
on the outputs sm = [sm,1, . . . , sm,NRF

] of all the softmax
models as its rows. Clearly, Ŝ1 will be a soft selection matrix
since the values sm,i range between 0 and 1. By the end of the
training, the matrix should converge very close to hard binary
values so the approximation will be good.

In order to formulate the cost function we individually ex-
press ys(t; θk) as the real and imaginary parts to facilitate the
machine learning optimization which is based on real num-
bers.

The average output power at angle θk is

p̃k =
1

T

T∑
t=1

y∗s (t; θk)ys(t; θk) (13)

and the beampattern error with respect to pk is

L̃ =

K∑
k=1

γk(pk − p̃k)2 (14)

where γk is the importance weight assigned to the angle θk.
In order to achieve a realistic solution, the softmax models

must produce hard binary values. The following constraint
enforces this requirement:∑

i=1

s2m,i = 1,∀m. (15)

Indeed, (15) holds iff smi ∈ {0, 1}. The ‘if’ part of this state-
ment is obvious. The ‘only if’ part comes readily from (12)
since [∑

i=1

smi

]2
−
∑
i=1

s2mi = 0⇒ 2
∑
i 6=j

smismj = 0

implying that at most one element of sm can be equal to 1
and all other elements must be equal to 0. Combined with

(12) this means that exactly one element of sm is equal to 1
and all other elements are equal to 0.

We also need to impose another constraint since the same
RF chain or antenna can not be selected more than once, i.e.

sm,i = 1⇒ sn,i = 0,∀n 6= m

If sm,i ∈ {0, 1} then the above constraint is equivalent to

sTmsn = 0. (16)

Combining (15) and (16) it follows that Ŝ1Ŝ
T
1 must be equal

to the identity matrix IMRF
. Based on the power gain er-

ror and the selection matrix structure above, we formulate the
following loss function:

L0(b1,b2,FRF ,Q) = L̃+α1‖Ŝ1Ŝ
T
1−I‖2F+α2‖Ŝ2Ŝ

T
2−I‖2F .

(17)
where ‖ · ‖F denotes the matrix Frobenius norm, and α1

and α2 are cost parameters which reflect the relative im-
portance of the latter constraint with respect to the desired
beam-pattern error.

3.1. Learning to select RF chains and antennas

There are four sets of parameters to be trained: (i) the bi-
ases b1 to approximate the selection on RF chains , (ii) the
biases b2 to approximate the selection on antennas (assum-
ing x = 0), (iii) the covariance shaping matrix Q and (iv)
the phase-shifter network matrix FRF . We propose a four-
stage optimization approach alternating between optimizing
over one set of parameters and fixing others. and then fixing
Q and optimizing over bi.

The algorithm runs for Nepoch learning epochs and each
alternating stage runs for a small number of steps Nstep.
We can use standard gradient descent (GD) optimization for
each step with learning rate parameter ψ. The proposed L2S
scheme is shown in Algorithm 1. Other optimization algo-
rithms instead of standard gradient descent can also be used
in order to improve speed of convergence, for example, we
use the Adam optimizer [19] in the following simulations
which has superior performance as compared to GD.

4. SIMULATION RESULTS

Here, we demonstrate the performance and flexibility of the
proposed method. In all experiments, a flat weight is used,
i.e., γk = 1,∀k and the antennas are spaced by half of wave-
length. We used the Adam stochastic optimization procedure
with different learning rates and Nepoch = 400 epochs of
training. In each epoch Nstep = 10 steps are executed. The
length of training data sample T should always be larger than
the maximum number of MRF and Mt to ensure the func-
tionality of the model.

RF chains are much more expensive and consume more
energy that the antennas. Our first experiment is designed



Algorithm 1: Learn to select.

for epoch=1 to Nepochs do
Fix Q, FRF , b2 and optimize L0 w.r.t. b1:
for step=1 to Nsteps do

Update b1

Fix b1, b2, Q and optimize L0 w.r.t. FRF :
for step=1 to Nsteps do

Update FRF

Fix FRF , b1, Q and optimize L0 w.r.t. b2:
for step=1 to Nsteps do

Update b2

Fix b1, b2, FRF and optimize L0 w.r.t. Q:
for step=1 to Nsteps do

Update Q

Fig. 1. Selecting MRF = 32 out of NRF = 64 (blue), or 128
(red) RF chains. Nt = 128.

to select a small number of RF chains to reduce the system
cost. The desirable beam power profile equals to 1 over the
angle ranges [−27,−23] degrees and [28, 32] degrees, and
is zero otherwise. The number of antennas is Nt = 128.
The learning rate is set to β = 0.04, while the parameter α1,
used in (17), changes between learning epochs; it starts from
αinit = 3200, and linearly increases to αfinal = 16000 at
the final epoch. The α weights the importance of a proper
selection matrix during the learning process.

Fig. 1, shows the designed beampattern, when selecting
MRF = 32 out of NRF = 64 or NRF = 128 RF chains,
which are typical antenna numbers considered in mMIMO
systems. One can see that the matching to the desirable beam-
pattern is pretty good. For this example, classification-based
machine learning methods would have to choose the best class
out of

(
64
32

)
> 1.8 × 1018 classes, which is a task that would

require a prohibitively long time to compute.
In the second experiment, three different selection choices

are tested: (i) only select antennas, (ii) only select RF chains,

Fig. 2. Selection in HAD array compared with selection in
full digital array.

and (iii) select both RF chains and antennas. There are Nt =
64 antennas and NRF = 32 RF chains, among which we se-
lect Mt = 32 antennas or/andMRF = 16 RF chains. The de-
sirable beam power profile is equal to 1 at angle ranges [−2, 2]
degrees and [19, 23] degrees, and is zero otherwise. The pa-
rameter α used in this experiment ranges from 320 to 1600
while the learn rate are the same β = 0.02. The beampattern
of the designed system is shown in Figure.2. As expected, se-
lecting RF chains only and using all antennas performs best,
giving rise to the lowest sidelobes. When selecting both, i.e.,
hybrid selection has the worst performance. Since antennas
are inexpensive, antenna cost savings are rather insignificant.
On the other hand, reduction on RF chains in the HAD array
can save more while maintaining good performance.

Running on 12GB memory GPU Titan X maxwell, se-
lection on only antennas or RF chains for the above example
took 17 and 15 minutes, respectively, while selection on both
took 47 minutes.

5. CONCLUSION

We have proposed a novel beampattern design framework for
MIMO radar by selecting the antennas and RF chains from
a mMIMO HAD system. The proposed L2S method lever-
ages softmax neural networks to approximate the selection
matrices and optimizes the trainable parameters alternatively.
Compared with classification method, the complexity of the
softmax selection does not grow exponentially. Numerical
results have been provided to validate the performance of the
proposed approach, showing that the L2S method is able to
achieve the desired beampatterns via selecting a limited num-
ber of antennas and RF chains from a dense HAD array. Fu-
ture work will explore the problem that using L2S to mini-
mize the number of antennas/RF chains subject to an error
constraint.
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