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We investigate potential gains in cosmological constraints from the combination of galaxy clustering and
galaxy-galaxy lensing by optimizing the lens galaxy sample selection using information from Dark Energy
Survey (DES) Year 3 data and assuming the DES Year 1 METACALIBRATION sample for the sources. We
explore easily reproducible selections based on magnitude cuts in i-band as a function of (photometric)
redshift, zphot, and benchmark the potential gains against those using the well-established REDMAGIC
[E. Rozo et al., Mon. Not. R. Astron. Soc. 461, 1431 (2016)] sample. We focus on the balance between
density and photometric redshift accuracy, while marginalizing over a realistic set of cosmological and
systematic parameters. Our optimal selection, the MAGLIM sample, satisfies i < 4zphot þ 18 and has ∼30%
wider redshift distributions but ∼3.5 times more galaxies than REDMAGIC. Assuming a wCDM model (i.e.
with a free parameter for the dark energy equation of state) and equivalent scale cuts to mitigate nonlinear
effects, this leads to 40% increase in the figure of merit for the pair combinations of Ωm, w, and σ8, and
gains of 16% in σ8, 10% in Ωm, and 12% in w. Similarly, in ΛCDM, we find an improvement of 19% and
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27% on σ8 and Ωm, respectively. We also explore flux-limited samples with a flat magnitude cut finding
that the optimal selection, i < 22.2, has ∼7 times more galaxies and ∼20% wider redshift distributions
compared to MAGLIM, but slightly worse constraints. We show that our results are robust with respect to the
assumed galaxy bias and photometric redshift uncertainties with only moderate further gains from
increased number of tomographic bins or the inclusion of bin cross-correlations, except in the case of the
flux-limited sample, for which these gains are more significant.

DOI: 10.1103/PhysRevD.103.043503

I. INTRODUCTION

According to the current consensus cosmological model,
ΛCDM, dark matter and dark energy make up most of the
energy density of the Universe (see e.g., [1]). However, their
nature is still unknown and understanding them presents a
grand challenge for present-day cosmology. The pillars for
the establishment of an accelerating Universe within a
ΛCDM model have been the characterization of cosmic
microwave background (CMB) fluctuations [2,3] and dis-
tance measurements to Type Ia supernovae (SNIa) [4,5]. In
addition, the study of the large-scale structure (LSS) in our
Universe, which carries a wealth of cosmological informa-
tion, allows us to further constrain these fundamental physics
questions (e.g., [6–10] and references therein).
The first cosmology results from ongoing imaging sur-

veys, such as the Dark Energy Survey (DES) [8,11,12],
the Kilo-Degree Survey (KiDS) [13–15], and the Hyper
Suprime Cam (HSC) [16–18], have demonstrated the
feasibility of complex LSS analyses from photometric data
and its value and complementarity to the CMB and SNIa in
the establishment of a concordance cosmological model.
Consequently, preparations are also under way for the next
generation of surveys that will provide high quality
imaging data during this decade. The Rubin Observatory
Legacy Survey of Space and Time [19,20], Euclid [21,22],
and the Nancy Grace Roman Space Telescope (Roman)
[23,24] complement each other in terms of area, depth,
wavelength, and resolution, and will increase the mapped
volume of the Universe by more than 1 order of magnitude
(see e.g., [25,26]). Two of the main cosmological probes
from these surveys are galaxy clustering and weak gravi-
tational lensing which we further discuss below.
Weak gravitational lensing refers to the correlated gra-

vitational distortion induced in background galaxy shapes
by foreground LSS as their light travels toward us [27].
This effect is sensitive to the geometry of the Universe and
the growth rate of density fluctuations. Hence, information
about the cosmological model can be extracted by correlat-
ing the observed shapes of galaxies, which is commonly
referred to as cosmic shear, or by correlating the positions
of galaxies in the foreground (a biased tracer of the LSS)
with the shapes of the galaxies in the background, which is
often referred to as galaxy-galaxy lensing. The latter can
be combined with the auto-correlation of foreground (lens)
galaxy positions, aka galaxy clustering, to break degener-
acies with the bias and improve the robustness and

constraining power of the cosmological analysis. Such a
multiprobe analysis has been carried out by DES in the
analysis of its first year of data (DES Y1) [11], and by
KiDS, combining their shape measurements with spectro-
scopic foreground (lens) galaxies from the Galaxies
And Mass Assembly (GAMA) survey [14] or from the
2-degree Field Lensing Survey and the Baryon Oscillation
Spectroscopic Survey (BOSS) [13,28], over the overlap-
ping areas.
When analyzing galaxy clustering (and its combination

with galaxy-galaxy lensing), there is a trade-off between
selecting the largest galaxy samples to minimize shot noise
and selecting samples with the best redshift accuracy,
which generally include only a small subset of galaxies.
In this paper, we investigate the potential gains in cosmo-
logical constraints that can be obtained by optimizing the
selection of the lens galaxy sample in a combined galaxy
clustering and galaxy-galaxy lensing analysis (hereafter
2 × 2pt). We choose to not include cosmic shear in this
work given that the only impact would be an overall
increase of the constraining power for all cases, independ-
ently of the lens sample considered. Note that, as a
consequence, the relative improvements in cosmological
constraints in a 3 × 2pt analysis (i.e., when including shear)
will be likely smaller than the results presented here.
In order to define sampleswith accurate redshift estimates

from photometric data, a common choice is to use luminous
red galaxies (LRGs), which are characterized by a sharp
break at 4000 Å [29,30] and a remarkably uniform spectral
energy distribution. They also correlate well with clusters.
These features allow the selection of this sample of galaxies
from the general population, aswell as the estimation of their
redshifts with high accuracy. The approach taken in the DES
Y1 analysis [11] consisted of selecting the lens galaxies in
terms of optimal photometric redshift (photo-z) accuracy1

using the REDMAGIC algorithm [31] which relies on the
calibration of the red sequence in optical clusters. A similar
selection of red-sequence galaxies has been carried out
recently by KiDS, combining their broad-band optical
catalog with near-infrared photometry from the VISTA
Kilo-degree Infrared Galaxy survey [32]. Selections of
LRGs in photometric data, based on color and magnitude

1Note that, in practice, this also translates into a robust and
simple characterization of redshift distributions, which otherwise
is a difficult task.
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cuts, have been done also for measurements of baryon
acoustic oscillations [30,33,34].
An alternative choice is to select all galaxies up to a limiting

magnitude. This can lead to galaxy samples that reach higher
redshiftswith amuchhigher number density, at the expense of
lower photo-z accuracy. Flux-limited samples have been
used, for example, in the DES science verification analysis
[35] and, previously, in the galaxy clustering mea-
surements from Canada-France-Hawaii Telescope Legacy
Survey (CFHTLS) data [36]. Both analyses were very similar
in terms of depth, photometry, and area, and the samples were
defined with the same cut in apparent magnitude: i < 22.5.
More recently, a flux-limited sample has been considered in
the galaxy clustering measurements from HSC data [37], in
which the authors select galaxies with a limiting magnitude
i < 24.5 and study their properties such as large-scale bias.
This kindofgalaxy selection is simple and easily reproducible
in different data sets and, as a consequence, the properties of
the sample can be well understood. For instance, in [35], the
authors show that the redshift evolution of the linear galaxy
bias of their sample matches the one from CHFTLS [36], and
this redshift evolution also agrees well with that from HSC
data [37]. However, to our knowledge, this type of selection
has not yet been used to derive cosmological constraints.
In this work, we follow this approach and consider flux-

limited samples as an alternative to the LRG REDMAGIC
sample selected from the third year of DES data (DES Y3),
aiming to optimize the lens galaxy selection to extract the
maximum amount of cosmological information. We will
then consider this optimal sample as one of the lenses of the
upcoming DES Y3 analysis, not only because of potential
improved constraints but also as a test of the robustness of
the cosmological results given the characteristics of the lens
galaxy sample such as its redshift extent, bias, photo-z
characterization or density. In the follow-up paper [38], we
will obtain cosmological constraints from the galaxy
clustering and galaxy-galaxy lensing measurements of this
sample. We will also validate the redshift distributions, the
treatment of photometric uncertainties, the scale cuts, and
the modeling pipeline.
This paper is organized as follows. In Sec. II, we describe

the DES data used and the sample selections we consider
throughout. In Sec. III, we detail our methodology to infer
cosmological parameter constraints including the theory
modeling, the parameter space (cosmological and system-
atic), and the scale cuts. In Sec. IV, we discuss the
optimization process, which reflects the core of our results.
In Sec. V, we describe the optimal samples and compare
their properties and cosmological constraints obtained from
Monte-Carlo Markov chains (MCMC2) to provide realistic

Y3 simulated analysis. In Sec. VI, we study the performance
of the optimized samples for different analysis choices such
as the binning strategy, assumed galaxy bias or photo-z error
priors. We finish in Sec. VII presenting our conclusions.

II. DES Y3 DATA

DES [39] is an imaging survey of ∼5000 deg2 of the
southern sky, using a 570 megapixel camera (DECam) [39]
mounted on the 4 m Blanco telescope at the Cerro Tololo
Inter-American Observatory in Chile in five broadband
filters, grizY. The main goal of DES is to determine the
dark energy equation of state parameter w and other key
cosmological parameters. In this work, we use data from
the first three years of observations (Y3), which were taken
from August 2013 to February 2016.
The catalog that will be used for the cosmological

analysis of Y3 data, the Y3 GOLD catalog, is described
more extensively in [40] and it is based on the coadded
catalog from the first three years of data, which was
released publicly as the DES data release 1 (DR1) [41].
The DES DR1 is the first DES catalog that spans the
whole footprint, and it is described in [42], alongside
with the details of the data management pipeline in [43]
and photometric calibrations in [44]. The source catalog
was built using SExtractor [45] detecting objects on
the grizY coadded images up to a 10-σ limiting magni-
tude of g ¼ 24.3, r ¼ 24.0, i ¼ 23.3, z ¼ 22.6, and
Y ¼ 21.4 mag. (see Table 2 in [40]). In this work, however,
we only use the DES Y3 GOLD catalog for the lens samples;
for the sources, we employ the METACALIBRATION source
sample [46] built from the DES Y1 GOLD catalog [47].
The photometry in Y3 is derived through the multiobject

fitting pipeline [47] and its variant single-object fitting
(SOF), which eliminates the multiobject light subtraction
speeding up the process with negligible impact on perfor-
mance. In this paper, we use SOF magnitudes for sample
selection and as input to the photometric redshift codes. In
particular, we select the samples from the Y3_GOLD_2_2
catalog using the SOF magnitudes corrected for galactic
extinction and other minor adjustments (SOF_CM_MAG_
CORRECTED) and we remove stellar contamination from
our samples by using the default star-galaxy separation
method from [40] (EXTENDED_CLASS_MASH_SOF=3),
which reduces the stellar contamination to less than 2%.
The Y3 GOLD catalog contains ∼388 million objects
detected in coadded images covering ∼5000 deg2 in the
DES grizY filters.
As part of the Y3 GOLD data set, three standard photo-

metric redshift codes were run (one template fitting, BPZ
[48] and two machine learning, ANNz2 [49] and directional
neighborhood fitting (DNF) [50]). In this paper, we rely
exclusively (aside from REDMAGIC) on the DNF run based
on SOF photometry that is provided as part of the Y3 GOLD
catalog. The DNF algorithm creates an approximation of
the redshift of the object through a nearest-neighbors fit in a

2Technically, in this work we use a Monte Carlo method
instead of other traditional MCMC techniques. However, since
the end product of these two kinds of methods is equivalent, we
employ theMCMC acronym because it is a more established term
in the literature.
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hyperplane in color and magnitude space using a refer-
ence training set from a spectroscopic database. The
database of spectra is described in [51] and includes
∼220 thousand spectra matched to DES objects from 24
different spectroscopic catalogs, such as SDSS DR14
[52], the OzDES program [53], and VIPERS [54], among
others. In the case of DNF, about half of these spectra are
used for training and the rest for performance validation.
The performance of the different photometric redshift
runs is discussed in [40], where it is found that DNF
outperforms the other methods in standard metrics such
as width and biases of photometric redshift error dis-
tributions. In addition, DNF also provides the redshift of
the actual nearest-neighbor within the reference training
sample, which together with the approximated redshift
estimate zphot serves as an internal metric for the photo-z
redshift error per object.

A. Sample selections

As noted in the Introduction, we use different kinds of
lens samples defined from DES Y3 data. Aside from a
REDMAGIC sample, we define two types of flux-limited
samples. The first one consists of an overall apparent
magnitude limit, similar to what has been commonly used
in previous analyses, and the second one (MAGLIM) is a
sample defined with a magnitude cut varying linearly
with redshift. This avoids selecting red objects through
explicit color cuts since that would mimic REDMAGIC.
Thus, given the DNF photo-z values for MAGLIM, both
of these definitions lead to selections that are easy to
implement and reproduce in practice. Our samples are
hence defined mainly in terms of their luminosity (as a
function of redshift). In the following, we describe our
sample selection criteria, their photometric redshift esti-
mates, and the effective survey area and angular mask
applied to them. Both flux-limited samples are optimized
in Sec. IV.

1. Flux-limited sample

Flux-limited samples are defined with a flat apparent
magnitude cut on the i-band, i < a with a being some
constant, because generally it is the magnitude with the best
signal-to-noise ratio per object over the redshift range
considered. This type of sample has been used in various
analyses in the past, e.g., the galaxy clustering analysis
of DES science verification data [35], and also in
CFHTLS [36] and HSC [37]. In particular, [55] considers
this approach, using DES Y1 data, to study the trade-off
between number density and photo-z accuracy and its
impact in terms of cosmological constraints from galaxy
clustering with fixed bias parameters. Therefore, it is
interesting to consider this type of sample here, and
compare it with the other two samples, MAGLIM and
REDMAGIC, described next.

2. MAGLIM sample

One possible disadvantage of selecting all galaxies
up to a fixed limiting magnitude is that at low redshift the
selection includes a higher number of less luminous
(mostly blue) galaxies, degrading the photo-z accuracy
as a result. For this reason, here we explore a different
galaxy selection that serves as an intermediate scenario
in terms of number density and photometric redshift
accuracy. In particular, we consider samples selected with
a limiting magnitude that varies across redshift, of the
type i < azphot þ b, with a and b arbitrary numbers and
zphot being the DNF photo-z estimate. Effectively this
selects brighter galaxies at low redshift while including
fainter galaxies as redshift increases. Additionally, we
remove the brightest objects (including stellar contami-
nation from binary stars) by setting i > 17.5.

3. REDMAGIC

This galaxy sample, which will be described more
extensively in [56], is generated by the REDMAGIC
algorithm [31] run on DES Y3 GOLD data. The
REDMAGIC algorithm selects LRGs in such a way that
photometric redshift uncertainties are minimized. This
algorithm fits every galaxy to a red-sequence template,
and only includes in the selection galaxies that are bright
enough (above a certain luminosity threshold Lmin), and
that have a good enough fit to the red-sequence template
using the assigned photometric redshift (χ2 ≤ χ2max). In
addition, it is required that the resulting sample has
constant comoving density as a function of redshift. The
red-sequence template is generated by the training of the
RedmaPPer cluster finder [57,58]. Reference luminosities
are defined as a function of L�, computed using a
Bruzual and Charlot [59] model for a single star-for-
mation burst at z ¼ 3, as described in [58]. Naturally,
increasing the luminosity threshold provides a higher
redshift sample as well as decreasing the comoving
number density.
Two REDMAGIC samples are generated from the Y3

data, equivalent to the ones from Y1 [60], and referred to
as high density and high luminosity. The correspond-
ing luminosity thresholds and comoving densities
are, Lmin ¼ 0.5L�, and 1.0L�, and n̄ ¼ 10−3, and
4 × 10−4 galaxies=ðh−1MpcÞ3, where h is the reduced
Hubble constant. The combined REDMAGIC sample we
use in this work consists of high-density galaxies at
redshifts z < 0.65 and high-luminosity galaxies in the
range 0.65 < z < 0.95. The REDMAGIC algorithm produ-
ces best-fit redshifts, which we use as the estimated
photometric redshifts. These photometric redshifts are
particularly accurate, with an uncertainty σz=ð1þ zÞ <
0.02; see Fig. 1 for the dependency of this uncertainty
with redshift.
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B. Sample comparison

In Fig. 1, we show the galaxy counts (top panel) and the
mean photo-z error (bottom panel) as a function of the
photometric redshift for the three types of samples we
discussed above. For the flux-limited sample, we show
i < 22.2 while for MAGLIM i < 18þ 4zphot, where zphot is
the DNF photometric redshift estimate. The mean photo-z
error σz is obtained in different ways depending on the
galaxy sample. In the case of the REDMAGIC sample, σz
corresponds to the redshift uncertainty provided by the
REDMAGIC algorithm. For MAGLIM and flux-limited
samples, however, σz=ð1þ zÞ is the 68% confidence
interval of values in the distribution of ðzphot − ztrueÞ=ð1þ
ztrueÞ around its median value, where ztrue corresponds to
the DNF nearest-neighbor redshift. Figure 1 shows that
while the flux-limited sample has many more galaxies
(especially at low redshift), the photometric redshift accu-
racy is far from optimal, with 0.04 < σz=ð1þ zÞ < 0.07.
With the MAGLIM sample, we exclude from the selection
the faintest/bluest galaxies that have worst photo-z, while
still managing to get a sample with several times the
number density of REDMAGIC. The photo-z accuracy, thus,
improves with respect to the flux-limited sample, with
0.02 < σz=ð1þ zÞ < 0.05. Note also that the maximum
redshift range (before the sample starts being incomplete
and the photo-z error degrades) is zmax ∼ 1.05 for MAGLIM
compared to zmax ∼ 0.95 for REDMAGIC.

C. Tomographic binning and redshift distributions

In the rest of the paper, we will derive cosmological
constraints after dividing the samples in tomographic bins
and using estimates for the distribution of true redshifts
per bin.
The estimate for galaxy redshifts (photo-z) used for

tomographic binning and galaxy selection for the MAGLIM
and flux-limited samples is derived using the predicted
value in the fitted hyperplane from the DNF code. In turn, it
has been shown that the stacking of the nearest-neighbor
redshift allows the method to replicate science sample
redshift distributions accurately [61,62], and results and
performance in Y3 GOLD are similar to those found
previously by [63]. In follow-up papers, we will investigate
the performance of this approach for MAGLIM against
direct calibration with spectroscopic fields [38] and clus-
tering redshifts [64] in more detail. Hence, for the estimates
of the redshift distribution of galaxies in each tomographic
bin, nðzÞ, we use the stacking of the nearest-neighbor
redshifts of the galaxies in the sample.
For the REDMAGIC sample, we assume that the redshift

probability distribution function (PDF) for each galaxy is a
Gaussian distribution with mean given by the REDMAGIC
best-fit redshift and standard deviation σz. We then obtain
an overall estimate of the redshift distributions by stacking
these Gaussian PDFs [31,60].

D. Survey area and angular mask

The footprint of the DES Y3 GOLD catalog amounts to
4946 deg2. For cosmology analyses, additional masking is
applied to remove bright stars and other foreground objects,
and also regions of the footprint that have some deficiency
in the source extraction of photometric measurement (aka
bad regions). As a result, the effective area is reduced by
659.68 deg2 [40].
Then, for a given galaxy sample, we mask the regions

that are too shallow in order to have a homogeneous depth
across the footprint. In Fig. 2, we show the fractional survey
area as a function of the limiting magnitude reached in that
area in the i-band. Samples with an overall limiting
magnitude of i ¼ 22 or lower will be complete over
100% of the footprint. If we increase the limiting magni-
tude to incorporate more objects into the sample, then the
regions of the sky that are too shallow would need to be
masked in order to achieve a homogeneous depth.
Therefore, there is a trade-off between imposing limits at
higher magnitudes and preserving the survey area. In
Sec. IV, we vary a range of limiting magnitudes in order
to optimize the samples and decide not to consider those
selections with i > 22.75, at which point we would need to
mask ∼10% or more of the sky area.
The samples that we find to be optimal in terms of 2 ×

2pt cosmological constraints are complete in regions of the
survey deeper than i ¼ 22.2 magnitudes. Therefore, we

FIG. 1. Galaxy counts (top panel) and mean photo-z error
σz=ð1þ zÞ (bottom panel) as a function of photometric redshift
for three cases of the lens samples considered in this work (see
text for details).
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will consider such regions as our baseline footprint. This
implies masking out about ∼1% of the area. A similar
masking is applied for the REDMAGIC sample. We use
depth information from the REDMAGIC catalogs to mask
out the regions in the footprint that are too shallow. Since
we want to compare the cosmological constraints obtained
from the optimal samples with the REDMAGIC sample, we
then combine these two masks resulting in a unique mask
that is applied to both. Using the same mask for both
samples reduces the area by an additional ∼100 deg2,
yielding a final effective area of 4182 deg2. For simplicity,
we use the same mask for all sample selections. We note
that this is optimistic for those samples in Sec. IV with
limiting magnitudes larger than 22.2.

III. FORECASTING METHODOLOGY

In what follows, we describe the methodology employed
for sample optimization. For each magnitude cut consid-
ered, we access the catalog and apply the sample selection,
which leads to a given number density and redshift
distribution per tomographic bin. From these, we produce
theory data vectors and covariances that are subsequently
used to derive cosmological parameter constraints follow-
ing the forecasting methodology that we present next.

A. Likelihood exploration

In order to investigate the potential gains in cosmological
constraints, we run simulated likelihood analyses with
Fisher matrix [65,66] and MCMC methods. The Fisher
matrix is commonly used for forecasting constraints
because it is fast to compute and provides an approxi-
mation for the covariance matrix of the parameters.
However, since the Fisher matrix is a local approximation
of the likelihood, it can provide inaccurate results for
non-Gaussian posterior distributions, as is the case when
there are degeneracies between parameters (see e.g., [67]).

A more robust approach for forecasting is possible by
sampling the full posterior distributions using an MCMC
approach.
We sample the posterior in the n-dimensional parameter

space by computing the likelihood at every step, where n is
the number of parameters (p⃗) we vary in our analysis (see
Table I). We assume the likelihood to be Gaussian,

lnLðd⃗jm⃗ðp⃗ÞÞ

¼ −
1

2

XN
ij

ðdi −miðp⃗ÞÞC−1
ij ðdj −mjðp⃗ÞÞ: ð1Þ

Here N is the number of data points, m⃗ðp⃗Þ are the
theoretical predictions as a function of the parameters
we allow to vary, d⃗ is the noiseless theory data vector
(the set of theoretical predictions evaluated at the fiducial
cosmology), and C is the covariance matrix, also evaluated
at the fiducial cosmology (see Table I). The posterior
distribution of the parameters is given by

Pðm⃗ðp⃗Þjd⃗Þ ∝ Lðd⃗jm⃗ðp⃗ÞÞPpriorðp⃗Þ; ð2Þ

where Ppriorðp⃗Þ is the prior on the parameters. The Fisher
matrix is defined as the expectation value of the curvature
of the log-likelihood evaluated at the maximum likelihood
point, i.e., the fiducial values of the parameters p⃗0,

Fij ≡ −
�∂2 logL
∂pi∂pj

����
p⃗¼p⃗0

�
: ð3Þ

We can include Gaussian priors by adding a prior matrix

FP
ij ¼ δij

1

ðσPi Þ2
; ð4Þ

where σPi is the standard deviation on the parameter pi
assumed as a prior. According to the Cramr-Rao inequality,
the Fisher matrix gives a lower bound on the error σ on a
parameter pi,

σðpiÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
: ð5Þ

A commonly used metric to measure the constraining
power of a given data set is the figure of merit (FoM).
The FoM for a subset of cosmological parameters p is
defined as

FoMp ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½ðF−1Þp�

q ; ð6Þ

where ðF−1Þp is the selection on ðF−1Þ of the rows and
columns corresponding to the subset of parameters p.

FIG. 2. Percentage of survey area as a function of the limiting
magnitude in the i-band. The reference full area includes all the
baseline quality cuts corresponding to the DES Y3 GOLD data set.
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An intuitive way to understand the FoM is to consider a
subset of two parameters. In that case, the FoM is inversely
proportional to the area of the confidence ellipse of these
two parameters.
One of the most important factors for the reliability of a

Fisher matrix is the stability of the numerical derivatives
(see e.g., [67–69]). The computation of the derivatives
involves evaluating the likelihood at several points in the
vicinity of the fiducial values of the parameters, assuming a
given step size. The problem is that if the step size is too
large, the numerical derivative may not be accurate. On the
other hand, if the step size is too small, the derivative
estimate will be unreliable due to numerical instabilities.
For this purpose, when computing a Fisher matrix, we
iteratively vary the step size for each parameter until we
reach a certain tolerance. In the following, we explain the
details of this process. We first compute the derivatives at
an initial step size of 0.01 (1%) in units of the range of each
parameter. Assuming a maximum step size smax ¼ 0.05
(which is a reasonable boundary according to [70]), in each
iteration we vary the step sizes to the minimum value
between smax and the predicted σ error on that parameter:
snew ¼ minðsmax; σðpiÞÞ. The algorithm converges when
the differences in the sigma errors σðpiÞ are below a
tolerance of 0.01 and the differences in the predicted
covariance matrix of the parameters are below 10−4.
Another important factor is the treatment of priors in the

Fisher matrix estimation. In general, when analyzing data,
we assume wide flat priors for the cosmological parameters
in order to avoid having cosmological results that depend
on the priors assumed. However, as mentioned before, the
Fisher matrix will fail to estimate the posterior distributions
in the presence of non-Gaussianities, which can lead to
confidence contours that extend beyond the physically
meaningful parameter range. In order to address this, we
apply wide Gaussian priors for the parameters listed with
flat priors in Table I, assuming in Eq. (4) a standard
deviation equal to half the limits ½a; b� of the parameter
range in Table I: σPi ¼ ðb − aÞ=2. This was the approach
taken in [68], which resulted in a good agreement between
Fisher and MCMC. In the case of nuisance parameters with
Gaussian priors, we just assume as σPi the σ values listed in
Table I.
Even though we have taken measures to ensure our

Fisher matrices are reliable, the predicted constraints σðpiÞ
will still have an uncertainty of order 10% with respect to
other Fisher codes and MCMC methods [68–70]. For this
reason, in Sec. V B, we compare a representative set of our
Fisher forecasts against the constraints coming from a full
MCMC sampling of the posterior. Nevertheless, we rely on
the Fisher matrix for most of our forecasts, with the
exception of Sec. V B, in which we show the MCMC
constraints for REDMAGIC and the optimal samples.

TABLE I. The fiducial parameter values and priors for cos-
mological and nuisance parameters used in this analysis. Square
brackets denote a flat prior over the indicated range, while
parentheses denote a Gaussian prior of the form N ðμ; σÞ.
Parameter Fiducial Prior

Cosmology
Ωm 0.2837 [0.1, 0.9]
As=10−9 2.2606 [0.5, 5.0]
ns 0.9686 [0.87, 1.07]
w −1.0 [−2, −0.33]
Ωb 0.062 [0.03, 0.07]
h0 0.8433 [0.55, 0.9]
Ωνh2 6.155 × 10−4 Fixed
ΩK 0 Fixed
τ 0.08 Fixed

Galaxy bias (REDMAGIC)
bi 1.4, 1.6, 1.6, 1.93, 1.99 [0.8, 3.0]

Galaxy bias (MAGLIM)
bi 1.49, 1.86, 1.81, 1.90, 2.26, 2.33 [0.8, 3.0]

Galaxy bias (Flux limited)
bi 1.07, 1.24, 1.34, 1.56, 1.96 [0.8, 3.0]

Intrinsic alignment
AIA 0.0 [−5.0, 5.0]
αIA 0.0 [−5.0, 5.0]

Lens photo-z shift (REDMAGIC)
Δz1l 0.0 (0.0, 0.0035)
Δz2l 0.0 (0.0, 0.0035)
Δz3l 0.0 (0.0, 0.003)
Δz4l 0.0 (0.0, 0.005)
Δz5l 0.0 (0.0, 0.005)

Lens photo-z shift (MAGLIM)
Δz1l 0.0 (0.0, 0.007)
Δz2l 0.0 (0.0, 0.007)
Δz3l 0.0 (0.0, 0.006)
Δz4l 0.0 (0.0, 0.01)
Δz5l 0.0 (0.0, 0.01)
Δz6l 0.0 (0.0, 0.01)

Lens photo-z shift (Flux limited)
Δz1l 0.0 (0.0, 0.014)
Δz2l 0.0 (0.0, 0.014)
Δz3l 0.0 (0.0, 0.012)
Δz4l 0.0 (0.0, 0.02)
Δz5l 0.0 (0.0, 0.02)

Source photo-z shift
Δz1s 0.002 (0.0, 0.016)
Δz2s −0.015 (0.0, 0.013)
Δz3s 0.007 (0.0, 0.011)
Δz4s −0.018 (0.0, 0.022)

Shear calibration
mi (i ¼ 1, 4) 0.012 (0.012, 0.023)
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In this paper, we use COSMOSIS [71,72] to compute the
Fisher matrices. For the MCMC simulated likelihood
analyses, we sample the posterior distribution using the
MULTINEST [73] wrapper in COSMOSIS.

B. Theory modeling

In this section, we describe the model we use to
characterize galaxy clustering and galaxy-galaxy lensing
and their covariance matrix. As seen in Sec. III A, we use
these to extract cosmological information from a given data
vector that, in our case, is a noiseless theoretical prediction
at the fiducial cosmology. The model depends upon both
cosmological parameters and astrophysical and systematic
nuisance parameters (see Sec. III C). In the Appendix, we
validate the numerical implementation of our covariances
by comparing the constraints coming from two different
covariance codes.

1. Observables

The observables we consider in the simulated likelihood
analyses are the galaxy clustering and galaxy-galaxy
lensing two-point angular correlation functions, i.e., the
correlations in the positions of the lens galaxies and the
correlation between these positions and the source galaxy
shears.
Under the Limber approximation [74], we can construct

their respective angular power spectra as a function of
multipole l in the following way:

Cij
δgδg

ðlÞ ¼
Z

dχ
qiδg

�
lþ1

2

χ ; χ
�
qjδg

�
lþ1

2

χ ; χ
�

χ2

× PNL

�
lþ 1

2

χ
; zðχÞ

	
; ð7Þ

Cij
δgκ
ðlÞ ¼

Z
dχ

qiδg

�
lþ1

2

χ ; χ
�
qjκðχÞ

χ2
PNL

�
lþ 1

2

χ
; zðχÞ

	
;

ð8Þ

where PNLðk; zÞ is the nonlinear matter power spectrum,
and qiδg and qjκ are, respectively, the density kernel in the

redshift bin i from the lens sample and the lensing
efficiency in the redshift bin j from the source sample.
These kernels depend, respectively, on the redshift distri-
butions of lens (niδgðzÞ) and source (niκðzÞ) galaxy samples

normalized by their respective total number densities in that
redshift bin (n̄iδg for the lenses and n̄iκ for the sources) and

can be expressed as a function of the comoving distance χ
in the following way:

qiδgðk; χÞ ¼ biðk; zðχÞÞ
niδgðzðχÞÞ

n̄ig

dz
dχ

; ð9Þ

qiκðχÞ ¼
3H2

0Ωm

2c2
χ

aðχÞ
Z

χh

χ
dχ0

niκðzðχ0ÞÞdz=dχ0
n̄iκ

χ0 − χ

χ0
;

ð10Þ

whereH0 is the Hubble constant, c is the speed of light, a is
the scale factor, and biðk; zÞ is the galaxy bias, a nuisance
parameter that we vary in our analysis (see Sec. III C).
We adopt a linear galaxy bias model (independent of the
scale k), with a single galaxy bias bi parameter for each
redshift bin.
Under the flat-sky approximation, the galaxy clustering

and galaxy-galaxy lensing angular two-point correlation
functions can be computed from the angular power spectra
from Eqs. (7) and (8) in the following way:

wijðθÞ ¼
Z

dll
2π

J0ðlθÞCij
δgδg

ðlÞ; ð11Þ

γijt ðθÞ ¼ ð1þmjÞ
Z

dll
2π

J2ðlθÞCij
δgκ
ðlÞ; ð12Þ

where Jn is the nth order Bessel function of the first kind,
and mj is the multiplicative shear bias, a nuisance param-
eter introduced to take into consideration potential biases in
the inferred shear.
In most of this work, we restrict wðθÞ to auto-correlations

within each redshift bin, i.e., we just consider wii. However,
in Sec. VI A, we test the impact of including galaxy
clustering cross-correlations between redshift bins in our
analysis.
In addition to the galaxy shear induced by gravitational

lensing, galaxy shapes can also be intrinsically aligned as a
result of their formation and evolution in the same large-
scale structure environment. The impact of intrinsic align-
ments (IAs) can be modeled using a power spectrum shape
and an amplitude AðzÞ. We assume the nonlinear alignment
model [75,76] for the IA power spectrum, which impacts
the lensing efficiency in the following way:

qiκðχÞ → qiκðχÞ − AðzðχÞÞ n
i
κðzðχÞÞ
n̄iκ

dz
dχ

: ð13Þ

We model the IA amplitude assuming a power-law
scaling with redshift,

AðzÞ ¼ AIA;0

�
1þ z
1þ z0

	
αIA C1ρcrit

DðzÞ ; ð14Þ

where DðzÞ is the linear growth factor. The pivot redshift is
chosen to be approximately the mean redshift of the
sources, z0 ¼ 0.62, and C1ρcrit ¼ 0.0134 is a normalization
derived from SUPERCOSMOS observations [76]. Therefore,
the IA model assumed adds two extra nuisance parameters
in our analysis: AIA;0 and αIA.
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We note that magnification, which we do not include in
our modeling, will be significant when using flux-limited
samples on a real data analysis. Reference [77] will show
the measurement and validation of the magnification
coefficients for both REDMAGIC and the optimal sample
resulting from this work. These coefficients will be
included in the DES Y3 analysis to avoid biases on the
cosmological constraints. However, the constraining power
is only slightly degraded when marginalizing over the
magnification coefficients [77]. Therefore, our conclusions
are not affected by the neglect of magnification effects.
We calculate the power spectrum using the Boltzmann

code CAMB3 [78,79] with the HALOFIT extension to
nonlinear scales [80,81] and the neutrino extension from
[82]. We use COSMOSIS to compute the galaxy clustering
and tangential shear two-point functions.

2. Covariance

Following the notation in Refs. [83,84], in the flat sky
limit, the real space covariance of two angular two-point
functions Ξ;Θ ∈ fw; γtg at angles θ and θ0 is related to the
covariance of the angular power spectra by

CovðΞijðθÞ;Θkmðθ0ÞÞ

¼ 1

4π2

Z
dllJnðΞÞðlθÞ

Z
dl0JnðΘÞðl0θ0Þ

× ½CovGðCij
Ξ ðlÞ; Ckm

Θ ðl0ÞÞ þ CovNGðCij
Ξ ðlÞ; Ckm

Θ ðl0ÞÞ�;
ð15Þ

with Cγt ≡ Cδgκ from Eq. (8), and Cw ≡ Cδgδg from Eq. (7),
and where the order of the Bessel function is n ¼ 0 for w,
and n ¼ 2 for γt. The indices i, j, k, m denote the redshift
bins. All two-point functions are evaluated in 20 log-spaced
angular bins over the range 2.50 < θ < 2500. This yields a
500 × 500 covariance matrix if the lens sample is split in
five tomographic bins (which is the fiducial case for the
flux-limited and REDMAGIC samples), and the size
increases by 100 for each additional tomographic bin.
The non-Gaussian covariance CovNG consists of a con-
nected four-point correlation contribution [85,86] and a
supersample contribution [87]. In the Gaussian covariance
CovG [88], different harmonic modes l are uncorrelated, so
its harmonic transform reduces to a single integral. The
Gaussian covariance has terms related to cosmic variance,
shot noise (∝ 1=n̄i, with n̄i being the mean number density
in each tomographic bin), and for γt there is also shape
noise coming from the ellipticity dispersion σϵ [89,90].
In general, we do not include the non-Gaussian covari-

ance term in our analysis, as we are just interested in
forecasting and comparing the cosmological constraints
given by different sample definitions. In addition, we

exclude small scales (see Sec. III D), where some of the
non-Gaussian terms of the covariance become dominant
(the supersample contribution also impacts large scales).
We note that when comparing REDMAGIC with flux-
limited samples, which have much higher number density,
the latter will be more impacted by non-Gaussian terms due
to the reduced shot noise in the Gaussian part of the
covariance. Nonetheless, we have checked that including
the non-Gaussian covariance term does not impact our final
MAGLIM gains with respect to REDMAGIC after the
optimization carried out in Sec. IVA.
We use two different codes to compute the Gaussian

covariance: COSMOSIS [72] and COSMOLIKE [91], which
was validated against simulations in [83]. In the Appendix,
we check that our results are the same independently of the
code we use to compute the covariances.

C. Parameter space and priors

The cosmological model we consider in this work is
spatially flat wCDM with fixed neutrino mass corres-
ponding to the minimum allowed neutrino mass of
0.06 eV from oscillation experiments [92]. We split the
neutrino mass equally among the three eigenstates, to be
consistent with [11].
The fiducial cosmological parameter values correspond

to the best fits of the posterior distributions from the DES
Y1 ΛCDM analysis in [11] which obtained cosmological

TABLE II. Number of galaxies, mean photo-z scatter, and 68%
confidence width of the redshift distributions (W68) for the
optimal MAGLIM and flux-limited samples compared to RED-

MAGIC, considering an effective area of 4182 deg2.

z RANGE nδg σz=ð1þ zÞ W68

REDMAGIC
0.15–0.35 341,602 0.011 0.059
0.35–0.50 589,562 0.015 0.052
0.50–0.65 877,267 0.016 0.052
0.65–0.85 679,291 0.020 0.073
0.85–0.95 418,986 0.022 0.050

MAGLIM
0.20–0.35 1,680,160 0.034 0.064
0.35–0.50 1,678,655 0.043 0.082
0.50–0.65 1,460,354 0.022 0.061
0.65–0.80 1,975,242 0.027 0.069
0.80–0.95 2,374,205 0.034 0.077
0.95–1.05 1,470,893 0.044 0.097

Flux limited
0.20–0.40 12,623,785 0.061 0.113
0.40–0.50 16,291,232 0.066 0.101
0.50–0.65 16,795,581 0.050 0.098
0.65–0.80 12,994,143 0.036 0.077
0.80–1.05 11,244,729 0.040 0.110

3See camb.info.
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constraints from the combination of galaxy clustering,
galaxy-galaxy lensing, and cosmic shear (aka 3 × 2pt).
We bin the samples described in Sec. II A in several

tomographic bins. For the MAGLIM sample, we split the
selection in six redshift bins from z ¼ 0.2 to z ¼ 1.05, with
a width of Δz ¼ 0.15. We consider the same z range for the
flux-limited sample, but in that case we split the selection in
five z bins with balanced number density across the bins.
For REDMAGIC, we split the sample in five z bins from
z ¼ 0.15 to z ¼ 0.95, similarly to DES Y1 [60]. See
Table II for the z ranges in each tomographic bin of the
samples. We keep fixed this fiducial redshift binning
throughout this work, except for Sec. VI A in which we
consider alternative tomographic binnings.
For the sources, we use the METACALIBRATION sample

from the DES Y1 cosmic shear analysis [46], which is
divided in four tomographic bins: 0.2 < z < 0.43, 0.43 <
z < 0.63, 0.63 < z < 0.9, and 0.9 < z < 1.3. See Fig. 3 for
the normalized redshift distributions.
In addition to the six cosmological parameters, our

model contains about 20 nuisance parameters (22 for
MAGLIM due to the extra redshift bin). These are the
galaxy bias parameters for the lens samples (one bi per
redshift bin), the multiplicative shear biases (one mi

parameter for each source redshift bin), two parameters
related to the intrinsic alignment model, AIA and ηIA, and
the photo-z shift parameters for each redshift bin of the
lenses and the sources, Δzi.
These shift parameters are used in our analysis to

quantify uncertainties in the redshift distribution. We
assume that the true redshift distribution niðzÞ in bin i
is a shifted version of the photometrically derived
distribution,

niðzÞ ¼ niPZðz − ΔziÞ: ð16Þ

The fiducial values and priors assumed for these param-
eters, shown in Table I, are consistent with the DES Y1

3 × 2 analysis [11], except that the lens photo-z shifts are
treated as described below. For the MAGLIM sample, we
assume fiducial values for the galaxy bias based on galaxy
clustering measurements on a 10% subsample of the data,
in consistency with the Y3 blinding scheme [93].
For the flux-limited sample, we assume fiducial galaxy

bias values based on the galaxy clustering measurements
from DES science verification data [35], where a similar
flux-limited sample was defined. In Sec. VI B, we check
that our conclusions in this work are basically insensitive to
changes in the fiducial galaxy bias values.
For the photo-z shift parameters, we assume the same

priors as in DES Y1 for the sources, since we are using the
same redshift distributions. For the lenses, in the DES Y1
data analysis, the shift values and their associated errors
were obtained by recalibrating the mean of the baseline
redshift distributions to match those from a clustering-
redshift method, given a reference spectroscopic sample. In
DES Y1, this sample was made of ∼20; 000 CMASS and
LOWZ galaxies in ∼124 deg2 area overlap with SDSS
DR12 [94]. For the Y3 analysis, the DES footprint overlaps
over a much larger area with SDSS DR12 in addition to
eBOSS, which increases the reference sample by about a
factor of 10 in number of galaxies [64]. Hence, the
associated errors σ are found a factor of ∼2 smaller for
REDMAGIC than in Y1 [64]. In turn, MAGLIM has broader
redshift distributions than REDMAGIC and the errors on the
shift parameters from the clustering-redshift method in Y3
are roughly twice as big than for REDMAGIC. Similarly,
since the flux-limited sample has even broader redshift
distributions (see Figs. 1 and 8), we conservatively assume
priors twice as wide compared to MAGLIM, which is a
reasonable assumption according to Y3 clustering-redshift
estimates [64]. In Sec. VI C, we test the sensitivity of our
results to the assumed priors for the MAGLIM and flux-
limited lens photo-z shift parameters.

D. Scale cuts

At sufficiently large scales, perturbation theory can be
used to calculate the matter power spectra. On smaller
scales, N-body simulations are needed in order to capture
the nonlinear evolution of structure growth. For example,
the HALOFIT method [80,81], which we use in this work,
employs a functional form of the matter power spectrum
derived from halo models that are, in turn, calibrated from
N-body simulations. However, only gravitational physics is
included in these dark matter only simulations, which
neglects any modification of the matter distribution due
to baryonic physics processes such as star formation,
radiative cooling, and feedback [95–97]. At small scales,
these processes can modify the matter power spectrum
significantly [98].
In order to mitigate the impact of the uncertainty in how

the baryonic physics and other nonlinear effects modify the
matter power spectrum, we apply a set of scale cuts, which

FIG. 3. Normalized redshift distributions for the sources,
corresponding to DES Y1 METACALIBRATION galaxies.
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were tested in [83] for the DES Y1 analysis, such that
nonlinear modeling limitations (especially in the galaxy
bias modeling) do not bias the cosmology results. In this
work, we use the same scale cuts considered for the DES
Y1 baseline analysis [11], which are defined in terms of a
specific comoving scale R,

Rδgδg ¼ 8 Mpch−1;

Rδgκ ¼ 12 Mpc h−1; ð17Þ

where Rδgδg denotes the scale cuts for the galaxy clustering
data vector, and Rδgκ for galaxy-galaxy lensing. See [83]
for a detailed description of how these scale cuts were
determined. We then convert the comoving scale cuts into
angular ones using the radial comoving distance χ to the
mean of the redshift distribution in each corresponding
tomographic bin hzii. Thus, for redshift bin i, the minimum
angular scale θimin included is

θimin ¼
R

χðhziiÞ : ð18Þ

IV. SAMPLE OPTIMIZATION

In this section, we explore the trade-off between number
density and photo-z scatter by considering different flux-
limited sample definitions. In particular, we define different
selections for the samples described in Secs. II A 1 and II A 2
and see how that impacts the constraints on w, σ8, and Ωm.
We fix the fiducial galaxy bias, tomographic binning, and
nuisance parameters as specified in Sec. III C. The impact of
fixing these is discussed in Sec. VI, in which we show that
our conclusions are robust to the galaxy bias and tomo-
graphic binning assumed. We consider an area of 4580 deg2

for all the forecasts in this paper, even though this value is
different to the final area of the data catalog, which
was reduced after masking (see Sec. II D). For each one
of the galaxy selections, we only vary the photometric
redshift distribution of the lens sample and its tomographic
number densities. In all cases, we use the DES Y1
METACALIBRATION sample for the sources.

A. MAGLIM sample

As presented in Sec. II A 2, we consider samples in
which all galaxies have a magnitude cut applied that
evolves linearly with the photometric redshift estimate:
i < azphot þ b. In this section, we consider different values
of a and b, in a range wide enough to cover a variety of
number densities and σz values.
In order to get a first estimate for these values, we start by

applying a different limiting magnitude in the i-band to
each redshift bin, aiming for a number density 2–3 times
larger than REDMAGIC while keeping the photo-z scatter as
low as possible. The resulting limiting magnitudes are

shown in Fig. 4 (blue points). We then fit the linear function
to these i and z values obtaining a ¼ 4.0 and b ¼ 17.64. In
Fig. 4, we show the i values used for the preliminary
version of the sample, the linear fit to these values (green),
hereafter v0.0, and the cut corresponding to the optimal
definition of the sample (see Sec. V). In order to find the
optimal sample, we follow the following steps:
(1) Take one of the possible combinations of ða; bÞ

within the ranges a ¼ ½3.5; 4; 4.5; 5�, b ¼ ½17; 17.5;
18; 18.5�.

(2) Apply the cut i < azphot þ b with the selected a and
b values.

(3) From this selection, we extract the redshift distri-
butions nðzÞ and number densities, which will be
used as input for the forecasts.

(4) Generate a covariance and a theory data vector using
as input for the lenses the nðzÞ for this sample
selection (and the number densities, in the case of
the covariance).

(5) Using this theory data vector and covariance, we run
a 2 × 2pt Fisher forecast to obtain estimated con-
straints and FoM on the parameters of interest (see
Table I).

As mentioned before, these ranges of ða; bÞ values cover a
broad variety of possible sample definitions, as the mini-
mum values (i.e., i < 3.5zphot þ 17) result in a sample with
very few galaxies (about 75 galaxies per deg2), and the
maximum ones (i.e., i < 5zphot þ 18.5) result in a sample
with a very large limiting magnitude (i < 23.75), in such a
way that we are practically selecting almost all the galaxies
from the catalog (roughly 15300 galaxies per deg2). As
discussed in Sec. II D, we decide not to consider those
selections that reach a limiting magnitude larger than 22.75,
at which we already lose ∼10% of the area (see Fig. 2).

FIG. 4. Different MAGLIM sample definitions considered. The
first version (blue dots) applied a constant magnitude cut for each
redshift bin, the second version (aka v0.0), in solid green, used a
continuous magnitude cut evolving linearly with z, with slope
and interception given by a fit to the blue points. In dashed black,
we show the final definition of the sample.
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In the bottom three panels of Fig. 5, we show the
standard deviations resulting from the forecasts, which are
normalized by the constraints obtained from the
REDMAGIC sample. Thus, the black dashed line represents
constraints equal to those obtained from REDMAGIC, while
points above or below that line correspond to samples
giving worse or better constraints than REDMAGIC, respec-
tively. The gray band delimits the region with 10% better or
worse constraints. In the top panel, we show the respective
figure of merits for each pair combination of these cosmo-
logical parameters, also normalized by the FoM obtained
with REDMAGIC. Note that tighter constraints imply larger
FoM values.

Here we see that most of the samples considered yield
constraints similar or slightly better than REDMAGIC. This
is due to the fact that, even though the photo-z are less
accurate, these samples have more galaxies and reach
higher z than REDMAGIC (recall we consider
zmax ¼ 1.05, while for REDMAGIC zmax ¼ 0.95). One of
the samples provides significantly worse constraints
(i < 3.5zphot þ 17), but this is understandable, as it corre-
sponds to the extreme case in which very few galaxies are
selected from the data catalog.
It is interesting to note that the constraints on σ8 improve

as the number density increases. ForΩm and w, this trend is
not so clear, in part due to the trade-off with photometric
redshift accuracy which widens the redshift distributions as
the number density increases. This trade-off can be seen
more clearly in Fig. 6, in which we compare the normalized
redshift distributions of two magnitude-limited sample
selections ordered by ascending number density (and,
consequently, mean photo-z scatter) from top to bottom.
These correspond to sample selections from Fig. 5 with
significantly small and large number densities.
Another factor to take into account is that different

combinations of a and b in the selection i < azphot þ b
result in uneven distributions of number densities across the
tomographic bins. Since we are comparing the constraints

FIG. 5. Standard deviations on Ωm, w, and σ8 (bottom panel)
and the figure of merit of their combinations in pairs (top panel)
considering different magnitude-limited samples (of the form
i < azphot þ b) normalized by estimates from the REDMAGIC
sample. The gray band delimits the region with 10% better
(lower edge) or worse (upper edge) constraints compared to
REDMAGIC. The samples are ordered by ascending number
density (from left to right), with values ranging from ∼75 to
∼5775 galaxies per deg2.

FIG. 6. Normalized redshift distributions for two magnitude-
limited sample selections with significantly small (top panel) and
large (bottom panel) number densities (see Fig. 5). The mean
photo-z scatter ranges from σz=ð1þ zÞ ≈ 0.028 in the top panel to
σz=ð1þ zÞ ≈ 0.050 in the bottom panel. The shaded bands
indicate the tomographic binning assumed.
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from the joint combination of galaxy clustering and galaxy-
galaxy lensing, we expect to have an increased constraining
power from those samples that have more galaxies at the
redshifts in which the lensing efficiency kernels of the
source sample peak. Thus, a sample that hasmore galaxies at
high redshift and fewer galaxies at low redshift can provide
tighter constraints than a sample with the same total number
density but with the opposite distribution of galaxies.
From Fig. 5, we see that the optimal sample, i.e., the

one that produces the tightest constraints (higher FoM)
while keeping the photo-z uncertainties as low as possible,
corresponds to i < 4zphot þ 18. With a number density 2–3
times larger than REDMAGIC (see Sec. V), this sample has
an increase in the FoM values of 40% (36% for theΩm − σ8
pair), providing ∼10%–18% smaller errors on the cosmo-
logical parameters.
We note that the sample with the largest number density

from Fig. 5, i < 4zphot þ 18.5, provides very similar con-
straints to i < 4zphot þ 18. However, this sample has larger
mean photo-z scatter σz in all tomographic bins. Aside from
increasing the width of the redshift distributions (see
Fig. 6), this could present more obstacles in the validation
of the redshift distributions in a real data analysis. For this
reason, the selection i < 4zphot þ 18 is preferable.

B. Flux-limited sample

In this section, we explore flux-limited samples with
different limiting magnitudes in the i-band, as described in
Sec. II A 1. We restrict ourselves to a maximum limiting
magnitude of 22.2 to avoid having to mask out a larger
fraction from our total area (see Sec. II D), this also
corresponds to the limiting magnitude of the optimal
MAGLIM sample (i < 4zphot þ 18).
Similarly, to the optimization process described for

MAGLIM in the previous section, we run 2 × 2pt Fisher
forecasts for three limiting magnitudes: [21.8, 22, 22.2]. In
Fig. 7, we compare the constraints obtained on Ωm, w, and
σ8 for each one of these flux-limited samples normalized by
the REDMAGIC ones. The shaded gray band delimits the
region with 10% worse or better constraints compared
to REDMAGIC. Even though there is a significant variation
in number densities in the samples considered (e.g.,
i < 22.2 has twice the number density of i < 21.8 at
0.8 < z < 1.05), there is not much difference in the
resulting constraints. However, we note that the scale cuts
considered are conservative, and the difference in con-
straining power would be larger if we included smaller
scales in our analysis. We find a slight improvement when
increasing the number densities (going to higher limiting
magnitudes). Thus, the optimal flux-limited sample is the
one with limiting magnitude i < 22.2, with which we reach
8% tighter constraints on Ωm and w, and 13% tighter on σ8
with respect to REDMAGIC. These improvements would be
likely smaller when including shear, i.e., in the usual
3 × 2pt analysis.

Comparing these results to those obtained for i <
4zphot þ 18 (MAGLIM), we find that these constraints are
somewhat worse, especially for σ8. The reason for this is
the trade-off between number density and photo-z scatter.
The flux-limited samples have much higher number density
than MAGLIM (see Fig. 1), which in general improves the
constraints because it reduces the shot noise contribution in
the covariance. But at the same time, the larger σz increases
the errors on the cosmological parameters, partly due
to the wider priors in the lens photo-z shift parameters Δzi
and partly because the redshift distributions have larger
tails and we are not including galaxy clustering cross-
correlations between redshift bins. Moreover, due to the
larger uncertainties in the shapes of the redshift distribu-
tions, it is not clear that a photo-z shift parameter is enough
to account for these uncertainties. The addition of extra
nuisance parameters (e.g., a photo-z width parameter for
each bin) may be needed in a real data analysis, and this
could degrade the constraining power of this sample.
Nevertheless, we note that exploring smaller scales will
be more beneficial for MAGLIM and, specially, for the flux-
limited sample, as they are on the sample variance regime
(while REDMAGIC is shot noise limited).

V. OPTIMAL SAMPLES

In Sec. IV, we find that the optimal sample is the
MAGLIM sample, defined with a magnitude cut
i < 4zphot þ 18. In Table II, we describe the fiducial

FIG. 7. Standard deviations on Ωm, w, and σ8 considering
different definitions of the flux-limited sample, normalized by
estimates from the REDMAGIC sample. The gray band delimits
the region with 10% better (lower edge) or worse (upper edge)
constraints compared to REDMAGIC.
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tomographic binnings of the three samples, along with the
number of galaxies, nδg , the mean photo-z scatter,
σz=ð1þ zÞ, and the 68% confidence width of the redshift
distributionsW68 in each redshift bin. The W68 value is the
equivalent of the standard deviation of a Gaussian distri-
bution and in practice is much more relevant to consider
than σz itself because it is a measure of the width of the
redshift distribution, which is what enters the density kernel
in the two-point functions computation (see Sec. III B). In
Fig. 8, we show the redshift distributions for the three
samples. The flux-limited sample is the one with larger
photo-z scatter, and as a consequence, the redshift distri-
butions are broader than with the other two samples.
In order to compare the properties of the samples under

the same terms, in the following Sec. VA, we compare the
number of galaxies and W68 values assuming the same
tomographic binning. In Sec. V B, we compare their
cosmological constraints obtained from full MCMC simu-
lated likelihood analyses.

A. Comparison on same tomographic binning

In this section, we compare the characteristics (number
density and photometric accuracy) of MAGLIM with the
flux-limited and REDMAGIC samples under the same
tomographic binning. In particular, we assume the
REDMAGIC tomographic binning for the three samples.
Since the MAGLIM and flux-limited samples reach a higher
maximum redshift than REDMAGIC, for those two samples,
we consider an additional redshift bin in the range
0.95 < z < 1.05.
In Table III, we show the number of galaxies and W68

values for each redshift bin and each one of the lens
samples. The MAGLIM sample has on average between 2
and 3 times more galaxies than REDMAGIC. The difference
in number density ranges from 60% more galaxies in the
third bin to more than 5 times further galaxies at higher
redshift (0.85 < z < 0.95), while the redshift distributions
are ∼30% wider on average for the MAGLIM sample.
On the other hand, the number of galaxies in the flux-

limited sample is 1 order of magnitude larger compared to
MAGLIM, except at high redshift (0.85 < z < 1.05) where
the MAGLIM selection gets closer to the flux-limited
selection of i < 22.2, as they both have the same limiting
magnitude at zmax ¼ 1.05. The flux-limited sample has a
high number density at the expense of larger photo-z errors
(see Fig. 1). As a consequence, its redshift distributions are
on average 20% wider compared to MAGLIM, with the
difference being larger in the range 0.50 < z < 0.65.
The greater number density of MAGLIM and flux-limited

samples compared to REDMAGIC is the dominant factor
driving the gain of constraining power from a 2 × 2pt

FIG. 8. Normalized redshift distributions for the optimal
MAGLIM and flux-limited samples compared to REDMAGIC.
The shaded bands indicate the tomographic binning of each
sample.

TABLE III. Comparison of number of galaxies and 68%
confidence width of the redshift distribution,W68, for the optimal
MAGLIM and flux-limited samples compared to REDMAGIC,
considering an effective area of 4182 deg2 and the same tomo-
graphic binning.

z range REDMAGIC MAGLIM Flux lim

Number of galaxies
0.15–0.35 341,602 1,599,462 9,129,473
0.35–0.50 589,562 1,593,745 21,473,232
0.50–0.65 877,267 1,379,717 16,795,581
0.65–0.85 679,291 1,862,978 16,640,513
0.85–0.95 418,986 2,257,704 5,093,174
0.95–1.05 1,470,893 2,503,679

Total 2,906,708 10,164,499 71,635,652

Width of the redshift distribution (W68)
0.15–0.35 0.059 0.073 0.088
0.35–0.50 0.052 0.082 0.105
0.50–0.65 0.052 0.061 0.098
0.65–0.85 0.073 0.085 0.091
0.85–0.95 0.050 0.076 0.086
0.95–1.05 0.097 0.096
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analysis. The extension to higher redshift (zmax ¼ 1.05) is a
subdominant effect in this case due to the weak lensing
kernels peaking at z ∼ 0.6 (see Fig. 3). Therefore, the
increase in number density in the other tomographic bins
(z < 0.95) dominates the overall gain of these samples
compared to REDMAGIC.

B. Cosmological constraints
from MCMC likelihood analysis

In this section, we compare the cosmological constraints
obtained from the optimal MAGLIM and flux-limited
samples with respect to the REDMAGIC sample after
performing a full MCMC analysis of the combination of
galaxy clustering and galaxy-galaxy lensing, as opposed to
the Fisher matrix approach taken in the other sections. We
assume the fiducial values and priors listed in Table I and
the tomographic binnings from Table II. However, in
addition to exploring the constraints on σ8, in this section,
we also consider the related parameter

S8 ≡ σ8

�
Ωm

0.3

	
0.5
; ð19Þ

since S8 is better constrained than σ8 in weak lensing
surveys such as DES, and it is largely uncorrelated withΩm
in the DES parameter posterior.
In Fig. 9 and Table IV, we show the constraints on Ωm,

S8, and w (σ8 constraints also included in Table IV). We
find that, using the MAGLIM sample instead of REDMAGIC,
we obtain 10% tighter constraints on Ωm, about 12%–13%
for S8 and w, and 16% on σ8. Regarding the flux-limited
sample, we generally find worse constraints compared to
MAGLIM, with the difference being 2% onΩm, and 6%–7%
on w and σ8. However, when sampling the S8 parameter,
the flux-limited sample provides an 11% improvement with
respect to MAGLIM. This is due to the flux-limited sample
having a projected two-dimensional (2D) posterior in the
S8 −Ωm plane with a slightly different inclination com-
pared to MAGLIM, favoring tighter S8 constraints.
We then fix w and compare the constraints on Ωm, σ8,

and S8 assuming a ΛCDM cosmological model. In Fig. 10
and Table IV, we show the constraints on these parameters
from the combination of galaxy clustering and galaxy-
galaxy lensing. In this case, we find a greater difference in
the constraining power of the two samples. In particular,
while the increase on σ8 and S8 with MAGLIM with respect
to REDMAGIC is similar (around 19% and 11%, respec-
tively), the constraints on Ωm show a 27% improvement
compared to REDMAGIC. Thus, it seems that most of the
gain in constraining power on w in Fig. 9 has now been
absorbed by Ωm. Similarly, to the wCDM case, the flux-
limited sample yields worse constraints on Ωm and σ8 with
respect to MAGLIM, with a difference of 18% and 6%,
respectively, while it improves the constraints on S8
compared to MAGLIM by 6%.

As discussed before, the fact we find tighter cosmologi-
cal constraints with MAGLIM is evidently due to the greater
number of galaxies (2–3 times higher) and increased depth
compared to REDMAGIC, reaching z ¼ 1.05 instead of
z ¼ 0.95. If we included the shear two-point correlation
functions in our data vector, i.e., if we considered a 3 × 2pt
analysis, the difference between the two lens samples
would be lower because the constraints would be domi-
nated by the cosmic shear signal. However, this increase in
depth of the MAGLIM sample would be particularly
advantageous when combining the 3 × 2pt analysis with
CMB lensing (5 × 2pt) (see [99]), as the MAGLIM sample

FIG. 9. Comparison of 2 × 2pt parameter constraints obtained
using the DES Y3 REDMAGIC (red) and MAGLIM (blue) samples
and the DES Y1 METACALIBRATION source sample. Here, and in
all the two-dimensional plots below, the two sets of contours
depict the 68% and 95% confidence levels. The MAGLIM
constraints are tighter by 10% on Ωm, 13% on S8, and 12%
on w compared to REDMAGIC.

TABLE IV. 68% confidence level marginalized cosmological
constraints in ΛCDM and wCDM for REDMAGIC and the optimal
MAGLIM and flux-limited samples.

Lens sample σðΩmÞ σðσ8Þ σðS8Þ σðwÞ
ΛCDM

REDMAGIC 0.019 0.043 0.022 � � �
MAGLIM 0.014 0.035 0.019 � � �
Flux limited 0.017 0.037 0.018 � � �

wCDM
REDMAGIC 0.031 0.048 0.031 0.20
MAGLIM 0.028 0.040 0.027 0.18
Flux limited 0.029 0.043 0.024 0.19
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will have a greater overlap with the CMB lensing kernel,
providing a higher signal-to-noise ratio of galaxy clustering
and CMB lensing cross-correlations.

Now that we have MCMC constraints for the different
samples, in Fig. 11 we turn back to compare the gains with
respect to REDMAGIC with the results obtained with Fisher
matrices in Sec. IV. For each parameter i and sample j, we
divide the error ratios obtained from MCMC with the error
ratios using Fisher, ½σij=σiRED�MCMC=½σij=σiRED�Fisher, where
σRED denotes the constraints for REDMAGIC. In this way,
we can assess the level of uncertainty in our conclusions
when using Fisher matrices, despite the offset with respect
to MCMC constraints due to the non-Gaussianity of the
posteriors. The dashed line in Fig. 11 denotes perfect
agreement between MCMC and Fisher in the σ errors
when normalizing by REDMAGIC, while values larger
(lower) than 1 indicate that Fisher overestimates (under-
estimates) the gains. Figure 11 shows that the difference
between MCMC and Fisher error ratios is less than 5%.
However, the variance of this difference across samples is
small, having a scatter of 1%–2%, in general. This is
actually the level of impact in our conclusions when using
Fisher, since in this paper we generally compare the gains
of two different samples normalized by REDMAGIC.

VI. SENSITIVITY TO ANALYSIS CHOICES

A. Tomographic binning and cross-correlations

In this section, we test the impact of the choice of
tomographic binning of the MAGLIM sample and the
inclusion of galaxy clustering cross-correlations between
redshift bins. We run 2 × 2pt Fisher forecasts for each of
the tomographic-bin cases considered and compare the
constraints on Ωm, σ8, and w.
Throughout this section, we maintain the same global z

range as the fiducial sample, i.e., 0.2 < z < 1.05. We first
vary the edges of the tomographic binning, putting together
two new configurations in which we balance the number of
galaxies weighted by the galaxy bias in each redshift bin,
“same Ngal × bi” and “same Ngal.” The galaxy bias values
we consider are listed in Table I, and the definition of these
z binnings is shown in Table V. The motivation for
balancing the number of galaxies (weighted by the galaxy
bias) is to have a more uniform signal-to-noise ratio across
redshift, as the shot noise ∝ 1=Ngal and the signal are
proportional to the bias [see Eq. (9)]. However, as we can

FIG. 10. ΛCDM 2 × 2pt constraints (fixing w) using the DES
Y3 REDMAGIC (red) and MAGLIM (blue) samples as lenses and
the DES Y1 METACALIBRATION sample as sources. The MAGLIM
constraints are tighter by 27% on Ωm and 11% on S8 compared to
REDMAGIC.

FIG. 11. For each parameter i and sample j, error ratio with
respect to REDMAGIC fromMCMCdivided by the equivalent error
ratio from Fisher forecasts, i.e., ½σij=σiRED�MCMC=½σij=σiRED�Fisher.
The samples considered are the flux-limited sample and a few
definitions of the MAGLIM sample, including the optimal one
(a ¼ 4, b ¼ 18). Values larger (lower) than 1 indicate that the
Fisher forecasts overestimate (underestimate) the gains of that
sample with respect to REDMAGIC compared to MCMC.

TABLE V. Different tomographic binning configurations for
the MAGLIM sample, considering variations in the edges of the
z bins.

FIDUCIAL SAME Ngal SAME Ngal × bi

0.20–0.35 0.20–0.36 0.20–0.40
0.35–0.50 0.36–0.52 0.40–0.55
0.50–0.65 0.52–0.69 0.55–0.72
0.65–0.80 0.69–0.82 0.72–0.85
0.80–0.95 0.82–0.93 0.85–0.95
0.95–1.05 0.93–1.05 0.95–1.05
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see in Fig. 12, where we compare the constraints coming
from these different tomographic binnings, our choice of
binning does not appreciably impact the 2 × 2pt cosmo-
logical constraints.
We then vary the number of tomographic bins in which

we divide the sample in the range 0.2 < z < 1.05. Our
fiducial tomographic binning consists of six z bins, and we
consider additionally sample selections split in four, five,
seven, and eight z bins. See Table VI for the details of the z
binning for each one of these cases. In Fig. 13, we compare
the estimated Fisher 2 × 2pt constraints from each one of
these sample selections with our fiducial choice of six z
bins, and we examine the importance of including galaxy
clustering cross-correlations between redshift bins. The
motivation for the latter is that, as seen in Fig. 8, the
MAGLIM sample has more overlap between z bins than the REDMAGIC sample, so galaxy clustering cross-corre-

lations could become important for our analysis. In
addition, [55] shows that the improvement on the Ωm
and σ8 constraints can be greatly increased with the
number of z bins and the inclusion of cross-correlations
between z bins, especially for samples with large overlap
between bins.
We can draw several conclusions from Fig. 13 (see

Table VII for a quantitative summary of the most relevant
cases). First, we find that reducing the number of z bins
degrades the cosmological constraints. This makes sense,
as reducing the number of bins while keeping fixed the total
z range to be covered effectively increases the width of the
redshift distributions and, as shown in [100], there is a loss
of information when projecting the 3D power spectrum into
angular tomographic bins, with that loss being larger the

FIG. 12. Comparison of 2 × 2pt Fisher constraints considering
different tomographic binnings for the DES Y3 MAGLIM sample,
as described in Table V. For the sources, we use the DES Y1
METACALIBRATION sample.

TABLE VI. Different tomographic binning configurations for
the MAGLIM sample, considering variations in the number of
z bins. The case with six z bins corresponds to the fiducial
tomographic binning (see e.g., Table V).

Four z-bins Five z-bins Seven z-bins Eight z-bins

0.20–0.44 0.20–0.40 0.20–0.35 0.20–0.31
0.44–0.69 0.40–0.60 0.35–0.50 0.31–0.44
0.69–0.87 0.60–0.77 0.50–0.64 0.44–0.57
0.87–1.05 0.77–0.90 0.64–0.77 0.57–0.69

0.90–1.05 0.77–0.86 0.69–0.79
0.86–0.95 0.79–0.87
0.95–1.05 0.87–0.96

0.96–1.05

FIG. 13. Comparison of 2 × 2pt Fisher constraints considering
different number of tomographic bins for the DES Y3 MAGLIM
sample, as described in Table VI. For the sources, we use the DES
Y1 METACALIBRATION sample. All constraints are normalized by
the fiducial (“auto” with six redshift bins). We compare the gains
obtained when only galaxy clustering auto-correlations (solid
blue) are included, with the cases in which we also include cross-
correlations with adjacent tomographic bins (dashed green), and
when all cross- correlations among tomographic bins are included
(dash-dotted orange).
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wider the redshift bins. This is due to the fact that broad
bins average down radial power on scales smaller than the
bin width. More concretely, when splitting the sample in
four tomographic bins instead of six, the constraints
degrade up to 13% on Ωm, 16% on w, and 11% on σ8.
Second, increasing the number of redshift bins improves

the constraints, but the impact is smaller. Only when we
split the sample in eight z bins do we start to find some
significant improvement in all three parameters, and
especially on σ8. In particular, in this case, the constraints
improve by 4% onΩm and w, and 8% on σ8, with respect to
the fiducial. In spite of this, we keep the six z bins
tomographic binning as our fiducial, considering that
splitting into a larger number of tomographic bins would
require a better understanding of the tails of the redshift
distributions, which is likely not captured by our treatment
of photo-z uncertainties (just a shift to the mean of the
distribution). Another motivation for not splitting into a
larger number of bins is to avoid numerical instabilities in
the computation of the analytical non-Gaussian covariance.
We note that the results from Fig. 13 may change slightly
with the inclusion of non-Gaussian terms in the covariance.
That is due to the non-Gaussian terms being unaffected by
the change in number densities in each tomographic bin,
while the Gaussian part of the covariance does vary with
the number densities.
Last, we study the impact of including galaxy clustering

cross-correlations in our analysis. Reference [55] shows
that, for a flux-limited sample, the improvement on the
cosmological constraints can be greatly increased with the
number of z bins and the inclusion of cross-correlations
between z bins. In [55], the authors consider only galaxy
clustering, and fix all parameters except for Ωm, σ8, and the
photo-z nuisance parameters. We have attempted to repro-
duce their results, and while we do not find the same level
of gains on the constraints, we observe the same tendency.
In Fig. 13, we repeat this study for the MAGLIM sample, but
now varying all parameters listed in Table I, and including
galaxy-galaxy lensing. We find that there is not much
improvement to be gained with the inclusion of galaxy
clustering cross-correlations between z bins (a 3%–4% gain

in the three cosmological parameters), and that this relative
gain does not depend on the number of tomographic bins
considered. We also explore the possibility of including
only galaxy clustering cross-correlations with adjacent z
bins, which is where the overlap between bins is the largest,
finding in general very similar constraints compared to
when we include all cross-correlations between z bins.
We also explore the potential gains on the 2 × 2pt

constraints from the flux-limited sample when including
all cross-correlations between z bins and splitting the
sample in a larger number of bins than the fiducial (five
bins). In particular, we divide the sample in seven tomo-
graphic bins in these redshift ranges, aiming for a balanced
number density across bins: [0.2, 0.35, 0.45, 0.55, 0.65,
0.75, 0.85, 1.05]. In Fig. 14, we observe that the gain on the
constraints from the inclusion of cross-correlations is larger
than for MAGLIM, as expected, since the flux-limited
sample has broader redshift distributions (see Fig. 8). In
particular, with this sample, including cross-correlations
improves the constraints by ∼8% on Ωm, ∼11% on w, and
∼4% on σ8. Similarly, increasing the number of

TABLE VII. Percentage gains in the Ωm, σ8, and w standard
deviations with respect to the fiducial for MAGLIM, considering
the most relevant alternative analysis choices discussed in Sec. VI.
Negative values indicate a decrease in the constraining power
compared to the fiducial.

σðΩmÞ σðσ8Þ σðwÞ
Auto þ cross 3.5% 2.3% 3.8%
Four tomographic bins −13.3% −11.1% −16.5%
Eight tomographic bins 4.5% 7.9% 4.0%
x2 photo-z shift priors −6.3% −3.0% −6.6%
Fixed WL systematics 9.8% 15.1% 9.4%
Infinite number density 5.7% 11.8% 2.8%

FIG. 14. Comparison of 2 × 2pt standard deviations on Ωm, w,
and σ8 for different numbers of tomographic bins for the flux-
limited sample compared to the fiducial MAGLIM sample. All
constraints are normalized by the REDMAGIC estimates. We
explore the potential gains when including all galaxy clustering
cross-correlations among tomographic bins (dashed orange) with
the baseline approach, i.e., including only galaxy clustering auto-
correlations (solid blue). All three lens samples are built from
DES Y3 data, while the sources are from the DES Y1 META-

CALIBRATION sample.
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tomographic bins improves the constraints by a larger
amount compared to MAGLIM. When splitting the sample
in seven tomographic bins, the gains on the cosmological
parameters with respect to the fiducial (five bins) are of
7%–8% onΩm and w, and 12% on σ8. Thus, by splitting the
flux-limited sample in a larger number of bins, we can
already obtain tighter cosmological constraints than
MAGLIM in all three parameters. More concretely, dividing
the sample in seven tomographic bins yields constraints
tighter than the fiducial MAGLIM (with six bins) by
7%–8%.
In practice, there are several complications in considering

a large number of bins and in the inclusion of cross-
correlations, the main ones being a much more stringent
requirement for the control of the tails of the redshift
distributions and a larger covariance. Moreover, as men-
tioned before, it is not clear that a photo-z shift parameter is
enough to account for these uncertainties. For these reasons,
wewill focus on theMAGLIM sample in follow-upworkwith
DES Y3 data. Nonetheless, flux-limited samples are prom-
ising and worth exploring in future studies.

B. Galaxy bias

Throughout this work, we assume certain fiducial values
for the galaxy bias for each one of the samples (see Table I)
to generate the theory data vectors, which we do not vary
when considering different sample definitions for the
MAGLIM and flux-limited samples in Sec. IV. In order to
test the dependency of the constraints on the fiducial galaxy
bias assumed, we run Fisher forecasts with completely
different galaxy bias values and compare the 2 × 2pt con-
straints on Ωm, w, and σ8, finding almost no difference in
our results. In particular, for the MAGLIM sample, we run a
forecast assuming a constant value of 2.0 for the galaxy
bias in all redshift bins, finding a difference in the con-
straints on the cosmological parameters of ∼1% or less.
For the flux-limited sample, following [55], we run a

forecast assuming a galaxy bias that evolves as bðzÞ ¼
1þ z; hence, the galaxy bias in each redshift bin is
bi ¼ 1þ z̄i, with z̄i being the mean redshift in that tomo-
graphic bin. For this sample, that corresponds to b ¼
½1.33; 1.46; 1.56; 1.72; 1.88�. Compared to assuming the
fiducial values in Table I, the resulting constraints on Ωm,
w, and σ8 differ by less than ∼0.5%. Thus, the conclusions
from this work do not depend on the galaxy bias assumed.

C. Photometric redshift uncertainties

As described in Sec. III C, we quantify the uncertainties
in the redshift distributions by introducing a photo-z shift
parameter in each redshift bin, Δzi, that we marginalize
over in our analysis assuming a Gaussian prior with a
certain σi. In this section, we test the dependency of the
MAGLIM and flux-limited sample gains on the width σ of
the prior assumed. For this purpose, we investigate a
pessimistic scenario for MAGLIM in which the Gaussian

priors on Δzi are 2 times wider than the fiducial in Table I.
We find that in this case the constraints degrade by 6%–7%
for Ωm and w, and about 3% for σ8.
Similarly, for the flux-limited sample, we also test the

impact on the constraints when increasing the width of the
priors. In particular, we run a Fisher forecast with Gaussian
priors 3 times as wide as the MAGLIM ones (the fiducial
priors are 2 times wider; see Table I). The resulting
constraints are degraded by 5%–8% compared to the
fiducial photo-z prior for the flux-limited sample.

D. Weak lensing systematics

In all our analyses, we assume the DES Y1 source
sample from [11] and its corresponding priors for the weak
lensing related nuisance parameters: the shear calibration
bias in each source redshift bin, mi, the intrinsic alignment
parameters (AIA, and αIA), and the source photo-z shift
parameters in each bin, Δzis. We expect some improvement
in our control of these systematics for the upcoming DES
Y3 and Y6 analyses that will tighten the priors on these
nuisance parameters. In this section, we investigate to what
extent our forecasts are limited by our (prior) knowledge of
the weak lensing systematics. For this purpose, we consider
the ideal scenario in which we perfectly know the values of
these systematic parameters, i.e., we fix them in our
analysis. We find that, for the MAGLIM sample, we can
improve the constraints up to∼10% forΩm and w, and 15%
for σ8. The constraints on REDMAGIC also improve in a
similar manner; nonetheless, the larger number density of
MAGLIM could be more important in this scenario in which
the weak lensing systematics are not a bottleneck.
Comparing the 2 × 2pt constraints with fixed weak lensing
systematics from MAGLIM and REDMAGIC, we find that
the relative constraining power of the former remains
similar for Ωm and w and improves by 3% for σ8 with
respect to what we obtain for the two samples when
marginalizing the weak lensing nuisance parameters.
The gain in constraining power that the MAGLIM sample

offers compared to REDMAGIC is mainly due to the larger
number density, as that reduces the shot noise contribution
in the covariance. We also explore in this section how much
are we limited by the shot noise of the lens sample. We
compute a covariance matrix setting the galaxy clustering
shot noise contribution to zero (equivalent to assuming a
practically infinite number density), and we find for the
MAGLIM sample an improvement of 6% for Ωm, 3% for w,
and 12% for σ8 with respect to the fiducial case. Therefore,
the MAGLIM sample is relatively close to the limit without
shot noise.

VII. CONCLUSIONS

In this work, we define an optimized lens sample for
DES Y3 that serves as an alternative to REDMAGIC for
cosmological analyses involving galaxy clustering
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measurements. Assuming the DES Y1 METACALIBRATION

sample for the sources, we compare the cosmological
constraints on Ωm, σ8, and w from the joint analysis of
galaxy clustering and galaxy-galaxy lensing for different
lens sample definitions. The main conclusions that we
obtain are as follows:

(i) We explorewhich flux-limited samples are optimal in
terms of their cosmological constraints. We consider,
first, samples with a magnitude cut in the i-band
depending linearly with redshift and, second, samples
defined with an overall limiting magnitude. We see
that many of the samples considered yield constraints
similar to or better than REDMAGIC due to the
superior number density. We find that the optimal
sample overall, dubbed MAGLIM, is defined with
i < 4zphot þ 18, and that it improves the figure of
merit of the pair combinations of Ωm, w, and σ8 by
40% with respect to REDMAGIC (see Fig. 5).

(ii) MAGLIM has between 2 and 3 times more galaxies
than REDMAGIC while having ∼30% wider redshift
distributions. We compare the cosmological con-
straints from 2 × 2pt MCMC simulated likelihood
analyses, aftermarginalizing over the same set of∼20
cosmological and nuisance parameters as in the DES
Y1 analysis [11], finding that the MAGLIM sample
provides 10% tighter constraints on Ωm, 12%–13%
on w and S8, and 16% on σ8 with respect to
REDMAGIC in wCDM. We then consider a ΛCDM
scenario, fixing w ¼ −1, finding improvements on
Ωm of 27% compared to REDMAGIC, while the gains
on σ8 and S8 are, respectively, 19% and 11%.

(iii) We study how the performance of the optimized
sample varies for different analysis choices, which
we summarize in Table VII. We find that changing
the galaxy bias and the tomographic binning (given a
fixed number of redshift bins) does not impact the
2 × 2pt constraints. In turn, reducing the number of
bins degrades the constraints, and increasing it
improves them slightly (by 4%–8%). Independently
of the number of bins considered, we find that there
is little to be gained with the inclusion of galaxy
clustering cross-correlations. We also test the impact
of changing the width of the priors on the photo-z
shift parameters. In a pessimistic scenario, with
priors twice as big for MAGLIM, the constraints
degrade by ∼6%–7% for Ωm and w, and about 3%
for σ8. Last, we find that MAGLIM is relatively close
to the sample variance limited regime. If we assume
an infinite number density in the covariance, the
constraints improve by 6% for Ωm, 3% for w, and
12% for σ8 with respect to the fiducial.

(iv) For flux-limited samples with a flat magnitude cut,
the optimization leads to a limiting magnitude of
i < 22.2. This has 1 order of magnitude more
galaxies per redshift bin compared to MAGLIM,
with ∼20% wider redshift distributions. Although

this sample provides tighter constraints than RED-

MAGIC, it is slightly less constraining than MA-

GLIM. If we divide the sample in a large number of
tomographic bins, we obtain constraints tighter than
MAGLIM by 7%–8%. Including galaxy clustering
cross-correlations can further improve the con-
straints by 5%–10%. In this limit, however, one
probably needs to include further nuisance param-
eters and a realistic analysis becomes more complex.

(v) Although not discussed in detail, MAGLIM does
lead to a higher signal-to-noise ratio of galaxy
clustering and CMB lensing cross-correlations due
to its increased redshift reach compared to RED-

MAGIC. This translates into a larger forecasted
constraining power for this probe in DES Y3 (see
[99] for the Y1 equivalent).

The results presented in this paper have been derived
using a likelihood setup as realistic as possible, matching
the one in DES Y1. We have already confirmed that our
results are robust with respect to the addition of the main
characteristics of a Y3 analysis, like the source samples and
other effects such as the inclusion of non-Limber modeling
[101], point-mass marginalization [102], or non-Gaussian
covariances [103]. Moreover, we have validated in [38] the
scale cuts for linear/nonlinear bias in a Y3 analysis, finding
that we can use the same scale cuts for both MAGLIM and
REDMAGIC, as assumed in this work. However, there are a
number of assumptions that will need to be reevaluated in
an actual data analysis, most notably the exact treatment of
lens redshift distributions and their associated errors.
Despite this, using a MAGLIM type of sample for the
cosmological analysis in DES Y3 (or similar data sets) is
promising, both (i) to yield competitive or tighter 3 × 2pt
constraints than current standard lens samples and (ii) to
provide a robustness test for the dependence of these
constraints with the foreground (lens) sample. Such an
analysis will also open the window to defining optimal and
well-calibrated samples for different probes. Last, flux-
limited samples with a simple selection, such as MAGLIM,
are likely to be easily reproducible in simulations and to
have a more straightforward HOD modeling on small
scales, where the reduced shot noise of this kind of sample
would be particularly beneficial. Addressing the required
steps for a cosmological data analysis with MAGLIM will be
the focus of follow-up work.
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APPENDIX: COSMOLIKE VERSUS COSMOSIS

Throughout this work, we use the COSMOLIKE and
COSMOSIS codes interchangeably to compute the Gaussian
analytical covariances we use for our forecasts. Here we
compare the constraints obtained using covariances esti-
mated from the two codes. In Fig. 15, we show the relative
gain on Ωm, w, and σ8 errors compared to REDMAGIC for
different tomographic binnings of the MAGLIM sample (see
Sec. VI A). We compare the estimates using a covariance
from COSMOLIKE (solid blue) with those obtained using a
covariance from COSMOSIS (dashed green), finding no differ-
ence in the constraints.

FIG. 15. Standard deviations on Ωm, w, and σ8 from different
tomographic binnings of the MAGLIM sample normalized by
estimates from the REDMAGIC sample. The constraints have been
obtained using two different codes for the covariances: COSMO-

LIKE and COSMOSIS.
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[89] M. Crocce, A. Cabré, and E. Gaztañaga, Modelling the
angular correlation function and its full covariance in
photometric galaxy surveys, Mon. Not. R. Astron. Soc.
414, 329 (2011).

[90] B. Joachimi, P. Schneider, and T. Eifler, Analysis of two-
point statistics of cosmic shear. III. Covariances of shear
measures made easy, Astron. Astrophys. 477, 43 (2008).

[91] E. Krause and T. Eifler, cosmolike—cosmological like-
lihood analyses for photometric galaxy surveys, Mon. Not.
R. Astron. Soc. 470, 2100 (2017).

[92] C. Patrignani et al. (Particle Data Group), Review of
particle physics, Chin. Phys. C 40, 100001 (2016).

[93] J. Muir, G. M. Bernstein, D. Huterer, F. Elsner, E. Krause,
A. Roodman et al., Blinding multiprobe cosmological
experiments, Mon. Not. R. Astron. Soc. 494, 4454 (2020).

[94] R. Cawthon, C. Davis, M. Gatti, P. Vielzeuf et al., Dark
energy survey year 1 results: Calibration of REDMAGIC
redshift distributions in DES and SDSS from cross-
correlations, Mon. Not. R. Astron. Soc. 481, 2427 (2018).

[95] W. Cui, S. Borgani, and G. Murante, The effect of active
galactic nuclei feedback on the halo mass function, Mon.
Not. R. Astron. Soc. 441, 1769 (2014).

[96] M. Velliscig, M. P. van Daalen, J. Schaye, I. G. McCarthy,
M. Cacciato, A. M. C. Le Brun, and C. Dalla Vecchia, The
impact of galaxy formation on the total mass, mass profile

DARK ENERGY SURVEY YEAR 3 RESULTS: OPTIMIZING THE … PHYS. REV. D 103, 043503 (2021)

043503-25

https://doi.org/10.1093/mnras/sty957
https://doi.org/10.1093/mnras/sty466
https://doi.org/10.1093/mnras/sty466
https://doi.org/10.1111/j.1365-2966.2008.13510.x
https://doi.org/10.1111/j.1365-2966.2008.13510.x
https://arXiv.org/abs/2012.12826
https://doi.org/10.1086/303939
https://doi.org/10.1103/PhysRevLett.79.3806
https://doi.org/10.1088/1475-7516/2012/09/009
https://doi.org/10.1093/mnras/stw2688
https://doi.org/10.1093/mnras/stw2688
https://doi.org/10.1051/0004-6361/202038071
https://arXiv.org/abs/2007.01812
https://bitbucket.org/joezuntz/cosmosis/
https://bitbucket.org/joezuntz/cosmosis/
https://doi.org/10.1016/j.ascom.2015.05.005
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1103/PhysRevD.78.123506
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1088/1367-2630/9/12/444
https://doi.org/10.1088/1367-2630/9/12/444
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1088/1475-7516/2012/04/027
https://doi.org/10.1088/1475-7516/2012/04/027
https://doi.org/10.1046/j.1365-8711.2003.06503.x
https://doi.org/10.1046/j.1365-8711.2003.06503.x
https://doi.org/10.1088/0004-637X/761/2/152
https://doi.org/10.1111/j.1365-2966.2011.20222.x
https://doi.org/10.1111/j.1365-2966.2011.20222.x
https://arXiv.org/abs/1706.09359
https://doi.org/10.1093/mnras/staa1726
https://doi.org/10.1093/mnras/staa1726
https://doi.org/10.1016/S0370-1573(02)00276-4
https://doi.org/10.1111/j.1365-2966.2009.14504.x
https://doi.org/10.1111/j.1365-2966.2009.14504.x
https://doi.org/10.1103/PhysRevD.87.123504
https://doi.org/10.1103/PhysRevD.70.043009
https://doi.org/10.1111/j.1365-2966.2011.18393.x
https://doi.org/10.1111/j.1365-2966.2011.18393.x
https://doi.org/10.1051/0004-6361:20078400
https://doi.org/10.1093/mnras/stx1261
https://doi.org/10.1093/mnras/stx1261
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1093/mnras/staa965
https://doi.org/10.1093/mnras/sty2424
https://doi.org/10.1093/mnras/stu673
https://doi.org/10.1093/mnras/stu673


and abundance of haloes, Mon. Not. R. Astron. Soc. 442,
2641 (2014).

[97] B. O. Mummery, I. G. McCarthy, S. Bird, and J. Schaye,
The separate and combined effects of baryon physics and
neutrino free streaming on large-scale structure, Mon. Not.
R. Astron. Soc. 471, 227 (2017).

[98] M. P. van Daalen, J. Schaye, C. M. Booth, and C. Dalla
Vecchia, The effects of galaxy formation on the matter
power spectrum: a challenge for precision cosmology,
Mon. Not. R. Astron. Soc. 415, 3649 (2011).

[99] T. M. C. Abbott et al. (DES and SPT Collaborations), Dark
energy survey year 1 results: Joint analysis of galaxy
clustering, galaxy lensing, and CMB lensing two-point
functions, Phys. Rev. D 100, 023541 (2019).

[100] J. Asorey, M. Crocce, E. Gaztañaga, and A. Lewis,
Recovering 3D clustering information with angular corre-
lations, Mon. Not. R. Astron. Soc. 427, 1891 (2012).

[101] X. Fang, E. Krause, T. Eifler, and N. MacCrann, Beyond
Limber: Efficient computation of angular power spectra for

galaxy clustering and weak lensing, J. Cosmol. Astropart.
Phys. 2020 (2020) 010.

[102] N. MacCrann, J. Blazek, B. Jain, and E. Krause, Control-
ling and leveraging small-scale information in tomo-
graphic galaxy-galaxy lensing, Mon. Not. R. Astron.
Soc. 491, 5498 (2020).

[103] X. Fang, T. Eifler, and E. Krause, 2D-FFTLog: Efficient
computation of real space covariance matrices for galaxy
clustering and weak lensing, Mon. Not. R. Astron. Soc.
497, 2699 (2020).

[104] Ohio Supercomputer Center, http://osc.edu/ark:/19495/
f5s1ph73 (1987).

[105] M. Raveri, M. Martinelli, G. Zhao, and Y. Wang, Cosmic-
Fish implementation notes V1.0, arXiv:1606.06268.

[106] M. Raveri, M. Martinelli, G. Zhao, and Y. Wang,
Information gain in cosmology: From the discovery of
expansion to future surveys, arXiv:1606.06273.

[107] S. R. Hinton, ChainConsumer, J. Open Source Software 1,
00045 (2016).

A. PORREDON et al. PHYS. REV. D 103, 043503 (2021)

043503-26

https://doi.org/10.1093/mnras/stu1044
https://doi.org/10.1093/mnras/stu1044
https://doi.org/10.1093/mnras/stx1469
https://doi.org/10.1093/mnras/stx1469
https://doi.org/10.1111/j.1365-2966.2011.18981.x
https://doi.org/10.1103/PhysRevD.100.023541
https://doi.org/10.1111/j.1365-2966.2012.21972.x
https://doi.org/10.1088/1475-7516/2020/05/010
https://doi.org/10.1088/1475-7516/2020/05/010
https://doi.org/10.1093/mnras/stz2761
https://doi.org/10.1093/mnras/stz2761
https://doi.org/10.1093/mnras/staa1726
https://doi.org/10.1093/mnras/staa1726
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://arXiv.org/abs/1606.06268
https://arXiv.org/abs/1606.06273
https://doi.org/10.21105/joss.00045
https://doi.org/10.21105/joss.00045

