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Denis Tomé, Luca Bondi, Luca Baroffio, Stefano Tubaro
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milano, Italy

denis.tome@mail.polimi.it, luca.bondi@polimi.it,
luca.baroffio@polimi.it, stefano.tubaro@polimi.it

Emanuele Plebani, Danilo Pau
Advanced System Technology

STMicroelectronics
Agrate Brianza, Italy

emanuele.plebani1@st.com, danilo.pau@st.com

Abstract—Accurate pedestrian detection has a primary role
in automotive safety: for example, by issuing warnings to the
driver or acting actively on cars brakes, it helps decreasing
the probability of injuries and human fatalities. In order to
achieve very high accuracy, recent pedestrian detectors have been
based on Convolutional Neural Networks (CNN). Unfortunately,
such approaches require vast amounts of computational power
and memory, preventing efficient implementations on embedded
systems. This work proposes a CNN-based detector, adapting a
general-purpose convolutional network to the task at hand. By
thoroughly analyzing and optimizing each step of the detection
pipeline, we develop an architecture that outperforms methods
based on traditional image features and achieves an accuracy
close to the state-of-the-art while having low computational
complexity. Furthermore, the model is compressed in order to
fit the tight constrains of low power devices with a limited
amount of embedded memory available. This paper makes two
main contributions: (1) it proves that a region based deep neural
network can be finely tuned to achieve adequate accuracy for
pedestrian detection (2) it achieves a very low memory usage
without reducing detection accuracy on the Caltech Pedestrian
dataset.

Keywords—Window proposals, CNN, Object Detection, fine
tuning, embedded systems

I. INTRODUCTION

Figures form NHTSAs Fatal Analysis Reporting System
(FARS) in 2014 show that 32,675 people died in motor
vehicle crashes and the fatality rate for 2015 is estimated to
reach 1.17 deaths per 100 million vehicle miles traveled [1].
These numbers show the importance of building automated
vision systems for pedestrian and car detection. As the world
urbanizes more and more, accidents involve 33K lives, 250K
disabilities and 2M injuries accounting for $300B of damage.
In 95% of the cases human error is the cause, mostly by
passenger distraction or changes in traffic / road / environ-
mental conditions realized too late. This situation calls for
urgent actions by the automotive industry in order to react and
propose advanced safety measures to the driver, and visual
object detection is instrumental to that need.

The most successful and accurate approaches in object
detection are based on convolutional neural networks (CNN)
which have significantly outperformed methods based on
densely extracted features [2]. CNNs integrate the feature
extraction and feature classification stages of an object detector

in an end-to-end approach by training the model parameters on
a large dataset. However, the resulting models are characterized
by a large computational complexity and number of parame-
ters: for example, the successful AlexNet model [3] requires
one billion floating point operations per classification and 60
million parameters, corresponding to 217 MB of parameters
memory in single precision floating point. The more accurate
VGG networks [4] can require up to 40 billion floating point
operations and 500 MB of parameter memory.

The complexity of CNNs prevents performing classification
at every potential position and scale and thus a widely used
approach, first proposed in [5], is to use a object proposal
mechanism, where only “object-like” regions are processed
by the network. The computation can be further sped-up by
using Graphic Processing Units (GPU) or specialized hardware
(such as [6]). However, the memory required for the parameters
puts severe constraints on embedded platforms, where a larger
amount of on-chip memory increases costs and access to an
external Dynamic Random Access Memory (DRAM) requires
two orders of magnitude more energy than accessing local
Static RAM (SRAM) caches [7]. This motivates developing
a fully embedded memory implementation of CNN, where
suitable compression schemes are applied to the network
weights while minimizing the loss in accuracy.

This paper proposes a set of strategies tailored at signifi-
cantly reducing the amount of space required by the parameters
of a convolutional neural network. Starting from DeepPed, an
optimized pedestrian detection pipeline we previously devel-
oped [8], we reduce the redundancy of the parameters with
two approaches inspired by [7]: by compressing the individual
weights through k-means quantization, and by pruning weights
with small absolute value. We evaluate both approaches sep-
arately and in combination, in order to find the best trade-off
between accuracy and memory requirements.

The rest of this paper is organized as follows. In section
II a review of the state of the art about neural network com-
pression is offered to the reader. Sections III and IV illustrate
respectively the proposed detection pipeline and the model
compression scheme. In section V numerical results from
experiments on the Caltech Pedestrian dataset are presented
and discussed. Finally, in section VI some conclusions are
drawn.
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Fig. 1. Detector pipelines. In (a), a typical pedestrian detection pipeline in the state of the art methods. In (b), proposed pipeline for Region based Convolutional
Neural Networks (R-CNN).

II. REVIEW OF THE STATE OF THE ART

Starting with the introduction of AlexNet in 2012, which
won by a large margin the ImageNet Large Scale Visual
Recognition Challenge [3], deep convolutional neural networks
have become the dominant approach in image classification,
recently achieving human-level performances [9]. The seminal
work by Girschick on Regions with convolutional neural net-
works (R-CNN) [5] extended those results to object detection.
In the R-CNN paradigm, detection is performed in two stages:
first, a separate algorithm generates candidate object proposals
based on e.g. region segmentation or edges; then, a CNN is run
on the proposals to generate the final detection results. While
for generic object detection an object agnostic method such
as Selective Search [10] is necessary, for more focused tasks
like pedestrian detection such proposals are under-performing
compared to the state of the art [2] and by using an accurate
pedestrian detector as proposal method, significant gains can be
achieved. Moreover, the proposals generated by a specialized
object detector have a higher probability of containing the
object of interest, reducing the number of proposal regions
needed: as shown by [2] in the supplemental material, only 3
proposal per images are enough to reach a recall of more than
90%. While methods for neural network compression have
a long history [11], the pace of research has accelerated in
response to the large networks introduced after 2012. Denil et
al. demonstrated that the parameters of deep neural networks
are highly redundant and can be reduced up to 20× with
no appreciable loss of accuracy, giving a strong incentive to
network compression.

Early approaches are based on enforcing weight sparsity,
either through low-rank approximations [12] or by an oppor-
tune regularization term [13] [14], achieving a compression
ratio up to 20× at the price of a 1-2% loss of accuracy. The
convolutional layers of the network can be compressed either
by 1-rank approximation [15], filter decomposition [16] or
Tucker decomposition [17], achieving a compression rate of
5×. The sparsity of convolutional layers has the added benefit
of reducing the number of operations, up to 4× in the case of
[14]. Other approaches replace the fully connected layers of
the network (the ones contributing the most to the number of
parameters) with a different kind of layer with a lower number
of parameters. Examples are kernel machines [18], tensors
[19], circulant matrices [20] or a cascade of diagonalized
matrices [21]; convolutional layers can also be replaced by
separable filters [22]. Alternatively, the network weights can be
compressed by an hashing function and the hashing trick used
to carry out computations directly in the compressed space.
Stages with 1×1 convolutions are an effective way of reducing
the number of parameters in a network and they are often

used in very deep networks such as the Inception architecture
[23] and in Residual Networks [24]; however, when applied
to smaller networks can achieve the same level of accuracy as
AlexNet with 40× less parameters [25].

However, a simple strategy based on scalar quantization of
the weights [26] and connection pruning [27] is surprisingly
effective and with network retraining achieves a 37× com-
pression on AlexNet with almost no loss in performance [7].
The performances of this approach are further improved by
enforcing a layer-wise reconstruction penalty to the quantized
weights [28].

III. PROPOSED PIPELINE

The baseline CNN detector, dubbed DeepPed [8], follows
from [2] in combining R-CNN with an efficient pedestrian
detector used as proposal method. The Aggregated Channel
Features (ACF) detector [29] has been chosen for its speed
and accuracy. An improved version of ACF, known as Locally
Decorrelated Channel Features (LDCF) [30], was also taken
into account, but despite its higher accuracy it was discarded
due to its computational complexity, which is ten times higher
than ACF.

In DeepPed, an input image is analyzed by ACF and several
regions are proposed as potential pedestrians, with a score
associated to each region. A pre-trained AlexNet network,
trained on the 1000 categories of the ImageNet challenge
and publicly available1, is used as starting point. The last
classification layer, which is application-specific, is removed
and and replaced with a Support Vector Machine (SVM). The
model is then retrained by fine-tuning on the Caltech Pedes-
trian training dataset [31] sub-sampled by 3× as suggested
by [29] and using 6-fold cross-validation to select the best
performing network. The training examples are pedestrian and
non-pedestrian windows chosen by ACF and selected among
the highest-scoring proposals. The ACF score and the SVM
score from the CNN are then further combined by stacking
a second SVM trained on the validation set, which gives the
final detection score.

Figure 2 shows the performance of the final DeepPed
pipeline compared with other state-of-the art approaches in
pedestrian detection. The details of the algorithm are discussed
in [8], where each step of the pipeline is analyzed and
optimized in order to increase the final detection accuracy. In
the following sections, we focus on reducing the space required
to store the parameters of this network.

1BVLC AlexNet Model in Caffe: https://github.com/BVLC/caffe/tree/
master/models/bvlc alexnet

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
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Fig. 2. Comparison between the proposed DeepPed (solid black line) and
other popular pedestrian detection algorithms. Note that the proposed method
does not make use of multiple frame information, i.e. it does not exploit the
optical flow between contiguous frames.

IV. MODEL COMPRESSION

In order to reduce the parameter memory, two strategies
inspired by [7] have been chosen to compress the network
weights: scalar quantization and weight pruning. In the first
case, we consider for each layer the distribution of individual
weights and we quantize their values with k-means using a
variable number of centroids; in the second case, we set to
zero the weights with the lowest absolute value, using different
values for the threshold in order to change the proportion of
non-zero weights. Finally, the two approaches are combined,
either by quantizing and then pruning the resulting weights, or
by pruning and then quantizing the resulting distribution. As
the experiments in Section V will show, the two approaches
are largely independent one from the other and thus the
compression factors can be composed maintaining roughly the
same accuracy level.

More in detail, the following procedures have been used to
compress the weights:

• Scalar quantization: each CNN layer is compressed
individually. All the weight values in the layer param-
eters are clustered using the k-means algorithm, where
the number of centroids is chosen as a function of the
compression factor. Assuming that the uncompressed
weights are represented each with B bits, the number
of centroids is:

ncentroids = 2
B

fcompr

Henceforth, we will consider a single precision float-
ing point representation (B = 32) for the uncom-
pressed weights. The maximum achievable compres-
sion rate is thus 32 (ncentroids = 2).

• Pruning: each CNN layer is compressed individually.
Weights whose absolute value is smaller than a thresh-
old are zeroed out, i.e.:

wi,j =

{
0, if |wi,j | < threshold

wi,j , otherwise

The threshold is set as the pth percentile of the weight
distribution, where p = 100 · (1 − 1

f ) and f is the
compression factor; i.e. the 75th percentile is chosen
for f = 4.

• Quantization and Pruning: The combination of both
quantization and pruning lets the strengths of one
method compensate the shortcomings of the other. As
shown in V, a higher level of compression can be
achieved with respect to the single methods alone,
while reaching the same level of accuracy.

Differently for quantization, the distribution of pruned
connections needs to be stored, increasing the storage require-
ments. For example, if a binary map coding the pruned or not-
pruned status of the connections is used, the fully connected
layers of DeepPed would require a map of 6.8 MB. However,
in a scenario in which a hardware designer can draw on an
Application Specific Integrated Circuit (ASIC) or on an Field
Programmable Gate Array (FPGA) all the connections between
neurons individually, the pruned weights would translate in
missing connections, and since power consumption increases
linearly with wire capacity loads, the pruned connections
would reduce power, space and storage usage.

V. EXPERIMENTAL EVALUATION AND RESULTS

In the experiments, we tested the following approaches:

• scalar quantization alone

• weight pruning alone

• weight pruning followed by scalar quantization

Moreover, we tested the compression separately on two
different set of layers:

• compressing the convolutional layers

• compressing the fully connected layers

Most of the network parameters reside in the fully con-
nected layers, and thus the latter set is the most important;
however, to reach high compression rates, both sets of layers
need to be taken into account. The target size is 4 MB, a typical
size for local SRAM in embedded platforms.

To assess the impact of compression on the network ac-
curacy we resort to the evaluation metrics proposed by Dollár
at al. [31] on the Caltech Pedestrian dataset. In particular, the
performance of the different methods is evaluated in terms
of trade-off between the compression factor (CF) and the
log average miss rate (LAMR), as measured on the Caltech
Pedestrian test set. The LAMR metric computes the geometric
mean of the miss rate in the interval between 0.01 false
detections per frame and 1 false detections per frame and can
be interpreted as a smoothed estimate of the miss rate at 0.1
false detections per frame. Besides the initial fine-tuning of the
DeepPed uncompressed model, the methods we tested do not
require additional training, so only the test set has been used



0.280

0.315

0.350

0.385

0.420

0 2.5 5 7.5 10

LO
G
	  A
VE

RA
G
E	  
M
IS
S	  
RA

TE

COMPRESSION	  FACTOR
Quantization Pruning

(a)

0.280

0.355

0.430

0.505

0.580

1 10 100 1000

LO
G
	  A
VE

RA
G
E	  
M
IS
S	  
RA

TE

COMPRESSION	  FACTOR
Quantization Pruning Quantization	  and	  Pruning

(b)

Fig. 3. DeepPed results. In (a), comparison between compression by scalar quantization and by pruning in convolutional layers: the pruning method has a
dramatic impact on the information content. In (b), comparison between compression by scalar quantization and by pruning in fully connected layers.

TABLE I. FINAL COMPRESSED MODEL. COMPRESSION FACTORS AND SIZES PER LAYER.

Layer CF Quantization CF Pruning Original size (MB) Compressed size (MB)
Conv 1 3.56 - 0.13 0.037
Conv 2 4 - 1.17 0.293
Conv 3 4 2 3.38 0.422
Conv 4 4 2 2.53 0.319
Conv 5 4 - 1.69 0.422
Fully Connected 1 16 4 144.02 0.66
Fully Connected 2 16 4 64.02 1.35
Total 61.92 216.94 3.50

in the experiments. The original DeepPed model with ACF
proposals reaches a LAMR of 28.3%.

We assess the effect of scalar quantization by measuring the
accuracy of the model after compressing the fully connected
(fc) layers at a factor of 8, 10.7, 16 and 32 (4, 3, 2 and 1 bit
per weight) and keeping the convolutional layers unchanged.
Likewise, we assess pruning by reducing the number of con-
nections by 2, 4, 8, 16 and 32 times. The results are shown in
Figure 3(b), with the compression factors in logarithmic scale:
quantization is more efficient than pruning, and compression
up to 8× can be achieved without appreciable loss of accuracy.

In the case of convolutional (conv) layers, we observe that
the first layer is strongly affected by compression, while the
fourth and fifth layers are more resilient. For this reason, the
first layer is always compressed with 9 bits (CF=3.56) and
never pruned; the remaining layers are compressed or pruned
with increasingly high factors. Scalar quantization is tested at
a factor of 3.56, 4, 6, 7, 8.5 and 10; pruning is tested by using
the factors (1, 2, 2, 2), (2, 2, 2, 4) and (2, 2, 4, 4) for the con-
volutional layers from 2 to 5, resulting in overall compression
factors for convolutional layers at 1.74, 2.17 and 2.57. The
results are shown in Figure 3(a): the performances degrade
much faster than in the case of fully connected layers, as
expected from the fact that weight sharing in the convolutional
layers already counts as a form of parameter reduction. As
in the case of fully connected layers, convolutional layers
are more robust to scalar quantization, achieving compression
factor up to 6× with a small cost in accuracy. Pruning instead
leads to a rapid degradation of performances with factors
greater than 2×, showing that throwing away weights with
small coefficients is not desirable in convolutional layers, since

the effect of these small contributions greatly influences the
final accuracy.

The two methods are combined in the case of fully con-
nected layers, where we prune 2

3 of the connections and we
quantize the remaining weights with 1 bit, resulting in a com-
pression factor of 102×. As Figure 3(b) shows, combining the
two approaches actually helps both, and despite a difference
of an order of magnitude in compression factor, the accuracy
is comparable to scalar quantization at 10×. Pruning even
improves the results of quantization at 1 bit, because now the
centroids need not to fit irrelevant weights. By compressing
only the fully connected weights, the model already reaches a
size of 10.9 MB.

We finally combine compression of convolutional and fully
connected layers. Table II summarizes the performances for
the best model in each scenario and for the final selected
model; for the final model, Table I shows the compression
factors and sizes layer by layer. The result is a model with
a total size of 3.5 MB and an overall compression factor of
61.92. The final model accuracy is only slightly worse than the
accuracy reachable when compressing only the fully connected
layers (LAMR from 28.6% to 28.7%), despite requiring less
than one third the size of the latter. Moreover, when fully
connected compression is applied together with convolutional

TABLE II. BEST PERFORMING COMPRESSED MODELS.

Layers Compression Size (MB) LAMRQuant. Pruning Original Compr.
conv1-5 5.94× 2.23 1.5 29.2% (+0.9%)
fc6-7 102× 208.04 2.04 28.6% (+0.3%)
Total 61.35× 216.93 3.54 28.7% (+0.4%)



compression, the overall accuracy increases with respect to the
case when only convolutional layers are compressed (LAMR
from 29.2% to 28.7%). A possible motivation for this behavior
is related to the “screening” capabilities of quantization applied
on fully connected layers, acting as a filter on the noise
generated in convolutional layers compression. Since 4 MB
of embedded memory are viable in the 28 nm Fully Depleted
Silicon On Insulator (FDSOI) STMicroelectronics fabrication
process, this model enables several low-power and low-cost
embedded applications.

The DeepPed architecture combined with the proposed
compression scheme has been ported on an NVIDIA Jetson
TK1 board and integrated with an optimized implementation
of the ACF detector. The detector is capable of running at 2.4
frames per second (fps) when processing 5 proposal per frame.
Moreover, by applying a tracking-by-detection algorithm such
as [32] and using an average tracking length of 5 frames, the
speed of the detector increases up to 10 fps, most of it spent
in the CNN evaluation stage.

VI. CONCLUSIONS

In this paper we present a detailed study of the effect
of neural network compression in the case of a pedestrian
detector and we show that a combination of simple yet
effective methods allows to significanlty reduce the memory
required to store the network parameters, achieving a final
compression factor of 62×. The behavior analysis of both con-
volutional and fully connected layers under scalar quantization
and connection pruning shows that while the fully connected
layers are the most redundant ones, high compression rates
are achievable on convolutional layers with a small effect on
the final accuracy. Thus, with a proper choice of compression
parameters the accuracy of the system is preserved while
allowing the development of embedded architectures at a small
cost and low power consumption.
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