Interaction Between ECG and Genetic Markers of Coronary Artery Disease
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Abstract

Coronary artery disease (CAD) is the main contributor
to cardiovascular mortality in developed countries, mak-
ing accurate diagnosis of utmost importance. We devel-
oped risk scores to assess CAD risk in a population with-
out known cardiovascular disease by combining ECG and
a genetic risk score (GRS) for CAD. We analysed data in
52,260 individuals in the UK Biobank study. ECG indices
included heart rate, PR, QRS, QT and T-peak-to-T-end in-
tervals, while we built the GRS from publicly available
genome-wide association results for CAD that were de-
rived in an independent population. In a training set (N
= 39,195), the indices with the strongest CAD prognos-
tic impact were the PR and QT intervals, and the GRS.
When combined together into a Multivariate model, both
the ECG markers and the GRS were independently asso-
ciated with CAD. In an independent test set (N = 13,065),
we then built three risk scores based on (1) ECG mark-
ers, (2) genetic data, and (3) a combination of ECG and
genetic data, respectively. The hazard ratio (95% confi-
dence interval) for CAD comparing high versus low-risk
individuals was 6.5 (5.1 - 8.3), 8.4 (6.4 - 10.8) and 8.4 (6.5
- 10.8) for the three risk scores, respectively. In conclu-
sion, the inclusion of genetic markers into risk scores with
ECG markers independently contributes to CAD risk pre-
diction in a large population of individuals without known
cardiovascular disease.

1. Introduction

Cardiovascular mortality is the main cause of death in
the general population [1], and it accounts for 31% of all
deaths worldwide, with its estimated cost expected to be
$1044 billion by 2030. Coronary artery disease (CAD) is
the main contributor to cardiovascular mortality in devel-
oped countries, but prediction remains a critically impor-
tant challenge.

Risk scores based on clinical and ECG variables have
been proposed for risk stratifying individuals at risk of a
cardiovascular event [2], and can be utilised as a first step
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to identify at risk subgroups. Genetic risk scores (GRS)
have shown to be useful for examining the cumulative pre-
dictive ability of genetic variation on CAD [3], and they
have been reported to be independent to conventional de-
mographic risk factors [3]. However, whether they can in-
dependently contribute to refine risk prediction in combi-
nation with traditional electrocardiogram (ECG) markers
is unknown.

The aim of this study was to test the predictive value of
a model combining ECG and a GRS for CAD.

2. Materials and Methods

2.1. Study population

This work has been performed using data from N =
52,260 individuals without known CV disease from the
UK Biobank [4]. The UK Biobank study was approved by
the North West Multi-Centre Research Ethics Committee
and all participants provided written informed consent.

Genotyping was performed by UK Biobank using the
Applied Biosystems UK BiLEVE Axiom Array or the UK
Biobank AxiomTM Array, and genetic variants were im-
puted centrally by UK Biobank using the 1000G phase III
and UK10K Haplotype Reference panels. Information on
UK Biobank array design and protocols is available on the
UK Biobank website (www.ukbiobank.ac.uk).

The primary endpoint of this work was death with CAD
as the main cause, or a diagnosis of CAD [5]. Data
from health records and death certificates were sent to UK
Biobank on a quarterly basis up to May 2020. Follow-up
information was available from 2009 until 2020.

2.2. Methods

2.2.1. Clinical, ECG and genetic markers

Sex and age were obtained on the day of the exercise
protocol (Table 1).

We pre-processed and analysed the raw ECG signals
from the 52,260 individuals. Pre-processing of the ECG
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Overall population

CAD free CAD

P value

(N = 52,260) (N =49,912) (N = 2,348)
Sex [men] 24,195 (46.3%) 22,541 (452%) 1,654 (70.4%) <0.0001
Age [years] 59 (13) 58 (12) 63 (8) <0.0001
Resting HR [bpm] 70.3 (15.1) 70.3 (15.0) 70.9 (16.9) 0.212
PR interval [ms] 130 (31) 129 (32) 133 (33) <0.0001
QRS duration [ms] 68 (18) 68 (18) 69 (18) 0.130
QTc [ms] 396 (31) 396 (30) 400 (33) <0.0001
Tpe interval [ms] 62 (12) 62 (12) 63 (13) 0.228
GRS [SD] -0.012 (1.342) -0.021 (1.341) 0.208 (1.333) <0.0001

Data are presented as absolute frequenmes and %ercentages and as median (interquartile range). HR = Heart

rate, QTc = Corrected QT interval, Tpe = T-peal

to-T-end

GRS = genetic risk score.

Table 1. Clinical, ECG and genetic variables in the study population. Significant differences between individuals with and

without CAD are indicated in bold.

signals included low-pass filtering at 50 Hz to remove elec-
tric and muscle noise but still allow QRS detection [6].
Baseline wander was removed by further high-pass filter-
ing the ECG signals at 0.5 Hz. We then signal-averaged
the heartbeats to attenuate noise and artifacts. The onset,
peak, and end timings of the waveforms were located us-
ing bespoke software [6,7]. We then automatically derived
the following ECG markers: heart rate, PR interval, QRS
duration, corrected QT interval (QTc), and resting T-peak-
to-T-end interval (Tpe).

We then derived a GRS using 192 previously reported
genome-wide significant variants for coronary artery dis-
ease (identified using an independent population) [8]. The
GRS was calculated by summing the 192 risk alleles and
weighting them by their respective effect sizes from the
original genome-wide association study. The GRS was
then standardised to have a mean of 0 and a standard devi-
ation of 1 [9].

2.3. Statistical Analyses

We evaluated differences in the risk markers across
cases (individuals with CAD) and controls (the rest) using
Mann-Whitney test. Then, as a first step in the develop-
ment of the risk models, we split the study population into
training (N = 39,195, 75%) and test (N = 13,065, 25%)
sets, keeping a balanced case-control ratio and similar dis-
tribution of variables in both sets.

2.3.1. Selection of risk markers

To find the optimal risk markers for the risk scores, in
the training set we fit three different models for CAD: an
ECG-based model (including ECG markers only), a GRS,
and a combined model (combining the ECG markers and
the GRS). All models included sex and age as well. For
each model, we performed Univariate analyses using Cox
regression to determine the relationship between each po-
tential risk marker and the primary endpoint [2]. Then, we
subsequently performed Multivariate Cox regression anal-
yses, with risk markers significantly (P < 0.05) associated

with outcomes in the Univariate analysis being selected
and placed into backward stepwise elimination models,
which eliminates markers with non-significant association
with the endpoint.

2.3.2. Assessment of the risk scores

To calculate and assess each of the three risk scores (one
score per model) for each individual in the test set, we
used the beta coefficients estimated in the training set. The
scores were calculated as the weighted sum of each of the
significant risk markers in the Multivariate models from
the training set, where the weights were the corresponding
beta coefficients [2]. We then calculated the area under the
receiver operating curve (AUC) by considering the sensi-
tivity and specificity of the three risk scores (ECG, GRS
and combined) in identifying individuals with CAD dur-
ing the follow-up. Finally, for each risk score, we iden-
tified three CAD risk groups based on their distribution:
low-risk (first and second quintiles), middle-risk (third and
fourth quintiles) and high-risk (fifth quintile). Association
between risk groups and the primary endpoint was evalu-
ated using hazard ratios (HRs), calculated using the low-
risk group as a reference.

3. Results

3.1. Characteristics of the study population

The detailed characteristics of the study population are
shown in Table 1. During follow-up, there were 2,348
CAD events (4.5%). Individuals with CAD were more fre-
quently men, were older, had a longer PR interval and QTc
interval, and had a higher count of risk alleles for CAD
(Table 1). Resting heart rate, QRS duration and the Tpe
interval were not significantly different in the CAD risk
group compared to the group free of CAD.

Page 2



ECG GRS Combined
Hazard ratio P value Hazard ratio P value Hazard ratio P value
(95% CI) (95% CI) (95% CI)
Sex [men] 2.81(2.53-3.12) < 0.0001 2.74 (2.47-3.04) < 0.0001 2.83(2.55-3.14) < 0.0001
Age [SD] 1.74 (1.64-1.83) < 0.0001 1.79 (1.69-1.89) < 0.0001 1.74 (1.65-1.84) < 0.0001
Resting HR [SD] N.S. N.S. - - N.S. N.S.
PR [SD] 1.07 (1.02-1.12) 0.005 - - 1.06 (1.02-1.11) 0.007
QRS duration [SD] N.S. N.S. - - N.S. N.S.
QTc [SD] 1.15 (1.11-1.19) < 0.001 - - 1.15(1.11-1.19) < 0.0001
Tpe interval [SD] N.S. N.S. - - N.S. N.S.
GRS [SD] - 1.23 (1.18-1.29) < 0.001 1.23 (1.18-1.29) < 0.0001

SD = standard deviation, HR = heart rate, QTc = corrected QT interval, Tpe = T-peak-to-T-end, GRS = genetic risk score.

Table 2. Multivariate Cox Regression analyses results for the three risk models, ECG, GRS and combined in the training
set. The logarithm of the hazard ratios (beta coefficients) were used to weight each risk marker in the calculation of each
score in the test set. Statistically significant values are marked in bold.

3.2. Selection of risk markers

All the risk markers that were significant after the Mann-
Whitney test remained significant in the Univariate model.
Resting heart rate, QRS duration and the Tpe interval were
not significantly associated with CAD, and therefore were
not taken forward into the Multivariate analyses. Table 2
shows the HRs and P-values for the variables that had a
significant association with CAD after including them to-
gether in each corresponding Multivariate model. As Ta-
ble 2 shows, both the PR and the QTc¢ intervals remained
significantly associated with CAD in the ECG model. Re-
garding the combined model, the PR and the QT interval
remained significantly associated with CAD after the in-
clusion of the GRS.

3.3. CAD risk scores

Figure 1 shows the AUC of the three scores, ECG
(black), GRS (Gen, red) and combined (ECGGen, green)
in the test set when classifying CAD risk. As shown in
Figure 1, the GRS provided a more accurate classifica-
tion of CAD than the ECG score, and this was slightly
increased after combining both together. However, the im-
provements were not statistically significant.

Figure 2 shows the HRs of the middle (blue) and high
(red) risk groups for each score, relative to the low risk
group. As shown in the Figure, the HR of the high risk
group for the GRS was higher than the HR for the ECG
score, remaining stable when combining ECG markers and
the GRS (Figure 2). However, this improvement was not
statistically significant. Finally, the HRs for the middle-
risk groups were similar across the three scores.

4. Discussion and Conclusions

The main result of this study is that, in a middle-
aged population without known cardiovascular disease, the
combination of ECG and genetic markers shows a trend to-
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Figure 1. Area under the receiver operating curve (AUC)

for the three scores, ECG, GRS (Gen) and combined
(ECGGen)

wards improving CAD risk prediction, as compared to the
individual use of ECG or genetic variables. This indicates
a potential new strategy to identify individuals in the gen-
eral population specifically at risk of suffering CAD.

We found that the ECG variables included in the ECG
and in the combined score were the PR interval and the QT
interval, supporting previous studies that reported these
ECG indices as CAD risk factors [10, 11]. Our results
confirm that CAD risk manifests as abnormalities in ven-
tricular conduction (PR prolongation), and in ventricular
repolarization (QT prolongation). However, the individu-
als included in the study could potentially have subclinical
disease. Therefore, the prolongations in PR and QTc inter-
vals could be reflecting an underlying CAD substrate.
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Figure 2. Hazard Ratios of the middle and high risk

groups with respect to the low risk group defined for each
of the three risk scores, ECG, GRS (Gen) and combined
(ECGGen)

We also validated the association of the GRS with CAD
in previous studies [3, 8], confirming CAD has an impor-
tant genetic predisposition.

The integration of ECG and genetic markers into a com-
bined score could also be potentially used to study the
evolution and the mechanisms of CAD risk (genotype-
phenotype interactions) [12]. In addition, recent publi-
cations on the genetics of ECG markers of cardiovascu-
lar risk have reported GRSs for these ECG risk markers
[5,9, 13, 14]. However, the role that these GRSs play
when integrated into combined risk scores with indepen-
dent clinical and non-invasive cardiac markers remains to
be elucidated.

Our results confirm the hypothesis that a combination
of non-invasive markers capturing complementary infor-
mation about the cardiovascular condition can potentially
improve CAD risk prediction. Future studies with more
power and including additional complementary risk fac-
tors are needed.
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