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Abstract

Evidence of sex-related differences in cardiac risk is
emerging, but whether these reflect sex-related differences
in ventricular electrophysiology remains unclear. Our aim
was to quantify T-wave morphological differences between
men and women across different leads and RR interval val-
ues. We analysed 12-lead ECG recordings from 23,962
participants in the UK Biobank without known cardiovas-
cular disease, and subsequently clustered them into bins
of RR interval. In each cluster, we derived a lead and sex-
specific mean warped T-wave (MWT). Then, we quantified
differences between MWT in men and women in time and
amplitude using linear, dw and da, and non-linear mark-
ers, dNL

w and dNL
a . Leads V3 and aVR showed the lowest

differences between men and women (median dw, dNL
w , da

and dNL
a of 1.12 ms, 0.69 ms, 3.29 and 1.20, respectively),

while V1 showed the largest (5.69 ms, 4.50 ms, 208.94 and
199.45, respectively). Sex-related differences in MWT in-
creased with the RR interval (dw, dNL

w , da and dNL
a rang-

ing 1.44 - 5.89 ms, 1.23 - 3.97 ms, 8.58 - 28.38 and 1.53
- 4.41, respectively). These values compare to those found
for morphological T-wave variations due to large changes
in heart rate (5.66 ms, 2.35 ms, 57.61 and 9.51, respec-
tively). These results indicate sex and lead should be con-
sidered when using T-wave morphologies for cardiovascu-
lar risk prediction.

1. Introduction

Sudden cardiac death (SCD) is a devastating event, oc-
curring before any diagnosis of underlying heart disease in
50% of cases [1]. Higher rates have been reported in men
than in women [1], indicating gender plays an important
role in the initiation and development of malignant ven-
tricular arrhythmias.

Several electrocardiogram (ECG) markers of ventricular
repolarization are strongly associated with SCD, including
the corrected QT interval, the T-peak-to-T-end (Tpe) inter-
val, and their dynamics [2,3]. All these ECG markers have

been reported to be significantly different between men
and women in the general population [4] and in cohorts
with an underlying cardiovascular condition [3, 5]. How-
ever, these predictors are based on specific features of the
T-wave, so the impact that sex has on the overall T-wave
morphology still remains unclear.

A novel methodology based on time-warping was re-
cently proposed to quantify changes in T-wave morphol-
ogy [6]. Using this methodology, the T-wave morphology
restitution (TMR) index, quantifying the level of T-wave
morphology variations with heart rate, demonstrated to be
a stronger predictor of SCD in chronic heart failure pa-
tients [7, 8], and of ventricular arrhythmias in the general
population [9] than traditional ECG indices of ventricular
repolarization.

The aim of this study was to use time-warping methods
[6] to detect and quantify sex-differences in the T-wave
morphology in different leads in a large cohort from the
general population.

2. Materials and Methods

2.1. Materials
UK Biobank (UKB, www.ukbiobank.ac.uk) is a

prospective study of 488,377 individuals comprising rel-
atively even numbers of men and women aged 40 to 69
years old at recruitment (2006 - 2008). A sub-cohort of
23,962 individuals participated in an imaging study (2014
- present, the collection is ongoing), which included 10-
seconds 12-lead ECG recordings.

The UKB study was approved by the North West Multi-
Centre Research Ethics Committee and all participants
provided written informed consent.

2.2. Methods

2.2.1. ECG Pre-processing and clustering

Pre-processing of the ECG signals included low-pass fil-
tering at 50 Hz to remove electric and muscle noise but still
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allow QRS detection [10]. Baseline wander was removed
by further high-pass filtering the ECG signals at 0.5 Hz.

We then signal-averaged the heartbeats to attenuate
noise and artifacts and reveal small variations in the QRS
and T waveforms. The onset, peak, and end timings of the
waveforms were located using bespoke software [10, 11].
The T-waves were selected from the T-wave onset and T-
wave end timing locations.

We then split the participants into men (N = 11,007,
45.9%) and women (N = 12,955, 54.1%), and subsequently
clustered them into bins of RR interval (width of 50 ms,
range 0.625 - 1.325 s).

2.2.2. Mean Warped T-waves

In each cluster, we derived an RR-matched mean
warped T-wave (MWT). For this, we calculated an ini-
tial MWT that is an optimal representative average both
in temporal and amplitude domains. The methodology
is explained in detail in [6]. We, then, re-calculated the
MWT by only considering those T-waves highly correlated
(Spearman’s correlation coefficient >0.98) with the initial
MWT.

2.2.3. Quantification of morphological changes

Let fr(tm) and fw(tw) be two MWTs (i.e. men and
women), where tm and tw are the temporal vectors of
length Nr and Ns, respectively, of each MWT. Let γ(tm)
be the warping function that relates tm and tw, such
that the composition fw(γ(tm)) denotes the time domain
warping of fw(tw) using γ(tm).

As demonstrated in [12], the optimal warping function
can be obtained using the dynamic programming algorithm
[13] as:

γ∗(tm) = argmin
γ(tm)

(∥∥∥qfm (tm)−qfw(γ (tm))
√
γ̇ (tm)

∥∥∥).(1)

The metric dw quantifies the level of warping needed to
optimally align any two MWT [6]:

dw =
1

Nr

Nr∑
n=1

|γ∗ (tm (n))− tm (n) |. (2)

The normalised amplitude difference between fm(tm)
and fw(γ∗(tm)) is quantified as:

da =
1
Nr

∑Nr

n=1 f
w (γ∗ (tm (n)))− fm (tm (n))

1
Nr

∑Nr

n=1 f
m (tm (n))

× 100.

(3)

By fitting γ∗ (tm (n)) with a linear regression,
γ∗l (t

m (n)), we have a quantification of the level of non-
linear warping:

dNL
w =

1

Nr

Nr∑
n=1

|γ∗ (tm (n))− γ∗l (tm (n)) |, (4)

By normalizing the warped MWTs, non-linear ampli-
tude differences not due to linear scaling can be quantified
as:

dNL
a =

∥∥∥∥ fm (tm)

‖fm (tm) ‖
− fw (γ∗ (tm))

‖fw (γ∗ (tm)) ‖

∥∥∥∥× 100. (5)

The morphological differences between men and
women for each lead- and RR-specific MWT were quanti-
fied using dw, dNL

w , da and dNL
a [6]. Therefore, there was

a value of dw, dNL
w , da and dNL

a for each lead and RR bin.

2.2.4. Statistical Analyses

To test if there were significant sex-differences across
leads, we applied the Kruskal-Wallis test (a non-parametric
one-way analysis of variance) to each morphological index
(dw, dNL

w , da and dNL
a ). Then, we used box-plots to dis-

play relevant differences.
Similarly, to test if there were significant sex-differences

across RR interval values, we applied the Kruskal-Wallis
test to each morphological index. We also used box-plots
to display relevant differences across values of RR. A P <
0.05 was considered statistically significant.

As described in the introduction, intra-individual vari-
ations in T-wave morphology as a response to heart rate
changes are a strong cardiovascular risk predictor [7–9].
To investigate if the variations in the morphology due to
sex differences were within a similar range than those due
to changes in RR interval, we additionally quantified, for
each lead and sex, the T-wave morphological differences
between the two MWTs located at 0.625 s and 1.325 s,
respectively (extreme RR interval values).

3. Results

The average percent of T-waves excluded in the calcu-
lation of the MWT (section 2.2.2) across clusters was low
(2%).

3.1. Differences across leads

Kruskal-Wallis test was significant when testing across
leads for the four morphological markers (P = 1 x 10−15

for dw, P = 2 x 10−17 for dNL
w , P = 2 x 10−23 for da, and

P = 7 x 10−5 for dNL
a , Figure 1).
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Figure 1. Sex-differences in T-wave morphology across leads. Boxplots of dw (top left panel), da (top right panel), dNL
w

(bottom left panel) and dNL
a (bottom right panel) for each lead. The logarithmic scale has been used for da and dNL

a to
facilitate comparison across leads.

Differences between men and women were lowest in
V3 (dw = 1.12 [0.60] ms, median [interquartile range -
IQR]), and largest in V1 (dw = 5.69 [2.39] ms). Re-
garding morphological variations in the amplitude domain,
aVR showed the lowest difference (da = 3.29 [2.92] a.u.),
whereas V1 showed, again, the largest differences (da =
208.94 [204.48], Figure 1). Similar results were found for
the non-linear markers dNL

w and dNL
a (Figure 1).

3.2. Differences across RR interval values

Regarding sex-differences across RR interval values,
Kruskal-Wallis test indicated statistically significant differ-
ences for dw (P = 2 x 10−2), and for dNL

a (P = 5 x 10−2),
but not for dNL

w (P = 8 x 10−2), nor for da (P = 1 x 10−0,
Figure 2).

The index dw was lowest at RR of 0.875 s (1.44 [1.23]
ms), and largest at RR of 1.325 s (5.89 [3.40] ms), while
dNL
a was lowest at RR of 0.625 (1.53 [1.57]) and largest at

RR of 1.275 s (4.41 [3.05], Figure 2).

3.3. Differences due to RR changes

Table 1 shows the values of dw, da, dNL
w and dNL

a when
measuring TWMs variations at extreme RR values in men
and in women. As shown, the values of dw and dNL

w are
within a similar range than those shown in Figures 1 and
2. However, the changes in the amplitude domain with
heart rate, as captured by da and dNL

a , are higher than the
changes due to sex differences.

Men Women
dw 5.66 (1.79) 5.34 (1.43)
da 57.61 (38.18) 31.12 (17.59)
dNL
w 2.35 (1.71) 2.80 (1.23)

dNL
a 9.51 (4.20) 5.14 (6.88)

Table 1. Median (interquartile range) values of the four
morphological markers between two T-waves measured at
extreme RR interval values in men and women.

4. Discussion and Conclusions

The main finding of this work is that sex impacts T-wave
morphology, in addition to its duration. We observed that
the impact of sex on the T-wave morphology was highly
dependent on the lead where the T-wave was measured,
whereas sex-differences were consistent over a wide range
of RR intervals. The extremely large morphological differ-
ences observed in lead V1 might be explained by the fact
that T-waves in this lead are mainly biphasic, thus, having
the largest morphological heterogeneity. Moreover, pre-
cordial electrode placement and anatomical differences in
women might have played a role in our results.

When comparing morphological differences due to sex
with those due to extreme RR changes, we observed differ-
ences in the temporal domain were comparable, indicating
that sex can potentially influence the quantification of resti-
tution of dispersion of repolarization, which is strongly as-
sociated with cardiovascular risk [7–9].

In addition, our results suggest the morphology mark-
ers, dw, dNL

w , da and dNL
a could be used to predict the sex

from the T-wave morphology, as previously done using ar-
tificial intelligence [14], or to estimate drug cardiotoxicity,
following previous studies reporting abnormalities in the
T-wave morphology [15].
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Figure 2. Sex-differences in T-wave morphology across RR interval values. Boxplots of dw (top left panel), da (top right
panel), dNL

w (bottom left panel) and dNL
a (bottom right panel) for different RR interval values

In conclusion, sex influences the T-wave morphology
in an unselected population, and sex-differences in the T-
wave morphology are comparable to or higher than dif-
ferences due to RR changes, and markedly heterogeneous
across leads. Sex should be considered when using T-wave
morphologies for cardiovascular risk prediction, but fur-
ther studies are needed to optimise markers of T-wave mor-
phological differences for risk prediction.
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