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A B S T R A C T   

Recent characterisations of self-organising systems depend upon the presence of a ‘Markov blanket’: a statistical 
boundary that mediates the interactions between the inside and outside of a system. We leverage this idea to 
provide an analysis of partitions in neuronal systems. This is applicable to brain architectures at multiple scales, 
enabling partitions into single neurons, brain regions, and brain-wide networks. This treatment is based upon the 
canonical micro-circuitry used in empirical studies of effective connectivity, so as to speak directly to practical 
applications. The notion of effective connectivity depends upon the dynamic coupling between functional units, 
whose form recapitulates that of a Markov blanket at each level of analysis. The nuance afforded by partitioning 
neural systems in this way highlights certain limitations of ‘modular’ perspectives of brain function that only 
consider a single level of description.   

Introduction 

Scientific investigation in neurobiology often begins – perhaps only 
implicitly – by partitioning the brain into functional units. This is 
important, as it is only by segregating parts of the brain from other parts 
that we can start to ask questions about how they interact. While the 
most obvious partition of neural systems is into individual neurons, the 
same approach can be applied over a range of spatiotemporal scales. 

The division of the cortical surface into Brodmann areas represents 
one such carving up of neural tissue (Brodmann, 2007; (Zilles and 
Amunts, 2010). Brodmann maps have enduring practical implications. 
For example, the Talairach Atlas (Talairach and Szikla, 1980a, 1980b), 
commonly in use in neuroimaging, may be seen as a direct descendent. 
In this setting, the assumption is that brain function depends upon in-
teractions between architectonically defined brain regions (Lazar, 
2008). This assumption underwrites the study of connectivity in the 
brain, as we need to know what is connected to what. Effective con-
nectivity studies go as far as to distinguish between connections that are 
‘intrinsic’ or ‘extrinsic’ to a given region (or cortical column) (Tsveta-
nov, Henson et al. 2016; Zhou et al., 2018). Again, this rests upon 
drawing boundaries around parts of a brain. Our focus in this paper is on 

how such boundaries are licensed. 
A prominent justification for drawing boundaries – from the last 

century – is the ‘modularity of mind’ paradigm (Fodor, 1983), which 
itself inherits from the phrenology of the preceding century (Gall and 
Lewis, 1835). This conceptualisation of cognitive processes depends 
upon discrete cognitive units that interact with one-another, which 
might manifest in the tissue engaged in cognitive operations. Broadly 
speaking, modularity in the brain refers to some form of segregation of 
neuronal processing in specialised modules conducting computation in 
isolation from the rest of the system (Coltheart, 2011). However, more 
recent perspectives, based upon stochastic non-equilibrium systems, 
offer a simpler perspective in terms of factorisation (Parr et al., 2020a, 
2020b). Specifically, conditional independency between two parts of a 
system lends it a modular appearance. An important limitation of the 
modular paradigm is that it typically only considers a single level of 
description, neglecting the rich intrinsic and extrinsic dynamics across 
regions and microcircuits. In addition, the philosophical assumptions of 
modular perspectives on neuronal organisation have been criticised 
(Friston, 2002; Colombo, 2013; Palecek, 2017; George and Sunny, 2019; 
Hipólito and Kirchhoff, 2019). In short, this calls for a more nuanced 
treatment of partitions and functional interactions. In this paper, our 
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focus is upon the conditional dependency structure in neural systems. 
A growing literature leverages the Markov blanket construct (Pearl, 

1998) to formalise dynamic coupling in physical and biological systems 
(Friston, 2019a, 2019b, Hipólito, 2019; Ramstead et al., 2018, 2019; 
Palacios et al., 2020; Kirchhoff et al., 2018). This construct is a 
description of the dependencies within and between random dynamical 
systems – like the brain – that sets a boundary between the inside and 
outside of each system. Here, we focus upon the Markov blankets im-
plicit in models used practically in characterising brain function. Spe-
cifically, we examine the dynamics implied by neural mass models1 of 
the kind that underwrite Dynamic Causal Modelling (DCM) (Bastos, 
Usrey et al. 2012; Moran, Pinotsis et al. 2013). Building from this to the 
connectivity of a canonical cortical microcircuit, we set out a series of 
Markov blanketed structures at increasing spatial scales. 

This approach endorses the segregation of the brain into regions but 
also emphasises the absence of a privileged scale of description at which 
’modules’ might be defined. By selecting a Markov blanket, we implic-
itly identify the variables that define the simplest element of our system 
at a given scale. It follows that, depending on the scale of interest, the 
variables comprising the Markov blanket will be different. For a single 
neuron, the blanket includes the presynaptic and postsynaptic mem-
brane potentials that mediate its interactions with other neurons. For 
cortical columns, the blanket will include neural populations mediating 
interactions between different columns. In principle, the identification 
of functional boundaries can proceed at finer (ion channels and mole-
cules) and coarser (networks, brains, and people) scales. 

Our primary focus here is upon the specific interpretation of hier-
archy as a spatial progression. This lets us zoom in and out in at different 
levels of neuronal architecture—emphasising its status as a multiscale 
system. It is the relationship between these spatial scales that is lacking 
in modular accounts, which tend to focus upon relationships between 
entities defined at a specific scale. Specifically, we consider hierarchical 
laminar connectivity (Fig. 5) and hierarchy as a progression of scales. 
Although our proposal is consistent with the principle of progression of 
scales, we do not commit to the assumption of Hierarchical Modules in 
the Network (HMN), i.e., a fractal hierarchy of neuronal systems and the 
global integration of functionally segregated units (Sporns, 2006; 
Clauset et al., 2008). Meunier et al., 2010). We suppose that the hier-
archical mechanistic mind (HMM) formulation is conceptually better 
suited to study of the embodied, situated human brain (Badcock et al., 
2019a, 2019b). In the HMM, the brain is described as a complex adap-
tive system that functions to minimize the entropy of our sensory and 
physical states via action-perception cycles that depend upon (spatially 
and temporally) hierarchical neural dynamics. We follow Hilgetag and 
Goulas (2000) in seeking a construct that is more specific than ‘hierar-
chy’ – for a more precise understanding of the organizational principles 
of functional anatomy. 

While identifying blankets at each level may seem an abstract exer-
cise, it has important implications for empirical neuroscience. Specif-
ically, it offers an important part of the conceptual analysis we need to 
ensure our hypotheses make sense (Nachev and Hacker, 2014). For 
example, if we want to know whether condition specific differences in 
measured brain activity are mediated by changes in ‘intrinsic’ or 
‘extrinsic’ connectivity (Zhou et al., 2018), we need to be able to define 
what we mean by these terms, and to say what they are intrinsic or 
extrinsic to. We aim to make this explicit in a series of examples. 

The aim of this paper is to argue that an appeal to the Markov blanket 
construct provides a formal basis for partitioning the brain into func-
tional units – from individual neurons to functional assemblies of neu-
rons, through to independent brain regions and networks of regions. In 
particular, we will argue that a recursively iterated version of the 
formalism, where each component of a Markov blanketed system is itself 

a Markov blanketed system, is apt for the task. This paper comprises four 
parts. The first provides a brief overview of the Markov blanket 
construct and its relevance to a dynamical setting. The second section 
zooms in on the individual neurons and illustrates how synaptic dy-
namics conform to the conditional independence structure of a Markov 
blanket. The third takes a more detailed look at the asymmetries of the 
neuronal Markov blanket, and emphasises the need for these to be 
replicated at the network level. The fourth section shows how the same 
structure is recapitulated at larger spatial scales. 

1. Markov blankets 

The Markov blanket construct, which underwrites the current pro-
posal, was introduced into the literature by Pearl (1998) in the context 
of statistical inference. To distinguish a set of systemic (or internal) 
states from their embedding environment (of external states), a third set 
of states are implied2 . These are blanket states (Friston, 2013). The 
Markov blanket consists of sensory states, which affect but are not 
affected by internal states; and active states, which affect but are not 
affected by external states (Fig. 1)3 . This implements conditional in-
dependence between internal and external states, under mild 
assumptions. 

By Markov blankets, we mean a partition that complies with the 
conditional dependency structure of Eq. (1) and the dynamics of Eq. (2). 
It is important to keep in mind that a Markov blanket is not necessarily a 

Fig. 1. Markov blanket. A Markov blanket highlights open systems exchanging 
matter, energy or information with their surroundings. Variables η are condi-
tionally independent of variables μ by virtue of its Markov blanket (b). If there is 
no route between two variables, and they share parents, they are conditionally 
independent. Arrows go from parents to children. We will use the colour- 
scheme in this figure consistently through subsequent figures. 

1 We will occasionally appeal to technical terms that are in common usage in 
this field. Please see the glossary of terms for definitions. 

2 Markov blankets, under the Free Energy Principle, can be understood as 
pertaining to self-organizing systems whose dynamics – on average – to mini-
mize a variational free energy functional.  

3 We should note that our interpretation of the Markov blanket as a causal 
construct might be controversial to some. Some authors employ a less restric-
tive definition of a Markov blanket and take this to be the minimal set of 
variables that satisfies the conditional independence relationships in Eq. (1) 
(Hausman and Woodward, 1999), without reference to the constraints on 
dynamical coupling in Eq. (2). 
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physical boundary such as a cell membrane, but rather a statistical one 
defined by variables that are conditionally independent of each other. 
There is an ongoing debate about whether these constructs should be 
interpreted in a realistic way, as a literal description of the brain, or in an 
instrumentalist way, as a useful tool to gain insight over the neuronal 
and cognitive activity, without assuming the existence of Markov 
blankets in the brain. Our discussion is orthogonal to this issue; but see 
(Andrews, 2020; Bruineberg, Dolega et al. 2020; Ramstead et al., 2020; 
van Es and Hipólito, 2020) for discussion. 

A Markov blanket (b) around internal states μ – where all other 
(external) variables are labelled η – is defined as the set of variables that 
renders μ conditionally independent from η. Mathematically, this is 
written as follows: 

μ⊥η|b ⇔ p(μ, η|b) = p(μ|b)p(η|b) (1) 

Eq. (1) illustrates this dependency structure in the factorisation of 
the joint distribution conditioned on blanket states into two condition-
ally independent distributions; by definition, two variables are condi-
tionally independent if and only if their joint probability, conditioned on 
some third variable, is equal to the product of their marginal probability 
conditioned on that third variable. It is common to speak of the random 
variables separated in this way by Markov blankets – and the associated 
conditional dependencies – in terms of ‘parents’ and their ‘children’, 
where ‘parent’ nodes cause their children. A Markov blanket is then the 
set of the parents, the children, and the parents of the children of the 
variable in question. An alternative way to frame this is to think of the 
parents as mediating the influence of external states on internal states (i. 
e., sensory states) and the children (and their parents) as mediating the 
influence of internal states on external states (i.e., active states). This 
suggests a separation of blanket states into active (a) and sensory (s) 
states. 

In a dynamical setting4 (Friston et al., 2020b), Eq. (1) means that the 
average (represented in bold) rate of change of each component of a 
Markov blanketed system can only depend on two other sorts of state in 
order to preserve the structure of Eq. (1). This is shown in Eq. (2) and 
Fig. 2: 

μ̇ = fμ(μ, s, a)
ȧ = fa(μ, s, a)
η̇ = fη(η, s, a)
ṡ = fs(η, s, a)

(2) 

Eq. (2) means that the flow of internal and external states does not 
depend upon one another; i.e., that internal states cannot influence 
sensory states, and that external states cannot influence active states. 
Additionally, note that the Markov blanket structure is preserved if 
dependencies are lost (e.g., if the active states were not influenced by 
sensory states), but not if they are gained, since that would – in most 
circumstances – destroy the conditional independence. We will see over 
the next few sections that this structure can be identified at numerous 
levels neuronal organisation; especially in dynamical formulations of 
neuronal circuits, based upon neural mass models (David and Friston, 
2003; Pinotsis et al., 2014; Moran et al., 2013). 

Before proceeding, it is worth briefly unpacking the reason for the 
names of the variables. While the Markov blanket formulation in general 
applies to any random variables, recent work has leveraged Markov 
blankets to talk about the structure of exchanges between an organism 
and its environment (Friston, 2013; Kirchhoff et al., 2018; Parr and 
Friston, 2018a, 2018b) and to describe self-organisation across spatial 
and temporal scales (Hipólito, 2019; Ramstead et al., 2018; Palacios 
et al., 2017). In this context, we associate the variable of interest with 

the internal states of a Markov blanket, which allows us to think of the 
‘parents’ of that variable as mediating the influence of external states on 
internal states (i.e., as sensory states) and of its ‘children’ and the ‘par-
ents of the children’ as mediating the influence of internal states on 
external states (i.e., as active states). This conception of the Markov 
blanket as the mediating influence of external states on internal states 
through the effects of sensory and active states resonates with the 
action-perception cycles typically considered in cognitive systems 
(Fuster, 1990; Parr and Friston, 2017, 2018a, 2018b). This is the reason 
for the words ‘active’ and ‘sensory’. While it may seem strange to use 
these terms for interactions at cellular or network levels, it should be 
emphasised that these are simply names for statistical constructs. 

2. Neurons and their Markov blankets 

In this section, we consider the partition of brain tissue into neurons. 
From a dynamical perspective, this means finding equations of motion 
consistent with Eq. (2) and Fig. 2. We know that synaptic dynamics 
conform to the dependency structure of a Markov blanket, as the in-
ternal states (e.g., conductance of ion channels) of one neuron are 
distinguishable from the same states of other neurons but interact 
through presynaptic and postsynaptic voltages. The implied partitioning 
of tissue into Markov blanketed neurons allows neurons to change their 
behaviour without losing their identity. 

Fig. 3 shows explicitly how synaptic dynamics conform to a Markov 
blanket. This is based upon the neural dynamics used in dynamic causal 
modelling of canonical microcircuits (Bastos, Usrey et al. 2012; Moran, 
Pinotsis et al. 2013). This is one of many models of neural dynamics. We 
have summarised common alternatives – with varying degrees of bio-
physical detail – in Table 1. As noted above, the existence of a Markov 
blanket implies a partition of states into external, sensory, active and 
internal states. The dynamics set out in Fig. 3 assign these labels to the 
variables that conform to Eq. (2) – i.e., internal states evolve based upon 
internal and blanket states but not external states, active states do not 
depend upon external states, and so on. 

It is worth noting that Markov blankets do not trivially correspond to 
the boundaries of neuronal cells. Rather, the idea is that a Markov 
blanket ensures the influences of blanket variables (here, membrane 
potentials) vicariously enable internal and external states (ion channel 
conductance) to communicate. This is fundamental because it means 
that internal and external states, though not influencing each other 
directly, are the common units that, when coupled, will determine large- 
scale network behaviour. Moreover, as the blanket is defined in terms of 
dynamics as opposed to physical boundaries, which would correspond to 
the cell membrane at the neuronal level, we start to see how the same 
formalism applies even in the absence of clear spatial boundaries 
(Friston, 2013; Kirchhoff et al., 2018). At the neuronal level of 
description, the Markovian demarcation is not insulation of internal 
states, but rather a way of highlighting (statistically) which states are 
relevant for self-organisation (Friston, 2019a, 2019b; Hipólito, 2019). 
Ultimately, the dependencies induced by Markov blankets create a cir-
cular causality5 : external states, such as the presynaptic conductance, 
cause changes in internal states, such as the postsynaptic conductance, 
via sensory states, i.e., presynaptic voltage, while the internal states 
couple back to the external states through active states, i.e., the 

4 The Markovian formalism has been used also in the context of structural 
equation modelling. We are interested in dynamical, as opposed to static, sys-
tems, however. Give this, dynamic systems approaches, such as dynamic causal 
modelling and neural mass models, are more appropriate for our purposes. 

5 A causal interpretation of the Markov blanket is not uncontroversial. For us 
to interpret the Markov blanket construct causally in the context of structural 
equation modelling, the system must conform to the causal Markov condition 
(Hausman and Woodward, 1999). This would usually be very restrictive 
(Bongers and Mooij, 2018). However, this is arguably not an issue for the 
current formulation, which grounds its causal interpretation not in structural 
equation modelling but in dynamical systems theory, i.e., in the dynamic causal 
modelling approach, the causal status of which is uncontroversial (Moran et al., 
2013). 
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postsynaptic voltage. 

3. Blanket asymmetries 

This section deals with the way in which neurons – the basic units of 
Section 2 – can be connected together to form microcircuits (David and 
Friston, 2003; Moran et al., 2013; Friston et al., 2019; Coombes and 
Byrne, 2019), which form the basic unit of Section 4. Specifically, we 
emphasise the key role of asymmetric interactions between blanketed 
structures. First, we take a step back to briefly highlight the way in 
which neurons are studied in isolation. Neurons – as complex, dynamic 
systems – are highly sensitive to initial conditions, exhibiting organised 
patterns that result from localised interactions without centralised 
control. These non-linear interactions can be studied through electro-
physiological experiments on single neurons. Typically, this means using 
voltage clamp experiments and injecting electrical currents. A few 

examples of physiologically detailed models – to account for these 
non-linear interactions – are outlined in Table 1 and include the 
Hodgkin-Huxley model. This has many moving parts and is therefore 
rarely used in studies of connected neural populations – where dynamics 
more akin to those in Fig. 3 predominate – but is a good starting point in 
understanding how sensory states influence the internal state dynamics. 
This will be essential when we move to sensory states generated by other 
neural populations in a network. 

Intuitively, the Hodgkin–Huxley model expresses the evolution of 
the membrane potential under time-dependent input currents in terms 
of the equivalent electric circuit6, with a potential that evolves based 
upon membrane capacitance and currents. More specifically, the 
Hodgkin–Huxley equations describe how action potentials in neurons 
are initiated and propagated through a set of non-linear differential 
equations that approximates the electrical characteristics of excitable 
neurons in a continuous-time dynamical system (Douglas and Martin, 
1991). Formulating the Hodgkin-Huxley (and other models) in terms of 
the constituents of the Markov blankets inherent in voltage-clamp ex-
periments allows us to highlight the specifics of the influence of the 
external states (e.g., electrophysiological setup) via sensory states 
(injected current) on internal states (ion channels), themselves influ-
encing active states (membrane potential). Unpacking the Equation in 
Table 1 in terms of the specific ion channels, this is: 

ȧ =
1
C
(
s − gKμ4

K(a − vK) − gNaμ3
Na(a − vNa) − glμl(a − vl)

)

μ̇i = α(a)(1 − μi) − β(a)μi, i = (Na,K, l)

ṡ = fs(η)

η̇ = fη(a, s,η)

(3)  

Here, the capacitance (C) mediates the influence of an injected current 
(s) and ion channel currents on the membrane potential (a). This de-
pends upon the ion channels of the system, i.e., the conductance of the 
sodium (Na), potassium (K), and leakage (l) channels. These depend 
upon constants (g) and the associated internal states (μ). In addition, it 
depends on the ‘reversal’ potentials for each channel (v) which specify 
the potentials at which the direction of ionic flow reverses. The internal 
states for each channel evolve based upon the (functions – α and β – of 
the) potential, as voltage-gated channels open and close to increase or 
decrease the magnitude of this flow. 

The nonlinearity inherent in Eq. (3) facilitates many interesting 
biophysical phenomena, including bifurcations and limit cycles (Wang, 
Chen et al. 2007). However, the purpose of this section is to move to-
wards the dynamics exhibited by populations of connected neurons. This 
rests on the blanket states that mediate these connections. The first step 

Fig. 2. This schematic illustrates the partition of states 
into internal states (purple) and hidden or external 
states (orange) that are separated by a Markov blanket 
– comprising sensory (green) and active states (blue). 
Specifically, it focuses on the dynamical formulation of 
Eq. (2). Directed influences are highlighted with dotted 
connectors. Autonomous states are those states that are 
not influenced by external states, while particular 
states constitute a particle; namely, autonomous and 
sensory states – or blanket and internal states. Sensory 
states, active states and internal states comprise the 
particular states that are constitutive of a functional 
neuronal unit (for more detail see Hipólito, 2019).   

Fig. 3. Neuronal Markov blankets. This figure illustrates a Markov blanket 
separating the membrane conductances of a pair of neurons (or between one 
postsynaptic neuron and all presynaptic neurons). The A terms here are con-
stants that act as connectivity strengths from the active state of one neuron to 
the external state of another (Aη), and from the sensory states of the latter to the 
internal states of the former (Aμ). When many neurons are in play, this becomes 
a connectivity matrix. The σ-function is a sigmoid shape and can be thought of 
as converting potentials to firing rates. An interesting feature of this structure is 
that the sensory states, from the perspective of a given neuron, can arise from 
many different external states (other neurons) while the active states (mem-
brane depolarisation) depend only on the conductance (internal state) of the 
neuron being depolarised. Normal arrowheads indicate an excitatory influence, 
while round arrowheads show inhibitory influences. 

6 Note that this is not what is meant by the term ‘microcircuit’, which refers 
to the ‘wiring’ of a population of neurons into a local network. 
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is to notice that the sensory state for the single neuron described by the 
Hodgkin-Huxley model is an experimental intervention (e.g., an elec-
trophysiologist, η) who injects current and measures the resulting po-
tential. We need to move to a situation where input this comes from 
other neurons. This is afforded by the equations of motion in Fig. 2 for a 
pair of neurons. 

To understand the way in which blankets connect to one another, it is 
useful to consider that the membrane potential (active state) of a given 
neuron can only be directly influenced by the conductance (internal 
states) of that neuron. In contrast, the presynaptic potentials (sensory 
states) of many other neurons contribute to the internal states. This 
asymmetry in the blanket states recapitulates that seen in physical sys-
tems. Specifically, the position of many different particles (sensory 
states) can influence the momentum (internal state) of a single particle. 
However, the position of the particle in question (active state) is only 
influenced by the momentum of that same particle. This suggests a clear 
analogy between Newtonian mechanics and neuronal mechanics. 
Newton’s second law denotes that the rate of change of momentum of a 
body is directly proportional to the force applied. Conversely, this 
change in momentum takes place in the direction of the applied force, 
which itself can depend on position (e.g., the force due to a spring). 
Rewriting this law, from the perspective of a single particle, in terms of a 
Markov blanket partition (Friston, 2019a, 2019b), we have: 

ȧ =
1
m

μ

μ̇ = F(s, a)
(4) 

For a single particle, a and μ are each 3-dimensional (each spatial 
dimension), while s can be many-dimensional, as each particle it de-
scribes will have three degrees of freedom. The second law of motion is 
consistent with neural mechanics in terms of dynamical functions 
described here in the sense that they both exhibit asymmetrical flow 
dependencies. This ubiquitous asymmetry is the key to moving to larger 
spatial scales, and networks of neurons in section 4. This rests upon the 
structure in Fig. 5, which shows the asymmetric connectivity structure 
between cortical columns. The neurons, which each include conduc-
tance and potential variables, now themselves become parts of sensory, 
active, internal, or external states with respect to a cortical column. The 
asymmetry now manifests in forward and backward connections along 
cortical hierarchies. 

4. Cortical columns and networks 

This section deals with how the same Markov blanketed structure is 

recapitulated at a larger spatial scale: the cortical microcircuit. Neurons 
are themselves components of complex self-organising systems. A key 
characteristic of such complex systems is that they are greater than the 
sum of their parts: i.e., the properties of a complex system cannot be 
sufficiently understood from the level of individual components. In the 
present context, the brain cannot be sufficiently understood from the 
perspective of interactions between individual neurons. Here, we appeal 
to the canonical microcircuit model that, not only uses the dynamics of 
Fig. 3, but connects the neural populations as schematized in Fig. 5. In 
brief, this divides neural populations into superficial and deep pyrami-
dal cells (which turn out to be blanket states), spiny stellate cells and 
inhibitory interneurons. 

In this section, we use the cortical microcircuit as an example system. 
This is motivated partly by the ubiquity of this stereotyped network in 
empirical modelling studies. In turn, this focus on the cortex in empirical 
work is likely due to the ease with which non-invasive imaging modal-
ities (e.g., electroencephalography and magnetoencephalography) can 
measure cortical activity—being the closest to the surface of the scalp. 
However, our aim is not to further a ‘cortico-centrist myopia’ (Parvizi, 
2009). The same organisational patterns could just as easily have been 
identified in subcortical networks—using the homologous equations of 
motion applied in models of the basal ganglia and thalamus (van Wijk 
et al., 2018). 

Focusing on the canonical microcircuit model has several advan-
tages. First among these is the fact that it is used practically in the 
analysis of empirical brain data. This is because it can be used to specify 
models of (i.e., hypotheses about) distributed responses – as measured 
with functional magnetic resonance imaging (fMRI) or electroenceph-
alography (EEG) – that are physiologically grounded (Friston et al., 
2019). For example, it is possible to specify architectures in terms of 
their forward and backward connections and experimental effects either 
as extrinsic (between region) or intrinsic (within-region) connectivity at 
a specific level. A third advantage is that these models enable the 
assimilation of data from different imaging modalities in the form of 
multimodal Bayesian fusion (Wei et al., 2020).7 

Many questions about functional integration the brain benefit from 
the segregation into the functional units (cortical columns) offered by 
these microcircuits. A good example is the case of schizophrenia, in 
terms of the dysconnection hypothesis (Yang et al., 2015; Friston et al., 

Table 1 
Neural models and their blankets.  

Model Dynamics States Citation 

Hodgkin–Huxley 

ȧ =
1
C
(s − gμn⋅(a − v))

μ̇ = α(a)(1 − μ) − β(a)μ
ṡ = fs(η)

η̇ = fη(a, s,η)

a – Membrane potential 

(Hodgkin and Huxley, 1952) 
μ – Ion channels 
s – Injected current 

η – External states 

FitzHugh–Nagumo 

ȧ = a −
1
3

a3 − μ + s

μ̇ =
1
τ(a + α − βμ)

ṡ = fs(η)
η̇ = fη(a, s,η)

a – Membrane potential 

(FitzHugh, 1955; Nagumo, Arimoto et al. 1962) 

μ – ‘Recovery’ variable 
s – Injected current 

η – External states 

Morris–Lecar 

ȧ =
1
C
(s − gμ⋅(a − v))

μ̇ =
1

2τ(a)

(

1 + tanh
(

1
u
(a − v)

)

− 2μ
)

ṡ = fs(η)
η̇ = fη(a, s,η)

a – Membrane potential 

(Morris and Lecar, 1981) 

μ – Potassium channels 
s – Injected current 

η – External states  

7 The idea here is that a model of the underlying neurophysiology can be used 
to make predictions about the measurements that could be obtained using 
different instruments. As such, if we were to measure the brain using fMRI and 
EEG, both should inform the same (parameters of the same) model. 
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2016; Kehrer et al., 2008). The dysconnection hypothesis pertains to the 
functional disintegration of different brain regions, usually based on 
NMDA-hypofunction models of pathophysiology. This disintegration has 
dramatic effects on both cortical neuronal and network activity. This 
hypothesis cannot be framed without knowing what is being discon-
nected from what. Similarly, questions about cognitive (e.g., atten-
tional) function in health depend upon the same construct (Limanowski 
and Friston, 2019). Specifically, attention is often conceptualised in 
terms of selective gain on the influence from one brain region to another. 
This conceptualisation is only meaningful when we are able to disam-
biguate pairs of regions from one another (and the rest of the brain). 
Other important questions, framed using the canonical microcircuit, 
include questions about the nature of neurovascular coupling. For 
example, does it depend upon afferent presynaptic activity from 
extrinsic sources or (only) report to local activity mediated by recurrent 
(intrinsic) connectivity (Jafarian, Litvak et al. 2020)? 

The brain organises itself in a decentralised way. A decentralised 
system, under complex systems and dynamic modelling theory, is a 
system whose lower-level components operate on local information to 
accomplish goals, i.e., control is distributed. The decentralised control is 
distributed such that each component of the system is equally respon-
sible for contributing to the global, complex activity based on the 
component’s interaction with other components (Deco et al., 2008; 
Chialvo, 2010; Zuo et al., 2010; Gliozzi and Plunkett, 2019; Hipólito and 
Kirchhoff, 2019). 

Markov blankets allow us to delineate the microcircuitry connections 
by nuancing their intrinsic connections and how they may also change 
within the same network. Laminar specific connections underlie the 
notion of canonical microcircuit (Bastos et al., 2012). As seen in Fig. 5 
(second row), we can use the dependencies of this connectivity structure 
to provide a principled segregation into regions. Considering two col-
umns – connected to one another – we see that if the internal and 
external states comprise the spiny stellate cells and interneurons of each 
column, the superficial pyramidal cells of one column act as the active 
states, while the deep pyramidal cells of the second become sensory 
states. Unpacking this in detail, the absence of spiny stellate or inter-
neuron connections to the superficial pyramidal cells of other columns is 

consistent with the absence of influence of external on active states. The 
reciprocal influence is in place – allowing active states to change 
external states. Similarly, connections from deep pyramidal to in-
terneurons and superficial pyramidal cells in other columns matches the 
directed influence of sensory over internal and reciprocated influence 
between sensory and active states, respectively. 

What the Markov blankets in Fig. 4 show is that, while a certain 
sparsity mediates interactions via blanket states, the internal states of a 
canonical microcircuit show strikingly interconnected intrinsic archi-
tectures. In other words, we can highlight – via Markov blankets – the 
interconnections between the neurons of origin and termination by 
highlighting intrinsic connectivity and extrinsic projections. This allows 
us to determine how top-down and bottom-up processing streams are 
integrated within each cortical column. As we see in Fig. 4, the top-down 
stream can be cast as sensory states, and the bottom-up, as active states, 
both components of the blanket. However, the important aspect of this is 
the implicit asymmetry. By reversing the ‘internal’ and ‘external’ labels, 
we could take an alternative perspective and see active as descending 
and sensory as ascending. Ultimately, this emphasises that intrinsic 
(local) behaviour is highly dependent upon extrinsic (global) behaviour 
via specific pyramidal populations. In short, organised patterns are 
observed as resulting from localised interactions without centralised 
control. This observation is recapitulated when we zoom out further. 

Zooming out to a larger spatial scale, neuronal structures can be 
viewed as higher-order neural packets (Yufik and Friston, 2016); i.e., as 
functional, larger-scale assemblies of neural packets, wrapped in their 
own superordinate Markov blankets. This is illustrated in the final row of 
Fig. 4, where cortical columns now become the functional units 
comprising the states of a Markovian partition to define a network. Fig. 5 
takes this one step further, and expresses brain-wide networks as active, 
sensory, internal, and external states. Bounded assemblies at larger 
spatial scales are formed spontaneously, consistent with the 
self-organisation of complex systems defined as structures that maintain 
their integrity under changing conditions. Especially in approaches such 
as the one we suggest here, where coordination, segregation and inte-
gration are crucial for the self-organisation of the brain as a complex 
dynamic system. 

Fig. 4. Cortical micro-circuitry. The upper schematic 
shows the connectivity of the canonical microcircuit as 
employed for DCM (Bastos et al., 2012). This comprises 
four cell populations with a stereotyped pattern of 
connectivity. From left to right, we show forward 
(ascending) connections. The opposite direction shows 
descending connections. The dynamics of each neural 
population shown here obey the equations given in 
Fig. 3, where the likelihood mappings (or A-matrices) 
in those equations specify which populations are con-
nected to one another. As further shown by Bastos et al. 
(2012), feedforward connections originate predomi-
nantly from superficial layers and feedback connections 
from deep layers, thus suggesting that feedforward 
connections use relatively high frequencies, compared 
to feedback connections. The second row here shows 
the Markov blankets that underwrite the separation 
into distinct cortical regions (where the superficial and 
deep pyramidal cells play the role of active and sensory 
states respectively), and the final row shows a separa-
tion into a network of regions, where the middle two 
regions act to insulate the far left and right regions.   
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Taking things a step further, Fig. 5 expresses brain-wide networks as 
active, sensory, internal, and external states. This is to emphasise that 
there may be entities comprising multiple brain networks whose in-
teractions with one another conform to the same conditional de-
pendency structure as the regions within those networks (and the 
microcircuits within those regions). Markov blankets of networks may 
be the intermediate step between those within networks, and the blan-
kets mediating interaction between different brains (Bilek, Zeidman 
et al. 2020). 

Blankets that bound microcircuits are then providing the units that 
make up larger scale assemblies. This can be seen as blankets of blankets 
or as a nesting of blankets. A treatment of the emergence of intrinsic 
brain networks and critical dynamics (nested blankets) has been offered 
in Friston et al. (2020a, 2020b) by using the renormalisation group, it is 
shown that much of the phenomenology found in network neuroscience 
is an emergent property of a particular partition of neuronal states, over 
progressively coarser scales, such as larger scale assemblies. Markov 
blankets allow us to articulate neuronal assemblies, as flexible but also 
stable biophysical structures. In other words, structures such as these 
maintain their integrity under changing conditions. In this treatment, 
Markov blankets highlight the assemblies conserved over multiple levels 
of description, i.e., they are scale-free. Monitoring the variations in such 
larger spatial scales enables attributing to neurons, microcircuits, and 
networks the ability to undergo changes without loss of self-identity. 

5. Discussion 

The crucial point for any system, at any scale, is that its boundaries 
are dictated by conditional dependencies that depend upon certain 
states. By role, we mean the way in which systemic states induce 
changes in other states. For example, active post-synaptic potentials 
induce changes in sensory presynaptic conductances, and active super-
ficial pyramidal cells induce changes in sensory deep pyramidal cells. 

These identities determine the form of segregation from, and interaction 
with, other parts of the brain. Given the centrality of interacting sub-
systems in neurobiology, it is vital to know what interacts with what at 
each level of analysis. It is by their flexibility that Markov blankets allow 
us to explain functional integration while still drawing statistical 
boundaries. Markov blankets demarcate boundaries of couplings from 
pairs of neurons, to cortical columns and brain-wide networks. The 
description of neural connectivity with Markovian formalisms allows 
zooming in and out, identifying different functional units at different 
scales. The persistence of Markov blanketed structures over time has a 
further interesting consequence. Such systems may be shown to behave 
according to a Bayesian mechanics (Friston, 2019a) in which internal 
state dynamics may (on average) be expressed as gradient flows on 
Bayesian model evidence – or a bound on this quantity known as vari-
ational free energy.8 

This has three practical consequences. The first is that it provides a 
conceptual endorsement of empirical approaches such as dynamic 
causal modelling (DCM), which depends upon characterisation of 
effective connectivity between functionally segregated neural circuits. 
In brief, DCM rests upon two components: biophysical modelling using 
differential equations and Bayesian statistical methods for model 
inversion (parameter estimation) and comparison. DCM has many 
practical applications in analysing brain data acquired under a range of 
paradigms. For example, it has been used in the study of attentional 
modulation during visual motion processing (Büchel and Friston, 1997; 
Friston and Price, 2003), in multisensory integration (Limanowski and 
Friston, 2019), and in studies of clinical conditions (Dietz, Friston et al. 
2014). Its role is to disambiguate between different hypotheses about 

Fig. 5. A Markov blanket of networks. The image in this figure takes the ideas from Fig. 5 one step further and shows how we could treat the connections between 
nodes in different networks as dependencies between states in a Markov blanketed system. Here, the networks themselves become the active, sensory, internal, and 
external states. This graphic is loosely structured around the kinds of networks identified using resting-state fMRI (Razi et al., 2015; Sharaev et al., 2016; Betzel et al., 
2014). However, the specific connections and anatomy shown here should not be taken too seriously. Here we treat the visual networks as internal states that 
reciprocally influence active states (dorsal and ventral attention networks). The default mode network then plays the role of the sensory states, which mediate the 
influence between the above and external (sensorimotor network) states. The assignment of these is equally valid if reversed, such that sensorimotor networks 
become internal and visual external. 

8 The free energy principle (FEP) states that self-organizing systems that have 
a Markov blanket will engage in behaviour that appears to minimize a varia-
tional free energy functional. 
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how experimental conditions (like attentional set) modulate neuronal 
connectivity. With non-linear dynamic causal models (Stephan et al., 
2008), non-linear DCM for fMRI enables the modelling of how activity in 
one population gains connection strengths, among others. 

The Markovian formalism provides a flexible calculus to accommo-
date co-existing and interacting elements, which play important roles for 
the optimal functioning of the system. It enables us to look at the or-
ganism by considering each and every level of complexity, without 
losing the unity of the simplest component. Neurobiology spans from the 
small scale of molecular biology to the social and environmental aspects 
of pathology; how to accommodate these different aspects in an inter- 
scale manner is the key challenge, and what we are proposing is a 
promising tool to meet this challenge. 

Once Markov blankets have been drawn, the neurons, cortical col-
umns and networks, they all appear to dynamically self-organise under a 
common principle: the free-energy principle (Friston, 2013). This says 
that any self-organising system will selectively interact with its envi-
ronment to minimise free energy, thereby resisting the natural tendency 
to disorder and entropy. This paper has sought to identify the Markov 
blankets in the brain. In future work, we hope to unpack these blankets 
in terms of active inferential processes, where post-synaptic ion channels 
may be seen as inferring pre-synaptic channels (Kiebel and Friston, 
2011), stellate cells and interneurons inferring their counterparts in 
other cortical columns, and groups of columns in a network inferring the 
internal states of other networks. 

The treatment of neurons as if they were active agents, drawing in-
ferences about their environments, has precedence in existing theoret-
ical work. For example, Kiebel and Friston (2011) demonstrated how 
dendrites can self-organise to minimise a variational free-energy bound 
on surprise of their presynaptic inputs, demonstrating that postsynaptic 
gain is itself optimised with respect to variational free-energy. This 
provides a principled account of neuronal self-organisation built upon 
the optimisation of elemental neuronal (dendritic) processing. This 
agenda has subsequently been developed in theoretical (Palacios et al., 
2019) and empirical (Isomura and Friston, 2018) studies of neuronal 
self-organisation. 

Anticipatory mechanisms are shared by all living systems. Indeed, for 
an organism to remain alive, it must regulate – and therefore anticipate – 
the structure of its exchanges with its embedding environment, which 
evinces a role for prediction. In some organisms, especially those animals 
that possess a nervous system, anticipatory mechanisms are evident in 
patterns of organised behaviour and are made particularly evident by 
whole-brain dynamics over longer timescales. This motivates a specific 
research agenda in computational neuroscience: to investigate how 
microcircuits organise (and why they reorganise) on the local level and 
smaller, micro scales, crucially, without losing sight of the embodied 
brain. 

It is important to recognise the limitations of this paper. While we 
have outlined how dynamic Markov blankets may be identified, we have 
done so with known equations of motion. When these are not known, as 
in most practical settings, the interactions between variables must be 
estimated. In addition, we have largely restricted our conceptual anal-
ysis to how we partition systems into fundamental (at a given scale) 
units. The next steps will be to unpack the consequences of this partition 
both analytically and through numerical simulation, with a view to the 
variational inferential perspective touched upon in the discussion. We 
have provided the foundation for this, as once we know the external and 
blanket states, we know what the internal states must be ‘inferring’. This 
offers a well-formed scientific question as to the form of the implicit 
model the internal states use to engage in active inference – i.e., how do 
external states give rise to sensory states? Part of this work will be to ask 
questions about how brain networks self-organise. Finally, we hope to 
apply these ideas to the study of neuropsychiatric conditions. Of special 
interest would be to develop experimental work on the span from 
neurobiology to social and environmental aspects of pathology, which is 
still missing a unifying link. 

Conclusion 

This paper introduced the characterisation of neural systems as 
depending upon a boundary – or Markov blanket. That is a mediation of 
the interaction between what is inside and outside of a system. This 
treatment was illustrated using the canonical micro-circuitry used in 
empirical studies of effective connectivity, to directly connect this 
analysis to models used in neuropsychiatric and computational psychi-
atry research (Frank et al., 2016; Shaw et al., 2020). The key point is that 
brain function depends upon the cooperative dynamics of networks, 
regions, and neurons. To talk meaningfully about these units of 
self-organisation, we need a principled means of partitioning neuronal 
states into one unit or another. This partition is afforded by the de-
pendency and flow structure of a Markov blanket, whose statistical form 
is recapitulated across each level of analysis. This endorses the partition 
of neural systems at each of these stages (e.g., into neurons, regions, 
networks etc.), but also highlights the limitations of ’modular’ per-
spectives on brain function that only consider a single level of descrip-
tion. In short, the level of analysis we choose to adopt defines a Markov 
blanket that operationally defines the appropriate functional units we 
need to consider. In all cases, these can be broken down into four classes 
of variable: active, sensory, internal, or external. In this light, the physics 
of the mind is consistent with the "enactive" view (Hipólito, 2018), 
deriving cognition from an interplay between external conditions and 
self-organisation in the nervous system. 
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Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.N., Sporns, O., 2014. Changes in structural 
and functional connectivity among resting-state networks across the human lifespan. 
Neuroimage 102, 345–357. 

Bilek, E., Zeidman, P., Kirsch, P., Tost, H., Meyer-Lindenberg, A., Friston, K., 2020. 
Directed Coupling in Multi-Brain Networks Underlies Generalized Synchrony during 
Social Exchange. 

Bongers, S., Mooij, J.M., 2018. From random differential equations to structural causal 
models: the stochastic case. arXiv preprint arXiv:1803.08784.  

Brodmann, K., 2007. Brodmann’s: Localisation in the Cerebral Cortex. Springer Science 
& Business Media. 

Bruineberg, J., Dolega, K., Dewhurst, J., Baltieri, M., 2020. The Emperor’s New Markov 
Blankets. 

Büchel, C., Friston, K.J., 1997. Modulation of connectivity in visual pathways by 
attention: cortical interactions evaluated with structural equation modelling and 
fMRI. Cerebral cortex (New York, NY: 1991) 7 (8), 768–778. 

Chialvo, D.R., 2010. Emergent complex neural dynamics. Nat. Phys. 6 (10), 744–750. 
Clauset, A., Moore, C., Newman, M.E., 2008. Hierarchical structure and the prediction of 

missing links in networks. Nature 453 (7191), 98–101. 
Colombo, M., 2013. Moving forward (and beyond) the modularity debate: a network 

perspective. Philos. Sci. 80 (3), 356–377. 
Coltheart, M., 2011. Methods for modular modelling: additive factors and cognitive 

neuropsychology. Cogn. Neuropsychol. 28 (3-4), 224–240. 
Coombes, S., Byrne, A., 2019. Next-generation neural mass models. Nonlinear Dynamics 

in Computational Neuroscience. Springer, Cham, pp. 1–16. 
David, O., Friston, K.J., 2003. A neural mass model for MEG/EEG: coupling and neuronal 

dynamics. NeuroImage 20 (3), 1743–1755. 

I. Hipólito et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0005
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0010
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0010
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0010
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0015
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0015
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0020
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0020
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0025
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0025
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0025
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0030
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0030
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0030
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0035
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0035
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0040
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0040
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0045
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0045
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0050
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0050
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0050
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0055
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0060
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0060
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0065
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0065
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0070
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0070
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0080
http://refhub.elsevier.com/S0149-7634(21)00057-9/sbref0080


Neuroscience and Biobehavioral Reviews 125 (2021) 88–97

96

Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K., 2008. The dynamic 
brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 
4 (8). 

Dietz, M.J., Friston, K.J., Mattingley, J.B., Roepstorff, A., Garrido, M.I., 2014. Effective 
connectivity reveals right-hemisphere dominance in audiospatial perception: 
implications for models of spatial neglect. J. Neurosci. 34 (14), 5003–5011. 

Douglas, R.J., Martin, K.A., 1991. A functional microcircuit for cat visual cortex. 
J. Physiol. 440 (1), 735–769. 

FitzHugh, R., 1955. Mathematical models of threshold phenomena in the nerve 
membrane. Bull. Math. Biophys. 17 (4), 257–278. 

Fodor, J.A., 1983. The Modularity of Mind. MIT press. 
Frank, M., Barch, D.M., Kurth-Nelson, Z., O’Doherty, J.P., Denève, S., Durstewitz, D., 
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Glossary of Terms 

Canonical microcircuit: Distributed network of relatively simple elements that give rise to 
complexity of cognitive processing by virtue of (1) their extensive interaction with 
other elements; and (2) their own intrinsic rich circuits. Originally introduced by 
(Douglas and Martin 1991) as a functional motif of interconnected neuronal pop-
ulations that is considered to be replicated over the cortical sheet. 

Complex system: a system that is composed of many components which may interact with 
each other. Examples include Earth’s global climate, organisms the human brain, or 
living cells. Their behaviour is particularly difficult to model due to the dependencies 
and relationships between their parts and the system with the environment. 

Decentralised system: local interactions between components of a system establish order 
and coordination to achieve global goals without a central commanding influence. 
Interactions are formed and predicated on spatiotemporal patterns, which are created 
through the positive and negative feedback that interactions provide. 

Dynamic causal modelling: modelling treatment of neural dynamics as a non-linear dynamic 
system. Differential equations describe the interaction of neural populations, which 
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direct or indirectly give rise to functional neuroimaging data, particularly by 
parameterising directed influences or effective connectivity, usually estimated using 
Bayesian methods. 

Emergence: traits of a system that are not apparent from its components in isolation, but 
which result from the interactions, dependencies, or relationships they form when 
placed together in a system. These components are impossible to predict from the 
smaller entities that make up the system. 

Neural mass models: models of coarse-grained activity of large populations of neurons and 
synapses especially useful in understanding brain rhythms and synchronisation. 

Non-linearity: Non-linearity describes systems with high dependence on initial conditions, 
current state, and parameter values. The differential equations of non-linear 

dynamical systems are non-linear in the states (and parameters; in other words, they 
have high order terms beyond linear coupling. 

Relative entropy: mutual information, or the uncertainty about particular states minus the 
uncertainty, given the external states. In other words, the information gained about 
one set of states, given another. 

Self-entropy: entropy of particular states, i.e., of states that constitute a particle, namely 
autonomous and sensory states. Entropy is a measure of uncertainty, disorder or 
dispersion. 

Self-organisation: a process of spontaneous pattern formation across time scales – from 
microscopic cells to macroscopic organisms – that entails the emergence of stable 
systemic configurations that distinguish themselves from their environments. 
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