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Abstract 

 

Ranging is an essential and crucial task for radar systems. How to solve the range-detection 

problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution 

are the points of interest as well. 

Coherent and non-coherent techniques can be applied to achieve range estimation, and both of 

them have advantages and disadvantages. Coherent estimates offer higher precision but are more 

vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, 

while the non-coherent approaches are simpler but provide lower precision. With the purpose of 

mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed 

to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-

coherent estimate are now introduced into the coherent realm, and vice versa. 

This thesis describes two non-coherent ranging estimate techniques with novel algorithms to 

mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak 

detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform 

and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate 

is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier 

transform is implemented to attain a coarse estimation; an accurate process around the point of 

interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak 

of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and 

optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately 

implements the periodogram where only a narrow band spectrum is processed. Furthermore, the 

concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire 

better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of 

these two techniques from the perspective of statistical signal processing. 

Mathematical derivation, simulation modelling, theoretical analysis and experimental validation 

are conducted to assess technique performance. Further research will be pushed forward to algorithm 

optimisation and system development of a location system using non-coherent techniques and make 

a comparison to a coherent approach. 
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Impact Statement 

 

The capability of estimating the range of targets effectively and precisely is of significant importance 

to a radar system, as well as its post-processing chain. Majority of applications call on high-

performance range estimation with computational feasibility and efficiency. This thesis presents two 

non-coherent ranging estimate techniques with novel algorithms to enhance their precision of 

detection, while these two approaches are computationally practical and useful. Such techniques can 

be implemented to long-term surveillance and precise detection of ice shelves in Antarctica for the 

research of global climate change, automotive radar systems with features of small size and high 

performance for smart transportation, radar-communication integration with the development of the 

5th Generation communication networks, collaborative situational awareness, wearable sensing 

equipment, and Internet of the things. 
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1. Introduction 

1.1 Overview 

Range estimation is one of the fundamental and significant attributes of a radar system. After more 

than half a century’s development of radar technology and theory, there are numerous techniques 

and algorithms nowadays to resort to achieve range estimation according to the distinctive system 

structures and signal processing approaches. 

Coherent and non-coherent techniques are the two types of ubiquitous approaches among them 

to achieve the goal of range detection, and both have their advantages and disadvantages. The 

coherent estimate has benefits of improved precision, which may be several orders of magnitude 

better than the classic radar range resolution. Still, it can suffer from phase wrap errors, particularly 

in complex environments. In contrast to coherent technique, the non-coherent technique offers lower 

precision, perhaps an order of magnitude smaller than coherent, but does not suffer from phase wrap 

errors, so is more resilient to environmental effects such as multipath and clutter. 

As a representative of a widely used radar structure, FMCW radar offers a satisfactory solution to 

range detection. FMCW radar systems are considerably robust, and their power consumption is 

substantially small to operate on considerable harsh environments. Meanwhile, miscellaneous 

elegant processing techniques can be applied to attain stable and precise performance, especially in 

terms of range estimation. Furthermore, radar measurement reduces the influence of environmental 

factors such as smoke, dust and debris which might surround the target, compared with laser or other 

sensors. Because of various merits, FMCW radars have relatively broad employment and bright 

prospect in enormous applications nowadays, including but not limited to environment surveillance 

(i.e., ice shelf monitoring [1, 2, 3, 4] and snow avalanches measurements [5, 6]), displacement 

measurements [7, 8], vehicles detection in urban areas [9, 10], industrial control (for example, non-

contact measuring [11, 12]), indoor localisation and life detection [13] et al. Among these applications, 

an ice-penetrating FMCW radar system (ApRES) with phase-sensitive processing to ice shelf 

surveillance in the Antarctic [3] will be introduced in section 3.1. 

Given the considerable potential of non-coherent detection, two purpose-built estimate 

techniques (the object of this thesis) are under development to improve estimate precision. Kth-order 

Polynomial Interpolation (KPI) is inspired by the processing procedures of excellent Doppler 

estimation mentioned in [14] and [15]. A two-stage method for the excellent ranging estimate is 

applied to the DFT domain. An N-point DFT is implemented to attain a rough estimate. A delicate 
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process is undertaken around the location of interest given by the previous procedure, through 

refining the estimated parameters of the objects by polynomial interpolation. The technique of Most-

likelihood Chirp Z-transform (MLCZT) is inspired by the chirp Z transform [16, 17, 18], and the concept 

of most-likelihood estimator is presented to combine with CZT to acquire better ranging performance. 

Cramer-Rao lower bound (CRLB), which is the most effective unbiased variance of estimation 

algorithm as a benchmark for performance evaluation [19, 20, 21], is presented to assess the 

performance of these two techniques statistically. 

 

1.2 Aims and Target Applications 

The primary objective of the thesis is to develop two non-coherent ranging estimate techniques 

with novel algorithms for high-precision performance with computationally efficiency. At the same 

time, the initial inspiration stemmed from the research of accurate ice shelf monitoring with phase-

sensitive FMCW radar.  

Ice shelves in Antarctica are the unstable fringe and increment of the ice sheet. Long-term 

surveillance and precise detection are crucial to the prediction of sea-level rising and contribute to 

further research on global climate change. FMCW radar offers simple structure, decent detection 

performance, low power consumption and maintenance cost, and sufficient system reliability. Owing 

to these advantages, FMCW radar systems are particularly suitable to undertake such long-term 

surveillance task under the Antarctic environment. It is desired to develop a novel high-precision 

ranging technique with polynomial interpolation for ice shelf detection and monitoring, which 

provides millimetre-level performance on range estimation. 

Coherent and non-coherent approaches can be applied to range estimation. Coherent estimate 

offers higher precision but is more vulnerable to noise and clutter and phase wrap errors, particularly 

in a complex or harsh environment, while the non-coherent structure is more straightforward, more 

robust to environmental effects such as multipath and clutter but provides lower precision. Therefore, 

it is reasonable to investigate a few non-coherent ranging techniques with elegant solutions to 

mitigate the intrinsic drawbacks of non-coherent techniques, and eventually generate high precision 

range estimation.  

Furthermore, with the tide of technology innovation and information era, the capability of 

estimating the range of targets of interest effectively and precisely is of significance to a radar system, 

as well as its post-processing chain. Majority of applications call on high-performance range 

estimation with computational feasibility and efficiency. Meanwhile, it is not necessary to acquire the 
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range information as well the velocity or direction of the angle at the same time in specific applications; 

on the other hand, interdisciplinary techniques and solutions provide profound technological 

feasibility to current problems. 

For instance, automotive radar is going to be the fastest-growing research point of interest, and it 

will become to one of the most promising civilian applications of radar technology, beyond classical 

military usage. Radar systems with features of small size and high performance on vehicles provide 

the potential revolution of autonomous driving [22, 23, 24]. They are the crucial part in the 

autonomous sensing equipment due to the current renovation of radio frequency (RF) CMOS 

technology that gets access to advanced radar-on-chip integration and solution; its reduced cost 

provides the possibility to mass production on consumer-level [25, 26].   

Besides, with the development of the 5th Generation communication networks, the time delay of 

real-time cloud computing has been significantly reduced, less than one microsecond [27, 28]. 

However, it would not be sufficient with the absence of high spatial detection performance. The high-

performance ranging techniques will be widely used on massive MIMO systems and autonomous 

vehicles, for detection and obstacle avoidance [29, 30, 31]. 

High-performance ranging techniques and algorithms can also be implemented to distinctive 

realms of applications, such as wearable sensing equipment [32, 33], Internet of Things [34, 35], 

collaborative situational awareness [36, 37], and radar-communication integration [38, 39, 40]. 

Desired target applications can be divided into two distinctive perspectives, civil usages and 

military applications. There are broad applications for precise range detection in the civil field, 

especially in civil construction, i.e., underground and skyscraper constructions. Owning to the 

considerations of the safety, precise range detection can be applied to monitor the incline from 

buildings’ virtual middle axis via the wind or other turbulence/destabilisation. Other featured civil 

usages lie on the smart transportation and the Internet of Things. The high-precision ranging 

techniques can be also applied to military scenarios as well for sure. For examples, guided missile, 

automatic target recognition, collaborative situational awareness, active/passive radar early warning 

& surveillance networks, and battlefield information link. 
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1.3 Novel Contributions and Publications 

The primary contributions of this research are concluded to four perspectives: 

• Investigation of non-coherent and coherent discrete target range estimation techniques and 

making a comparison to each other for pros and cons under scenarios of distinctive 

environmental factors and various applications; 

• Development of a non-coherent ranging technique of peak detection by Kth-order Polynomial 

Interpolation (KPI). A two-stage approach for the excellent ranging estimate is applied to the 

DFT domain of both KPI and following MLCZT algorithms to achieve accurate interpolation and 

optimum precision. Mathematical derivation, simulation modelling, theoretical and 

experimental analysis are implemented to evaluate its performance; 

• Development of a non-coherent ranging technique of Most-likelihood Chirp Z-transform 

(MLCZT). The concept of most-likelihood estimator is introduced to combine with CZT to 

acquire better ranging performance. Mathematical derivation, simulation modelling and 

theoretical analysis are conducted to assess its representation; 

• Derivation and analysis of the mathematical expressions of the Cramer-Rao lower bound 

(CRLB) of Kth-order Polynomial Interpolation (KPI) and Most-Likelihood Chirp Z-transform 

(MLCZT) techniques. 

The plan of publication will also be described as follow. Two papers are intended to compose based 

on the research works.  

One paper concentrates on the polynomial interpolation technique and the paper is targeting at 

top tire journals, i.e., IET Radar, Sonar & Navigation, IEEE Transactions on Aerospace and Electronic 

Systems, and IEEE Transactions on Signal Processing.  

Another one focus on the most-likelihood chirp-Z transform technique and the paper is aiming to 

a conference paper, e.g., IET International Conference on Radar Systems and IEEE Radar Conference. 

 

1.4 Thesis Organisation 

This thesis is composed of eight chapters, firstly the introduction, including overview, inspiration 

and aims, novel contribution, and thesis structure. The second chapter discusses the relevant theory 

required for current research, consisting of radar theory (mainly focusing on Doppler radar and FMCW 

radar) and the range estimation theory, which initially a summary regarding range equations and then 
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range resolution, finishing off with descriptions about the maximum unambiguous range and range 

performance. A preview of basic radar signal processing is presented and then estimation theory of 

statistical signal processing. Several important concepts are introduced for the following discussion, 

i.e., PDF, MVU estimator and CRLB. 

Chapter 3 introduces several prevailing ranging techniques for high-precision performance. It 

begins with the process of I/Q detection of coherent ranging technique and introduces an ice-

penetrating FMCW radar (ApRES) with the phase-sensitive process. FMCW radar literature is analysed 

with how current systems are designed, and both advantages and disadvantages are discussed against 

non-coherent detection. Then non-coherent technique and an MTI system are presented, and the ROC 

curve is introduced to evaluate the performance of radar detectors. The rest of the chapter describes 

three mathematical transformation tools that will be used in the following chapters, namely, Fourier 

transform, Z transform, and Laplace transform. 

Chapter 4 presents two novel non-coherent ranging technique by Peak detection. A two-stage 

approach for the fine ranging estimate is applied to the DFT domain to achieve accurate interpolation 

and optimum precision. Method description is introduced, following with the algorithm realisation by 

KPI, which is one of the main works on the thesis. Polynomial interpolation is expounded, including 

the procedures of processing and the configuration of the parabolic, cubic and quartic functions. Then 

a general equation for 𝐾𝑡ℎ -order polynomial fit is derived and given eventually. Another non-

coherent ranging technique uses chirp Z transform. The basic concept of Z transform is introduced 

firstly, following with the algorithm realisation by MLCZT. The CZT accurately implements the 

periodogram, and only a narrow band spectrum is processed. The concept of most-likelihood 

estimator is introduced to combine with CZT to acquire better ranging performance. 

Mathematical expressions of CRLB of KPI and MLCZT algorithms are derived in chapter 5. It contains 

the majority of mathematical proofing and derivation of all parts of the thesis. The vector form of CRLB 

is firstly introduced, then the derivation of asymptotical CRLB under the distinctive circumstance and 

SNR regarding two techniques, respectively. A mathematical derivation is also presented to validate 

the most-likelihood method in the CZT at the end of this chapter. 

Chapter 6 analyses the results and data obtained by simulations, beginning with pre-processing the 

acquired raw time-domain data, then the processing results of polynomial interpolation and most-

likelihood chirp-Z transform technique as well. Relative drawbacks and improvements are discussed 

from several aspects under different conditions.  
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Experimental results and discussion are presented in chapter 7. Window functions are introduced 

to evaluate and analyse the performance of these techniques. Further results of polynomial 

interpolation are presented as well. At the rest part of the chapter, coherent and non-coherent 

ranging approaches are compared based on experimental data to summarise several advantages and 

disadvantages as conclusions for further research. 

The final chapter, chapter 8, concludes the thesis and proposes the plan of future work. It 

summarises the whole thesis and goes on to convey the next steps needed to be taken to improve the 

range accuracy of non-coherent estimation. Further research will be kept pushing forward to develop 

and trial a location system using non-coherent techniques, and a few thrilling points of interest with 

the tide of technological renovation, such as the application of deep learning in radars and digital radar 

structures. There are also several appendices after the conclusion, including parts of the Matlab codes 

from related works of the thesis. 
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2. Background Theory 

This chapter introduces the theoretical knowledge needed for the rest of the thesis. It describes the 

relevant radar theory tailored to the fundamentals of radar systems, such as substantial principles and 

elements of a basic radar system. Then Doppler radar is introduced as two sections, continuous wave 

(CW) and pulsed-Doppler radars. After that, FMCW radar systems are introduced, because they allow 

the measurement of range whereas Continuous Wave (CW) systems do not. FMCW systems also lead 

to the low initial and maintenance cost, and high reliability, compared with the pulsed-Doppler radars. 

Furthermore, system structure and other advantages of FMCW radars are discussed. The last part of 

this chapter describes the essential knowledge regarding range estimation, including the derivation of 

radar range equations, range resolution and unambiguity, which is related to the following contents 

in chapter 3. The majority of the theory introduced in this chapter refers to [41], [42], [43], [44], [45], 

[46], and [47]. 

 

2.1 Radar theory 

The majority applications of radar systems can be categorised to detection, tracking, and imaging. 

The essential but crucial task among them is the detection of a target and measuring its range towards 

the radar itself and the velocity as well. This requires distinguishing that the receiver signal at a given 

interval demonstrates the transmitted signals from the targets of interest with environmental and 

artificial noise.  

 

2.1.1 Essential Radar Functions and Elements 

Target detection is typically implemented via measuring the amplitude ( )tA  from the receiver 

chain ( t  refers to time) to a preset threshold ( )tH , which is one of the priorities in terms of a radar. 

Taking a most basic case as an example, for a discrete point target, the time needed to radiate a space 

R  and go back (travelling the distance R2  totally), can be presented to cR2 ; therefore, if 

( ) ( )tHtA   at a particular time delay   after the transmission of a pulse, the target is present at a 

range 

 
2

c
R =  (2.1) 
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After the indication of the presence of an object, it is therefore natural to detect its coordinates 

and velocity. Taking a monostatic radar as an example, it measures position in a spherical coordinate 

system. For analysing conveniently, we can presume that it locates at the phase center of its radar 

antenna, illustrated in Figure 2.1. In the frame of axes illustrated below, the look direction (boresight 

direction) of the antenna, is towards to x+  axis.   is the elevation angle, while   is the azimuth 

angle. The range R  follows directly from a specific time interval between transceivers as mentioned. 

The angles of Azimuth   and elevation   depend on the antenna orientation because the object 

should be generally located within the main beam of the antenna to be detected. In general, velocity 

is estimated by detecting the Doppler shift of the received signal from the object. Although Doppler 

shift merely distinguishes the radial velocity component, various techniques of positioning and 

determination of radial velocity are applied to attain the object’s coordinates in all three dimensions. 

 

Figure 2.1 Spherical coordinate system for radar measurement 

 

Meanwhile, radar systems have prevailing applications of imaging with two-dimensional form. Civil 

information and even military intelligence can be extracted from those images, such as geographical 

mapping, mining detection, avalanche warning, surveillance assignment, and so forth. Radar imaging 

is not the subject of this thesis, it is, therefore, unnecessary to go into details.   

The performance of radar can be evaluated by considerable figures of merit, according to the 

functions and applications. In terms of the estimation of performance, the primary indices are the 
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probability of detection PD  and the probability of false alarm FP . When the rest of the system 

parameters are fixed, the higher DP  is, the higher FP  follows. The practical trade-off is therefore 

established through the signal and interference characteristics, for instance, the signal-to-interference 

ratio (SIR). If several objects of interest occur in the detection range of the radar system, extra 

considerations of resolution and side lobes originate from evaluating the related performance of such 

detection. The issues as side lobes and resolution in range depend on the transmitting waveform, 

while others in angle depend on the antenna pattern. 

Figure 2.2 is the illustration of a primary pulse-monostatic radar. The desired waveform of the pulse 

signal is produced through the waveform generator, and this waveform is modulated via a transmitter 

to the required radio frequency (RF), and then augments the signal to a specific extent. The outcome 

of the transmitter is sent to the antenna via a transmit/receive switch. The signal received by the 

antenna flows again through the T/R switch and gets to the receiver chain. A receiver is typically super-

heterodyne form, with a low-noise RF amplifier as its first stage. Several modules may be required to 

modulate the received signal to intermediate frequencies (IF) and baseband. Modulation is conducted 

with a local oscillator (LO) and a mixer. Signal processors are the following destination for these 

baseband signals. Numerous functions like pulse compression, matched filtering, and error 

compensation, are implemented in here. According to different applications, the output of the signal 

processor may have varied forms. For instance, an imaging radar may generate multi-dimensional 

images while a tracking radar will produce a series of estimations indicating to the range and angle 

coordinates. Eventually, the processor result is routed to the module of display or even further 

processors for signal data. 
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Figure 2.2 An illustration of a pulsed monostatic radar [41] 

 

The configuration of Figure 2.2 is not ubiquitous. For instance, numerous systems process signals 

at intermediate frequencies, not baseband (i.e., Doppler filtering). Another distinction may lay on the 

node where the signal is digitised in radar. For instance, previous radars were all typically analogue, 

and many current radar systems do not convert the signal into digital form until baseband. What is to 

say that any processing undertook at intermediate frequencies must be done with analogue 

techniques. Nowadays, radar systems digitise the signal at an intermediate frequencies zone (e.g., 

several hundred kilohertz), and then send to the A/D converter and implement the digital process at 

intermediate frequencies. 

 

2.1.2 Doppler Radar 

The term Doppler radar refers to a radar that can detect the Doppler frequency in comparison to 

the transmitted and received signal [49]. The shift in frequency relates to the radial component of the 

target motion is referred to as the Doppler frequency. Doppler radars are used most often to 

discriminate between the return from the desired target, usually moving, and that from undesired 

objects generally ground clutter, usually not moving [50, 51]. 
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Figure 2.3 depicts the different types of Doppler radar. The optimum choice is dependent on the 

operational requirements of the specific radar system. Considerable radars are required to perform 

over a sufficiently broad range of circumstances; therefore, no single type is universally acceptable. 

 

Figure 2.3 Types of Doppler radar 

 

Continuous wave (CW) radars, as the name itself implies, transmit and receive a continuous 

waveform. Figure 2.4 demonstrates a simplified block diagram, where 𝑓𝐷 is the Doppler shift for 

moving objects (the logo of UCL is used here presenting as a still target). In high-power CW radar 

system, separate transmit and receive antennas, which have adequate isolation between them, are 

required to prevent receiver desensitisation. 

 

Figure 2.4 A simplified illustration of CW radar 
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CW radar can be analysed as a pulse radar, illustrated in Fig. 2.5, by adding a pulse modulator, as 

well as a power amplifier. A few numbers of the CW oscillator transmit pulses to the receiver directly, 

and it operates just like a coherent beacon to estimate the shift of Doppler frequency. ‘Coherent’ 

indicates that the phase of the transmitted signal is implemented to a reference or benchmark, which 

is the distinctive characteristic of coherent pulse-Doppler radar and applied to the following 

processing. 

 

Figure 2.5 A simplified illustration of a pulse-Doppler radar 

 

Table 2.1 describes the three waveforms used in pulsed Doppler radar. Each of the waveforms 

possesses significant differences in performance. Numerous modern radars are ‘multimode’; that is, 

they can operate using two or more of the waveforms shown below. 

 

Table 2.1 Distinctive modes of pulsed Doppler radars 

Mode Range Velocity 

Low-PRF Unambiguous Usually ambiguous 

Medium-PRF Ambiguous Ambiguous 

High-PRF Highly ambiguous Unambiguous 
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Low-PRF Radars 

Low-PRF radars are generally designed to detect the range unambiguously, operating on a 

substantially low pulse repetition frequency (PRF). The transmitted pulse propagates towards and 

from the maximum range during the inter-pulse interval, before transmitting the next pulse. The 

unambiguous range 𝑅𝑢 can be presented to  

 
PRF

c
R

2
u =  (2.2) 

where 𝑐 is the speed of the light. 

High-PRF Radars 

High-PRF radars are typically applied to unambiguously estimate velocities of the object, with a PRF 

sufficiently high. The maximum Doppler shift that can be unambiguously distinguished can be 

expressed as 

 𝑓𝑑𝑚𝑎𝑥 =
𝑃𝑅𝐹

2
=
2 f uV

𝑐
 (2.3) 

in which f  is the transmitter frequency, and uV  is the total closing velocity. 

Medium-PRF Radars 

Medium-PRF radars are defined as radars with a PRF that produces ambiguous in range, as well as 

in Doppler. Medium-PRF seems to gather the worst features of both high and low-PRF radars. 

However, medium-PRF is usually the best option of the waveform for airborne radar. The equation for 

unambiguous range uR  and unambiguous velocity uV  are both functions of the PRF. Either of them 

is, therefore, cannot be independently chosen.  

Doppler and Range Ambiguities 

Doppler shift lies on the frequency between the transmitted radio frequency (RF) carrier and the 

echoes reflected from moving objects [51]. Consider a target at a range 𝑅. The round-trip distance is 

2𝑅, and the total phase distinction among the transmitted and received wave is presented as  

 







−=




r2
2  (2.4) 

where the negative sign indicates a phase delay. Using the definition of frequency, 
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 







=

dt

d
f



2

1
 (2.5) 

The change in frequency (i.e., the Doppler shift), seen at the radar, resulting from a target with 

changing range, is given by 

 


v

dt

dR
f d

22
=








−=  (2.6) 

Equation (2.6) shows that any magnitude of object speed is capable of estimating. However, based 

on the Nyquist criterion, the minimum sampling frequency required to reconstruct precisely the 

frequency component of a signal is equivalent to twice the signal bandwidth. In terms of pulsed radar, 

the sampling frequency is the pulse repetition frequency (PRF). In contrast, a CW radar is subject to 

the same sampling consideration with sampling and using digital spectrum analysis. The radar that 

extracts two samples each pulse repetition interval (PRI) samples twice rate as the PRF and presents 

an unambiguous frequency interval of PRF (I.E., 𝐼 and 𝑄 channel, which will be introduced in details 

at section 3.1.1). 

Equation (2.4) suggests the total phase delay among the transmitted and received waveforms. The 

phase change between pulses (samples) is 

 






 
=




R2
2  (2.7) 

where Δ𝑅 is the range change between pulses. 

If the phase variation between pulses is no more than 2𝜋 , the Doppler frequency can be 

unambiguously detected. If the phase variation is equivalent to 2𝜋, the Doppler frequency is worth 

to the PRF. A shift of 2𝜋 obviously will not be discerned among a shift of any integral multiple of 2𝜋 

(including zero). The speed that generates the Doppler shift to be an integral multiple of 2𝜋 has been 

historically called blind speeds [52]. And if the phase variation is larger than 2𝜋, the targets will 

generally be recognised, but the estimated Doppler shift will not appropriately correspond to the 

target speed. The received Doppler frequency will be faulty by an integral multiple of the PRF. Multiple 

PRFs are used to block the effect of blind speeds and to distinguish ambiguous target speed detections 

[53, 54]. 

The Doppler shift observed by a pulsed radar is more accurately given by modifying the equation 

(2.6) to read 
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 ( )PRF
v

fd mod
2


  (2.8) 

where ‘mod’ is an abbreviation of modulo, presenting the remainder after diving one number by 

another. 

Besides, for a pulsed-Doppler radar, when the same antenna is applied to high-power transmitting 

and receiving, the radar receiver must be turned off during transmission. The receiver off time must 

be long enough for the transmitter energy to decay to levels that do not harm the receiver and is, 

therefore, longer than the 3-dB transmitter pulse width. The result is a blind range which can be 

substantial in radars that use pulse compression. 

Targets at ranges more significant than the unambiguous range uR  and not at a blind range may 

be detected. The observed apparent range aR  will be faulty by an integral multiple of uR  and is 

shown by 

 ( )ua R
c

R mod
2


  (2.9) 

where 𝜏 is the propagation time to the target. 

 

2.2 Frequency-modulated Continuous Wave Radar 

To achieve a relatively desired performance on “Low Probability of Intercept” (LPI), CW 

transmitters are implemented to replace the pulsed transmitters. CW radar systems utilise low 

continuous power (though working at 100% duty cycle) in terms of the high peak power of pulsed 

radars to achieve a similar performance of estimation and detection. However, because of the 

application of the unmodulated waveforms, CW radars cannot attain the range information from the 

echoes of objects. There is no reference “beacon” among the transmitted and echo signals to indicate 

the time delay as in a pulsed-Doppler radar. Specific sort of timing mark is required to a continuous 

wave carrier to fulfil the function of range estimation. This indicator distinguishes the time of return 

from the time of transmission—the more distinctive the indicator, the more precise the estimation of 

the transition interval. However, based on the Fourier transform, the sharper the benchmark, the 

broader will be the transmission spectrum. Therefore, a finite spectrum is required to transmit relative 

waveform to attain the range estimation. 
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The spectrum of a continuous wave transmission can be extended through the modulation of 

amplitude, frequency, and phase. Pulsed radars are examples of the amplitude modulation: the 

narrower the pulse, the more precise the estimation of range and the wider the transmitting spectrum. 

Frequency modulation is widely implemented to extend the spectrum of a CW system. The timing 

indicator is, therefore, the variational frequency. The conveying time of the electromagnetic wave is 

proportional to the variation in frequency among the received and transmitted signal. The more 

considerable the transmitted frequency variation in a given period, the more precise is the estimation 

of the time interval, and the larger will be the transmission spectrum. Consequently, radars applying 

this technique are named as FMCW radars and the waveform used here for signal processing is 

described as the “chirp” signal. 

 

2.2.1 System Summary 

Frequency modulation can be implemented in various forms and applications in radar systems, 

while linear modulation is the most versatile among them. Meanwhile, it also pretty matches with the 

FFT process to attain range estimation. Since the frequency of the transmitting signals is linearly varied 

over time, there is a certain distance among the radar and objects, and the reflected signal varies in 

frequency compared to the currently transmitted frequency. To extract the distance parameter of an 

objective, the difference in frequency, called beat frequency between the transmitting and the 

receiving signal is evaluated [57]. A simplified diagram of a typical FMCW system is demonstrated 

below. 

 

 

Figure 2.6 A simplified illustration of FMCW radar 
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An FMCW radar concludes a “chirp” signal generator, transceivers, mixers, spectrum analysis and 

signal processing sections, and display devices. The transmitted “chirp” signal of high frequency is 

generated by a voltage-controlled oscillator (VCO) or a direct digital synthesiser (DDS), which transmits 

to generated signal directly to the transmitting antenna (can be amplified for specific scenario of 

power). There are perhaps several low noise amplifiers (LNA) after the receiver antennas, before the 

signal flowing to the mixer. The spectrum analysis and signal processing sections contain a set of filters 

and amplifiers to accomplish compact post-process procedures, then leading to the results display of 

the target’s velocity, as well as range.  

An FMCW radar is generally applied to estimate the velocity and range of objectives simultaneously, 

which subjects to the FMCW ambiguity function for sure. Meanwhile, FMCW systems acquire 

considerably high accuracy on ranging, and they can detect slight ranges to the target (minimal 

measurable range compared to the transmission wavelength). Besides, signal processing of FMCW 

radars after mixing is implemented at an intermediate frequency limit, vastly simplifying the 

realisation of the post-process hardware. 

The range resolution of an FMCW radar individually relies on its frequency-sweeping bandwidth 

[58]. If the bandwidth increase, the practical range resolution drops and the maximum unambiguous 

range reduces as well. Meanwhile, the antennas bandwidth determines the angular resolution in 

detection within the allocated bandwidth. Furthermore, the product of frequency and phase 

evaluation can be integrated to attain the pre-set performance in the sub-millimetre range [59, 60]. 

After rough estimation via the frequency, a correction is achieved through the evaluated phase 

information unambiguously of half the wavelength [61]. The performance of an FMCW radar system 

can be assessed with sensitivity and range resolution, with consideration of critical contaminating 

effects. Sensitivity and range resolution are critical components of the SNR and signal-to-clutter ratio, 

which determine the overall radar system performance. 

 

2.2.2 Advantages 

As mentioned above, FMCW radar systems allow the measurement of range whereas continuous 

wave (CW) systems do not. For an FMCW radar, the transmitting frequency varies through the time, 

and the frequency of the echo signal from the object is attained. The beat frequency and the phase 

are individually proportional to the range of the object [62]. Objects information on both range and 

Doppler domains can be implemented through mixing the return signal with the transmitting signal. 



 2.2  Frequency-modulated Continuous Wave Radar 33 

 
  

The frequency modulation over a modulation bandwidth ∆𝐹  presents decent range resolution, 

which is crucial to target recognition among clutters. 

In a homodyne FMCW radar configuration, the LO signal is coupled from the transmit signal, which 

avoids the need for a separate oscillator. The resulting cost and volume savings make the homodyne 

FMCW radar structure attractive for the low-cost systems. FMCW radars operate at a much lower 

peak output power when compared to PD radar systems, due to the substantial processing gain. 

FMCW technique has the advantage of simple solid-state transmitters so that such systems operate 

on low initial cost, low maintenance costs, and high reliability as well. It permits a broad transmitting 

spectrum for multiply applications which grants decent range resolution without the auxiliary of 

processing very short pulses. The requirement of frequency modulation can be implemented 

conveniently than the modulation of short pulses. FMCW modulation is therefore desirable to 

applications demanding the minimal system consumption, because of giving a radar an extremely high 

time-bandwidth product and allowing a right combination of operating range and range resolution 

with just a simple way [63, 64]. In terms of low-power consideration, FMCW structure presents the 

most straightforward transceiver designs of any radar which can provide range estimation, despite 

the relative trade-off to fulfil functions as frequency analysis on the IF spectrum [65]. Meanwhile, 

considering the complexity of signal processing, FMCW systems implement the range estimation via 

the digitised intermediate frequency (IF) signals. It can be quickly processed with the fast Fourier 

transform (FFT).  

Moreover, from perspectives of LPI, the power spectrum of the FMCW signal is similarly 

rectangular within the bandwidth of modulation, which is difficult to be intercepted by non-

cooperative form. FMCW radars are therefore much harder to be detected by the electronic support 

measures (ESM) systems. On the other hand, the waveform of transmission in an FMCW radar is 

deterministic, the pattern of the received signals can be predicted due to the foreknowledge. It 

provides the resistance to jamming in that any signal which is not matched to the specific form that 

can be suppressed in the course of the process. Furthermore, FMCW radar measurement reduces the 

influence of environmental factors such as smoke, dust and debris which might surround the target, 

compared with optical sensors such as a camera or laser, and therefore have profound usage from 

industrial applications, civilian employment to even climate surveillance, for example, Antarctic ice 

shelf profile monitoring (see section 3.1.2). 
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2.3 Fundamentals of Range Estimation 

Ranging is an essential and crucial issue for the majority of radar systems. How to solve the range-

detection problem effectively and precisely is massively important, especially taking every factor into 

considerations, such as the power level of a received echo signal to the pertinent characteristics of 

radar systems, the antenna patterns, the wave-propagation medium, and the characteristics of the 

target. Moreover, high resolution and unambiguity of range estimation are the points of interest as 

well. 

 

2.3.1 Radar Range Equations 

As known, the radar equation for a point-target in free space is 

 
( ) 43

2

4 R

GGP
P rtt

r



=  (2.10) 

where𝑃𝑡  and 𝑃𝑟  are receiving and transmitting power respectively, 𝐺𝑡  and 𝐺𝑟  are the gain of 

transmitting and receiving antenna respectively, 𝜎 is the radar cross-section (RCS) of the object, 𝜆 

is the wavelength, and 𝑅 is the target range towards the radar itself in metres. 

The quantities on the equation’s right side either are standard parameters of a radar system or can 

be detected or otherwise evaluated. However, caution is necessary if the equation is used for 

obtaining engineering information because not all the parameters on the right side are mutually 

independent. It might be particularly thought that the equation states that 𝑃𝑟 is proportional to 𝜆2. 

Meanwhile, some of the other factors in the equation are implicitly wavelength-dependent. 

Wavelength dependence also means frequency dependence since wavelength and frequency are 

related in free spare by the equation 

 
f

c
=  (2.11) 

where 𝑐 is the wave velocity. 

When it does not meet the circumstances specified for free-space propagation, equation (2.3) can 

be re-written as 
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where 𝐹𝑡 is the pattern propagation factor of transmitting, and 𝐹𝑟 is the pattern propagation factor 

of receiving. 

This is the radar equation without the free-space restriction. When the identical antenna is applied 

to transmit and receive, thus 𝐺𝑡 = 𝐺𝑟 and 𝐹𝑡 = 𝐹𝑟, and the equation can be written 
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This is the form in which it was initially written by [41]. It includes the free-space situation as a 

particular case. For that case, the pattern propagation factor becomes simply the magnitude of the 

pattern factor |𝑓(𝜃, 𝜙)|. And additionally, when the target is in the beam maxima, the pattern factors 

become unity. 

In principle, equation (2.12) is an entirely general transmission equation for monostatic radar and 

point targets. However, in engineering usage, the loss factor 𝐿 of a two-port (i.e., a transmission line) 

and various losses may need to be considered, such as atmospheric loss. It is the reciprocal of the 

definition of the gain of a two-port. For a lossy two-port, 𝐿 ≥ 1. Therefore, if the loss factor 𝐿𝑡 is 

placed in the denominator of the transmission equation, the quantity 𝑃𝑡 can be defined as the power 

output of the transmitter. Considering a variety of loss factors together into a system loss factor 𝐿, 

the radar transmission equation now is 
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Monostatic Radar Range Equation 

According to the transmission equation provided above, a rudimentary radar range equation is 

presented through merely re-arranging the transmission expression as shown 

 
( )

41

3

222

4








=

LP

FFGGP
R

r

rtrtt




 (2.15) 

This is not an equation of maximum range; it merely demonstrates that if the quantities on the 

right side have specified values, the target range will be given by the equation above theoretically, 

while this is not how the range is measured in practical applications. 

The radar has a maximum useable range. As the range increases, a point is ultimately reached at 

which 𝑃𝑟 decreases to the value of 𝑃𝑟(𝑚𝑖𝑛), and does not, therefore, rise above this value. Therefore, 

the equation can be adjusted as below 



 2.3  Fundamentals of Range Estimation 36 

 
  

 
( ) ( )

41

min

3

222

max
4 













=

LP

FFGGP
R

r

rtrtt




 (2.16) 

with the understanding that in some situation 𝑃𝑟 may have the values 𝑃𝑟(𝑚𝑖𝑛) at more than one 

range, in which case 𝑅𝑚𝑎𝑥 is the largest range under such circumstances. 

Expanded Radar Range Equation 

The significant factor in analysing the signal detection is not the power of signal itself, but the 

signal-to-noise power ratio, designated 𝑆/𝑁  (sometimes called ‘SNR’ as well). The minimum-

detectable signal power 𝑃𝑟(𝑚𝑖𝑛)  is expressed by the minimum-detectable signal-to-noise power 

ratio (𝑆/𝑁)𝑚𝑖𝑛 

 ( ) ( ) nr PNSP
minmin =  (2.17) 

where 𝑃𝑛 denotes the power level of the noise in the receiver circuits. 𝑃𝑛 can be written as 

 nsnn BkTBNP == 0  (2.18) 

where 𝑁0 is the noise power per unit bandwidth, 𝐵𝑛 is the ‘noise bandwidth’ of the receiver, 𝑘 is 

the Boltzmann’s constant (1.38 × 10−23𝑊 ∙ 𝑠/𝑑𝑒𝑔𝑟𝑒𝑒), and 𝑇𝑠 is the system noise temperature in 

Kelvins (K). Therefore, based on the equation (2.19) 

 ( ) ( ) nsr BkTNSP
minmin =  (2.19) 

This expression can be substituted in equation (2.8) to obtain a new equation as 
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Subject to the qualification that (𝑆/𝑁)𝑚𝑖𝑛  here means the value applicable at the antenna 

terminals. 

General Radar Equation 

Although the equation (2.20) can be considered to a general equation in the sense that it is not 

limited to pulse waveforms, it is not recommended for general use because (𝑆/𝑁)𝑚𝑖𝑛 does not refer 

to the SNR at the detector terminals. Therefore, the results of detection theory cannot be directly 

applied to it unless the receiver filter is matched to the transmitted waveform. Admittedly, the 

mismatch is seldom severe in well-designed radars. Nevertheless, a potentially significant error can 



 2.3  Fundamentals of Range Estimation 37 

 
  

occur when equation (2.20) is used if (𝑆/𝑁)𝑚𝑖𝑛  is interpreted to be required the value at the 

detector input and if the filter is mismatched. 

However, an appropriate general equation can be obtained if the product 𝑃𝑡𝜏 in equation (2.20) 

is replaced by the transmitted waveform energy 𝐸𝑡. Then, with suitable definitions of 𝐸𝑡 and 𝐷0, 

the result is a genuinely general radar equation 
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If a repetitive or quasi-repetitive waveform is transmitted, whether it is periodic pulses, pulse 

bursts, or any other waveform, then the appropriate matched filter is defined concerning some finite 

time interval of this transmitted waveform. For simple pulse radars, this time interval is usually the 

duration of a single pulse, and “matching” then consists simply of designing the pre-detection filter to 

have the appropriate bandwidth and pass-band shape. For pulse-compression radars, a feedback 

integrator may be implemented to decrease the SNR, at the cost of requiring a longer time of 

measurement for the detection process [66]. 

In these terms, therefore, it is seen that equation (2.21) can be regarded as a general radar 

equation, with 𝐸𝑡 defined as the transmitted energy for which the receiver filter is matched (at least 

approximately). If the matching is not perfect, then 𝐶𝑏 must be assigned a value greater than unity 

to account for this equation. 

 

2.3.2 Range Resolution and Maximum Unambiguous Range 

Fourier processing provides a means for radars to evaluate the frequency components of the 

received signal, including stationary and moving targets. In a pulsed-Doppler application, the radial 

component of velocity of the moving targets is determined by measuring the Doppler frequency, 

which an ideal response from a target has a specific Doppler frequency shift. High-resolution range 

estimation of radar targets can be achieved through elegant processing of the received signal. 

Numerous techniques are applied to attain a high-resolution performance of the target in the range 

dimension, which all requires adequate bandwidth for resolution consideration [67]. 

In the simplest case of a pulse transmitted without phase or frequency coding, the range resolution 

can be determined by 
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where 𝑅𝑟 is the range resolution in metres, and 𝜏 is the pulse length in seconds. 

In the more general case, the processed pulse width will be asymptotically the reciprocal of the 

signal bandwidth, and the related range resolution will be  
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(2.23) 

where 𝐵 is the bandwidth in Hertz [68]. 

As mentioned in section 2.2.1, the range measurement of an FMCW radar is achieved by 

differentiating the frequency of the received signal to a reference one (transmitted signal itself). 

Meanwhile, the transmission waveform 𝑇  is considerably more significant than the demanding 

receiving time for the pre-set interval of ranging. The range 𝑅 from the object to radar is therefore 

written as 

 𝑅 =
𝑐|∆𝑓|

2
𝛿(𝑓)
𝛿(𝑡)

 (2.24) 

where 𝑐 is the light speed, ∆𝑓 is the frequency difference (Hz), and 𝛿(𝑓) 𝛿(𝑡)⁄  is the frequency 

shift per unit of the time. 

If the frequency variation is linear throughout the time, the range estimation can be calculated by 

a simple frequency distinction, which means the frequency variation ∆𝑓 is precisely proportional to 

the range 𝑅. In a static scenario, which doesn’t have the Doppler effects, the consequences are at a 

linearly expanding frequency equivalent to the frequency reduction, because only the absolute 

amount of the frequency variation can be detected. 

If the target has a radial speed to the radar, the received signal acquires a Doppler frequency 𝑓𝐷. 

Then the radar echo contains not only the difference frequency ∆𝑓  to the previous frequency 

(caused by the runtime), but an additionally Doppler frequency 𝑓𝐷. The estimation depends on the 

motion direction of the objective and the direction of the linear modulation as well. It is only the 

variation among the varied frequencies as the carrier of the range information, and that of the Doppler 

frequency as a carrier of the velocity information. For instance, if the detection is implemented within 

a falling edge of the transmission waveform, the Doppler frequency 𝑓𝐷 is deducted by the variation 

of runtime frequency; while the received signal frequency is deducted by the Doppler frequency 𝑓𝐷 

if the object is going away from the radar. 
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In terms of an FMCW radar, the maximum non-ambiguous range is determined by the duration of 

the frequency increase. The maximum frequency shift and steepness of the edge can be designed 

through the capabilities of different circuits. It is known that the bandwidth of the transmitted signal 

is decisive to the range resolution of FMCW radar. Nevertheless, the computational feasibility of the 

Fast Fourier Transformation (FFT) is restricted in time.  

 

2.4 Previews of Basic Radar Signal Processing 

After the introduction of the essential elements of typical pulsed and CW radar systems, a summary 

of signal processing implemented in the radar receiver chain is going to be presented. 

 

 

Figure 2.7 A typical flowchart of radar signal processing 
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Figure 2.7 demonstrates a procedure flowchart in a typical radar signal processor. Such processing 

techniques are not ubiquitous, nor is the series of techniques thoroughly. Additionally, where the 

signal is digitised in the processing chain differs from systems; it might take place as the latter 

approach before the outcome of clutter filtering. 

 

2.4.1 Radar Time Scales and Phenomenology  

Signal processing of radar systems occurs on time scales, and distinctive categories of techniques 

perform on considerably varied time scales. Process techniques can be referred to as fast time because 

the sample rate, determined by the instantaneous pulse bandwidth when applying to data from a 

signal pulse on the shortest time scale [71]. Typically, fast time techniques include digital I/Q signal 

formation [72], beamforming [73, 74], pulse compression [75, 76], matched filtering [77], sensitivity 

time control, and so forth. 

The sampling interval among pulses that is PRI is generally on the order of a few microseconds to 

tens of milliseconds, because of the much slower sampling rate in terms of single-pulse processing (in 

slow time). Representative techniques contain coherent and non-coherent integration, Doppler 

processing, synthetic aperture imaging, and so forth. 

A set of coherent pulses can generate a coherent processing interval (CPI) in applications as 

Doppler processing or synthetic aperture radar (SAR) imaging [78, 79, 80]. Many radar systems process 

data from multiple CPIs and therefore acts on even larger time scales. Techniques on this category 

comprise multiple-CPI ambiguity resolution [81], multi-look SAR imaging [82], and track filtering [83]. 

As we know, the characteristics of the processing signals must be intercepted to depict an efficient 

signal processor. Corresponding characteristics contain frequency, signal power, ways of polarisation, 

the direction of arrival (DOA), variation over time, and randomness. The phenomenology of received 

signal relies on intrinsic traits of the physical objects affecting the radar echo, like physical size, 

coordination and velocity to the radar; besides, radar parameters need to take into consideration as 

well, such as its transmitted waveform or polarisation or antenna gain. 

The radar equation of range estimation introduced previously provides ways to estimate nominal 

signal power, while the received frequency can be estimated via the Doppler phenomenon. In the 

course of the signal processing, the complex variation in radar signal generates due to the complexity 

of the real world, leading to the implementation of random processing to model the signals, and to 

specific probability density functions. 
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2.4.2 Signal Conditioning and Interference Suppression  

The function of signal conditioning operations is to enhance the signal-to-interference ratio (SIR) 

of the data before detection, parameters estimation, and imaging, which means to filter the radar 

data as much as possible. Processing techniques can be implemented to such procedure include 

beamforming, pulse compression, Doppler processing, and so forth. 

Beamforming can be therefore applied if the antenna of radar systems is an array. Fixed 

beamforming utilises the outcomes of available phase centres to construct a pattern of directive gain. 

The high-gain main lobe and low side lobes selectively improve the echo strength from scatters in the 

antenna boresight direction while suppressing the clutter from scatters in other directions. After the 

integration of all relative channels through appropriate weighting, the main lobe of the beam can be 

pointed to distinctive boresight directions, and the trade-off among the sidelobe level and the main 

lobe width modifies by specific applications. 

In terms of the concept of adaptive beamforming, it is feasible to recognise the jamming and clutter 

presented to the antenna pattern side lobes and to design a set of weights to integrate the channels. 

Meanwhile, more efficient jammer suppression can be therefore achieved, and the performance of 

clutter suppression can also be enhanced via the technique. 

Pulse compression can be analysed as a distinctive scenario of the matched filtering. Numerous 

designs of radar systems endeavour to achieve both high sensitivity and high range resolution, which 

means the capability to distinguish close targets spatially. In general, the ability of target detection 

enhances as the transmitted waveform’s instantaneous bandwidth increases. The transmitting pulse 

is required to extend its length if the radar transmits a constant-frequency rectangular envelop pulse. 

Nevertheless, prolonging the pulse reduces its instantaneous bandwidth, and jeopardise the range 

resolution. Therefore, trade-off and compromise will need to make between the sensitivity and range 

resolution, based on distinctive applications. 

Pulse compression gives a practical method to solve this dilemma. With the procedure of 

decoupling the waveform bandwidth from its duration, it specifies both factors independently. The 

linear frequency modulated (LFM, or so-called chirp) waveform is one of the most practical 

alternatives.  
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 Figure 2.8 Real part of an LFM signal 

 

Figure 2.9 Imaginary part of an LFM signal 

 

Figure 2.10 Spectrum of an LFM signal 

 

    Figure 2.11 Spectrum of an LFM signal 

(close look)

 

Figure 2.8 and 2.9 illustrate a sample of an LFM signal; The LFM waveform has a duration of 10𝜇𝑠, 

a bandwidth of 200𝑀𝐻𝑧. The real part of the signal is shown in the Figure 2.8 and the imaginary part 

is shown in the Figure 2.9. Furthermore, the spectrum of the LFM signal is illustrated in the Figure 2.10 

and 2.11, which there is a close look in the Figure 2.11 within the fluctuating section of the previous 

figure. 

The matched filter is to maximise the SNR at its result. The impulse response of the filter is a replica 

of the modulation function of the transmitted waveform. It has been reversed in time and conjugated 

and therefore, the impulse response is matched to the specific modulation of the transmitted 

waveform. Pulse compression designs desirable waveforms and corresponding matched filters as well 
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so that the result of the matched filter responds to the high transmitted energy of a long pulse. Such 

width provides the ability of the waveform to distinguish objects in range since it is therefore called 

the range resolution. 

The concepts of Doppler processing and clutter filtering are highly associated. They both 

concentrate on upgrading the detectability of moving targets under suppressing interference clutters, 

based on distinctions in Doppler shift of the received signals from the clutters and the objects. Two 

techniques distinguish each other from the domain of implementation (time or frequency domain). 

Clutter filtering is generally applied to moving target indication (MTI), which simply pulse-to-pulse 

high-pass filters the received signal at the given range to suppress constant components (referring to 

the non-moving clutters). Simple and low-order digital filters are implemented to the sampling signals. 

In terms of the Doppler processing, it refers to the implementations of the fast Fourier transform 

(FFT) or a few spectral estimation techniques. Doppler processing is designed to explicitly compute 

the spectrum of the received signals across multiple pulses. Because of different Doppler shifts of 

discrete objects, energy from moving objects locates to distinctive zone of the spectrum from the 

clutter energy, and it permits the feasibility of detection and recognition of the targets out of the 

clutter. Doppler processing attains various information from the radar signals. While the cost requires 

more radar pulses, leading to the increased consumption of power and timeline, and higher processing 

complexity as well. 

 

2.4.3 Detecting, Imaging, and Postprocessing  

Radars are also implemented to generate high-resolution images. Comparing of optical and SAR 

images, explicit comparison discloses numerous similarities and crucial distinctions as well between 

the scene generated by radars and visible wavelengths equipment. The photograph took by visible 

light are a more natural way to interpret and analyse, since the phenomenology is similar to the human 

visual system. Though parts of radars cannot achieve the resolution of photographic systems, there 

are still a few distinct advantages. Radar systems can implement imaging through clouds and 

inclement weather. On the other hand, radar can operate all day, while photography and other optical 

sensors would fail on environmental conditions. However, radar imaging at typical ranges and 

wavelengths would not be affected in any noticeable way. 

To obtain high-resolution imagery, radar systems apply an integration of high-bandwidth 

waveforms to receive a desirable resolution in the rage domain and apply the synthetic aperture radar 

(SAR) technique to get decent resolution in the cross-range domain. The high performance of range 
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resolution is attained through pulse compression, which maintains adequate signal energy, i.e., linear 

frequency modulation. A long pulse swept over a large enough bandwidth B can present decent range 

resolution via a matched filter. According to varied applications, modern imaging radars typically have 

good range resolution. 

For a traditional non-imaging radar (real aperture in terms of SAR), cross-range resolution depends 

on the width of the antenna beam at the range of interest. Realistic antenna beam-widths for narrow-

beam antennas are worse than typical range resolutions and too coarse to generate realistic images. 

Such intrinsic drawback of cross-range resolution can be figured out by SAR techniques. 

In terms of synthetic aperture technique, it indicates that synthesising the effect of a huge antenna 

by mobilising the actual physical radar antenna in the corresponding imaging zone. Signals are 

transmitted at each pre-set location, and results are collected to process altogether in a specific order. 

A SAR system generates the effect of a large antenna extending over the distance flown while 

collecting data. The substantially large size of antenna aperture presents a narrow-focused antenna 

beam with high efficiency, leading to the feasibility of high performance of cross-range resolution. 

Furthermore, the capability of recognition of multi targets is another fundamental function to a 

radar signal processor. Estimation information regarding the presence of targets includes in the 

echoes of the radar pulses, which are made up of a superposition of receiver noise, undesired clutter, 

and possible jamming. The signal processor is required to analyse the received signal and distinguish 

the useful information from others. 

The complexity of radar signals calls to construct corresponding statistical models, and the 

estimation of targets among interference signals is a typical case in statistical signal processing theory. 

Optimal estimation can be attained by the threshold detection in numerous scenarios. The magnitude 

of the transmitted signal makes comparisons to a pre-set threshold after necessary processing in this 

approach. If the signal magnitude is below the threshold, judgment lies on the interference signals 

only; while it is above the threshold, a detection is declared since it contains the target echo with 

interference. Essentially, the detector makes judgment if the energy in specific signal samples is too 

large to likely being only interference. 

As the outcome of a process of statistical estimation, the judgments of threshold detection have a 

finite probability of being wrong. Such errors (false alarm) are minimised if noise spikes present 

distinctively among the background interference if the SIR is as large as possible. Under such 

circumstances, the threshold can be set correspondingly high, so that few false alarms will be triggered 

while the majority of objects can still be detected. The matched filter maximises the SIR and presents 
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the optimal performance of threshold estimation. Moreover, the achievable SIR is proportionally 

expanding to the transmitted pulse energy, which stimulates to apply longer pulses for higher energy 

on the objects. 

The methodology of threshold estimation can be implemented to distinctive signal processing 

sections. For instance, in an application of a fast-time signal trace, it can be presented to a signal with 

detections at different Doppler frequencies. Numerous detectors designed for threshold estimation 

operate on the distinctive principles of the complex signal samples. The threshold is determined by 

the foreknowledge of the interference statistics, to restrict the possibility of false alarms to an 

acceptable percentage. Nevertheless, in practical applications, the statistical parameters of 

interference are rarely precisely known, leading to precomputing a reasonable threshold. The 

threshold is generally estimated by applying interference statistics from the data itself, which is the 

so-called constant-false-alarm-rate (CFAR) detection. 

Last but not least, radar systems implement numerous post-processing techniques after the 

procedure of detection. Often these are referred to as data processing rather than signal processing 

operations. Tracking is an essential component of many systems. Once detected, the signal processor 

may also estimate the range of the object, which relies on the time delay after pulse transmission 

where the threshold crossing comes, the angle of the object corresponding to the antenna boresight 

direction, and its radial velocity using Doppler detections. The angle measurements are obtained using 

angle tracking techniques, especially mono-pulse tracking. These signal processor measurements 

provide a trackable position of the target location at one instant in time. Track filtering presents a 

comprehensive process of integrating various measurements to calculate an exhaustive motion 

trajectory of the object over time. The individual position detections will occur errors because of 

interference, and there may also be multiple objects with crossing or closely spaced trajectories. 

Consequently, track filtering is required to tackle the situation of decision-making regarding detections 

corresponding to which objects being traced and correctly calculate nearby and crossing trajectories. 

Different techniques and algorithms for optimal estimation have been researched to implement track 

filtering effectively. 

 

2.5 Estimation Theory of Statistical Signal Processing 

Several estimation theories and theorem based on statistical signal processing is going to be 

introduced in this section. 
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2.5.1 Probability Density Function 

The signal model with random noise can be expressed as 

 y(𝑥) = 𝑎𝑘𝑥
𝑘 + 𝑎𝑘−1𝑥

𝑘−1 +⋯+ 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 + n[𝑥] (2.25) 

where 𝑥 = 0, 1,… , 𝐾 − 1. 

A reasonable model for the noise is that n[𝑥] is white Gaussian noise (WGN) or each of n[𝑥] has 

the PDF X(0, σ2) (Gaussian distribution with a mean of zero and a variance of σ2) and every single 

sample is independent to others. The parameters to be estimated are 𝑎2, 𝑎1, and 𝑎0. They can be 

integrated into a vector form as ε = [𝑎2 𝑎1 𝑎0]
𝑇. Letting y = [y(0) y(1)…  y(𝐾 − 1)]𝑇, the PDF is 

 

p(𝑦; 𝜀) =
1

(2𝜋𝜎2)
𝐾
2

𝑒𝑥𝑝 [−
1

2𝜎2
∑ (y(𝑥) − 𝑎𝑘𝑥

𝑘 − 𝑎𝑘−1𝑥
𝑘−1 −⋯

𝐾−1

𝑥=0

− 𝑎2𝑥
2 − 𝑎1𝑥 − 𝑎0)] 

(2.26) 

The assumption of WGN is justified by the need to formulate a mathematically tractable; therefore, 

closed-form estimators can be found. Meanwhile, it is reasonable unless there is strong evidence to 

the contrary, such as highly correlated noise. Theoretically, the performance of any estimator attained 

will be critically dependent on the PDFs. 

Estimation based on PDFs can be described as classical estimation because the parameters to be 

determined are presumed to be deterministic but unknown. In contrast, Bayesian estimation 

incorporates the prior knowledge of the parameters of interest. It is considered as a realization of the 

random variable 𝜀. The signal can be therefore presented through the joint PDF 

 p(𝑦; 𝜀) = p(𝑦|𝜀)p(𝜀) (2.27) 

where p(𝜀) is the prior PDF, briefing the knowledge related to 𝜀 before any signal is acquired, and 

p(𝑦|𝜀) is a conditional PDF, concluding the knowledge provided with the signal 𝑦 conditioned on 

knowing 𝜀. 

Once the PDF is specified, the question becomes one of determining an optimal function or 

estimator of the signal. Note that an estimator may depend on other parameters, but only if they are 

known. An estimator may be considered as a mapping that distributes value to 𝜀 for each realisation 

of 𝑦. The estimation of 𝜀 is the value of 𝜀 attained by a given realisation of 𝑦. This distinction is 

analogous to a random variable, which is a function defined on the sample space. 
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Figure 2.12 Probability Density Function (PDF) of Gaussian and Rayleigh models 

 

A specific estimator is closer to the true value only means that for the given realisation of the signal. 

To assess performance, we must do so statistically. One possibility would be to repeat the experiment 

that generated the signal and apply each estimate to every signals set. Then we could get the 

information which estimator produces a better estimate in a majority of the cases. 

The application of computer simulations for assessing estimation performance is never conclusive. 

Under promising circumstance may the practical performance be attained to the desired extent of 

precision. In contrast, under limited circumstance may erroneous results be obtained as errors in the 

simulation techniques or an insufficient number of experiments. 

Furthermore, there is always the trade-off among computational complexity and performance. In 

a general scenario, an estimator performing better also requires more computation. It is known that 

optimal estimators can sometimes be challenging to implement, which requires a multi-dimensional 

optimisation and integration. Under such circumstances, alternative estimators with suboptimal 

characteristic but computational feasibility may be preferred. For any specific application, we need to 

weigh up between the loss in performance of a suboptimal estimator and computational complexity. 

Generally, estimations aim to obtain an optimal estimator, and we resort to an approximately optimal 

estimator; if the former cannot be found or is not implementable, suboptimal one is, therefore, the 

new destination. 
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2.5.2 Minimum Variance Unbiased Estimation 

It is natural to investigate the one with the minimum variance among various estimators. The 

unbiased constraint is shown by example to be desirable form a practical viewpoint since the more 

fundamental error criterion; the minimum mean square error generally leads to unrealisable 

estimators, Minimum variance unbiased estimators do not exist in general, exist. When they do, varied 

approaches can be applied to ascertain them; these approaches are determined by the Cramer-Rao 

lower bound. If a minimum variance unbiased estimator does not exist or if both previous two 

methods do not work, a further restriction on the estimator, to being linear in the signal, leads to an 

easily implemented, but suboptimal, estimator. 

In terms of an unbiased estimator, it means that averagely the estimator will yield the true value 

of the unknown parameter. While the parameter value may, in general, be anywhere in the interval 

a < ε < b, unbiasedness demonstrates that whatever the true value of ε, the estimator will yield it 

on the average. An unbiased estimator can be presented in mathematically as 

 E(𝜀̂) = ε         a < ε < b (2.28) 

Generally, an unbiased estimator has a symmetric PDF centred about the true value of ε, although 

this is not necessary. The restriction that E(𝜀̂) = ε for all ε is an important one. Assuming 𝜀̂ = h(𝑥), 

where x = [x(0) x(1)…  x(𝐾 − 1)]𝑇, 

 E(𝜀̂) = ∫h(𝑥)p(𝑥; ε) dx = ε        for all ε (2.29) 

That an estimator is unbiased does not necessarily refer that it is a good estimator. It merely 

assures that on the average, it will attain the true value. On the other hand, biased estimators are 

ones that are characterised by a systematic error. A persistent bias will always lead to an unsatisfied 

estimator. For example, the unbiased property has a significant implication when several estimators 

are combined. It sometimes occurs that several estimates of the same parameter are available, i.e., 

{ε̂1, ε̂2, … , ε̂𝑛}. A feasible solution is to combine these estimates into a better one by averaging them 

to form 

 𝜀̂ =
1

𝑚
∑ ε̂𝑛

𝑚

𝑛=1
 (2.30) 

Letting these estimators are unbiased, with the same variance, and uncorrelated with others 

 E(𝜀̂) = ε (2.31) 

and 
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 var(𝜀̂) =
1

𝑚2
∑ var(ε̂𝑛)

𝑚

𝑛=1
=
var(ε̂1)

𝑚
 (2.32) 

so that as more estimates are averaged, the variance will decrease. Ultimately, as m → ∞, 𝜀̂ → ε. 

However, if the estimators are biased or E(ε̂𝑛) = ε + b(ε), then 

 E(𝜀̂) =
1

𝑚
∑ E(ε̂𝑛)

𝑚

𝑛=1
= ε + b(ε) (2.33) 

and no matter how many estimators are averaged, 𝜀̂ will not converge to the true value. 

 b(ε) = E(ε̂𝑛) − ε (2.34) 

is defined as the bias if the estimator. 

Minimum variance criterion 

It is needed to adopt several optimality criteria in the course of ascertaining optimal estimators. A 

typical formula is the mean square error (MSE), and it can be presented as  

 mse(𝜀̂) = 𝐸[(𝜀̂ − 𝜀)2] (2.35) 

The deviation of the estimator from the true value is determined by the average mean square. 

However, the application of this formula leads to unrealisable estimators, which cannot be individually 

presented as a function of the signal date. The MSE can be rewritten as 

mse(𝜀̂) = E {[(𝜀̂ − 𝐸(𝜀̂)) + (𝐸(𝜀̂) − 𝜀)]
2
} 

              = var(𝜀̂) + [𝐸(𝜀̂) − 𝜀]2 = var(𝜀̂) + 𝑏2(𝜀) (2.36) 

which indicates that the MSE consists of error due to the variance of the estimator and the bias. The 

estimator is, therefore, not realisable in that the optimal value relies on the unknown parameter. In 

retrospect, the estimator depends on the unknown parameter since the bias term is a function of it, 

which means any criterion based on the bias indicates an unrealisable estimator. 

An alternative approach is to restrict the bias down to zero and search for the estimator with 

minimal variance. Such an estimator is named as the minimum variance unbiased (MVU) estimator, 

while the MSE of an unbiased estimator is the variance. In general, the MVU estimator does not always 

exist. Even if an MVU estimator exists, it may not be able to find it. There are several possible 

approaches to get asymptotic solutions. 

(1). Ascertaining the Cramer-Rao lower bound (CRLB) and examine whether several estimators 

satisfy its formula; 
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(2). Implementing the Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem; 

(3). Further restrict the class of estimator within the specific restricted area. 

Approaches one and two may produce the MVU estimator, while three will yield it only if the MVU 

estimator is linear in the signal data. 

The CRLB permits us to ascertain that for any unbiased estimator the variance must be greater than 

or equal to a given value. If an estimator exists whose variance is equivalent to the CRLB for each value 

of it, then it must be the MVU estimator. In this case, the theory of the CRLB immediately yields the 

estimator. Realistically, no estimator exists whose variance is equivalent to the bound, while an MVU 

estimator may still exist. Therefore, it must resort to the Rao-Blackwell-Lehmann-Scheffe (RBLS) 

theorem. This procedure first finds sufficient statistic, one which uses all the signal data efficiently, 

and then finds a mapping of an unbiased estimator to the sufficient statistic. With a slight restriction 

of the PDF of the data, this procedure will then be assured to produce the MVU estimator. The third 

approach requires the estimator to be a linear, sometimes severe restriction, and chooses the best 

linear estimator; only for particular signal data sets can this approach produce the MVU estimator. 

 

2.5.3 Cramer-Rao Lower Bound 

As described above, it is beneficial in practical applications to set a lower bound on the variance of 

any unbiased estimator [84]. Generally, it permits us to evaluate whether an estimator is an MVU 

estimator or not. Meanwhile, it presents a reference to compare the performance of any unbiased 

estimator. It also indicates that it is physically impossible to search for an unbiased estimator with the 

variance less than the bound. Despite the existence of various similar variance bounds, the CRLB is by 

far the easiest to determine [85]. Besides, the theory permits us to evaluate whether an estimator can 

hit the bound conveniently. If no such estimator exists, then we understand to search for estimators 

which are asymptotically close to the bound. 

Before starting the CRLB theorem, it is worthwhile to expose the hidden factors that determine 

how well we can estimate a parameter. As an example, we should not expect to adequately estimate 

a parameter precisely if the PDF depends only weakly on that parameter, or in the extreme case if the 

PDF does not depend on it at all. Generally, the more the PDF is influenced by the unknown parameter, 

the better we should be able to estimate it. 

Consider a simple signal sample 
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 𝑦[0] = 𝐵 + 𝜑(0) (2.37) 

where 𝜑(0)~ℵ(0, 𝜎2), and it is desired to estimate B, and then we expect a better estimate if 𝜎2 is 

small. Indeed, from previous sections, it is known that B̃ = 𝑦[0] is a good unbiased estimator. The 

variance is, of course, just 𝜎2, so that the estimator accuracy improves as 𝜎2 decreases. Meanwhile, 

the PDFs for two different variances can be expressed as follow 

 𝑝𝑢(𝑦[0]; 𝐵) =
1

√2𝜋𝜎𝑢
2
𝑒𝑥𝑝 [−

1

2𝜎𝑢
2
(𝑦[0] − 𝐵)2] (2.38) 

Likelihood function refers to the PDF as a function of the unknown fixed parameter. The sharpness 

of the likelihood function affects the precision of parameters estimation, which can be calculated by 

the negative of the second derivative of the logarithm of the likelihood function at its peak. Now 

consider the natural logarithm of the PDF of Equation (2.38) 

 𝐼𝑛(𝑦[0]; 𝐵) = −𝐼𝑛√2𝜋𝜎𝑢
2 −

1

2𝜎𝑢
2
(𝑦[0] − 𝐵)2 (2.39) 

And the first derivation is 

 
𝜕𝐼𝑛(𝑦[0]; 𝐵)

𝜕𝐵
=
1

𝜎𝑢
2
(𝑦[0] − 𝐵) (2.40) 

Then the negative of the second derivative is 

 −
𝜕2𝐼𝑛(𝑦[0]; 𝐵)

𝜕𝐵2
=
1

𝜎𝑢
2 (2.41) 

The curvature increases as 𝜎2 decreases. Since we already know that the estimator B̃ = 𝑦[0] 

has variance 𝜎2, then for this example 

 𝑣𝑎𝑟(B̃)
1

−
𝜕2𝐼𝑛(𝑦[0]; 𝐵)

𝜕𝐵2

 (2.42) 

and the variance decreases as the curvature increases. Although in this example, the second derivative 

does not depend on 𝑦[0], while in general it will. Therefore, an appropriate benchmark of curvature 

is 

 −𝐸 [
𝜕2𝐼𝑛(𝑦[0]; 𝐵)

𝜕𝐵2
] (2.43) 
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The expectation is taken concerning 𝑝(𝑦[0]; 𝐵), resulting in a function of B only. The expectation 

acknowledges the fact that the likelihood function, which depends on 𝑦[0], is itself a random variable. 

As the theorem of CRLB for the scalar parameter, the PDF p(𝑦; 𝜀) satisfies 

 E [
𝜕𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀
] = 0       for all 𝜀 (2.44) 

The variance of any unbiased estimator 𝜀̂ must satisfy 

 Var(𝜀̂) ≥
1

−E [
𝜕2𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀2
]
 (2.45) 

Moreover, an unbiased estimator may be found that attains the bound for all 𝜀 if and only if 

 
𝜕𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀
= 𝐿(𝜀)(ℎ(𝑦) − 𝜀) (2.46) 

That estimator, 𝜀̂ = ℎ(𝑦), is the MVU estimator, and its minimum variance is 1 𝐿(𝜀)⁄ . 

The expectation in (2.45) is explicitly given by 

 E [
𝜕2𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀2
] = ∫

𝜕2𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀2
p(𝑦; 𝜀)𝑑𝑦 (2.47) 

If an estimator is unbiased and attains the CRLB, it is efficient. For example, an estimator is efficient 

as it attains the CRLB; therefore, it is also the MVU estimator. On the other hand, one does not attain 

the CRLB, which means it is not efficient. However, since its variance is uniformly less than that of all 

other unbiased estimators, it is still the MVU estimator. 

The CRLB given by (2.47) can also be presented in a slightly different form. Although (3.6) is usually 

more convenient for evaluation, the alternative form is sometimes useful for theoretical work.it 

follows from the identity 

 𝐸 [(
𝜕𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀
)

2

] = −𝐸 [
𝜕2𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀2
] (2.48) 

so that 

 
Var(𝜀̂) ≥

1

𝐸 [(
𝜕𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀
)
2

]

 
(2.49) 

The denominator in (2.45) is referred to as the Fisher information 𝐼(𝜀) for the data 𝒚 
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 𝐼(𝜀) = −𝐸 [
𝜕2𝑙𝑛 p(𝒚; 𝜀)

𝜕𝜀2
] (2.50) 

As shown previously, when the CRLB is regressive, the variance is the reciprocal of the Fisher 

information. Intuitively, the more information, the lower the bound. It has the essential properties of 

an information measure because it is non-negative due to (2.49) and additive for independent 

observations. 

The latter property leads to the result that the CRLB for 𝑀 𝐼𝐼𝐷 (independent identity distribution) 

observations is 1 𝑀⁄  times that for one observation. To verify this, note that for independent 

observations 

 𝑙𝑛 p(𝒚; 𝜀) =∑ 𝑙𝑛 p(𝑦[𝑚]; 𝜀)
𝑀−1

𝑚=0
 (2.51) 

This result in 

 −𝐸 [
𝜕2𝑙𝑛 p(𝑦; 𝜀)

𝜕𝜀2
] = −∑ 𝐸 [

𝜕2𝑙𝑛 p(𝑦[𝑚]; 𝜀)

𝜕𝜀2
]

𝑀−1

𝑚=0
 (2.52) 

and for identically distributed observations 

 𝐼(𝜀) = 𝑀𝑖(𝜀) (2.53) 

where 

 𝑖(𝜀) = 𝐸 [
𝜕2𝑙𝑛 p(𝑦[𝑚]; 𝜀)

𝜕𝜀2
] 𝐼(𝜀) = 𝑀𝑖(𝜀) (2.54) 

is the Fisher information for one sample. For non-independent samples, we might expect that the 

information will be less than 𝑀𝑖(𝜀) . For entirely dependent samples as 𝑦[0] = 𝑦[1] = ⋯ =

𝑦[𝑚 − 1], we will have 𝐼(𝜀) = 𝑖(𝜀). Therefore, additional observations carry no information, and the 

CRLB will not decrease with increasing data record length. 

This chapter discusses the relevant theory required for current research, consisting of radar theory 

(mainly focusing on Doppler radar and FMCW radar) and the range estimation theory, which initially 

a summary regarding range equations and then range resolution, finishing off with descriptions about 

the maximum unambiguous range and range performance. A preview of basic radar signal processing 

is presented and then estimation theory of statistical signal processing. Several important concepts 

are introduced for the following discussion, i.e., PDF, MVU estimator and CRLB. 
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3. Current Ranging Techniques for High-precision 

Performance 

Miscellaneous elegant techniques and algorithms have been implemented to attain high-

performance range estimation, based on distinctive structures of radar systems., and both coherent 

and non-coherent approaches are presented to this goal. Because of the intrinsic pros of system 

structure, FMCW radar draws considerable preferences to accomplish the objective of precise ranging. 

[86] introduced a new up-sampling theory based on interpolators trained for a set of functions to 

improve the performance of nonlinearity correction in FMCW radar (2.4 GHz) and to enhance range 

estimation. However, it did not address the nonlinearity correction problem at the chip or circuit level, 

only at signal processing level. Fourier coefficients are applied to estimate frequency by interpolation 

in [87, 88]; [87] is based on the periodogram technique for the computational simplicity, but it is only 

applicable to Hanning window. One three-point interpolation DFT method for frequency estimation is 

implemented in [89, 90, 91], in which [89] uses a H-term maximum sidelobe decay window. Weighted 

multipoint interpolated DFT method for fine estimation is investigated in [92, 93], but they are still 

only applicable to Hanning window. [94] presented an interpolated DFT algorithm with zero-padding 

for classic windows. [14] proposed a fine resolution frequency estimation from three DFT samples. A 

precise ranging technique of FMCW radar based on the phase of the zero-padded FFT is presented in 

[95]. Another fine ranging algorithm via DFT with millimetre-wave FMCW radar (60 GHz and 122 GHz) 

is introduced in [96]. A chirp Z transform method for improving ranging performance is introduced in 

[63, 97]. Other distinctive algorithms of accurate ranging for FMCW radars are presents in [98-102]. 

[63] introduced a chirp Z transform algorithm for an optimized FMCW application, and it proposed 

to calculate the phase via the CZT, as the CZT already calculated the complex frequency spectrum. 

However, its precision is limited due to the real-time requirement by means of FPGA fulfillment. Apart 

from the intrinsic advantage of chirp Z transform and absorbing the positive thoughts mentioned 

above, the CZT-based algorithm stated in the thesis utilised the most-likelihood process (estimator) 

creatively for improving range performance, by introducing and applying the concept and thought of 

statistical signal processing. 

[97] presented a multi-target precise-ranging algorithm based on the CZT as well, for FMCW 

systems. It described that the performance was better than the FFT and MUSIC in white noise 

background; but its multi-target algorithm still needs to be optimized in the implementation of the 

periodogram. 
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Extending to multi-target ranging methods in the FMCW systems, such techniques can be 

categorised into two aspects, high-resolution techniques and filter bank techniques. In terms of high 

solution techniques, under the general assumption of white noise, these techniques determine the 

targets frequencies by distinguishing the signal and noise subspaces. The eigen-decomposition of the 

observation covariance matrix is applied to fulfil such separation. MUSIC, ESPRIT, Min-Norm and 

Pisarenko are the prevailing algorithms within the category [103-106]. The statistical performance of 

these algorithms is quite similar. Due to the required eigen-decomposition, they are computationally 

sophisticated. 

On the other hand, filter bank techniques are typically applied if the noise is coloured or lack of 

sufficient knowledge about relative noise. APES, Slepian filters, Periodogram, and Capon, are the most 

regular algorithms among them [107-110]. They conduct adaptive or non-adaptive narrowband filters 

to estimate sinusoids under the background of the noise environment. Despite the computational 

complexity, the demanded inversion of the covariance matrix in these techniques requires high 

computational capacity. 

 

3.1 Coherent Ranging Techniques 

Radars are implemented to detect objects with the formula of the energy returned to the radar 

antenna stemming from a transmitted signal that radiates and come back from the target. In the past, 

most radars were non-coherent in that they transmitted non-coherent bursts of RF energy and the 

presence and position of a target were determined from an analysis of the amplitude of the signal 

returning to the radar from the object of interest. In terms of advanced coherent radars, the detection 

relies not only on the amplitude of the signal but on its phase characteristics as well, allowing for 

greater precision than that given by the classic range resolution expression. The received vector is 

detected by relating the phase of the received signal to that of a stable reference oscillator in the radar 

system. The phase relationship is measured and processed over an extended time relative to the range 

delay time, often in the tens or sometimes hundreds of milliseconds. Coherent and non-coherent 

ranging techniques will be both expounded in this chapter. 

Figure 3.1 illustrates a typical coherent radar system. The transmitted signal is derived from a set 

(two or more) of stable oscillators, which serve as the reference for measuring the phase of the 

received signal. Typically, the received signal is characterised as a vector with an amplitude and a 

phase. The typical coherent radar measures the received vector in terms of the two orthogonal 
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components in the rectangular coordinate system, the in-phase (𝐼 channel) and the quadrature (𝑄 

channel) components of the received vector, rather than the amplitude and phase explicitly. 

 

Figure 3.1 A brief diagram of a coherent pulse radar 

 

3.1.1 𝐼/𝑄 Detection 

A block diagram of a conventional model of 𝐼/𝑄 detection network is presented in Figure 3.2. The 

received signal is applied to a power splitter, the two outputs of which are applied to the RF ports of 

double-balanced mixers. The local oscillator (𝐿𝑂) ports are driven by two samples of the coherent 

oscillator signal, the two components being in quadrature. The resulting outputs from the mixers are 

the in-phase (𝐼 channel) and quadrature-phase (𝑄 channel) baseband signals representative of the 

received vector.  
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Figure 3.2 A brief diagram of a conventional model of 𝐼/𝑄 detection network 

 

Assume the received signal 𝑟(𝑡) can be expressed as 

 ( ) ( ) ( ) tttAtr  += sin  (3.1) 

where 𝐴(𝑡) modulates the amplitude of the pulse envelops. 

The received signal flow to distinctive channels. The 𝐼 channel of the receiver mixers the received 

signal with the local oscillator (𝐿𝑂). It produces both sum and difference frequency ingredients 

 ( ) ( ) ( )  ( ) ( )  ( ) ( ) tttAttAtttAt  +−=+ 2coscossinsin2  (3.2) 

The sum component is filtered by the low-pass filter, only the modulation component 

𝐴(𝑡)𝑐𝑜𝑠[𝜃(𝑡)] left. 

Another channel (𝑄 channel) mixers the signal with the exact frequency but a 90° phase shift 

from the 𝐼 channel oscillator. The mixed consequence of  𝑄 channel can be presented as  

 ( ) ( ) ( )  ( ) ( )  ( ) ( ) tttAttAtttAt  +−=+ 2sinsinsincos2  (3.3) 

which, after filtering, leaves the modulation term 𝐴(𝑡)𝑠𝑖𝑛[𝜃(𝑡)]. Both the 𝐼 and 𝑄 channels are 

required as either one alone cannon provide adequate knowledge to distinguish the phase modulation 

𝜃(𝑡) unambiguously. 

As introduced above, the received vector is often detected using a network that measures the 

component of the received vector that is in phase with the coherent reference oscillator, the 𝐼 

component, and the component that is in quadrature with the coherent reference, the 𝑄 component. 

These two components describe the received vector. The relationships between the 𝐼  and 𝑄 

components and the amplitude and phase are given by 

 ( ) tAI cos=  (3.4) 

 ( ) tAQ sin=  (3.5) 

Figure 3.3 is a vector representation of the received signal, showing the relationships between the 

polar coordinate representations. The amplitude 𝐴 and phase 𝜃  can be determined, if desired, 

from 𝐼 and 𝑄 
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 22 QIA +=  (3.6) 

 



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Q
arctan  (3.7) 

 

Figure 3.3 Rectangular and polar coordinate system representations of 𝐼/𝑄 vector 

 

Some errors can develop from non-ideal circuit components in the 𝐼/𝑄 detector that affect the 

radar system performance. Three common types of errors can be summarised by the following: DC 

voltage offset of either the 𝐼  or 𝑄  channel or both, imbalance of gain between the 𝐼  and 𝑄 

components, and non-orthogonality between the two channels. One method of representing the time 

history of the received vector is by tracing the locus of the vector tip as it rotates. 

 

Figure 3.4 Locus plot of ideal target vector and the effects of 𝐼/𝑄 errors 

 

For an ideally rotating vector, as depicted in Figure 3.4(a), the result is a circle centred at zero. 

Contaminants cause a departure from this ideal situation. A displacement of the vector from the origin 
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results from DC offset, as shown in Figure 3.4(b). The effect of DC offset in either the 𝐼 or 𝑄 channel 

or both, is to produce a signal in the zero-Doppler bin of the processed signal. If the gains of the two 

channels are not identical, resulting in an elliptical vector plot, illustrated in Figure 3.4(c), as opposed 

to the circular plot. The ellipse is either horizontally or vertically oriented, depending on the relative 

gains of 𝐼 and 𝑄. And the resulting from non-orthogonality is much the same as for gain imbalance, 

which the only difference is that the elliptical pattern leading to the non-orthogonality is oriented at 

45° from a major axis, as shown in Figure 3.4(d). 

Numerous techniques have been developed that minimise or virtually eliminate the effects of 

these errors. The basic technique is to inject a known ideal signal into the receiver, ahead of the 𝐼/𝑄 

detector. This signal needs to have a synthesised Doppler signature of known characteristics (i.e., the 

Doppler amplitude and frequency are known). The signal can be injected at any convenient time when 

the processor is not on operate, for example, at antenna turnaround or between coherent dwells. 

Depending on the drift expected of the circuits, the correction may not need to be performed very 

often. 

The synthetic signal is processed through the FFT processor, and the result is analysed. A response 

in the zero frequency bin of either the 𝐼 or 𝑄 component in the output results from a DC offset in 

the respective 𝐼/𝑄 circuit. A response at the image frequency of the injected signal represents a gain 

imbalance or non-orthogonality, or both. The relative phase of the image signal provides sufficient 

information to solve the non-orthogonal ambiguity of the gain. 

Correction of errors identified in the detectors may be performed in many approaches. For 

instrumentation systems in which the received data are generally recorded for offline calibration and 

processing, the errors may be merely stored in a calibration file. Calibration can be implemented to 

the signal during the correction process. For operational systems, the data may be corrected to re-

establish gain balance (by using a gain correction factor to one or the other channel) and orthogonality 

(by converting the vector to the spherical coordinate system, applying the phase correction, and 

reconverting the vector back to the rectangular coordinate system, if needed). 

 

3.1.2 ApRES System and Phase-sensitive Processing 

As mentioned above, FMCW radar systems are substantially robust, and their power consumption 

can be considered low to operate on quite a few harsh environments, and therefore have significant 

usage from industrial applications to civil employment. There is a purpose-built radar system named 

pRES system, which detected the depths of the ice shelf on several locations over Antarctica. However, 
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this system suffers from several flaws, i.e., the high noise parameter of the receiver, the high power 

consumption of the network analyser, being unable to operate under low temperature, and so forth. 

Given this enormous potential of the pRES system, an advanced system called ApRES is developed and 

optimised explicitly for this application [1, 2, 4]. This phase-sensitive FMCW radar system consists of 

a linear-FM chirp generator via direct digital synthesiser (DDS) and a low-noise receiver/down-

converter chain. Accurate phase estimation can be implemented to deramped signal in subsequent 

processing for high range precision after the baseband synchronisation. The principal parameters of 

ApRES system are shown in Table 3.1. 

 

 

 

 

 

Table 3.1 Principal Radar Parameters of ApRES System 

Operating (Central) frequency 𝑓𝑐 300 MHz 

FM sweep bandwidth 𝐵 200 MHz 

RF power 𝑃𝑡 20 dBm 

Antenna gain 𝐺𝑡, 𝐺𝑟 10 dBi 

Noise figure 𝑁 6 dB (F=4) 

Associated standard range resolution ∆𝑅 43 cm with 𝜀𝑟 = 3.1 

Depth precision in phase-sensitive mode 3 mm RMS, provided SNR > 21 dB 

Pulse duration 1 S 

Total acquisition time 60 s for c; ten pulses each with 4 RF gain values 

ADC Sampling rate > 12 k samples/s 

Ice attenuation 0.015 dB/m 

Maximum operation range, R 2 km 
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Figure 3.5 Block diagram of basic ApRES system instruction 

 

The ApRES system operates on a 200-400 MHz chirp signal with a 1 GHz clock. Several careful 

designs regarding filters and amplifiers are incorporated to fulfil the reduced noise figure and low-

power consumption requirement. Besides those hardware considerations, some delicate processing 

techniques can be applied to attain a dependable and precise performance of range estimation. 

FMCW signal processing is used to detect the targets and measure their coarse ranges. Then phase-

sensitive signal processing is applied to determine their exact ranges from the central unit. The crucial 

steps of phase-sensitive FMCW range processing are illustrated below in Figure 3.6. 

 

Figure 3.6 Outline of an FMCW ranging technique with phase-sensitive processing  
(taken from [4]) 
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As the figure is shown, a Vernier-like process is applied to attain high precision of range estimation. 

The accurate range is achieved through determining the signal phase in the specific range bin where 

the coarse measurement is located. Signal processing techniques are implemented to integrate 

standard FFT-based algorithm, providing a rough range estimate to the closest range bin, 𝑛∆𝑅, with 

a delicate estimation determined by the phase information. Precise phase estimation is needed to 

determine the exact range bin close where a distinct target is located, and then calculate the fractional 

range within that specific range bin. The fine range is obtained from the phase of the range bin with 

maximum magnitude [30]. 

Detection Performance 

Whereas the performance of a non-coherent radar system associated with the detection of a target 

is bounded to the presence of the thermal noise, the performance of a coherent system is limited by 

additional factors. The integrity with which the received vector can be described depends on the 

amplitude and the phase contamination in the system. 

As mentioned above, deramped signal processed by the FFT, and after the coarse range of the 

object, the object’s phase of that exactly range bin is estimated as well. Therefore, the millimetre 

range precision is attained by integrating both rough and the fine estimate. It is to say that peak 

amplitude is located around the range bin of the desirable objective, then the fine range within the 

range bin is determined by the phase of that range bin. It indicates that the critical point to achieve 

an accurate range is to estimate the phase precisely, which means that the frequency-modulated 

waveform and ADC are required to be exactly synchronised. The synchronisation is attained by 

producing the frequency-modulated signal with a frequency division of the ADC signal. One significant 

procedure is the mis-synchronisation calibration of the frequency-modulated signal and ADC signal. A 

time delay will occur and lead to the corresponding phase delay. 

Meanwhile, the Direct Digital Synthesiser may not initiate at the identical time during the operation 

shift of radar because of temperature variation. A timing error will occur since it cannot be 

compromised by the calibration of the time delay. One feasible solution is to implement two reference 

range values as calibration. 

 

3.2 Non-coherent Ranging Techniques 

In addition to the factors outlined above, a particularly challenging issue on coherent systems is 

phase wrapping. Measured or calculated phase values from two or more mutually-coherent 
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multidimensional signals are related in a nonlinear manner to a desired physical quantity of interest. 

The nonlinearity is in the form of ‘wraps’ or cycle discontinuities where an underlying two-dimensional 

phase is wrapped from −𝜋 to 𝜋. The wrapped phase must somehow be unwrapped to provide an 

estimation of the underlying physical quantity.  

Both temporal, spatial signal magnitudes and phase are needed to transmit and receive the 

coherent signals. By contrast, the non-coherent process applies only signal magnitudes (amplitudes) 

or intensities (squared magnitudes). Meanwhile, incorrect magnitude spectral components easily add 

an overall noise-like perturbation to the signal reconstruction. It is simply assumed that slight 

perturbation of the correct phase values could entirely deteriorate the result of the processed signal. 

Any coherent processing requires extreme care to maintain correct phase information, which could 

be very tricky under considerable circumstances [31]. 

 

3.2.1 Non-coherent MTI system 

Taking a scenario of moving target identification (MTI) as an example, the received signals consist 

of both object’s information and clutter (including phase and amplitude components). The moving 

target identification of coherent radar and the pulse-Doppler radar both utilise the phase variation 

from the received signal to reconstruct the Doppler components. 

The fact that the Doppler component, produced by a moving target, can also be recognised by 

using the amplitude fluctuation. As illustrated in Fig. 3.7, the non-coherent MTI radar uses amplitude 

replacing phase fluctuations. Nor the coherent internal reference or a phase detector is required as it 

to coherent systems. 

 

Figure 3.7 Brief illustration of a pulsed non-coherent radar system 
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As mentioned above, coherent structures offer higher precision but more vulnerable to 

noise/clutter and phase wrapping; non-coherent structures are more straightforward, more robust, 

but offering lower precision. For example, if there are limitations about weight and space of radar 

systems, the simplicity of non-coherent MTI may be attractive to such applications. However, the 

primary drawback lies on the issue that the object must be present to substantial clutter. Clutter may 

not typically exist to the desired detection [32]. The identical function is served for clutter and the 

reference signal in the coherent MTI system. The desired targets might not be detectable if clutter 

were not present. It is reasonable to design a switch between the non-coherent MTI mode and normal 

mode, which depends on the clutter. If the radar system is static, the clutter can be saved in a digital 

memory as a form of look-up tables and applied to make judgments the timer of the mode switch. 

In general, the improvement factors of a non-coherent MTI system will not be desirable compared 

to a coherent structure using the reference oscillator. Clutter is the reference signal in the non-

coherent condition. And it is not as reliable as a reference oscillator due to the finite width of the 

spectrum. 

 

3.2.2 Detection Performance 

As discussed in Chapter 2, the essential parameters using discussing the detection performance of 

a radar system are the probability of detection (𝑃𝑑) and the probability of false alarm (𝑃𝑓). These terms 

best describe the measure of performance for which most (but not all) radar systems are developed; 

that is, to detect objectives within interference (i.e., noise). There is no closed-form analysis to 

determine the 𝑃𝑑  and 𝑃𝑓  directly from knowledge of the radar parameters, but it is relatively 

straightforward to calculate the signal-to-interference ratio (SIR). 

Determining the signal-to-interference ratio will lead to the ability to determine the 𝑃𝑑 and 𝑃𝑓 

performance. This typically involves two steps: determining the received power from the object and 

determining the interference power. The power that enters a receiver because of the energy reflected 

from a target can be predicted from 

 𝑃𝑟 =
𝑃𝑡𝐺

2𝜆2𝜎

(4𝜋)3𝐿𝑠𝑅
4

 (3.8) 

where 𝑃𝑟  and 𝑃𝑡  are the received power and peak transmitted power respectively, 𝐺  is the 

antenna gain, 𝜆 is the radar wavelength in metres, 𝜎 is the radar cross-section (RCS) of the target, 

𝐿𝑠 is the system losses. 
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If the interfering signal is thermal noise, the noise power can be found from 

 𝑃𝑛 = 𝑘𝑇𝐵𝐹 (3.9) 

where 𝑃𝑛 is the noise power in watts, 𝑘 is the Boltzmann’s constant (1.38 × 10−23𝑊/𝑠𝐾), 𝑇 is 

the system temperature (usually 290𝐾), 𝐵 is the noise bandwidth in Hertz, and 𝐹 is the system 

noise factor. 

A detector’s performance can be measured by its ability to achieve a certain probability of 

detection (𝑃𝑑) and probability of false alarm ( 𝑃𝑓𝑎) for a given SNR. Examining a detector’s ROC curves 

provides insight into its performance. ROC curves originated form WWII (specifically refer to the Battle 

of Britain) to help radar operators decide whether the signal they were getting indicated the presence 

of a meaningful signal (e.g., a Luftwaffe’s Messerschmitt aircraft) embedded in noise, or just noise 

alone(e.g., birds). ROC curves are plots of the probability of detection (𝑃𝑑) versus the probability of 

false alarm ( 𝑃𝑓𝑎) for a given SNR. It is usually used to evaluate the performance of a radar detector. 

Given an SNR value, we are able to calculate the probability of detection (𝑃𝑑) and false alarm ( 𝑃𝑓𝑎) 

values that a linear or square-law detector can realise utilising a single pulse. Assuming the determined 

SNR value is 8 dB, and the required  𝑃𝑓𝑎 is at most 1%, we can calculate the 𝑃𝑑 and  𝑃𝑓𝑎 and then 

achieve values of 𝑃𝑑  corresponding to  𝑃𝑓𝑎 = 0.01. (It assumes the detector operates in an additive 

complex whit Gaussian noise environment.) 

It is convenient to specify a vector of SNR values and conduct specific function to calculate the ROC 

curve for each of these SNR values. Instead of individually calculating 𝑃𝑑 and  𝑃𝑓𝑎 values for a given 

SNR, we can analyse the results in a plot of ROC curves, shown in Figure 3.8. There are distinctive ROC 

curves for different SNR values. Taking the curve of 𝑆𝑁𝑅 = 8 for an example, 𝑃𝑓𝑎 is approximately 

0.01 at the point where 𝑃𝑑 = 0.9. 
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Figure 3.8 Nonfluctuating Coherent ROC Curves for different SNR values 

 

One solution to enhance a detector’s performance is to average over several pulses, which is 

especially useful in scenarios where the signal of interest is known and transmits in additive complex 

white noise. Although this still applies to both linear and square-law detectors, the consequence of 

square-law detectors could be off by approximately 0.2 dB. Now continue the previous example of 

𝑆𝑁𝑅 = 8𝑑𝐵 and averaging over two pulses, shown in Figure 3.9. 

 

Figure 3.9 Nonfluctuating Coherent ROC Curves (averaging over two pulses) 
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By observing the illustration, it can be concluded that averaging over two pulses contributed to a 

higher probability of detection for a given false alarm value. With an SNR of 8 dB and averaging over 

two pulses, the probability of false alarm can be constrained at most 0.0001 and reached a probability 

of detection of 0.9. Comparing with the scenario of single pulse, the permitted probability of false 

alarm is as much as 0.01 to achieve the same probability of detection. 

The previous assumption lies on the scenarios of a known signal in complex white Gaussian noise 

and a default coherent detector. In order to analyse the performance of a non-coherent detector on 

the scenario where the signal is known apart from the phase, the same SNR values are used to make 

comparisons, shown in Figure 3.10. 

 

Figure 3.10 Nonfluctuating Noncoherent ROC Curves for different SNR values 

 

By observing the graph of ROC curve corresponding to an SNR of 8dB, we have to tolerate a 

probability of false alarm up to 0.05, to reach a probability of detection of 0.9. a higher SNR is needed 

to achieve the same probability of detection for a given probability of false alarm, without using phase 

information. The Albersheim’s equation [128] is applied the related parameters for non-coherent 

linear detectors. 
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Figure 3.11 Nonfluctuating Noncoherent ROC Curves 

 

It is shown in Figure 3.11 that the detector will reach 𝑃𝑑 = 0.9 and  𝑃𝑓𝑎 = 0.1, when illustrating 

the ROC curve of the SNR value approximated by Albersheim’s equation. (Note that the Albersheim’s 

equation applies only to non-coherent detectors.) 

All previous discussions lie on the assumption that the target is non-fluctuating, which refers to the 

stable (not change over time) statistical characteristics of the target. While targets’ acceleration will 

change in realistic cases, leading to the variation over time of the target’s RCS. Aset of statistical 

models termed Swerling models [129-131]. 

There are four Swerling models, namely Swerling 1-4, meanwhile, many radar analysts refer to a 

fifth Swerling model which is termed Swerling 0 or Swerling 5. Each model describes how a target’s 

RCS varies over time and the probability distribution of the variation. The fifth Swerling model is 

defined as a target that has a constant RCS. The non-fluctuating target often belongs to this category. 

The ROC curves for fluctuating targets are distinctive to the non-fluctuating ones, because of the 

variation of the target RCS. Besides, it is difficult to utilise a coherent detector for Swerling targets in 

that they add random phase into the received signal; that is to say, non-coherent detection techniques 

are usually utilised for Swerling targets. 

Now consider the ROC curves for a non-fluctuating target and a Swerling 1 target. It is desired to 

explore the SNR requirements for both situations for getting the same 𝑃𝑑  and  𝑃𝑓𝑎 . Under such 
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circumstances, the ROC curve as 𝑃𝑑 against SNR with varying  𝑃𝑓𝑎 will be illustrated. The ROC curve 

for a non-fluctuating target is shown in Figure 3.12, with 20 integrated pulses of non-coherent 

detection and the desired  𝑃𝑓𝑎 being at most 1e-6; meanwhile, the ROC curve for a Swerling 1 target 

for comparison is illustrated in Figure 3.13. 

 

Figure 3.12 Nonfluctuating Noncoherent ROC Curves (with 20 integrated pulses) 

 

Figure 3.13 ROC Curve of Swerling 1 Target Model 
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By observing these two figures, it can be known that for a 𝑃𝑑 of 0.9, an SNR of about 3.2 dB is 

required if the target is non-fluctuating. However, the required SNR reaches to about 11.4 dB if the 

target is a Swerling case 1 model. An 8.2 dB difference will significantly affect the design of the radar 

system. 

 

3.3 Mathematical Descriptions of Several Useful Transform Tools 

There are various mathematical transformations applied to the realm of signal processing and 

system control, for the convenience and efficiency of post-processing of data chain. Three of the 

mainly used mathematical tools is going to be introduced as follow, which will be applied to the rest 

of the thesis, namely, Fourier transform, Z transform, and Laplace transform. 

 

3.3.1 Fourier Transform 

The Fourier transform is widely used in many disciplines and is extremely useful to signal processing 

in the perspective of time and frequency domain. For a signal 𝑓(𝑡) continuous on the time interval 

[0, T] and repeats with period T, its Fourier series is presented as 

 𝑓(𝑡) = 𝐴0 +∑ 𝐴𝑛 cos(𝑛𝜔0𝑡) + 𝐵𝑛 sin(𝑛𝜔0𝑡)
∞

𝑛=1
 (3.10) 

where 

 𝜔0 = 2𝜋 𝑇⁄  (3.11) 
 

 𝐴0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡
𝑇

0

 (3.12) 

 

 𝐴𝑛 =
2

𝑇
∫ 𝑓(𝑡) cos(𝑛𝜔0𝑡) 𝑑𝑡
𝑇

0

 (3.13) 

 

 𝐵𝑛 =
2

𝑇
∫ 𝑓(𝑡) sin(𝑛𝜔0𝑡) 𝑑𝑡
𝑇

0

 (3.14) 

This implies that a signal 𝑓(𝑡) in time-domain can be identically presented to a constant plus a 

series of sinusoids and cosines in frequency-domain, and it leads to an effective technique to 

decompose and analyse signals of interest. An exponential form of the Fourier series can be expressed 

as 
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 𝑓(𝑡) =∑ 𝐶𝑛𝑒
𝑛𝜔0𝑡

∞

𝑛=−∞
 (3.15) 

where 

 𝐶𝑛 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡
𝑇

0

 (3.16) 

where 𝐶𝑛 can be a complex number. 

 ∫ 𝑠𝑖𝑛(𝑢𝑡) sin(𝑣𝑡) 𝑑𝑡 = 0, 𝑓𝑜𝑟 𝑢 ≥ 1, 𝑣 ≥ 1, 𝑢 ≠ 𝑣
2𝜋

0

 (3.17) 

 

 ∫ 𝑐𝑜𝑠(𝑢𝑡) cos(𝑣𝑡) 𝑑𝑡 = 0, 𝑓𝑜𝑟 𝑢 ≥ 1, 𝑣 ≥ 1, 𝑢 ≠ 𝑣
2𝜋

0

 (3.18) 

 

 ∫ 𝑠𝑖𝑛(𝑢𝑡) cos(𝑣𝑡) 𝑑𝑡 = 0, 𝑓𝑜𝑟 𝑢 ≥ 1, 𝑣 ≥ 1
2𝜋

0

 (3.19) 

Consider a non-periodic, but the finite integral of absolute value signal, a more general expression 

of the Fourier transform is shown as 

 𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 (3.20) 

 

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝜏𝑑𝜏
∞

−∞

 (3.21) 

It indicates that a signal in time-domain can be described as a distinctive form in frequency-domain, 

and the process of transformation is invertible. The Fourier transform of derivatives and the integrals 

are presented as follow 

 𝑓(𝑡) ↔ 𝐹(𝜔) (3.22) 
 

 
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
↔ (𝑗𝜔)𝑛𝐹(𝜔) (3.23) 

 

 ∫ 𝑓(𝑡)𝑑𝑡
𝜏

−∞

↔
1

𝑗𝜔
𝐹(𝜔) (3.24) 

Parseval’s Relation, a significant characteristic in the Fourier transform, is shown below 

 ∫ 𝑓2(𝑡)𝑑𝑡 =
1

2𝜋
∫ 𝐹(𝜔)𝐹∗(𝜔)𝑑𝜔 = ∫ |𝐹(𝜔)|2𝑑𝜔

∞

−∞

∞

−∞

∞

−∞

 (3.25) 

where the 𝐹∗(𝜔) indicates the complex conjugate of 𝐹(𝜔). 
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The Fourier transform can also be implemented to resolve linear differential equations with 

constant coefficients in linear time-invariant systems, and so forth. 

 𝑓(𝑡) = 𝑠𝑦′′ + 𝑢𝑦′ + 𝑣𝑦 ↔ 𝐹(𝜔) = (−𝑠𝜔2 + 𝑗𝑢𝜔 + 𝑐)𝑌(𝜔) (3.26) 

Therefore, 

 𝑌(𝜔) =
1

−𝑠𝜔2 + 𝑗𝑢𝜔 + 𝑐
𝐹(𝜔) (3.27) 

 

 𝐻(𝜔) =
1

−𝑠𝜔2 + 𝑗𝑢𝜔 + 𝑐
 (3.28) 

Combining with them together, 𝑌(𝜔) = 𝐻(𝜔)𝐹(𝜔). 

𝑌(𝜔) = ℱ [∫ 𝑓(𝜏)g(𝑡 − 𝜏)𝑑𝜏
∞

−∞

] = ∫ ∫ 𝑓(𝜏)g(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡𝑑𝜏
∞

−∞

∞

−∞

 

 = ∫ ∫ 𝑓(𝜏)g(𝜃)𝑒−𝑗𝜔(𝜃+𝜏)𝑑𝜃𝑑𝜏
∞

−∞

∞

−∞

 (3.29) 

since 𝑒−𝑗𝜔𝑡 = 𝑒−𝑗𝜔(𝑡−𝜏+𝜏) 

 = ∫ 𝑒−𝑗𝜔𝜃g(𝜃)𝑑𝜃
∞

−∞

∫ 𝑒−𝑗𝜔𝜏𝑓(𝜏)𝑑𝜏 =
∞

−∞

𝐻(𝜔)𝐹(𝜔) (3.30) 

The system transfer function is defined as the Fourier transform of the impulse response. Another 

elegant characteristic of the Fourier transform is that the magnitude of the transfer function scales a 

sinusoidal input, and the angle of the transfer function adds to the angle of the sinusoidal input, which 

means 

𝑟(𝑡) = 𝑟0𝑐𝑜𝑠(𝜔0𝑡 + 𝜑) → 

 𝑠(𝑡) = 𝑟0|𝐻(𝜔0)|𝑐𝑜𝑠 (𝜔0𝑡 + 𝜑 + 𝑎𝑟𝑔(𝐻(𝜔0))) (3.31) 

To prove the above relations, it is going to use the complex exponential 

 𝑟(𝑡) = 𝑅𝑒(𝑟0𝑒
−𝑗(𝜔0𝑡+𝜑)) = 𝑅𝑒(𝑟̃0𝑒

𝑗𝜔0𝑡) (3.32) 

Making complex 𝑟0𝑒
𝑗𝜑𝑟̃0, thus 

𝑠(𝑡) = ℎ(𝑡) ∗ 𝑟(𝑡) 

= ∫ ℎ(𝜏)r(𝑡 − 𝜏)𝑑𝜏
∞

−∞

= ∫ ℎ(𝜏)𝑅𝑒(𝑟̃0𝑒
𝑗𝜔0(𝑡−𝜏))𝑑𝜏

∞

−∞
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= 𝑅𝑒 (∫ ℎ(𝜏)𝑒−𝑗𝜔0𝜏𝑑𝜏
∞

−∞

𝑟̃0𝑒
𝑗𝜔0𝑡) = 𝑅𝑒(𝐻(𝜔0)𝑟0𝑒

𝑗(𝜔0𝑡+𝜑)) 

 = 𝑟0|𝐻(𝜔0)|𝑐𝑜𝑠 (𝜔0𝑡 + 𝜑 + 𝑎𝑟𝑔(𝐻(𝜔0))) (3.33) 

 

3.3.2 Z Transform 

Z transform is another useful technique of transformation to process and analyse the signal in its z-

plane. For instance, a typical difference equation may be represented as 

𝑓(𝑛) = (𝑟0𝑥(𝑛) + 𝑟1𝑥(𝑛 − 1) +⋯+ 𝑟𝑁𝑥(𝑛 − 𝑁)) 

 −(𝑠0𝑓(𝑛 − 1) + 𝑠1𝑥(𝑛 − 2) +⋯+ 𝑠𝑀𝑥(𝑛 − 𝐾)) (3.34) 

The coefficients 𝑟𝑖  and 𝑠𝑖  are constant coefficients and affect the system response. N and K 

determine the number of past inputs and outputs, respectively. Now consider a time function 𝑔(𝑡), 

the Z transform of 𝑔(𝑡) is determined by 𝐺(𝑧), and can be calculated with 

 𝐺(𝑧) = 𝑔(0)𝑧0 + 𝑔(1)𝑧−1 + 𝑔(2)𝑧−2 +⋯ =∑ 𝑔(𝑛)
∞

𝑛=0
𝑧−𝑛 (3.35) 

The time samples 𝑔(𝑛) are the mean of 𝑔(𝑛𝑇). Meanwhile, equation (5.8) can be interpreted in 

the time domain. Let 𝑔(𝑛) delayed by one sample be 𝑔̃(𝑛), therefore, according to the definition of 

the differential equation, 𝑔̃(𝑛) = 𝑔(𝑛 − 1). 

 𝐺(𝑧) = 𝑔(0)𝑧0 + 𝑔(1)𝑧−1 + 𝑔(2)𝑧−2 +⋯ (3.36) 

thus, 

𝐺̃(𝑧) = 𝑔̃(0)𝑧0 + 𝑔̃(1)𝑧−1 + 𝑔̃(2)𝑧−2 +⋯ 

= 𝑔̃(0)𝑧0 + 𝑧−1(𝑔̃(1)𝑧0 + 𝑔̃(2)𝑧−1 +⋯) 

= 𝑔(−1)𝑧0 + 𝑧−1(𝑔(0)𝑧0 + 𝑔(1)𝑧−1 +⋯) 

 = 𝑔(−1)𝑧0 + 𝑧−1𝐺(𝑧) (3.37) 

assuming zero initial circumstance, 𝑔(𝑡) = 0 for t < 0 and 𝑔(−1) = 0, so that 

 𝐺̃(𝑧) = 𝑧−1𝐺(𝑧) (3.38) 

To recapitulate, it indicates that multiplying by 𝑧−1 means to a delay of one sample. On the other 

hand, multiplying by 𝑧−𝑛 means to a delay of n samples. The Z transform also easily allows us to 
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construct a system transfer function, which can be emphasized in a computer algorithm using the 

corresponding difference equation. 

 𝐺(𝑧) = 𝐻(𝑧)𝐹(𝑧) (3.39) 

which means that the outcome of a linear, time-invariant system is equivalent to the input 𝐹(𝑧) 

multiplied by the transfer function 𝐻(𝑧). However, the time-domain functions cannon be presented 

to the multiplication as the z transfer functions 

 𝑔(𝑛) = ℎ(𝑛)𝑓(𝑛) (3.40) 

Furthermore, consider a decaying exponential time function 𝑔(𝑡) = 𝑒−𝜔𝑡 , and therefore the 

sampled version is 𝑔(𝑛𝑇) = 𝑒−𝜔𝑛𝑇,  

𝐺(𝑧) = 𝑔(0)𝑧0 + 𝑔(1)𝑧−1 + 𝑔(2)𝑧−2 +⋯ 

𝑍(𝑒−𝜔𝑡) = 𝑒0𝑧0 + 𝑒−𝜔𝑡𝑧−1 + 𝑒−2𝜔𝑡𝑧−2 +⋯ 

= 1 + 𝑒−𝜔𝑡𝑧−1(1 + 𝑒−𝜔𝑡𝑧−1 + 𝑒−2𝜔𝑡𝑧−2 +⋯) 

 = 1 + 𝑒−𝜔𝑡𝑧−1𝐺(𝑧) (3.41) 

Therefore,  

 𝐺(𝑧) =
1

1 − 𝑒−𝜔𝑡𝑧−1
 (3.42) 

Z transform is expected as negative powers of z in that only the present or past samples can be 

accessed. Multiplying by 𝑧 𝑧⁄ , the final Z transform of 𝑒−𝜔𝑡 is presented to 

 𝑍(𝑒−𝜔𝑡) =
𝑧

𝑧 − 𝑒−𝜔𝑡
 (3.43) 

A sine waveform can be implemented to examine the system response. 

 𝑟(𝑛) = 𝐴𝑠𝑖𝑛(𝜔𝑡) (3.44) 

Using the exponential of a complex number, 𝑠𝑖𝑛(𝜔𝑡) can be expressed as 

 𝑠𝑖𝑛(𝜔𝑡) =
1

2𝑗
(𝑒𝑗𝜔𝑡 − 𝑒−𝑗𝜔𝑡) (3.45) 

Applying the result of equation (5.xx2) for the Z transform of 𝑒−𝜔𝑡 

𝑍(𝑠𝑖𝑛(𝜔𝑡)) =
1

2𝑗
(

𝑧

𝑧 − 𝑒𝑗𝜔𝑡
−

𝑧

𝑧 − 𝑒−𝑗𝜔𝑡
) 
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=
𝑧

2𝑗
(
(𝑧 − 𝑒−𝑗𝜔𝑡) − (𝑧 − 𝑒𝑗𝜔𝑡)

(𝑧 − 𝑒𝑗𝜔𝑡)(𝑧 − 𝑒−𝑗𝜔𝑡)
) 

=
𝑧

2𝑗
(

𝑒𝑗𝜔𝑡 − 𝑒−𝑗𝜔𝑡

𝑧2 + 𝑧(𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡) + 1
) 

 =
𝑧

2𝑗
(

2𝑗𝑠𝑖𝑛(𝜔𝑡)

𝑧2 + 2𝑧𝑐𝑜𝑠(𝜔𝑡) + 1
) (3.46) 

Further properties and characteristics of Z transform will be presented in chapter 5. 

 

3.3.3 Laplace Transforms 

Laplace transform can also be implemented to signal processing realm, apart from calculating 

system responses and transfer functions. Consider a function 𝑓: 𝑅+ → 𝑅 , the Laplace transform 

projects f to a function 𝐹 = ℒ𝑓: 𝐶+ → 𝐶 of a complex variable. It can be defined as 

 𝐹(𝜔) = ∫ 𝑒−𝜔𝑥𝑓(𝑥)𝑑𝑥, 𝑅𝑒𝑠 >
∞

0

𝜔0 (3.47) 

The linearity of the transform can be presented as 

ℒ(𝑚𝑓 + 𝑛ℎ) = ∫ 𝑒−𝜔𝑥(𝑚𝑓(𝑥) + 𝑛ℎ(𝑥))𝑑𝑥
∞

0

 

 = 𝑚∫ 𝑒−𝜔𝑥𝑓(𝑥)𝑑𝑥
∞

0

+ 𝑛∫ 𝑒−𝜔𝑥ℎ(𝑥)𝑑𝑥 = 𝑚ℒ𝑓 + 𝑛ℒℎ
∞

0

 (3.48) 

The derivation of the Laplace transform can be calculated. 

ℒ
𝑑𝑓

𝑑𝑥
= ∫ 𝑒−𝜔𝑥𝑓′(𝑥)𝑑𝑥

∞

0

= 𝑒−𝜔𝑥𝑓(𝑥)|0
∞ +𝜔∫ 𝑒−𝜔𝑥𝑓(𝑥)𝑑𝑥

∞

0

 

 = −𝑓(0) + 𝜔ℒ𝑓 (3.49) 

thus 

 ℒ
𝑑𝑓

𝑑𝑥
= 𝜔ℒ𝑓 − 𝑓(0) = 𝜔𝐹(𝑥) − 𝑓(0) = −𝑓(0) + 𝜔ℒ𝑓 (3.50) 

Since differentiation corresponds to multiplication with ω, it can be expressed as the integration 

corresponds to division by ω, which has 

ℒ∫ 𝑓(𝜇)𝑑𝜇 =
𝑥

0

∫ (𝑒−𝜔𝑥∫ 𝑓(𝜇)𝑑𝜇
𝑥

0

)𝑑𝑥
𝑥

0
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= −
𝑒−𝜔𝑥

𝜔
∫ 𝑒−𝜔𝜇𝑓(𝜇)𝑑𝜇|0

∞
𝑥

0

+∫
𝑒−𝜔𝑥

𝜔
𝑓(𝜇)𝑑𝜇

𝑥

0

 

 =
1

𝜔
∫ 𝑒−𝜔𝜇𝑓(𝜇)𝑑𝜇
∞

0

 (3.51) 

therefore, 

 ℒ∫ 𝑓(𝜇)𝑑𝜇 =
𝑥

0

1

𝜔
ℒ𝑓 =

1

𝜔
𝐹(𝑥) (3.52) 

It indicates that Integration of a time function is equivalent to dividing the Laplace transform by 𝜔. 

Now consider an LTI system with zero initial states, 

 ℎ(𝑥) = ∫ 𝑡(𝑥 − 𝜇)𝑠(𝜇)𝑑𝜇
∞

0

 (3.53) 

And its Laplace transform can be presented as 

𝐻(𝜔) = ∫ 𝑒−𝜔𝑥ℎ(𝑥)𝑑𝑥 = ∫ 𝑒−𝜔𝑥∫ 𝑡(𝑥 − 𝜇)𝑠(𝜇)𝑑𝜇
∞

0

𝑑𝑥
∞

0

∞

0

 

= ∫ ∫ 𝑒−𝜔(𝑥−𝜇)𝑒−𝜔𝑥𝑡(𝑥 − 𝜇)𝑠(𝜇)𝑑𝜇
𝑥

0

𝑑𝑥
∞

0

 

 = ∫ 𝑒−𝜔𝜇𝑠(𝜇)𝑑𝜇∫ 𝑒−𝜔𝑥ℎ(𝑥)
∞

0

𝑑𝑥 = 𝑇(𝜔)𝑆(𝜔)
∞

0

 (3.54) 

It can also be described as 𝐻(𝜔) = 𝑇(𝜔)𝑆(𝜔) where T, S, and H are the Laplace transform of t, 

s, and h. A mathematical interpretation is that the Laplace transform of a convolution is one reason 

why Laplace transform has been prevailing in control systems and other applications. 

 𝜔𝐹(𝜔) = 𝑀𝐹(𝜔) + 𝑁𝑆(𝜔) (3.55) 
 

 𝑇(𝜔) = 𝑈𝐹(𝜔) + 𝑉𝑆(𝜔) (3.56) 

Eliminating of 𝐹(𝜔) gives 

 𝑇(𝜔) = (𝑈[𝜔𝐼 −𝑀]−1𝑁 + 𝑉)𝑆(𝜔) (3.57) 

The transfer function is thus 𝐻(𝜔) = 𝑈[𝜔𝐼 −𝑀]−1𝑁 + 𝑉. It indicates that the Laplace transform 

of the output is the product of the transfer function of the system and the transform of the input. 

This chapter introduces several prevailing ranging techniques for high-precision performance. It 

begins with the process of I/Q detection of coherent ranging technique and introduces an ice-

penetrating FMCW radar (ApRES) with the phase-sensitive process. FMCW radar literature is analysed 
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with how current systems are designed, and both advantages and disadvantages are discussed against 

non-coherent detection. Then non-coherent technique and an MTI system are presented, and the ROC 

curve is introduced to evaluate the performance of radar detectors. The rest of the chapter describes 

three mathematical transformation tools that will be used in the following chapters, namely, Fourier 

transform, Z transform, and Laplace transform. 
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4. Non-coherent Range Estimation by Peak Detection and 

Chirp Z Transform Method 

The previous chapter summarises current range estimation techniques that are applied to get good 

performance, as well as three useful mathematical tools for signal transformation. Now, this chapter 

is going to present one estimation technique of Kth-order polynomial interpolation (KPI) in the DFT 

domain, which is one of the main works of the thesis, to acquire desirable ranging precision. Method 

description, algorithm realisation and mathematical derivation will be introduced as follow. 

 

4.1 Method Description of Peak Detection 

As introduced in chapter 3, various techniques and algorithms [86-102] have been presented to 

achieve high-performance range estimation, and several papers suggested a two-step approach for 

accurate frequency estimation in the DFT domain. An N-point DFT is implemented to find the rough 

estimate; then a fine estimation is applied to the location around the peak determined in the previous 

procedure; a similar approach applied to fine Doppler estimation is described in [14, 15] which focus 

on the peak of the specific DFT samples as well. 

As samples of the peak of an asinc component in the DFT output, they are substantially above the 

noise level to trigger a target judgment threshold as responses [15]. However, a DFT sample will not 

present identically on the peak of asinc function. Therefore, the magnitude of the DFT sample 

accounts for detection, but its frequency is approximate to the actual location of the asinc peak. 

Notably, the error can be as much as one-half Doppler bin, which is equivalent to PRF/2K Hertz (K is 

the number of sampling), in terms of the estimation of Doppler frequency. 

If the size K of the Discrete Fourier transform is considerably more significant than the length of 

data sequence M, a few of DFT samples will fall on the main lobe of the asinc function, and the largest 

one among them can be seen as a reasonable estimate of the asinc peak to some extent. Nevertheless, 

when K = M and sometimes, with the use of data turning, it is even true that K < M. In these cases, the 

Doppler samples are far away with each other, and an error of half-bin is unacceptable. Under such 

circumstance, interpolation in the vicinity of the DFT peak is one feasible solution to enhance the 

estimate performance of the true Doppler frequency FD.  

Zero-padding (and process a larger DFT) is one of the simplified approaches to implement such 

interpolation. Still, it lacks computational efficiency, since it indicates to interpolate all of the spectra. 
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Zero-padding is less feasible if precise sampling is required to process only a short segment of the 

spectrum 

From a digital signal processing theoretical point of view, correct interpolation involves using all of 

the DFT data samples and an asinc interpolation kernel (effectively, computing a larger DFT). To 

understand this technique, consider computing the DTFT at an arbitrary value of 𝜔, using only the 

available DFT samples. This can be done by computing the inverse DFT to recover the original time-

domain data, and then computing the DTFT from those samples 

 

𝑌(𝜔) = ∑ y[𝑛]𝑒−𝑗𝜔𝑛
𝑁−1

𝑛=0

= 

= ∑ (
1

𝐾
∑ y[𝑘]𝑒+𝑗2𝜋𝜔𝑛 𝐾⁄

𝐾−1

𝑘=0

)𝑒−𝑗𝜔𝑛
𝑁−1

𝑛=0

 

=
1

𝐾
∑ y[𝑘]

𝐾−1

𝑘=0

{∑ 𝑒𝑥𝑝 [−𝑗𝑛 (𝜔 −
2𝜋𝑘

𝐾
)]

𝑁−1

𝑛=0

} 

(4.1) 

The term in parentheses is the interpolating kernel. It can be expressed in closed form as 

 

∑𝑒𝑥𝑝 [−𝑗𝑛 (𝜔 −
2𝜋𝑘

𝐾
)]

𝑁−1

𝑛=0

 

= 𝑒𝑥𝑝 [−𝑗 (𝜔 −
2𝜋𝑘

𝐾
) (𝑁 − 1) 2⁄

𝑠𝑖𝑛 [(𝜔 −
2𝜋𝑘
𝐾 )𝑁 2⁄ ]

𝑠𝑖𝑛 [(𝜔 −
2𝜋𝑘
𝐾
) 2⁄ ]

] 

≡ 𝑄𝑁,𝐾(𝜔, 𝑘) 

(4.2) 

Combining these gives 

 𝑌(𝜔) =
1

𝐾
∑ Y[𝑘]𝑄𝑁,𝐾(𝜔, 𝑘)

𝐾−1

𝑘=0

 (4.3) 

Equations (4.1) and (4.2) can be used to compute the DTFT at any single value of 𝜔 from the DFT 

samples. Thus, it can be applied to interpolate the values of the DFT over localised regions with any 

desired sample spacing. However, it remains relatively computationally expensive. 

 

4.2 Algorithm Realisation by Polynomial Interpolation 



 4.2  Algorithm Realisation by Polynomial Interpolation 80 

 
  

4.2.1 Quadratic Interpolation 

An uncomplicated and efficient technique for interpolating local peaks is illustrated in Figure 4.1. 

For each detected peak in the magnitude of the DFT output, a second-order polynomial is fit through 

that peak and the two adjacent magnitude data samples. Once the parabola coefficients are known, 

the amplitude and frequency of its peak are easily found by differentiating the formula for the 

parabola and setting the result to zero. 

 

Figure 4.1 Quadratic interpolation around the DFT peak 

 

To develop this technique, assume that the DFT Y[𝑥] is a function of a continuous frequency index 

𝑥, since the goal is to estimate a peak location assumed to be between actual sample locations. In the 

vicinity of the DFT peak at 𝑥𝑛, assume that Y[𝑥] is of the form 

 Y[𝑥]  = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (4.4) 

Now consider the three measurements Y[𝑥𝑛 − 1], Y[𝑥𝑛], and Y[𝑥𝑛 + 1] (written as y𝑛−1, y𝑛, 

and y𝑛+1  respectively for the convenience of expression). If Eq. (4.4) is to be applied, these 

measurements must satisfy the system of equations 

 [

y𝑛−1
y𝑛
y𝑛+1

] = [

(𝑥𝑛 − 1)
2 𝑥𝑛 − 1 1

𝑥𝑛
2 𝑥𝑛 1

(𝑥𝑛 + 1)
2 𝑥𝑛 + 1 1

] [
𝑎
𝑏
𝑐
] (4.5) 

The matrix of coefficients in Eq. (4.5) has the structure of a Vandermonde matrix; its determinant 

is 

 |

(𝑥𝑛 − 1)
2 𝑥𝑛 − 1 1

𝑥𝑛
2 𝑥𝑛 1

(𝑥𝑛 + 1)
2 𝑥𝑛 + 1 1

| = [𝑥𝑛 − (𝑥𝑛 − 1)][(𝑥𝑛 + 1) − 𝑥𝑛][(𝑥𝑛 + 1) − (𝑥𝑛 − 1)] = 2 (4.6) 
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Since the determinant is nonzero, a unique solution to this system of equations exists. The 

coefficients of the interpolating polynomial can be obtained by solving the matrix Eq. (4.5) or by a 

variety of other interpolation analysis methods, all of which will lead to the same answer because it is 

unique. 

Assume the peak location 𝑥𝑝 in the form 𝑥𝑝 = 𝑥𝑛 + ∆𝑥 (see Fig. 4.1); thus, ∆𝑥 is the location 

of the interpolated peak relative to the index of the central sample of the three DFT samples being 

used for the estimate. Then the second-order polynomial passing through the three samples can be 

written as 

 Y[xn + ∆x] =
1

2
{(∆x − 1)(∆x)y𝑛−1 − 2(∆x − 1)(∆x + 1)y𝑛 + (∆x + 1)(∆x)y𝑛+1} (4.7) 

Differentiating this equation concerning ∆𝑥, setting the results to zero, and solving for ∆𝑥 gives 

the estimated location of the parabola peak relative to 𝑥𝑛 as 

 ∆𝑥 =
y𝑛−1 − y𝑛+1

2(y𝑛−1 − 2y𝑛 + y𝑛+1)
(𝑥𝑛+1 − 𝑥𝑛) (4.8) 

The amplitude of the estimated peak 𝐴′ = Y[𝑥𝑛 + ∆𝑥] is determined by computing ∆𝑥 and then 

using that result in Equation (4.7). Note that the formula for ∆𝑥 (i.e., for a displacement of the 

estimated peak from the central sample) behaves in intuitively satisfying ways. If the first and the third 

DFT magnitude samples are equal, ∆𝑥 = 0; the middle sample is the estimated peak. If the second 

and third samples are equal, ∆𝑥 =
1

2
, showing the estimated peak is halfway between the two 

samples; a similar result exists if the first and second DFT magnitude samples are equal. 

 

4.2.2 Cubic Interpolation 

To develop further this technique, applying cubic interpolation to it, in the vicinity of the DFT peak 

at 𝑥𝑛, assume that Y[𝑥] is of the form 

 Y[𝑥] = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 (4.9) 

Now consider the five measurements |Y[𝑥𝑛 − 2]| , |Y[𝑥𝑛 − 1]| , |Y[𝑥𝑛]| , |Y[𝑥𝑛 + 1]| ,   

|Y[𝑥𝑛 + 2]|  (written as y𝑛−2 , y𝑛−1 , y𝑛 , y𝑛+1 , and y𝑛+2  respectively for the convenience of 

expression).  

Note that we only need four points to accomplish the process of calculation. Therefore, there are 

two options to select four points for the interpolation. According to the analysis of these two different 
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choices, the quantitative distinction of ultimate consequences are almost negligible. However, to 

improve the accuracy of interpolation, it is plausible to choose the larger one between y𝑛−2 and 

y𝑛+2. 

Assuming y𝑛−2 is the larger one now and applying Equation (4.9), these measurements will still 

satisfy the system of equations shown below 

 [

y𝑛−2
 y𝑛−1
y𝑛
y𝑛+1

] =

[
 
 
 
 
(𝑥𝑛 − 2)

3 (𝑥𝑛 − 2)
2 𝑥𝑛 − 2 1

(𝑥𝑛 − 1)
3 (𝑥𝑛 − 1)

2 𝑥𝑛 − 1 1

𝑥𝑛
3

(𝑥𝑛 + 1)
3

𝑥𝑛
2

(𝑥𝑛 + 1)
2

𝑥𝑛  1
𝑥𝑛 + 1 1]

 
 
 
 

[

𝑎
𝑏
𝑐
𝑑

] (4.10) 

As shown before, the matrix of coefficients in Equation (4.10) has the structure of a Vandermonde 

matrix as well; its determinant is 

 ||

(𝑥𝑛 − 2)
3 (𝑥𝑛 − 2)

2 𝑥𝑛 − 2 1

(𝑥𝑛 − 1)
3 (𝑥𝑛 − 1)

2 𝑥𝑛 − 1 1

𝑥𝑛
3

(𝑥𝑛 + 1)
3

𝑥𝑛
2

(𝑥𝑛 + 1)
2

𝑥𝑛  1
𝑥𝑛 + 1 1

|| ≠ 0 (4.11) 

Therefore, a unique solution to this system of equations exists. As mentioned above, the 

coefficients of the interpolating polynomial can be obtained by solving the matrix Equation (4.10) or 

by other analysis approaches, all of which will lead to the same unique answer. 

Assume ∆𝑥 is still the location of the interpolated peak relative to the index of the central sample 

of the four DFT samples being applied to the estimate. The estimated location of the cubic peak 

relative to 𝑥𝑛 can be obtained through the similar derivation described above, which is  

 ∆𝑥 =
 y𝑛−1 − 2y𝑛 + y𝑛+1

2(y𝑛−2 − 3 y𝑛−1 + 3y𝑛 − y𝑛+1)
(𝑥𝑛+1 − 𝑥𝑛) (4.12) 

Now assuming y𝑛+2 is the larger one and applying Eq. (4.9), the system of equations is shown 

below 

 [

 y𝑛−1
y𝑛
y𝑛+1
y𝑛+2

] =

[
 
 
 
 
(𝑥𝑛 − 1)

3 (𝑥𝑛 − 1)
2 𝑥𝑛 − 1 1

𝑥𝑛
3 𝑥𝑛

2 𝑥𝑛 1

(𝑥𝑛 + 1)
3

(𝑥𝑛 + 2)
3

(𝑥𝑛 + 1)
2

(𝑥𝑛 + 2)
2

𝑥𝑛 + 1  1
𝑥𝑛 + 2 1]

 
 
 
 

[

𝑎
𝑏
𝑐
𝑑

] (4.13) 

And its Vandermonde determinant is 
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 ||

(𝑥𝑛 − 1)
3 (𝑥𝑛 − 1)

2 𝑥𝑛 − 1 1

𝑥𝑛
3 𝑥𝑛

2 𝑥𝑛 1

(𝑥𝑛 + 1)
3

(𝑥𝑛 + 2)
3

(𝑥𝑛 + 1)
2

(𝑥𝑛 + 2)
2

𝑥𝑛 + 1  1
𝑥𝑛 + 2 1

|| ≠ 0 (4.14) 

The location of the interpolated peak relative to the index of the central sample of the four DFT 

samples ∆𝑥 now can be written as 

 ∆𝑥 =
y𝑛−1 − 2y𝑛 + y𝑛+1

2(y𝑛−1 − 3y𝑛 + 3y𝑛+1 − y𝑛+2)
(𝑥𝑛+1 − 𝑥𝑛) (4.15) 

The amplitude of the estimated peak 𝐴′ = Y[𝑥𝑛 + ∆𝑥] is therefore determined as well. 

 

4.2.3 Quartic Interpolation 

Now consider quartic interpolation, in the vicinity of the DFT peak at 𝑥𝑛, assume that Y[𝑥] is of 

the form 

 Y[𝑥] = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 (4.16) 

Applying the five measurements  Y[𝑥𝑛 − 2] , Y[𝑥𝑛 − 1] , Y[𝑥𝑛] , Y[𝑥𝑛 + 1] , and Y[𝑥𝑛 + 2] 

(written as y𝑛−2, y𝑛−1, y𝑛, y𝑛+1, and  y𝑛+2 respectively for the convenience of expression), with 

Equation (4.16), these measurements will still satisfy the system of equations 

 

[
 
 
 
 
y𝑛−2
 y𝑛−1
y𝑛
y𝑛+1
y𝑛+2 ]

 
 
 
 

=

[
 
 
 
 
 
(𝑥𝑛 − 2)

3 (𝑥𝑛 − 2)
2 𝑥𝑛 − 2 1

(𝑥𝑛 − 1)
3 (𝑥𝑛 − 1)

2 𝑥𝑛 − 1 1

𝑥𝑛
3

(𝑥𝑛 + 1)
3

(𝑥𝑛 + 2)
3

𝑥𝑛
2

(𝑥𝑛 + 1)
2

(𝑥𝑛 + 2)
2

𝑥𝑛  1
𝑥𝑛 + 1
𝑥𝑛 + 2

1
1]
 
 
 
 
 

[
 
 
 
 
𝑎
𝑏
𝑐
𝑑
𝑒]
 
 
 
 

 (4.17) 

Its Vandermonde determinant is 

 
|

|

(𝑥𝑛 − 2)
3 (𝑥𝑛 − 2)

2 𝑥𝑛 − 2 1

(𝑥𝑛 − 1)
3 (𝑥𝑛 − 1)

2 𝑥𝑛 − 1 1

𝑥𝑛
3

(𝑥𝑛 + 1)
3

(𝑥𝑛 + 2)
3

𝑥𝑛
2

(𝑥𝑛 + 1)
2

(𝑥𝑛 + 2)
2

𝑥𝑛  1
𝑥𝑛 + 1
𝑥𝑛 + 2

1
1

|

|
≠ 0 (4.18) 

A unique solution to this system of equations exists, and the coefficients of the interpolating 

polynomial can be calculated. Assume ∆𝑥 is still the location of the interpolated peak relative to the 

index of the central sample of the five DFT samples being applied to the estimate, then the estimated 

location of the cubic peak relative to 𝑥𝑛 can be written as 
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 ∆𝑥 =
 y𝑛−2 − 3y𝑛−1 + 3y𝑛+1 − y𝑛+2

2(y𝑛−2 − 4 y𝑛−1 + 6y𝑛 − 4y𝑛+1 + y𝑛+2)
(𝑥𝑛+1 − 𝑥𝑛) (4.19) 

Meanwhile, the amplitude of the estimated peak 𝐴′ = Y[𝑥𝑛 + ∆𝑥] can be determined through 

computing ∆𝑥. The coefficients of the numerator and denominator in Eq. (4.19) maybe recognised as 

those of binomial coefficients or Pascal’s triangle, leading to a simple, general expression for any 

arbitrary order of polynomial fit, which is going to present at the next section. 

 

4.2.4 A general equation for 𝐾𝑡ℎ-order polynomial Interpolation 

According to the derivation above, it is natural to extend the thought to general scenarios. Now 

consider an 𝐾𝑡ℎ order polynomial interpolator, applying all identical definitions above, in the vicinity 

of the DFT peak at 𝑥𝑛, assume that Y[𝑥] is of the form 

 Y[𝑥] =∑ 𝑎𝑛𝑥
𝑛

𝐾

𝑛=0
= 𝑎𝑘𝑥

𝑘 + 𝑎𝑘−1𝑥
𝑘−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 (4.20) 

Now observe Equation (4.8), (4.12), (4.15), and (4.19) altogether. The peak location 𝑥𝑝 still has 

the form of 𝑥𝑝 = 𝑥𝑛 + ∆𝑥; ∆𝑥 is the location of the interpolated peak relative to the index of the 

central sample of the DFT samples applied to the algorithm. 

An inner mathematical law can be found through these equations above after diligent observation 

and calculation; the coefficients of both numerators and denominators satisfy the format of Pascal’s 

triangle (shown in Figure 4.2), which is a triangular array of the binomial coefficients indeed [33]. 

 

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

⋯

  

Figure 4.2 Pascal’s triangle and binomial coefficients 

 

In the binomial formula described in Equation (4.21), for natural numbers 𝑘 and 𝑖, the binomial 

coefficient (
𝑘
𝑖
) is commonly indexed by a pair of integers 𝑘 ≥ 𝑖 ≥ 0, and can be defined as the 

coefficient of the monomial 𝑦𝑖 in the expansion of (1 + 𝑦)𝑘 [34]. 
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 (𝑥 + 𝑦)𝑘 =∑ (
𝑘
𝑖
)

𝑘

𝑖=0
𝑥𝑘−𝑖𝑦𝑖 (4.21) 

Integrated with derivation and induction, a general equation for 𝐾𝑡ℎ  order polynomial 

interpolator can be acquired and presented by the form of binomial coefficients eventually; the 

location of the interpolated peak relative to the index of the central sample of the applied DFT samples 

∆𝑥 can be written as 

 ∆𝑥 =

{
  
 

  
 

 

                 
∑ (−1)2𝑖+1(𝑘

𝑖
)𝑘

𝑖=0 𝑦𝑛−𝑘+𝑖+2

2 [(∑ (−1)2𝑗+1(𝑘
𝑖
)𝑘

𝑗=0 𝑦𝑛−𝑘+𝑗+1) − 𝑦𝑛+𝑘+1
2
]
      , 𝑘 𝑖𝑠 𝑜𝑑𝑑

   
∑ (−1)2𝑖+1(𝑘

𝑖
)𝑘

𝑖=0 𝑦𝑛−𝑘+𝑖+2 − (−1)
2𝑛+1(𝑘

𝑛
)𝑦𝑛

2∑ (−1)2𝑗+1(𝑘𝑖)
𝑘
𝑗=0 𝑦𝑛−𝑘+𝑗+1

  , 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

 (4.22) 

where (
𝑘
𝑖
) is the corresponding coefficient of the binomial described above. Note that since the 

symmetrical property of an 𝐾𝑡ℎ order polynomial will be different when 𝐾 is odd or even, it is 

plausible to have a unique representation for different circumstances, respectively. 

 

4.3 Method Description of Chirp-Z transform 

Another non-coherent ranging technique is presented in this chapter. The fundamental definition 

of Z transform is described firstly, following by the algorithm realisation by Most-likelihood chirp Z 

transform (MLCZT). The CZT accurately implements the periodogram where only a narrow band 

spectrum is processed, and the concept of most-likelihood estimator is introduced to combine with 

CZT to acquire better ranging performance. 

The algorithm stems from the values of the Z-transform on a circular or spiral contour can be 

expressed as a discrete convolution. For N and K moderately broad, the computation complexity is 

approximately proportional to (K + N) 𝑙𝑜𝑔2(K + N)⁄ , while it will be proportional to N ∙ K  for 

calculation of the Z-transform at N points directly. Generally, using the K samples CZT algorithm can 

quickly calculate the Z transform at N points in the z-plane which lie on circular or spiral contours 

beginning at any arbitrary point in the z-plane. The angular spacing of the points is an arbitrary 

constant, and N and K are arbitrary integers [16]. This algorithm can be extended to the application of 

multi-target ranging and location as well, after the integration of iteration and state-transfer matrix. 

[16] presented the fundamental concept and properties of Z transform. The Z-transform of a series 

of numbers 𝑦𝑘  can be presented as 
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 𝑌(𝑧) =∑ 𝑦𝑘
∞

𝑘=−∞
𝑧−𝑘 (4.23) 

Now limit to the Z-transform with only a finite number K of nonzero points. Under such 

circumstance, it can be expressed as 

 𝑌(𝑧) =∑ 𝑦𝑘
𝐾−1

𝑘=0
𝑧−𝑘 (4.24) 

where the sum of the above expression converges for all z except z = 0. 

Equations (4.23) and (4.24) are similar to the expressions of the Laplace transform for a set of 

equally divided impulses of magnitudes 𝑦𝑘. Set the interval of the impulses to be 𝑇, and the series of 

impulses be ∑ 𝑦𝑘𝛿(𝑡 − 𝑘𝑇)𝑘 . Then the Laplace transform is ∑ 𝑦𝑘𝑒
−𝑠𝑘𝑇

𝑘  which is the same as 𝑌(𝑧) 

if we let 

 𝑧 = 𝑒𝑠𝑇 (4.25) 

The Laplace transform of a set of impulses reiterate its quantities in a horizontal outline of the s-

plane with the parallel interval of 2𝜋 𝑇⁄ , while the Z-transform projects each of them into the whole 

z-plane, vice versa. The exterior is parallel to the right half of the s-plane, and the interior of the z-

plane unit circle is parallel to the left half. Straight lines in the s-plane correspond to circles or spirals 

in the z-plane. Values of the Z-transform are typically calculated by the path of the 𝑗𝜔 axis (unit circle). 

It is entirely equivalent to the Fourier transform and can be implemented to distinctive applications 

including the spectrum estimation, matched filtering, interpolation, and correlation. Now only 

calculate (4.24) at a finite number of points 𝑧𝑛 

 𝑌𝑛 = 𝑌(𝑧𝑛) =∑ 𝑦𝑘
𝐾−1

𝑘=0
𝑧𝑛
−𝑘 (4.26) 

Assuming the series of points equally separated on the unit circle 

 𝑧𝑛 = 𝑒𝑥𝑝(𝑗2𝜋𝑛 𝑀⁄ ),      𝑛 = 0,1,⋯ ,𝑀 − 1 (4.27) 

for which 

 𝑌𝑛 =∑ 𝑦𝑘
𝐾−1

𝑘=0
𝑒𝑥𝑝(− 𝑗2𝜋𝑛 𝑀⁄ ),      𝑛 = 0,1,⋯ ,𝑀 − 1 (4.28) 

Equation (4.28) is the well-known discrete Fourier transform. Now examine Z transform on a more 

general form 

 zn = 𝐵𝑆
−n,      𝑛 = 0,1,⋯ ,𝑁 − 1 (4.29) 
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where M is an arbitrary integer and B and S are of the form 

 𝐵 = B0e
j2πω0 (4.30) 

and 

 𝑆 = 𝑆0e
j2πθ0 (4.31) 

The case 𝐵 = 1,𝑁 = 𝑀, and 𝑆 = 𝑒𝑥𝑝(−𝑗2𝜋 𝑀⁄ ) are equivalent to the DFT (refer to Figure 6.10). 

The general z-plane contour starts with the point z = 𝐵, and it is determined by the value of 𝑆, spirals 

in or out in terms of the start position. If 𝑆0 = 1, the outline is an arc of a circle, while the angular 

spacing of the samples is 2πθ0.  

We can apply the FFT to compute the Z transform along the outline by using the sequence 𝑆𝑚
2 2⁄ . 

When 𝑆0 = 1, the sequence 𝑆𝑚
2 2⁄  is a complex sinusoid of linearly increasing frequency, and since 

a similar waveform used in some radar systems that we call it chirp, the algorithm is therefore named 

as the chirp Z transform (CZT). Furthermore, the extra benefits provided by the CZT include several 

aspects. The number of time samples can be unequal to the samples of the Z transform; Meanwhile, 

N and M need not be composite integers. Besides, point z0 and the angular spacing of the zn can 

be arbitrary. 

 

4.4 Algorithm Realisation by Most-likelihood Chirp Z Transform 

Following the thought introduced before, let us rewrite the expression of the CZT 

 𝑌𝑛 =∑ 𝑦𝑘
𝐾−1

𝑘=0
𝐵−𝑘𝑆𝑘𝑛,      𝑛 = 0,1,⋯ ,𝑀 − 1 (4.32) 

Using the substitution 

  𝑘𝑛 =
𝑘2 + 𝑛2 − (𝑛 − 𝑘)2

2
 (4.33) 

For the exponent of S in (4.32), thus 

 𝑌𝑛 =∑ 𝑦𝑘
𝐾−1

𝑘=0
𝐵−𝑘𝑆(𝑘

2 2⁄ )𝑆(𝑛
2 2⁄ )𝑆−(𝑛−𝑘)

2 2⁄  (4.34) 

where 𝑛 = 0,1,⋯ ,𝑀 − 1. After the observation, (4.34) contains a three-step method. 

Construct a new sequence 𝑔𝑘 through weighting the 𝑦𝑘  
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 𝑔𝑘 = 𝑦𝑘𝐵
−𝑘𝑆𝑘

2 2⁄ ,      𝑛 = 0,1,⋯ ,𝑀 − 1 (4.35) 

Convolving 𝑔𝑘 with the sequence 𝑟𝑘 defined as 

 𝑟𝑘 = 𝑆
−𝑘2 2⁄  (4.36) 

to give a sequence ℎ𝑛 

 ℎ𝑛 =∑ 𝑦𝑘𝑟𝑛−𝑘
𝐾−1

𝑘=0
,      𝑛 = 0,1,⋯ ,𝑀 − 1 (4.37) 

Multiplying ℎ𝑛 by 𝑆𝑛
2 2⁄  to get 𝑌𝑛 

 𝑌𝑛 = ℎ𝑛𝑆
𝑛2 2⁄ ,      𝑛 = 0,1,⋯ ,𝑀 − 1 (4.38) 

The computational speed and flexibility of the CZT algorithm are related to the FFT. As known, 

ordinary convolutions can be calculated by adding zeroes to the end of one or both sequences so that 

the correct numerical consequences for the initial convolution can be derived by a circular convolution. 

The procedures of the MLCZT algorithm can be described as follow: 

1) Calculate a coarse FFT with a sequence of K points; 

2) Search for the local maximum on the specific FFT range bin and locate its corresponding 

frequency in 𝜔̂; 

3) Set P as the desirable MLCZT frequency precision; 

4) Calculate the CZT within the region (𝜔̂ −
𝜋

𝐾
, 𝜔̂ +

𝜋

𝐾
), and search for the maximum via Most-

likelihood method, using the foreknowledge to asymptotically reach to the MVU estimator; 

5) Repeat step 4 until attaining desirable precision of range performance. 

Such thought could be easily extended to the applications of multi-target ranging estimation, which 

the procedures of the extended MLCZT algorithm for multi-target estimation can be presented as: 

1) Calculate a coarse FFT with a sequence of K points; 

2) Search for the local maximum on the specific FFT range bin and locate its corresponding 

frequency in 𝜔̂; 

3) Set P as the desirable MLCZT frequency precision; 

4) For u = 1,2,⋯ , r𝑢, 

(1) Calculate the CZT within the region (𝜔̂𝑢 −
𝜋

𝐾
, 𝜔̂𝑢 +

𝜋

𝐾
) 

(2) Search for the maximum via Most-likelihood method 

(3) Using the foreknowledge to asymptotically reach to the MVU estimator; 

5) Repeat step 4 until attaining desirable precision of range performance. 
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As mentioned previously, since the outline of the MLCTZ is a straight line segment in the s-plane, 

it is that reiterated application of the MLCZT can calculate the Z transform by a part of spiral in the z-

plane or linear in the s-plane. For the scenario of all data samples on the unit circle in the MLCZT 

algorithm, the Z transform is similar to a Fourier transform. Unlike the DFT, given K points transform 

for K points of signal data, M and K can be unequal in the MLCZT. Moreover, the zk can be equally 

spaced along an arc, not necessarily over the whole unit circle. Still, the MLCZT provides the degree of 

freedom to choose any value of K, without strongly affecting the computational speed. 

 

4.5 Mathematical Derivation of Most-likelihood Process in Chirp Z 

Transform 

In this section, a simplified signal model is introduced to validate the effectiveness of the most-

likelihood process in chirp Z transform. Consider the estimation model 𝑧𝑛 = 𝐴𝑠𝑛 +𝑤𝑛 ,   𝑛 =

0,1,2,⋯ ,𝑁 − 1, where 𝑤𝑛 is the zero-mean white Gaussian noise, and Var(𝑤𝑛) = 𝜎
2. 

The estimation model can be written as the vector form 

 𝒛 = 𝐴𝒔 + 𝒘 (4.39) 

where 𝒛 = (𝑧0, 𝑧1,⋯ , 𝑧𝑁−1)
𝑇，𝒔 = (𝑠0, 𝑠1,⋯ , 𝑠𝑁−1)

𝑇，𝒘 = (𝑤0, 𝑤1,⋯ ,𝑤𝑁−1)
𝑇. 

letting 𝜽 = (𝐴, 𝜎2)𝑇, the joint PDF of the estimation model is 

 𝑝(𝒛; 𝐴, 𝜎2) = (
1

2𝜋𝜎2
)𝑁/2 𝑒𝑥𝑝{ −

1

2𝜎2
(𝒛 − 𝐴𝒔)𝑇(𝒛 − 𝐴𝒔)} (4.40) 

The likelihood function of the log form of 𝜽 = (𝐴, 𝜎2)𝑇 can be presented as 

 

2

2

2

( ) ln ( ; , )

1
ln(2 ) ln( ) ( ) ( )

2 2 2

T

l p A

N N
A A



 


=

= − − − − −

θ z

z s z s
 

(4.41) 

The first order of derivation is 

 
𝜕𝑙(𝜽)

𝜕𝐴
= −

1

2𝜎2
⋅ 2 ⋅ (−𝒔)𝑇(𝒛 − 𝐴𝒔) =

1

𝜎2
(𝒔𝑇𝒛 − 𝐴𝒔𝑇𝒔) (4.42) 

 

and 
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𝜕𝑙(𝜽)

𝜕𝜎2
= −

𝑁

2

1

𝜎2
−
1

2

−1

(𝜎2)2
(𝒛 − 𝐴𝒔)𝑇(𝒛 − 𝐴𝒔)

=
𝑁

2(𝜎2)2
[
1

𝑁
(𝒛 − 𝐴𝒔)𝑇(𝒛 − 𝐴𝒔) − 𝜎2]

 (4.42) 

letting 

 
𝜕𝑙(𝜽)

𝜕𝜽
= 𝟎 (4.44) 

The most-likelihood estimation of 𝜽,  

 𝜽̂𝑚𝑙 = (𝐴̂𝑚𝑙 , 𝜎𝑚𝑙
2
^

)𝑇 (4.45) 

where 

 𝐴̂𝑚𝑙 = (𝒔
𝑇𝒔)−1𝒔𝑇𝒛 (4.46) 

 

 𝜎𝑚𝑙
2
^

=
1

𝑁
(𝒛 − 𝐴̂𝑚𝑙𝒔)

𝑇(𝒛 − 𝐴̂𝑚𝑙𝒔) (4.47) 

Substituting 𝐴̂𝑚𝑙 into the expression of 𝜎𝑚𝑙
2
^

 

 

^
2 1 1

1 1

1

1
( ( ) ) ( ( ) )

1
[ ( ) ][ ( ) ]

1
[ ( ) ]

1
[ ]

T T T T T

ml

T T T T T

N N

T T T

N

def
T

N

N

N

N

N

 − −

− −

−

= − −

= − −

= −

= −

z s s s s z z s s s s z

z I s s s s I s s s s z

z I s s s s z

z I P z
 

(4.48) 

where 

 𝑷 = 𝒔(𝒔𝑇𝒔)−1𝒔𝑇 (4.49) 

is the projection matrix, and the idempotent matrix as well (𝑷2 = 𝑷). Therefore, 𝑰𝑁 − 𝑷 is also the 

idempotent matrix. 

Now analysing the second-order of the derivation of the likelihood function 

 
𝜕2𝑙(𝜽)

𝜕𝐴2
= −

1

𝜎2
𝒔𝑇𝒔 (4.50) 
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𝜕2𝑙(𝜽)

𝜕𝐴𝜕𝜎2
=

−1

(𝜎2)2
(𝒔𝑇𝒛 − 𝐴𝒔𝑇𝒔) (4.51) 

 

 
𝜕2𝑙(𝜽)

𝜕𝐴𝜕𝜎2
=

−1

(𝜎2)2
(𝒔𝑇𝒛 − 𝐴𝒔𝑇𝒔) (4.52) 

 

 

𝜕2𝑙(𝜽)

𝜕(𝜎2)2
=
−2𝜎2

2(𝜎2)4
(𝒛 − 𝐴𝒔)𝑇(𝒛 − 𝐴𝒔) −

−𝑁

2(𝜎2)2

= −
𝑁

2(𝜎2)3
[
1

𝑁
(𝒛 − 𝐴𝒔)𝑇(𝒛 − 𝐴𝒔) −

1

2
𝜎2]

 (4.53) 

Substituting 𝐴̂𝑚𝑙  and 𝜎𝑚𝑙
2
^

 into (4.45), the quantity of the second order of derivation of 

likelihood function at  𝜽̂𝑚𝑙 = (𝐴̂𝑚𝑙 , 𝜎𝑚𝑙
2
^

)𝑇 can be expressed as 

 

𝜕2𝑙(𝜽)

𝜕𝐴2
|
𝜽=𝜽̂𝑚𝑙

= −
1

𝜎𝑚𝑙
2
^
𝒔𝑇𝒔

 (4.54) 

 

 

𝜕2𝑙(𝜽)

𝜕𝐴𝜕𝜎2
|
𝜽=𝜽̂𝑚𝑙

=
−1

(𝜎𝑚𝑙
2
^

)2
(𝒔𝑇𝒛 − 𝐴̂𝑚𝑙𝒔

𝑇𝒔) = 0
 (4.55) 

 

 

𝜕2𝑙(𝜽)

𝜕(𝜎2)2
|
𝜽=𝜽̂𝑚𝑙

= −
𝑁

2(𝜎𝑚𝑙
2
^

)3
[
1

𝑁
(𝒛 − 𝐴̂𝑚𝑙𝒔)

𝑇(𝒛 − 𝐴̂𝑚𝑙𝒔) −
1

2
𝜎𝑚𝑙
2
^

]

= −
1

2(𝜎𝑚𝑙
2
^

)2
 

(4.56) 

Therefore, the Hessian matrix of the likelihood function at 𝜽̂𝑚𝑙 = (𝐴̂𝑚𝑙 , 𝜎𝑚𝑙
2
^

)𝑇 can be presented 

as 

 

[
 
 
 
 
𝜕2𝑙(𝜽)

𝜕𝐴2
𝜕2𝑙(𝜽)

𝜕𝐴𝜕𝜎2

𝜕2𝑙(𝜽)

𝜕𝐴𝜕𝜎2
𝜕2𝑙(𝜽)

𝜕(𝜎2)2]
 
 
 
 

||

𝜽=𝜽̂𝑚𝑙

= −

[
 
 
 
 
 
1

𝜎𝑚𝑙
2
^
𝒔𝑇𝒔 0

0
𝑁

2(𝜎𝑚𝑙
2
^

)2]
 
 
 
 
 

< 𝟎 (4.57) 

Thus, 𝜽̂𝑚𝑙 = (𝐴̂𝑚𝑙 , 𝜎𝑚𝑙
2
^

)𝑇 is indeed the maximum point of the likelihood function of log form, so 

that it is the most-likelihood estimation of parameter  𝜽. Meanwhile, 𝒛~𝑁(𝐴𝒔, 𝜎2𝑰𝑁), therefore, 
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 𝐴̂𝑚𝑙 = (𝒔
𝑇𝒔)−1𝒔𝑇𝒛~𝑁(𝐴, 𝜎2(𝒔𝑇𝒔)−1) (4.58) 

so that 𝐴̂𝑚𝑙  is the unbiased estimator of 𝐴; while 𝑙𝑖𝑚
𝑁→+∞

𝒔𝑇𝒔 = +∞，𝐴̂𝑚𝑙  is also the consensus 

estimator. 

Now investigating the PDF of 𝜎𝑚𝑙
2
^

, based on the definition of the projection matrix, 𝑷𝒔 = 𝒔，

(𝑰𝑁 − 𝑷)𝒔 = 𝟎. Besides, the eigenvalues of the idempotent matrix can only be 1 or 0. Therefore, 

 𝑰𝑁 − 𝑷 can be decomposed to 

 𝑰𝑁 − 𝑷 = 𝑽[
𝑰𝑁−1 0
0 0

] 𝑽𝑇 (4.59) 

where 𝑽 = (𝒗0, 𝒗1,⋯ , 𝒗𝑁−1) is the orthogonal matrix consisting of the eigen-vectors. 

 𝑽 = (𝑽0:𝑁−2, 𝒗𝑁−1) (4.60) 

Letting 

 𝒚 = 𝑽0:𝑁−2
𝑇 𝒛 (4.61) 

thus 

 𝐸𝒚 = 𝑽0:𝑁−2
𝑇 𝐸𝒛 = 𝐴𝑽0:𝑁−2

𝑇 𝒔 (4.62) 

and 

 (𝑰𝑁 − 𝑷)𝒔 = 𝟎 (4.63) 

therefore 

 𝑽 [
𝑰𝑁−1 0
0 0

]𝑽𝑇𝒔 = 𝟎 (4.64) 

Since 𝑽 is an orthogonal matrix so that it is invertible, 

 [
𝑰𝑁−1 0
0 0

] [
𝑽0:𝑁−2
𝑇

𝒗𝑁−1
𝑇 ] 𝒔 = [𝑽0:𝑁−2

𝑇

𝟎
] 𝒔 = 𝟎 (4.65) 

where 𝑽0:𝑁−2
𝑇 𝒔 = 𝟎, thus 

 𝐸𝒚 = 𝐴𝑽0:𝑁−2
𝑇 𝒔 = 𝟎 (4.66) 

 
 Cov(𝐲, 𝐲) = 𝐕0:𝑁−2

𝑇 ⋅ Cov(𝐳, 𝐳) ⋅ 𝐕0:𝑁−2 = 𝜎
2𝑰𝑁−1 (4.67) 

Obviously, 𝒚~𝑁(𝟎, 𝜎2𝑰𝑁−1)，and 
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(4.68) 

thus, 

 𝑁𝜎𝑚𝑙
2
^

𝜎2
=
𝒚𝑇𝒚

𝜎2
~𝜒2(𝑁 − 1) 

(4.69) 

therefore, 

 𝐸𝜎𝑚𝑙
2
^

=
𝑁 − 1

𝑁
𝜎2 (4.70) 

 

 Var(𝜎𝑚𝑙
2
^

) =
2(𝑁 − 1)

𝑁2
𝜎4 (4.71) 

And we can get the consequence， 

 𝑙𝑖𝑚
𝑁→+∞

𝐸𝜎𝑚𝑙
2
^

= 𝜎2 (4.72) 

 

 𝑙𝑖𝑚
𝑁→+∞

𝐸[𝜎𝑚𝑙
2
^

− 𝜎2]2 = 𝑙𝑖𝑚
𝑁→+∞

{[𝐸𝜎𝑚𝑙
2
^

− 𝜎2]2 + Var(𝜎𝑚𝑙
2
^

)} = 0 (4.73) 

which means that 𝜎𝑚𝑙
2
^

 is an asymptotically unbiased estimator, and it is a consensus estimator. 

Now let us validate the asymptotical property of the most-likelihood estimator. Firstly, it is natural 

to calculate the Fisher information matrix (FIM) of the second-order derivation of the likelihood 

function. 

 𝑰(𝜽) = −𝐸
𝜕2𝑙(𝜽)

𝜕𝜽𝜕𝜽𝑇
= [

𝒔𝑇𝒔

𝜎2
0

0
𝑁

2𝜎4

] (4.74) 

Meanwhile, the limitation of CRLB of 𝜎2 can be expressed as 

 𝑙𝑖𝑚
𝑁→+∞

𝐶𝑅𝐿𝐵(𝜎2)

Var(𝜎𝑚𝑙
2
^

)

=
2𝜎4/𝑁

2(𝑁 − 1)𝜎4/𝑁2
= 1 (4.75) 
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Therefore, 𝜎𝑚𝑙
2
^

 is an asymptotically effective estimator. Particularly, according the Central Limit 

Theorems, 𝜎𝑚𝑙
2
^

~
𝑎
𝑁(𝜎2,

2𝜎4

𝑁
). In general, a maximum likelihood estimator satisfies the property of 

progressive distribution, which indicates 

 𝜽̂𝑚𝑙~
𝑎
𝑁(𝜽, 𝑰−1(𝜽)) (4.76) 

This chapter presents two novel non-coherent ranging technique by Peak detection. A two-stage 

approach for the fine ranging estimate is applied to the DFT domain to achieve accurate interpolation 

and optimum precision. Method description is introduced, following with the algorithm realisation by 

KPI, which is one of the main works on the thesis. Polynomial interpolation is expounded, including 

the procedures of processing and the configuration of the parabolic, cubic and quartic functions. Then 

a general equation for 𝐾𝑡ℎ -order polynomial fit is derived and given eventually. Another non-

coherent ranging technique uses chirp Z transform. The basic concept of Z transform is introduced 

firstly, following with the algorithm realisation by MLCZT. The CZT accurately implements the 

periodogram, and only a narrow band spectrum is processed. The concept of most-likelihood 

estimator is introduced to combine with CZT to acquire better ranging performance. 
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5. Mathematical derivation of Cramer-Rao Lower Bound of 

Two Ranging Algorithms 

Based on the fundamental theory of statistical signal processing introduced in section 2.5, the 

vector form of Cramer-Rao lower bound (CRLB) and transformation of parameters is firstly presented. 

Mathematical expressions of CRLB of Kth-order Polynomial Interpolation (KPI) and Most-likelihood 

chirp Z transform (MLCZT) algorithms are derived as follow, namely the asymptotical CRLB under the 

distinctive circumstance and signal-to-noise ratio (SNR) regarding two algorithms respectively. I 

attempt to put the majority of algebra, mathematical proof and derivation of all parts of the thesis 

into this signal chapter without deteriorating the readability of the entire thesis. 

As mentioned at section 2.5, the concept of minimum variance criterion and minimum variance 

unbiased (MVU) estimator in statistical signal processing can be widely used, as long as we 

correspondingly construct suitable models about those interested physical parameters. The physical 

parameters being estimated here are mainly the range variation and the accumulated signal-to-noise 

ratio (SNR) for the discussing of the Cramer-Rao Lower Bound (CRLB) of two algorithms. 

 

5.1 Transformation of Parameters and CRLB of Vector Parameters 

Since it is common to assume white Gaussian noise, it is worthwhile to derive the CRLB for this case. 

Consider that a deterministic signal with an unknown parameter 𝜀 is estimated in WGN as 

 𝑓[𝑚] = 𝑟[𝑚; 𝜀] + 𝜔[𝑚]       𝑚 = 0, 1,⋯ ,𝑀 − 1 (5.1) 

The dependence of the signal on 𝜀 is explicitly noted. The likelihood function is 

 p(𝑦; 𝜀) =
1

(2𝜋𝜎2)
𝑀
2

𝑒𝑥𝑝 {−
1

2𝜎2
∑ (𝑓[𝑚] − 𝑟[𝑚; 𝜀])2

𝑀−1

𝑚=0
} (5.2) 

Differentiating once produces 

 
𝜕𝑙𝑛 p(𝒚; 𝜀)

𝜕𝜀
=
1

𝜎2
∑ (𝑓[𝑚] − 𝑟[𝑚; 𝜀])

𝜕𝑟[𝑚; 𝜀]

𝜕𝜀

𝑀−1

𝑚=0
 (5.3) 

And a second differentiation results in 

 
𝜕2𝑙𝑛 p(𝒚; 𝜀)

𝜕𝜀2
=
1

𝜎2
∑ {(𝑓[𝑚] − 𝑟[𝑚; 𝜀])

𝜕2𝑟[𝑚; 𝜀]

𝜕𝜀2
− (

𝜕𝑟[𝑚; 𝜀]

𝜕𝜀
)

2

}
𝑀−1

𝑚=0
 (5.4) 
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Taking the expected value yields 

 𝐸 (
𝜕2𝑙𝑛 p(𝒚; 𝜀)

𝜕𝜀2
) =

1

𝜎2
∑ (

𝜕𝑟[𝑚; 𝜀]

𝜕𝜀
)

2𝑀−1

𝑚=0
 (5.5) 

 

thus finally 

 
Var(𝜀̂) ≥

𝜎2

∑ (
𝜕𝑟[𝑚; 𝜀]
𝜕𝜀

)
2

𝑀−1
𝑚=0

 
(5.6) 

The form of the bound demonstrates the importance of the signal dependence on 𝜀. Signals that 

change rapidly as the unknown parameter changes result in accurate estimators. 

It frequently occurs in practice that the parameter we wish to estimate is a function of some more 

fundamental parameter. For example, we may not be interested in the sign of 𝐵 but instead may 

wish to estimate 𝐵2 or the power of the signal. Knowing the CRLB for 𝐵, we can quickly obtain it for 

𝐵2 or in general for any function of 𝐵. If it is desired to estimate δ = h(𝜀), then the CRLB is 

 Var(𝜀̂) ≥
(
𝜕ℎ
𝜕𝜀
)
2

−𝐸 [
𝜕2𝑙𝑛 p(𝒚; 𝜀)

𝜕𝜀2
]
 (5.7) 

For the present example, this becomes δ = h(𝜀) = 𝐵2 and 

 Var(𝐵2̂) ≥
(2𝐵)2

𝑀 𝜎2⁄
=
4𝐵2𝜎2

𝑀
 (5.8) 

Note that in using (5.7) the CRLB is expressed in terms of 𝜀. Although the sample mean estimator 

was efficient for 𝐵, 𝑦̅2 is not even an unbiased estimator of 𝐵2. Since 𝑦̅~ℵ(𝐵, 𝜎2 𝑀⁄  ) 

 𝐸(𝑦̅2) = 𝐸2(𝑦̅) + Var(𝑦̅) = 𝐵2 +
𝜎2

𝑀
≠ 𝐵2 (5.9) 

Hence, it can be concluded that the efficiency of an estimator is destroyed by a non-linear 

transformation. That it is maintained for affine transformations is easily verified. Although efficiency 

is preserved only over linear transformations, it is approximately maintained over nonlinear 

transformations if the data record is large enough. This has great practical significance because we are 

frequently interests in estimating functions of parameters. As shown in the example above, 𝑦̅2 is 

biased but asymptotically unbiased (even unbiased as M → ∞). Intuitively, this situation occurs 

because of the statistical linearity of the transformation. As 𝑀 increases, the PDF of 𝑦̅ becomes 
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more concentrated about the mean 𝐵. Thus, the values of 𝑦̅ that are observed lie in a small interval, 

where the nonlinear transformation is approximately linear. Therefore, the transformation may be 

replaced by a linear one as a value of 𝑦̅ in the nonlinear region rarely occurs, and the estimator 

achieves the CRLB asymptotically. 

Now extending the results of the previous derivation to the case of a vector parameter 𝛆 =

[ε1ε2⋯ε𝑛]
𝑇. It is assumed that the estimator 𝛆̂ is unbiased, and the vector parameter CRLB will 

allow us to place a bound on the variance of each element. The CRLB is found as the [𝑢, 𝑣] element 

of the inverse of a matrix or 

 Var(𝜀𝑢̂) ≥ [[𝑰
−𝟏(𝜺)]

𝑢𝑣
] (5.10) 

where is the n × n Fisher information matrix. The latter is defined by 

 [𝑰(𝜺)]𝑢𝑣 = −𝐸 [
𝜕2𝐼𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢𝜕𝜀𝑣
] (5.11) 

for 𝑢 = 1,2,⋯ , n; 𝑣 = 1,2,⋯ , n. 

The scaler parameter form of CRLB has been introduced in section 2.5; now, it is time to present 

the vector parameter form for further derivation. It is assumed that PDF p(𝒚; 𝜺)  satisfies the 

regularity conditions 

 𝐸 [
𝜕𝐼𝑛 p(𝒚; 𝜺)

𝜕𝜺
] = 0      𝑓𝑜𝑟 𝑎𝑙𝑙 𝜺 (5.12) 

where the expectation is taken concerning p(𝒚; 𝜺). Then, the covariance matrix of any unbiased 

estimator 𝜺̂ satisfies 

 𝑪𝜀̂ − 𝑰
−𝟏(𝜺) ≥ 0 (5.13) 

where ≥ 0 is interpreted as meaning that the matrix is positive semidefinite. The Fisher information 

matrix 𝑰(𝜺) is presented as 

 [𝑰(𝜺)]𝑢𝑣 = −𝐸 [
𝜕2𝐼𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢𝜕𝜀𝑣
] (5.14) 

where the derivatives are evaluated at the true value of 𝜺, and the expectation is taken concerning 

p(𝒚; 𝜺). Moreover, an unbiased estimator may be found that attains the bound in that 𝑪𝜀̂ = 𝑰
−𝟏(𝜺) 

if and only if 
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𝜕𝐼𝑛 p(𝒚; 𝜺)

𝜕𝜺
= 𝑰(𝜺)(𝒉(𝒚) − 𝜺) (5.15) 

for some s-dimensional function 𝒉 and some s × s matrix 𝑰. That estimator, which is the MVU 

estimator, is 𝜺̂ = 𝒉(𝒚), and its covariance matrix is 𝑰−𝟏(𝜺). 

That (5.7) follows from (5.11) is shown by noting that for a positive semidefinite matrix, the 

diagonal elements are nonnegative. Therefore, 

 [𝑪𝜀̂ − 𝑰
−𝟏(𝜺)]

𝑢𝑣
≥ 0 (5.16) 

and thus 

 Var(𝜀𝑢̂) = [𝑪𝜀̂]𝑢𝑣 ≥ [𝑰
−𝟏(𝜺)]

𝑢𝑣
 (5.17) 

Additionally, when equality holds or 𝑪𝜀̂ = 𝑰
−𝟏(𝜺) , then (5.17) holds with equality also. The 

conditions for the CRLB to be acquired are of particular interest since then 𝜺̂ = 𝒉(𝒚) is efficient and 

therefore is the MVU estimator. 

In finding MVU estimators for a vector parameter, the CRLB theorem presents a powerful assist. It 

mainly permits us to find the MVU estimator for an essential class of data models. Suffice it to say that 

if we can model our data in the linear model form, then the MVU estimator and its performance are 

easily found. 

It is natural to extend the expression of transformation to the vector case now. Assume that it is 

desired to estimate 𝛅 = 𝐡(𝜺) for 𝐡, an s-dimensional function 

 𝑪𝜔̂ −
𝜕𝐡(𝜺)

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝐡(𝜺)𝑇

𝜕𝜺
≥ 0 (5.18) 

where, as before,  ≥ 0 is also to be interpreted as positive semidefinite. In (5.18), 𝜕𝐡(𝜺) 𝜕𝜺⁄  is 

the 𝑢 × 𝑣 Jacobian matrix defined as 

 
𝜕𝐡(𝜺)

𝜕𝜺
=

[
 
 
 
 
 
 
 
𝜕ℎ1(𝜺)

𝜕𝜀1

𝜕ℎ1(𝜺)

𝜕𝜀2
⋯

𝜕ℎ1(𝜺)

𝜕𝜀𝑣
𝜕ℎ2(𝜺)

𝜕𝜀1

𝜕ℎ2(𝜺)

𝜕𝜀2
⋯

𝜕ℎ2(𝜺)

𝜕𝜀𝑣
⋮ ⋮ ⋱ ⋮

𝜕ℎ𝑢(𝜺)

𝜕𝜀1

𝜕ℎ𝑟(𝜺)

𝜕𝜀2
⋯

𝜕ℎ𝑢(𝜺)

𝜕𝜀𝑣 ]
 
 
 
 
 
 
 

 (5.19) 

 

5.2 CRLB of 𝐾𝑡ℎ-order Polynomial Interpolation Algorithm 
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The CRLB for a vector parameter 𝛚 = 𝐡(𝜺) is derived firstly from the following application of KPI and 

MLZCT algorithms. The PDF is characterised by 𝜺. Assuming unbiased estimators as 

 𝐸(𝜔̂𝑢) = 𝜔𝑢 = [𝐡(𝜺)]𝑢       u = 1,2,… , n (5.20) 

The regularity conditions are 

 𝐸 [
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺
] = 0 (5.21) 

so that 

 ∫(𝜔̂𝑢 −𝜔𝑢)
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢
p(𝒚; 𝜺)𝑑𝒚 =

𝜕[𝐡(𝜺)]𝑢
𝜕𝜀𝑢

 (5.22) 

Now considering for 𝑣 ≠ 𝑢 

 

∫(𝜔̂𝑢 −𝜔𝑢)
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢
p(𝒚; 𝜺)𝑑𝒚 =∫(𝜔̂𝑢 −𝜔𝑢)

𝜕p(𝒚; 𝜺)

𝜕𝜀𝑢
𝑑𝒚 

=
𝜕

𝜕𝜀𝑣
∫𝜀𝑢̂p(𝒚; 𝜺)𝑑𝒚 − 𝜔𝑢𝐸 [

𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑣
] 

=
𝜕𝜔𝑢
𝜕𝜀𝑣

=
𝜕[𝐡(𝜺)]𝑢
𝜕𝜀𝑣

 

(5.23) 

Combining (5.22) and (5.23) into matric form 

 ∫(𝝎̂ − 𝝎)
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺𝒖
p(𝒚; 𝜺)𝑑𝒚 =

𝜕𝐡(𝜺)

𝜕𝜺
 (5.24) 

Now pre-multiply by 𝒂𝑇  and post-multiply by b, where a and b are arbitrary s × 1 and t × 1 

vectors, respectively, to yield 

 ∫𝒂𝑇(𝝎̂ − 𝝎)
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺𝒖
𝒃p(𝒚; 𝜺)𝑑𝒚 =𝒂𝑇

𝜕𝐡(𝜺)

𝜕𝜺
𝒃 (5.25) 

Let 

 𝑞(𝒚) = p(𝒚; 𝜺) (5.26) 
 

 𝑓(𝒚) = 𝒂𝑇(𝝎̂ − 𝝎) (5.27) 
 

 𝑘(𝒚) =
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺𝒖
𝒃 (5.28) 

Now applying the Cauchy-Schwarz inequality 
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 [∫𝑎(𝑦)𝑏(𝑦)𝑒(𝑦)𝑑𝑦]
2

≤ ∫𝑎(𝑦)𝑏2(𝑦)𝑑𝑦∫𝑎(𝑦)𝑐𝑒2(𝑦)𝑑𝑦 (5.29) 

which hold equality if and only if 𝑏(𝑦) = 𝑐 ∙ 𝑒(𝑦), for 𝑐 some constant not dependent on 𝒚. The 

functions b and e are arbitrary scalar functions, while 𝑎(𝑦) ≥ 0 for all 𝒚. 

 

(𝒂𝑇
𝜕𝐡(𝜺)

𝜕𝜺
𝒃)

2

≤ ∫𝒂𝑇(𝝎̂ − 𝝎)(𝝎̂ − 𝝎)𝑇𝒂p(𝒚; 𝜺)𝑑𝒚 

∙ ∫𝒃𝑇
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺𝒖

𝜕𝑙𝑛 p(𝒚; 𝜺)𝑇

𝜕𝜺𝒖
𝒃p(𝒚; 𝜺)𝑑𝒚 = 𝒂𝑇𝑪𝜔̂𝒂𝒃

𝑇𝑰(𝜺)𝒃 

(5.30) 

Since as in the scalar case 

 𝐸 [
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺𝒖

𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺𝒗
] = −𝐸 [

𝜕2𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢𝜕𝜀𝑣
] = [𝑰(𝜺)]𝑢𝑣 (5.31) 

Since 𝒃 was arbitrary, let 

 𝒃 = 𝑰−𝟏(𝜺)
𝜕𝐡(𝜺)𝑇

𝜕𝜺
𝒂 (5.32) 

To yield 

 (𝒂𝑇
𝜕𝐡(𝜺)

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝐡(𝜺)𝑇

𝜕𝜺
𝒂)

2

≤ 𝒂𝑇𝑪𝜔̂𝒂(𝒂
𝑇
𝜕𝐡(𝜺)

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝐡(𝜺)𝑇

𝜕𝜺
𝒂) (5.33) 

Since 𝑰(𝜺)  is the positive definite, so is 𝑰−𝟏(𝜺) , and 
𝜕𝐡(𝜺)

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝐡(𝜺)𝑇

𝜕𝜺
 is at least positive 

semidefinite. The term inside the parentheses is therefore nonnegative, and it has 

 𝒂𝑇 (𝑪𝜔̂ −
𝜕𝐡(𝜺)

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝐡(𝜺)𝑇

𝜕𝜺
)𝒂 ≥ 0 (5.34) 

Because of 𝒂 as well as 𝒃 are arbitrary, so that (5.30) follows. If 𝝎 = 𝐡(𝜺) = 𝜺, then 
𝜕𝐡(𝜺)

𝜕𝜺
= 𝑰 

and (5.24) follows. The conditions for equality are 𝑓(𝒚) = 𝑐 ∙ 𝑘(𝒚) , where c is a constant not 

dependent on 𝒚. This condition becomes 

 𝒂𝑇(𝝎̂ − 𝝎) = 𝑐
𝜕𝑙𝑛 p(𝒚; 𝜺)𝑇

𝜕𝜺
𝒃 = 𝑐

𝜕𝑙𝑛 p(𝒚; 𝜺)𝑇

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝐡(𝜺)𝑇

𝜕𝜺
𝒂 (5.35) 

Since 𝐚 was arbitrary 

 
𝜕𝐡(𝜺)

𝜕𝜺
𝑰−𝟏(𝜺)

𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺
=
1

𝑐
(𝝎̂ − 𝝎) (5.36) 
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Consider the case when 𝝎 = 𝐡(𝜺) = 𝜺, so that 
𝜕𝐡(𝜺)

𝜕𝜺
= 𝑰, then 

 
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜺
=
1

𝑐
𝑰(𝜺)(𝜺̂ − 𝜺) (5.37) 

Note that c may depend on 𝜺, it has 

 
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢
=∑

[𝑰(𝜺)]𝑢𝑣
𝑐(𝜺)

(𝜀𝑛̂ − 𝜀𝑛)
𝑚

𝑛=1
 (5.38) 

and differentiating once more 

 
𝜕2𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢𝜕𝜀𝑣
=∑

(

 
 [𝑰(𝜺)]𝑢𝑛

𝑐(𝜺)
(−𝛿𝑛𝑢) +

𝜕 (
[𝑰(𝜺)]𝑢𝑛
𝑐(𝜺)

)

𝜕𝜀𝑣
(𝜀𝑛̂ − 𝜀𝑛)

)

 
 𝑚

𝑛=1
 (5.39) 

Finally, there is 

 [𝑰(𝜺)]𝑢𝑣 = −𝐸 [
𝜕2𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢𝜕𝜀𝑣
] =

[𝑰(𝜺)]𝑢𝑣
𝑐(𝜺)

 (5.40) 

since 𝐸(𝜔̂𝑛) = 𝜔𝑛. Clearly, 𝑐(𝜺) = 1 and the condition for equality follows. 

Now Deriving the form of KPI of general Gaussian CRLB. Assume that 𝒚~𝑁(𝜼(𝜺),𝑴(𝜺)), where 

𝜼(𝜺) is the N × 1 mean vector and 𝑴(𝜺) is the N × N covariance matrix, both of which depend 

on 𝜺. Then the PDF is 

 p(𝒚; 𝜺) =
1

(2𝜋)
𝑁
2𝑑𝑒𝑡

1
2[𝑴(𝜺)]

𝑒𝑥𝑝 [−
1

2
(𝒚 − 𝜼(𝜺))

𝑇
𝑴−1(𝜺)(𝒚 − 𝜼(𝜺))] (5.41) 

we can make use of the following identities 

 
𝜕𝑙𝑛 𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝜀𝑛
= 𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
) (5.42) 

where 𝜕𝑴(𝜺) 𝜕𝜀𝑛⁄  is the N × N matrix with [𝑢, 𝑣] element 𝜕[𝑴(𝜺)]𝑢𝑣 𝜕𝜀𝑛⁄  and 

 
𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
= −𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
𝑴−1(𝜺) (5.43) 

To establish (6.42) we first note 

 
𝜕𝑙𝑛 𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝜀𝑛
=

1

𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝜀𝑛
 (5.42) 

Since 𝑑𝑒𝑡[𝑴(𝜺)] depends on all the elements of 𝑴(𝜺) 
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𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝜀𝑛
=∑ ∑

𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕[𝑴(𝜺)]𝑢𝑣

𝑁

𝑣=1

𝑁

𝑢=1

𝜕[𝑴(𝜺)]𝑢𝑣
𝜕𝜀𝑛

 

= 𝑡𝑟 (
𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝑴(𝜺)

𝜕𝑴𝑇(𝜺)

𝜕𝜀𝑛
) 

(5.43) 

where 𝜕𝑑𝑒𝑡[𝑴(𝜺)] 𝜕𝑴(𝜺)⁄  is an N × N  matric with [𝑢, 𝑣]  element 𝜕[𝑴(𝜺)] 𝜕[𝑴(𝜺)]𝑢𝑣⁄  and 

the identity 

 tr(𝑨𝑩𝑇) =∑ ∑ [𝑨]𝑢𝑣[𝑩]𝑢𝑣
𝑁

𝑣=1

𝑁

𝑢=1
 (5.44) 

has been used. Now by the definition of the determinant 

 𝑑𝑒𝑡[𝑴(𝜺)] =∑ [𝑴(𝜺)]𝑢𝑣[𝑳]𝑢𝑣
𝑁

𝑢=1
 (5.45) 

where 𝑳 is the N × N cofactor matrix and v can take any value from 1 to N. Thus, 

 
𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕[𝑴(𝜺)]𝑢𝑣
= [𝑳]𝑢𝑣 (6.45) 

or 

 
𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝑴(𝜺)
= 𝑳 (5.46) 

It is well known, however, that 

 𝑴−1(𝜺) =
𝑳𝑇

𝑑𝑒𝑡[𝑴(𝜺)]
 (5.46) 

so that 

 
𝜕𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝑴(𝜺)
= 𝑴−1(𝜺)𝑑𝑒𝑡[𝑴(𝜺)] (5.47) 

Using this in (5.42) and (5.43), we have the desired result as follow 

 

𝜕𝑙𝑛 𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝜀𝑛
=

1

𝑑𝑒𝑡[𝑴(𝜺)]
𝑡𝑟 (𝑴−1(𝜺)𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝑴(𝜺)

𝜕𝜀𝑛
)

= 𝑡𝑟 (𝑴−1(𝜺)
𝜕𝑴(𝜺)

𝜕𝜀𝑛
) 

(5.48) 

The second identity (5.43) is easily established as follows. Consider 

 𝑴−1(𝜺)𝑴(𝜺) = 𝑰 (5.49) 
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Differentiating each element of the matrices and expressing in the matrix form, we have 

 𝑴−1(𝜺)
𝜕𝑴(𝜺)

𝜕𝜀𝑛
+
𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
𝑴(𝜺) = 𝟎 (5.50) 

which leads to the desired result. 

It is time to evaluate the CRLB. Taking the first derivation 

 
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑛
= −

1

2

𝜕𝑙𝑛 𝑑𝑒𝑡[𝑴(𝜺)]

𝜕𝜀𝑛
−
1

2

𝜕

𝜕𝜀𝑛
[(𝒚 − 𝜼(𝜺))

𝑇
𝑴−1(𝜺)(𝒚 − 𝜼(𝜺))] (5.51) 

The first term has already been evaluated using (5.48); therefore, now consider the second term: 

 

𝜕

𝜕𝜀𝑛
[(𝒚 − 𝜼(𝜺))

𝑇
𝑴−1(𝜺)(𝒚 − 𝜼(𝜺))] 

=
𝜕

𝜕𝜀𝑛
∑ ∑ (𝑦[𝑢] − [𝜼(𝜺)]𝑢)

𝑁

𝑣=1

𝑁

𝑢=1
[𝑴−1(𝜺)]𝑢𝑣(𝑦[𝑣] − [𝜼(𝜺)]𝑣) 

=∑ ∑ {(𝑦[𝑢] − [𝜼(𝜺)]𝑢)[
𝑁

𝑣=1

𝑁

𝑢=1
[𝑴−1(𝜺)]𝑢𝑣 (

𝜕[𝜼(𝜺)]𝑣
𝜕𝜀𝑛

) 

+
𝜕[𝑴−1(𝜺)]𝑢𝑣

𝜕𝜀𝑛
(𝑦[𝑣] − [𝜼(𝜺)]𝑣)] 

+(−
𝜕[𝜼(𝜺)]𝑢
𝜕𝜀𝑛

) [𝑴−1(𝜺)]𝑢𝑣(𝑦[𝑣] − [𝜼(𝜺)]𝑣)} 

= −(𝒚 − 𝜼(𝜺))
𝑇
𝑴−1(𝜺)

𝜕𝜼(𝜺)

𝜕𝜀𝑛
+ (𝒚 − 𝜼(𝜺))

𝑇 𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
(𝒚 − 𝜼(𝜺)) 

−
𝜕𝜼(𝜺)𝑇

𝜕𝜀𝑛
𝑴−1(𝜺)(𝒚 − 𝜼(𝜺)) 

= −2
𝜕𝜼(𝜺)𝑇

𝜕𝜀𝑛
𝑴−1(𝜺)(𝒚 − 𝜼(𝜺)) + (𝒚 − 𝜼(𝜺))

𝑇 𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
(𝒚 − 𝜼(𝜺)) 

(5.52) 

Using (5.42) and the previous result, there is 

 

𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑛
= −

1

2
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
) +

𝜕𝜼(𝜺)𝑇

𝜕𝜀𝑛
𝑴−1(𝜺)(𝒚 − 𝜼(𝜺)) 

−
1

2
(𝒚 − 𝜼(𝜺))

𝑇 𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
(𝒚 − 𝜼(𝜺)) 

(5.53) 

Let 𝒚 = 𝒙 − 𝜼(𝜺). Evaluating 
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 [𝑰(𝜺)]𝑛𝑙 = 𝐸 [
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑛

𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑙
] (5.54) 

which is equivalent to (5.46), yields 

 

[𝑰(𝜺)]𝑛𝑙 =
1

4
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
) 𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑙
) 

+
1

2
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
)𝐸 (𝒙𝑇

𝜕𝑴−1(𝜺)

𝜕𝜀𝑙
𝒙) 

+
𝜕𝜼(𝜺)𝑇

𝜕𝜀𝑛
𝑴−1(𝜺)𝐸[𝒙𝒙𝑇]𝑴−1(𝜺)

𝜕𝜼(𝜺)

𝜕𝜀𝑙
 

+
1

4
𝐸 [𝒙𝑇

𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
𝒙𝒙𝑇

𝜕𝑴−1(𝜺)

𝜕𝜀𝑙
𝒙] 

(5.55) 

where we note that all odd-order moments are zero. Continuing, there is 

 

[𝑰(𝜺)]𝑛𝑙 =
1

4
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
) 𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑙
) 

−
1

2
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
) 𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑙
) 

+
𝜕𝜼(𝜺)𝑇

𝜕𝜀𝑛
𝑴−1(𝜺)

𝜕𝜼(𝜺)

𝜕𝜀𝑙
+
1

4
𝐸 [𝒙𝑇

𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
𝒙𝒙𝑇

𝜕𝑴−1(𝜺)

𝜕𝜀𝑙
𝒙] 

(5.56) 

where 𝐸(𝒙𝑇𝒛) = 𝑡𝑟[𝐸(𝒛𝒙𝑇)] for 𝒙, 𝒛 N × 1 vectors and (6.43) have been used. To evaluate the 

last term, the following equation is introduced 

 𝐸(𝒙𝑇𝑨𝒙𝒙𝑇𝑩𝒙) = tr(𝑨𝑪)tr(𝑩𝑪) + 2tr(𝑨𝑪𝑩𝑪) (5.57) 

where 𝑴 = 𝐸(𝒙𝑇𝒙) and 𝑨 and 𝑩 are symmetric matrices. Thus, this term becomes 

 

1

4
𝑡𝑟 (

𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
𝑴(𝜺)) 𝑡𝑟 (

𝜕𝑴−1(𝜺)

𝜕𝜀𝑙
𝑴(𝜺)) 

+
1

2
𝑡𝑟 (

𝜕𝑴−1(𝜺)

𝜕𝜀𝑛
𝑴(𝜺)

𝜕𝑴−1(𝜺)

𝜕𝜀𝑙
𝑴(𝜺)) 

(5.58) 

Next, using the relationship (5.43), this term becomes 

 
1

4
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
) 𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑙
) (5.59) 
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+
1

2
𝑡𝑟 (𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑛
𝑴−1(𝜺)

𝜕𝑴(𝜺)

𝜕𝜀𝑙
) 

And finally, using (5.59) in (5.56) produces the desired result. 

According to the processing techniques derived above, the mathematical expression will be directly 

given to save pages for long derivation again. the CRLB of Kth-order polynomial interpolation (KPI) 

algorithm can be presented as 

 

𝐶𝑅𝐿𝐵(𝑝̂𝑘) =
λ𝑒
2

64𝜋2𝑆𝑁𝑅𝑘𝑇𝐴
2𝑘
∑ (2𝑘 − 1)

𝑘

𝑛=1
 

∙ [∑
(−1)𝑚

22𝑚+1

2(𝑛−𝑘)

𝑚=0
(
𝑘

𝑛
)(
𝑘

𝑚
)

(2𝑛 − 2𝑚)!

𝑚! (𝑛 − 𝑚)! (𝑛 − 𝑘 − 2𝑚)!
]

2

 

(5.60) 

where 𝑆𝑁𝑅𝑘 = 𝑘𝐴
2 𝜎2⁄  is the accumulated signal-to-noise ratio (SNR), γ = 𝑡0 𝑇𝐴⁄  is the 

normalised index for the benchmark time 𝑡0  and accumulated reference 𝑇𝐴 , and λ𝑒  is the 

equivalent waveform. 

 

5.3 CRLB of Most-likelihood Chirp Z Transform Algorithm 

Under specific circumstances, it is hard to calculate the CRLB as it is required to invert the covariance 

matrix. Asymptotical CRLB can be applied as an alternative to Gaussian processes, which is easily 

computed and provides sufficient information because of its simplified form. The primary negative is 

that it is valid only as of the data record length M → ∞ or asymptotically. However, it can provide a 

desirable approximation to the identical CRLB if M is substantially larger than the correlation time of 

the pro, which refers to the maximum lag 𝑖 of the ACF 𝑐𝑦(𝑖) = 𝐸[𝑦[𝑚]𝑦[𝑚 + 𝑖]] for which the ACF 

is essentially nonzero. Therefore, for processes with broad PSDs, the approximation will be good for 

moderate length data records, while for narrowband processes, longer length data records are 

required. The elements of the Fisher information are therefore approximately (M → ∞) 

 [𝑰(𝜺)]𝑢𝑣 =
𝑀

2
∫

𝜕𝐼𝑛𝑃𝑦(ℎ; 𝜺)

𝜕𝜀𝑢

𝜕𝐼𝑛𝑃𝑦(ℎ; 𝜺)

𝜕𝜀𝑣
𝑑ℎ

1
2

−
1
2

 (5.61) 

where 𝑃𝑦(ℎ; 𝜺) is the PSD of the process with the explicit dependence on 𝜺 shown. It is assumed 

that the mean of 𝑦[𝑚] is zero. This form allows us to examine the accuracy with which PSD, or 

equivalently, covariance parameters may be estimated. 
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It can be proven that almost any WSS Gaussian random processing y[𝑚] maybe represented as 

the output of a causal linear invariant filter driven at the input by white Gaussian noise n[𝑚] or 

 y[𝑚] =∑ g[𝑖]n[𝑚 − 𝑖]
∞

𝑖=0
 (5.62) 

where g[0] = 1. The only condition is that the PSD must satisfy 

 ∫ 𝐼𝑛𝑃𝑦

1
2

−
1
2

(ℎ)𝑑ℎ > −∞ (5.63) 

With this representation the PSD of y[𝑚] is 

 𝑃𝑦(ℎ) = |𝐺(ℎ)|
2𝜎𝑛

2 (5.64) 

since 𝜎𝑛
2 is the variance of n[𝑚] and 

 𝐺(ℎ) =∑ 𝑔[𝑖]𝑒𝑥𝑝(−𝑗2𝜋ℎ𝑖)
∞

𝑖=0
 (5.65) 

is the filter frequency response. If the observation is {y[0], y[1],⋯ , y[𝑚 − 1]} and M is large; then 

the representation is approximated by 

 

y[𝑚] =∑ g[𝑗]n[𝑚 − 𝑖]
𝑚

𝑖=0
+ y[𝑚] +∑ g[𝑗]n[𝑚 − 𝑖]

∞

𝑖=𝑚+1
 

≈∑ g[𝑗]n[𝑚 − 𝑖]
𝑚

𝑖=0
 

(5.66) 

This is equivalent to setting n[𝑚] = 0 for m < 0. As m → ∞, the approximate representation 

becomes better for y[𝑚]. It is clear, however, that the beginning samples will be poorly represented 

unless the impulse response g[𝑖]  is small for i > m . For large M, most of the samples will be 

accurately represented if M is much greater than the impulse response length. Since 

 𝑐𝑦[𝑖] = 𝜎𝑛
2∑ g[𝑚]g[𝑚 + 𝑖]

∞

𝑚=0
 (5.67) 

the correlation time of 𝑐𝑦[𝑖] is the same as the impulse response length. Hence, because the CRLB 

to be derived is based on (5.66), the asymptotic CRLB will be a good approximation if the data record 

length is much greater than the correlation time. 

To find the PDF of y we used (5.62), which is a transformation from 𝐧 = [ n[0] n[1]⋯  n[𝑀 − 1]]
𝑇

 

to 𝐲 = [ y[0] y[1]⋯  y[𝑀 − 1]]
𝑇

 or 
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 𝐲 = [

g[0] 0 0 ⋯ 0

g[1] g[0] 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

g[𝑀 − 1] g[𝑀 − 2] g[𝑀 − 3] ⋯ g[0]

] 𝒏 (5.68) 

Note that G has a determinant of (𝑔[0])𝑀 = 1 and hence is invertible. Since 𝒏~𝑁(𝟎, 𝜎𝑛
2𝑰), the 

PDF of y is 𝑁(𝟎, 𝜎𝑛
2𝑮𝑮𝑇) or 

 p(𝒚; 𝜺) =
1

(2𝜋)
𝑀
2 𝑑𝑒𝑡

1
2(𝜎𝑛

2𝑮𝑮𝑇)
𝑒𝑥𝑝 [−

1

2
𝒚𝑇(𝜎𝑛

2𝑮𝑮𝑇)−1𝒚] (5.69) 

while 

 det(𝜎𝑛
2𝑮𝑮𝑇) = 𝜎𝑛

2𝑀𝑑𝑒𝑡2(𝑮) = 𝜎𝑛
2𝑀 (5.70) 

also, 

 𝒚𝑇(𝜎𝑛
2𝑮𝑮𝑇)−1𝒚 =

𝟏

𝜎𝑛
2 (𝑮

−𝟏𝒚)
𝑻
(𝑮−𝟏𝒚) =

𝟏

𝜎𝑛
2𝑵

𝑇𝑵 (5.71) 

So that 

 p(𝒚; 𝜺) =
1

(2𝜋𝜎𝑛
2)
𝑀
2

𝑒𝑥𝑝 (−
𝟏

2𝜎𝑛
2𝑵

𝑇𝑵) (5.72) 

from (5.66) it has approximately 

 Y(ℎ) = G(ℎ)N(ℎ) (5.73) 

where 

 

Y(ℎ) =∑ 𝑦[𝑚]𝑒𝑥𝑝(−𝑗2𝜋ℎ𝑚)
𝑀−1

𝑚=0
 

N(ℎ) =∑ 𝑛[𝑚]𝑒𝑥𝑝(−𝑗2𝜋ℎ𝑚)
𝑀−1

𝑚=0
 

(5.74) 

are the Fourier transforms of the truncated sequences. By Parseval’s theorem 

 

𝟏

𝜎𝑛
2𝑵

𝑇𝑵 =
𝟏

𝜎𝑛
2∑ 𝑛2[𝑚]

𝑀−1

𝑚=0
=
𝟏

𝜎𝑛
2∫ |N(ℎ)|2𝑑ℎ

1
2

−
1
2

 

≈ ∫
|Y(ℎ)|2

𝜎𝑛
2|G(ℎ)|2

𝑑ℎ = ∫
|Y(ℎ)|2

𝑃𝑦(ℎ)
𝑑ℎ

1
2

−
1
2

1
2

−
1
2

 

(5.75) 

Also, 
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In𝜎𝑛
2 = ∫ 𝜎𝑛

2𝑑ℎ

1
2

−
1
2

= ∫ 𝐼𝑛 (
𝑃𝑦(ℎ)

|G(ℎ)|2
)𝑑ℎ

1
2

−
1
2

 

             = ∫ 𝐼𝑛𝑃𝑦(ℎ)𝑑ℎ

1
2

−
1
2

−∫ 𝐼𝑛|G(ℎ)|2𝑑ℎ

1
2

−
1
2

 

(5.76) 

while 

 

∫ 𝐼𝑛|G(ℎ)|2𝑑ℎ

1
2

−
1
2

= ∫ 𝐼𝑛G(ℎ) + 𝐼𝑛G∗(ℎ)𝑑ℎ

1
2

−
1
2

= 2𝑅𝑒∫ 𝐼𝑛G(ℎ)𝑑ℎ

1
2

−
1
2

 

                                   = 2𝑅𝑒∮ 𝐼𝑛G(𝑧)
𝑑𝑧

2𝜋𝑗𝑧
= 2𝑅𝑒[𝑍−1{𝐼𝑛G(𝑧)}|𝑚=0]

𝑐

 

(5.77) 

where C is the unit circle in the z plane. Since G(𝑧) corresponds to the system function of a causal 

filter, it converges outside a circle of radius r < 1; since G(𝑧) is assumed to exist on the unit circle 

for the frequency response to exist. Hence, 𝐼𝑛G(𝑧) also converges outside a circle of radius r < 1, 

so that the corresponding sequence is causal. By the initial value theorem which is valid for causal 

sequence 

 𝑍−1{𝐼𝑛G(𝑧)}|𝑚=0 = lim
𝑧→∞

𝐼𝑛G(𝑧) = 𝐼𝑛 lim
𝑧→∞

G(𝑧) = 𝐼𝑛𝑔[0] = 0 (5.78) 

Therefore 

 ∫ 𝐼𝑛|G(ℎ)|2𝑑ℎ

1
2

−
1
2

= 0 (5.79) 

then 

 In𝜎𝑛
2 = ∫ 𝐼𝑛𝑃𝑦(ℎ)𝑑ℎ

1
2

−
1
2

 (5.80) 

Substituting (5.75) and (5.80) into (5.69) produces for the log PDF 

 Inp(𝒚; 𝜺) = −
𝑀

2
𝐼𝑛2𝜋 −

𝑀

2
∫ 𝐼𝑛𝑃𝑦(ℎ)𝑑ℎ

1
2

−
1
2

−
1

2
∫

|Y(ℎ)|2

𝑃𝑦(ℎ)
𝑑ℎ

1
2

−
1
2

 (5.81) 

Hence, the asymptotic log PDF is 
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 Inp(𝒚; 𝜺) = −
𝑀

2
𝐼𝑛2𝜋 −

𝑀

2
∫ [𝐼𝑛𝑃𝑦(ℎ) +

1
𝑀
|Y(ℎ)|2

𝑃𝑦(ℎ)
]𝑑ℎ

1
2

−
1
2

 (5.82) 

To determine the CRLB 

 

   
𝜕𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢
= −

𝑀

2
∫ (

1

𝑃𝑦(ℎ)
−

1
𝑀
|Y(ℎ)|2

𝑃𝑦
2(ℎ)

)
𝜕𝑃𝑦(ℎ)

𝜕𝜀𝑢
𝑑ℎ

1
2

−
1
2

 

𝜕2𝑙𝑛 p(𝒚; 𝜺)

𝜕𝜀𝑢𝜀𝑣
= −

𝑀

2
∫ (

1

𝑃𝑦(ℎ)
−

1
𝑀
|Y(ℎ)|2

𝑃𝑦
2(ℎ)

)
𝜕2𝑃𝑦(ℎ)

𝜕𝜀𝑢𝜀𝑣

1
2

−
1
2

 

+(−
1

𝑃𝑦
2(ℎ)

−

2
𝑀
|Y(ℎ)|2

𝑃𝑦
3(ℎ)

)
𝜕𝑃𝑦(ℎ)

𝜕𝜀𝑢

𝜕𝑃𝑦(ℎ)

𝜕𝜀𝑣
𝑑ℎ 

(5.83) 

In taking the expected value, we encounter the term E[|Y(ℎ)|2 𝑀⁄ ], for large M this is now shown 

to be 𝑃𝑦(ℎ). Note that |Y(ℎ)|2 𝑀⁄  is the termed the periodogram spectral estimator. 

 

E (
1

𝑀
|Y(ℎ)|2) = 𝐸 (

1

𝑀
∑ ∑ y[𝑛]y[𝑚]𝑒𝑥𝑝[−𝑗2𝜋ℎ(𝑛 −𝑚)]

𝑀−1

𝑚=0

𝑀−1

𝑛=0
) 

                      =
1

𝑀
∑ ∑ 𝑐𝑦[𝑛 − 𝑚]𝑒𝑥𝑝[−𝑗2𝜋ℎ(𝑛 −𝑚)]

𝑀−1

𝑚=0

𝑀−1

𝑛=0
 

      = ∑ (1 −
|𝑖|

𝑀
)

𝑀−1

𝑖=−(𝑀−1)
𝑐𝑦[𝑖]𝑒𝑥𝑝[−𝑗2𝜋ℎ𝑖] 

(5.84) 

where we have used the identity 

 ∑ ∑ 𝑘[𝑛 −𝑚] =∑ (𝑀 − |𝑖|)
𝑀−1

𝑖=−(𝑀−1)

𝑀−1

𝑚=0

𝑀−1

𝑛=0
𝑘[𝑖] (5.85) 

As M → ∞, 

 (1 −
|𝑖|

𝑀
) 𝑐𝑦[𝑖] → 𝑐𝑦[𝑖] (5.86) 

Assuming that the ACF dies out sufficiently rapidly. Therefore, 

 E (
1

𝑀
|Y(ℎ)|2) ≈ 𝑃𝑦(ℎ) (5.87) 

After taking expectations in (5.81), this first section is zero, thus, 
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 [𝐼(𝜺)]𝑢𝑣 =
𝑀

2
∫

1

𝑃𝑦
2(ℎ)

𝜕𝑃𝑦(ℎ)

𝜕𝜀𝑢

𝜕𝑃𝑦(ℎ)

𝜕𝜀𝑣
𝑑ℎ =

𝑀

2
∫

𝜕𝐼𝑛𝑃𝑦(ℎ)

𝜕𝜀𝑢

𝜕𝐼𝑛𝑃𝑦(ℎ)

𝜕𝜀𝑣
𝑑ℎ

1
2

−
1
2

1
2

−
1
2

 (5.88) 

which is (5.75) without the explicit dependence of the PSD on 𝜺 shown. 

According to the processing techniques derived above, the CRLB of K points most-likelihood chirp 

Z transform (MLCZT) algorithm can be presented as 

 𝐶𝑅𝐿𝐵(𝑝̂𝑘) =
λ𝑒
2

16𝜋2𝑆𝑁𝑅𝑘𝑇𝐴
2𝑘

(𝑘!)2

2𝑘 + 1
∙ [∑

(−1)𝑚

2𝑚 − 1

2(𝑛−𝑘)

𝑚=0
(
𝑘

𝑚
)(𝑚 + 1)]

2

 (5.89) 

where 𝑆𝑁𝑅𝑘 = 𝑘𝐴
2 𝜎2⁄  is the accumulated signal-to-noise ratio (SNR), γ = 𝑡0 𝑇𝐴⁄  is the 

normalised index for the benchmark time 𝑡0  and accumulated reference 𝑇𝐴 , and λ𝑒  is the 

equivalent waveform. 

Mathematical expressions of CRLB of KPI and MLCZT algorithms are derived in this chapter. It 

contains the majority of mathematical proofing and derivation of all parts of the thesis. The vector 

form of CRLB is firstly introduced, then the derivation of asymptotical CRLB under the distinctive 

circumstance and SNR regarding two techniques, respectively. A mathematical derivation is also 

presented to validate the most-likelihood method in the CZT at the end of this chapter. 
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6. Simulation Results and Analysis 

This chapter analyses the results and data obtained with simulations and laboratory experiments 

as well, beginning with pre-processing the acquired raw time-domain data, then following the results 

of Kth-order polynomial interpolation (KPI) and most-likelihood chirp Z transform (MLCZT) techniques. 

Relative drawbacks and improvements are discussed from several aspects under different conditions. 

A variety of simulation outcomes based on non-coherent technique are demonstrated in the following 

sections. 

 

6.1 Results of Peak Detection by 𝐾𝑡ℎ-order Polynomial 

Interpolation 

The pre-processing and processing results of quadratic, cubic and quartic interpolators by Matlab 

are presented, as well as the estimation error under conditions of different zero-padding factor 𝑝. 

 

6.1.1 Pre-processing of Zero-padding 

It is desirable to pre-process signal data by zero-padding. Zero-padding refers to adding zeros to 

the end of a time-domain signal. It can enhance the FFT resolution of a time-domain signal, rather 

than merely increase the length of the given sequence. At the same time, zero-padding cannot 

improve the spectral resolution (the minimum fraction between two frequencies that can be 

distinguished).  

In early applications, zero-padding is introduced to fill the data points 𝑁 so that the radix-2 FFT 

algorithm (𝑁 is required to a power of 2) can be applied directly to the original data sequence. Zero-

padding is also useful when the frequency sample of the given signal is too sparse to give a good 

enough resolution of the continuous-frequency estimated spectrum. It may reveal more delicate 

details in the spectrum through implementing the FFT to the signal sequence after zero-padding. Since 

the estimation of continuous-frequency spectral is the same for both the original signal data and the 

zero-padding sequence, zero-padding cannon enhance the spectral resolution of the periodogram 

method for sure [35].
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Figure 6.1 Deramped signal and zero-padding 

 

As shown in Figure. 6.1, the left figure is the ten cycles of the deramped signal, corresponding range 

10(𝑐 2𝐵⁄ ). The term Padding factor 𝑝 can be introduced to describe the numbers of zero added to 

the signal sequence. 𝑝 = 1 represents that no extra zero is added to the current signal data; 𝑝 = 2 

represents that the numbers of added zero are as many as the original signal data; 𝑝 = 4 represents 

that the numbers added zero are tripled than the original data points, etc. 

 

6.1.2 Results of Quadratic Interpolation 

As discussed previously, a DFT sample will not present identically on the peak of asinc function. 

Therefore, the magnitude of the DFT sample accounts for detection, but its frequency is approximate 

to the actual location of the asinc peak. That is to say, the range can be estimated from the shape of 

the discrete peak, for comparison with the measured range from the FFT, to derive the difference 

(error range) for calibration. Polynomial fit is used to the several points closest to the peak to find and 

locate the position of the peak relative to the central point. 

In terms of figures of section 6.1.2, X axis represents the estimated peak position using polynomial 

interpolation technique, and the unit is range bin; Y axis represents the actual peak position with the 

unit of both range bin and millimetre. The target is discrete point scatter and the SNR is set to 20 dB; 

simulation parameters of polynomial interpolation are presented to the Table 6.1. The principle 

factors of radar system constructed during the simulation environment can be found below. Note that 

all the simulation results of polynomial interpolation technique shown in this chapter operate on the 

identical parameters if there is no other special explanation.  
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Table 6.1 Simulation Parameters of Polynomial Interpolation 

Carrier frequency 𝑓𝑐 300 MHz 

Sweep bandwidth 𝐵 200MHz 

Pulse duration T 1 s 

Pulse interval 1.6384 s 

Chirp phase offset 0 

ADC sample interval 4 × 10−6 s 

ADC Sampling rate 250 kHz 

Medium dielectric constant 𝜀𝑟 = 1.2 

 

Figure 6.2 illustrates the estimation performance of the quadratic interpolation when the zero-

padding factor 𝑝 = 2. As the figure shows, estimated peak positions fluctuate around the actual peak 

position. The interpolated range estimation is best when the actual range is either very close to a 

sample range or exactly halfway (±0.25 here due to zero-padding factor 𝑝 = 2) between two sample 

ranges. At the same time, the worst-case error of 0.018 bins (13.5 millimetres when bandwidth =

200 MHz) occurs when the actual peak is 0.016 bins away from a sample range. 

 

 

Figure 6.2 Quadratic interpolation with padding factor p=2 
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The equation of estimation calculation shown in Figure 6.2 is 

 

𝑒𝑟𝑟𝑜𝑟𝑚𝑚 = 𝑒𝑟𝑟𝑜𝑟𝑟𝑎𝑛𝑔𝑒 𝑏𝑖𝑛𝑠 × ∆𝑅 

     = 𝑒𝑟𝑟𝑜𝑟𝑟𝑎𝑛𝑔𝑒 𝑏𝑖𝑛𝑠 ×
𝐶

2𝐵
 

(6.1) 

It is therefore convenient to convert the estimation error by range bins to that by millimetres. 

When the zero-padding factor 𝑝 = 1, the estimation performance of the quadratic interpolation 

can be shown in Figure 6.3. Estimated peak positions still fluctuate around the actual peak position. 

Estimation performance is best when the actual range is either very close to a sample range or exactly 

halfway between two sample ranges. At the same time, the worst-case error of -0.23 bins (172.5 

millimetres when bandwidth 𝐵 = 200 MHz) occurs when the actual peak is -0.355 bins away from a 

sample range. 

 

Figure 6.3 Quadratic interpolation with padding factor p=1 

 

Figure 6.4 presents the estimation performance of the quadratic interpolation when the zero-

padding factor 𝑝 = 4. The interpolated range estimation is best when the actual range is either very 

close to a sample range or exactly halfway (±0.125 here due to zero-padding factor 𝑝 = 4) between 

two sample ranges. At the same time, the worst-case error of 0.008 bins (6 millimetres when 

bandwidth 𝐵 = 200 MHz) occurs when the actual peak is -0.105 bins away from a sample range. 
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Figure 6.4 Quadratic interpolation with padding factor p=4 

 

6.1.3 Results of Cubic Interpolation 

In the scenario of cubic interpolation shown as Figure 6.5, when the zero-padding factor 𝑝 = 2, 

estimated peak positions still fluctuate around the actual peak and the worst-case error of -0.054 bins 

(40.5 millimetres when bandwidth 𝐵 = 200 MHz) occurs when the actual peak is -0.25 bins away 

from a sample range.  

 

Figure 6.5 Cubic interpolation with padding factor p=2 

 

Figure 6.6 presents the estimation performance of the quadratic interpolation when the zero-

padding factor 𝑝 = 4. The worst-case error of 0.0086 bins (6.45 millimetres when bandwidth 𝐵 =

200MHz) occurs when the actual peak is -0.125 bins away from a sample range. 
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Figure 6.6 Cubic interpolation with padding factor p=4 

 

6.1.4 Results of Quartic Interpolation 

For quartic interpolation shown as Figure 6.7 and 6.8, estimated peak positions still fluctuate 

around the actual peak position, and estimation performance is best when the actual range is either 

very close to a sample range or exactly halfway between two sample ranges. On the contrary, the 

worst-case error of -0.23 bins (172.5 millimetres when bandwidth 𝐵 = 200 MHz) occurs when the 

actual peak is -0.355 bins away from a sample range with the zero-padding factor 𝑝 = 1 and that of 

-0.23 bins (172.5 millimetres when bandwidth 𝐵 = 200 MHz) when the actual peak is -0.355 bins 

away from a sample range with the zero-padding factor 𝑝 = 4  . 

 

Figure 6.7 Quartic interpolation with padding factor p=1 
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Figure 6.8 Quartic interpolation with padding factor p=4 

 

6.2 Results of Most-likelihood Chirp Z Transform 

As introduced in chapter 3 and 4, the most-likelihood chirp Z-transform (MLCZT) is computational 

effective to evaluate the Z-transform with a spiral contour, and it is useful in computing a subset of 

the DFT for a sequence. Unlike the DFT, the CZT is not restricted to operate along the unit circle but 

can evaluate along contours as the complex starting point. One possible spiral is illustrated as follow. 

 

Figure 6.9 A spiral contour of MLCZT 

 

If data samples are evenly presented around the unit circle (A=1 and W=exp(−jπ/M)), the Z-

transform is exact the DFT under such circumstance; and CZT can be faster than the FFT function for 

computing the DFT of sequences with specific odd lengths. 
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Figure 6.10 CTZ and FFT 

 

Figure 6.11 illustrates the estimation performance of the MLCZT. As the figure is shown, estimated 

range bins fluctuate around the actual peak position. The range estimation is best when the actual 

range is either very close to a sample range, or exactly halfway between two sample ranges while the 

worst-case error of 0.019 bins occurs when the actual peak is 0.017 bins away from a sample range. 

 

Figure 6.11 MLCZT error in range bins 

 

As mentioned in the previous chapter, [63] introduced a chirp Z transform algorithm for an 

optimized FMCW application, and it proposed to calculate the phase via the CZT, as the CZT already 

calculated the complex frequency spectrum. However, its precision is limited due to the real-time 

requirement by means of FPGA fulfillment. 
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On the other hand, [97] presented a multi-target precise-ranging algorithm based on the CZT as 

well, for FMCW systems. It described that the performance was better than the FFT and MUSIC in 

white noise background; but its multi-target algorithm still needs to be optimized in the 

implementation of the periodogram.  

Apart from the intrinsic advantage of chirp Z transform and absorbing the positive thoughts 

mentioned above, the CZT-based algorithm stated in the thesis utilised the most-likelihood process 

(estimator) creatively for improving range performance, by introducing and applying the concept and 

thought of statistical signal processing. 

Besides, in terms of multi targets MLCZT algorithm, the multiple sinusoids estimate attained by 

the method of nonlinear least squares (NLS). The precise frequency estimation is attained through a 

data-fitting minimisation in the NLS approach. The estimation is asymptotically optimal under the 

circumstance of white Gaussian noise. The covariance matrix corresponds to the specific Cramer-Rao 

lower bound (CRLB). Thus, the covariance matrix of the chirp Z transform under white Gaussian noise 

can be presented with the form of a diagonal matrix (K is the observation index) 

 𝑐𝑜𝑣(𝜀̂) =
6𝜎2

𝐾3

[
 
 
 
 
 
 
 
1

𝑎0
2 0 ⋯ 0

0
1

𝑎1
2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

𝑎𝑘
2]
 
 
 
 
 
 
 

 (6.2) 

where 𝜎2  is the noise variance and (𝑎0
2, 𝑎1

2, ⋯ , 𝑎𝑘
2)  are the amplitudes of the sinusoids. NLS 

algorithm performs decently in both white and coloured noise. 

This chapter analyses the results and data obtained by simulations, beginning with pre-processing 

the acquired raw time-domain data, then the processing results of polynomial interpolation and most-

likelihood chirp-Z transform technique as well. Relative drawbacks and improvements are discussed 

from several aspects under different conditions.  
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7. Experimental Results and Discussion 

Those primary processing results have been analysed above, and further discussion is undertaken 

in this section for practical improvements. As derived in Chapter 4, the amplitude of the estimated 

peak 𝐴′ = Y[𝑥𝑛 + ∆𝑥] of the quadratic interpolation can be written as 

 Y[xn + ∆x] =
1

2
{(∆x − 1)(∆x)y𝑛−1 − 2(∆x − 1)(∆x + 1)y𝑛 + (∆x + 1)(∆x)y𝑛+1} (7.1) 

which ∆𝑥 is the displacement of the estimated peak from the centre of the DFT sample point. 

Note that the formula for ∆𝑥 acts in instinctively satisfying ways. On the one hand, if the first and 

third DFT magnitude sample points are equal, ∆𝑥 = 0; the middle point is the estimated peak for sure. 

On the other hand, if the first and second DFT magnitude sample points are equal, ∆𝑥 = 1 2⁄ , 

indicating the estimated peak is halfway between the two sample points; an almost identical result 

exists if the second and third DFT magnitude sample points are equal. 

This interpolation technique is ineffective when the width of the presumed interpolated main lobe 

is quite narrow so that the apparent peak and its two adjacent samples are not on the same lobe of 

the response. This occurs when the spectrum is sampled at the Nyquist rate in Doppler when the DFT 

size K equals the number of data sample N. Meanwhile, no window is applied to the data, and the 

data frequency does not coincidentally fall on a DFT frequency sample, which is the very situation 

where interpolation is considerably requisite. If the interpolation procedure is applied to these data, 

poor results will be achieved because the assumption that the three points are on an approximately 

quadratic curve segment is not valid. For these specific data, the interpolation technique will estimate 

the “true” frequency and amplitude of the spectral peak. The amplitude estimate is enhanced only 

faintly. The relative frequency error is decreased remarkably; however, it is still substantial. 

This problem can be avoided by ensuring that the sample set is dense enough within computational 

feasibility, to guarantee that the three samples are all on the main lobe. One approach to solve this is 

to oversample in the Doppler domain; for example, selecting the DFT size K larger than the number of 

data sample N. Another practical way is to window the sample data. For most common windows, the 

expansion of the main lobe that results is sufficient to guarantee that the apparent peak samples and 

its two neighbours fall on the same lobe, so that the underlying assumption of a parabolic segment is 

more valid. 
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7.1 FFT Process with Window Functions 

As mentioned above, the Doppler resolution depends on the observation time of the measurement. 

More extended observation provides better Doppler resolution. Because of the high side lobes, it is 

common to use a data window function  mw  to weight the slow-time data samples  my  before 

computing the DTFT. Consider a radar tracking an object over a dwell of 𝑁 pulses, and assume the 

target is present in a particular range bin. The slow time received signal after quadrature 

demodulation can be presented as 

 𝑦[𝑚] = 𝐴𝑒𝑗2𝜋𝐹𝐷𝑚𝑇     𝑚 = 0,⋯ ,𝑀 − 1 (7.2) 

where 𝐹𝐷 is the Doppler shift stemming from the target’s velocity; 𝑇 is the PRI of the radar, which 

is the effective sampling interval in the slow time domain. Now converting Equation to the formation 

of analogue frequency 

 𝑌(𝐹) = 𝐴
𝑠𝑖𝑛[𝜋(𝐹 − 𝐹𝐷)𝑀𝑇]

𝑠𝑖𝑛[𝜋(𝐹 − 𝐹𝐷)𝑇]
𝑒−𝑗𝜋(𝑚−1)(𝐹−𝐹𝐷)𝑇         𝐹 ∈ [−𝑃𝑅𝐹 2⁄ , 𝑃𝑅𝐹 2⁄ ] (7.3) 

Replacing 𝑦[𝑛] by 𝑤[𝑚]𝑦[𝑚], and using the form of Equation (4.3) again. After converting from 

normalised frequency to hertz and recognising that 𝑦[𝑚] is finite length 

 𝑌𝜔[𝐹] = 𝐴∑ 𝑤[𝑚]𝑒−𝑗2𝜋(𝐹−𝐹𝐷)𝑚𝑇
𝑀−1

𝑚=0
 (7.4) 

From Equation (7.3), the peak value of |𝑌(𝐹)|2 when no window is used is 𝐴2𝑀2. Evaluating 

Equation (4.5) at 𝐹 = 𝐹𝐷 gets the peak power when a window is used 

 |𝑌(𝐹𝐷)|
2 = |𝐴∑ 𝑤[𝑚]𝑒−𝑗2𝜋(0)𝑛𝑇

𝑀−1

𝑚=0
|
2

= 𝐴2 |∑ 𝑤[𝑚]
𝑀−1

𝑚=0
|
2

 (7.5) 

The ratio |𝑌(𝐹𝐷)|
2 |𝑌(𝐹)|2⁄  can be called the loss in processing gain (LPG) 

 𝐿𝑃𝐺 =
|𝑌(𝐹𝐷)|

2

|𝑌(𝐹)|2
=

1

𝑀2 |∑ 𝑤[𝑚]
𝑀−1

𝑚=0
|
2

 (7.6) 

From the equation above, it can be calculated that 𝐿𝑃𝐺 ≤ 1, the loss in dB is, therefore, a negative 

number. The LPG can be computed for any window by Equation (7.6). Explicit values depend on the 

specific window function, which 5 to 8 dB are typical, but the LPG is typically a weak function of the 

window length 𝑀, highest for small 𝑀 and the rapidly approaching an asymptotic value for large 𝑀. 

Although the window reduces the peak amplitude considerably, it reduces noise power as well. 

Processing loss (PL) is the reduction in SNR at the peak of the DTFT. Denoting the SNR with and without 
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the window as 𝜒 and 𝜒𝜔, respectively, it is reasonable to separate the effects of the window on the 

target and noise components of the signal 

 
𝜒𝜔
𝜒
=
(𝑆𝜔 𝑁𝜔⁄ )

(𝑆 𝑁⁄ )
= (

𝑆𝜔
𝑆
)(
𝑁𝜔
𝑁
) = 𝐿𝑃𝐺 (

𝑁

𝑁𝜔
) (7.7) 

To determine the window’s effect on the noise power 𝑁, suppose 𝑦[𝑛] is a zero-mean stationary 

white noise with variance 𝜎2. Therefore, the windowed noise power is 

 

𝜎𝜔
2 = 𝐸 {(∑ 𝑤[𝑚]

𝑀−1

𝑚=0
𝑦[𝑚]) (∑ 𝑤∗[𝑛]

𝑀−1

𝑚=0
𝑦∗[𝑛])} 

=  𝐸 {(∑ |𝑤[𝑚]𝑦[𝑚]|2
𝑀−1

𝑚=0
) + 𝑐𝑜𝑟𝑠𝑠 𝑡𝑒𝑟𝑚𝑠} 

= 𝜎2∑ |𝑤[𝑚]|2
𝑀−1

𝑚=0
= 𝑁𝜔 

(7.8) 

The un-windowed noise power can be given by Equation, setting 𝑤[𝑚] = 1 for all 𝑚, assuming 

𝑁 = 𝑀𝜎2. Combining Equation (7.6) and (7.8) obtains the processing loss 

 𝑃𝐿 =
|∑ 𝑤[𝑚]𝑀−1

𝑚=0 |
2

𝑀∑ |𝑤[𝑚]|2𝑀−1
𝑚=0

 (7.9) 

 

Table 7.1 Properties of a variety of common data windows [41] 

Window Main lobe width Peak gain (dB) Peak side lobe(dB) SNR loss(dB) 

Rectangular 1.0 0.0 -13 0 

Hamming 1.46 -5.4 -43 -1.35 

Hanning 1.62 -6.0 -32 -1.76 

Kaiser,α=2.0 1.61 -6.2 -46 -1.76 

Kaiser,α=2.5 1.76 -8.1 -57 -2.17 

Dolph-Chebyshev 

(50-dB equiripple) 
1.49 -5.5 -50 -1.43 

Dolph-Chebyshev 

(70-dB equiripple) 
1.74 -6.9 -70 -2.10 

 

Similar to the loss in peak gain, the processing loss is also a weak function of 𝑁 that is higher fir 

small 𝑁 but swiftly approaches an asymptotic value. For instance, the loss in SNR ratio for Hamming 
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window is -1.75dB for a short window, decreasing asymptotically to about -1.35dB for the long 

window. Table 7.1 summarises four primary characteristics of several common windows. The main 

lobe width and peak gain are both relative to the rectangular window. SNR loss refers to the signal-

to-noise ratio-loss. 

 

 

Figure 7.1 Features of three kinds of window function 

 

Implementing an N-point window to the full length of a zero-padded sequence has the effect of 

multiplying the data by a truncated and asymmetric window, leading to substantially increased side 

lobes. Moreover, rectangular windows are equivalent to no window. In contrast, non-rectangular 

windows cause an increase in main lobe width, a decrease in peak amplitude, and a decrease in SNR 

in exchange for substantial reductions in peak sidelobe level. Figure 7.1 illustrates the features of three 

window functions which are commonly used, from both time and frequency domain. For most 

common windows introduced above, the expansion of the main lobe that results is sufficient to ensure 

that the apparent peak samples and its two adjacent points fall on the just same lobe, in that the 

underlying assumption of a polynomial segment is more valid.  
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Figure 7.2 Normalised Amplitude Spectrum  

of Rectangle Window 

 

  Figure 7.3 Normalised Amplitude Spectrum 

of Hamming Window 

 

Figure 7.4 Normalised Amplitude Spectrum 

of Hanning Window 

Figure 7.5 Normalised Amplitude Spectrum 

of Kaiser Window

The figures illustrated above present the normalised amplitude spectrum of several common 

window functions which used frequently. Figure 7.2 shows the normalised amplitude spectrum of 

rectangle window; Figure 7.3 illustrates the normalised amplitude spectrum of rectangle window. The 

normalised amplitude spectrum of Hanning and Kaiser widows are presented in the Figure 7.4 and 7.5 

correspondingly. 

 

7.2 Further Results of Polynomial Interpolation 

Ten cycles of the deramped signal are illustrated in Figure 7.6. The original signal is zero-padded 

and windowed; the function of the Hamming window in time-domain is shown as well. 
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Figure 7.6 Deramped Signal with zero-padding and window 

 

The target is a range extent target; the SNR is distinctive, and the precision of detection 

deteriorates if SNR decreases notably. In terms of clutter, it consists of the faint multi-scattering and 

multi-reflection of the target and multi-path effect by the surrounding walls, etc. (desks and chairs 

had been removed and the whole room was cleared as possible except the set instruments before the 

experiments.) 

Figure 7.7 illustrates the estimation performance of the parabolic interpolation, both without and 

with Hanning windowing, on a sinusoidal data sequence. The interpolated range estimates are best 

when the actual range is either very close to a sample range or exactly halfway (±0.25 here due to 

zero-padding factor 𝑝 = 2) between two sample ranges. If no window is used, the worst-case error 

of 0.018 bins (13.5 millimetres when bandwidth 𝐵 = 200 MHz) occurs when the actual peak is 0.15 

bins away from a sample range; a Hanning window decreases this maximum error to 0.007 bins (5.25 

millimetres when bandwidth 𝐵 = 200 MHz) at an offset of 0.16 bins. 
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Figure 7.7 Estimation Performance of Quadratic Interpolation with/without window function  

 

The estimation performance of the quartic interpolation is shown in Figure 7.8, both without and 

with Hanning windowing as well. Similar as the circumstance of the quadratic interpolator, the 

interpolated range estimates here are best when the actual range is either very close to a sample 

range, or exactly halfway (±0.125 here due to zero-padding factor 𝑝 = 4) between two sample 

ranges. If no window is used, the worst-case error of 0.013 bins (9.75 millimetres when bandwidth 

𝐵 = 200 MHz) occurs when the actual peak is 0.11 bins away from a sample range; a Hanning window 

decreases this maximum error to 0.0011 bins (0.85 millimetres when bandwidth 𝐵 = 200 MHz) at 

an offset of 0.075 bins. 
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Figure 7.8 Estimation Performance of Quartic Interpolation with/without window function  

 

Table 7.2 presents the processing error of polynomial interpolators with different factors and 

conditions. These results confirm that the interpolators perform better with the higher order of the 

polynomial, though the computational effectiveness drops correspondingly; polynomial performance 

can be enhanced by zero-padding before processing and windowing during the processing at a certain 

extend. Note that those outcomes shown above may look decent, however, after introducing a higher 

noise figure into the processing, the performances of polynomial interpolators deteriorate noticeably. 

Further research will concentrate on anti-noise potential and robustness of the algorithm to mitigate 

the performance distinction between the ideal simulation and practical usage. 
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Table 7.2 Polynomial interpolation Error under several conditions 

 RMS Error (range bin) RMS Error (mm) 

Quadratic interpolation, p=1, no window 0.1051 78.825 

Quadratic interpolation, p=2, no window 0.0124 9.300 

Quadratic interpolation, p=4, no window 0.0056 4.200 

Quadratic interpolation, p=2, Hanning window 0.0045 3.375 

Quartic interpolation, p=4, no window 0.0118 8.850 

Quartic interpolation, p=4, Hanning window 0.0037 2.775 

 

 

Besides, as described above, rectangular windows are equivalent to no window. In contrast, non-

rectangular windows cause an increase in main lobe width, a decrease in peak amplitude, and a 

decrease in signal-to-noise ratio in exchange for significant reductions in peak sidelobe level. 

Moreover, the FFT algorithm is a practical computational method to compute the DFT; the DFT 

computes K samples of the DTFT evenly spaced across one period of the DTFT. Therefore, the peak 

value of the DFT acquired regarding the desired target signal is highest when the Doppler frequency 

falls on one of the DFT sample frequency coincidentally, while the value decreases when the target 

signal is between DFT frequencies. This reduction in amplitude is called a Doppler straddle loss. The 

amount of loss depends on the particular window applied. Meanwhile, for a given frequency, the 

maximum straddle loss increases when the DFT size 𝐾 is decreased. Considering the smallest DFT 

size 𝐾 = 𝑀, the straddle loss is obtained via the definition of the DFT 

 𝑌[𝑘] =∑ 𝑦[𝑚]𝑒−𝑗2𝜋𝑚𝑘 𝐾⁄
𝑀−1

𝑚=0
                𝑘 = 0,⋯ ,𝐾 − 1 (7.10) 

and evaluating the equation above with 𝑦[𝑚] = 𝜔[𝑚], 𝐾 = 𝑀, and 𝑘 = 1 2⁄ . This is the gain at the 

halfway point between the 𝑘 = 0 and 𝑘 = 1 DFT bins, which is the same halfway between other 

bins as well. The computation can be repeated with 𝑘 = 0 to obtain the peak gain, and the ratio 

evaluated. Consider the scenario of the rectangular window 

 |𝑌[𝑘]| = |∑ 𝑒−𝑗2𝜋𝑚𝑘 𝐾⁄
𝐾−1

𝑚=0
| = |

𝑠𝑖𝑛(𝜋𝑘)

𝑠𝑖𝑛(𝜋𝑘 𝐾⁄ )
| (7.11) 

evaluating at 𝑘 = 1 2⁄  yields 

 |𝑌 [
1

2
]| = |

𝑠𝑖𝑛(𝜋 2⁄ )

𝑠𝑖𝑛(𝜋 2𝐾⁄ )
| =

1

𝑠𝑖𝑛(𝜋 2𝐾⁄ )
≈
2𝐾

𝜋
 (7.12) 
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The last procedure was obtained by assuming that 𝐾  is lager enough to allow a small angle 

approximation to the sine function in the denominator. Meanwhile, 𝑌[0] = 𝐾 can be computed by 

Equation (5.13). Thus the maximum straddle loss for the DFT filter-bank with no windowing 

(equivalent to a rectangular window) is 20 log10(2 𝜋⁄ ) = −3.92𝑑𝐵  in decibels; while there is a 

smaller maximum straddle loss of 1.74𝑑𝐵  for Hamming window by a similar calculation. And in 

consequence, any non-rectangular window leads to a reduction in peak gain, and typical windows 

have the desirable characteristic of having less variability in gain because of the variance of the target’s 

Doppler shift. The variation in amplitude is substantially less for the window data, which means the 

amplitude response is more consistent. This greater consistency of response is, therefore, an 

underappreciated benefit of the window. Therefore, some caution is needed in applying a data 

window during the process procedures, and parts of factors among them entail further research on it. 

 

7.3 Comparison between Coherent and Non-Coherent Ranging 

Approaches 

A variety of simulation outcomes based on non-coherent technique are demonstrated in the 

previous sections. As a contrast, the following part is devoted to a coherent ranging approach. The 

system structure of the FMCW radar (ApRES system) is described in Chapter 3; experimental results 

are shown below. This ApRES system applies an Analog Devices AD9910 DDS synthesiser, generating 

a 200-400 MHz chirp signal with a 1 GHz clock. A pair of Mini-Circuits ZX76-31-PP+ digital step 

attenuators are employed to provide a range of receiver gain setting. Careful hardware designs and 

processing approaches are applied to attain stable and precise range estimation. FMCW signal 

processing is used to detect the targets and measure their coarse ranges. Then phase-sensitive signal 

processing is applied to determine their exact ranges from the central unit. 

Figure 7.9 presents an experimental layout in the Marconi Room and the primary part of system 

hardware; important parameters of the FMCW radar are shown in Table 7.3. Besides of the FMCW 

radar system (ApRES prototype), there were several other instruments applied, including bow-tie 

antennas (Tx and Rx), antennas stand, transponder, cables, and oscilloscope Tektronix MDO4140-6, 

etc. 
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Figure 7.9 Experimental System and Layout of an FMCW radar prototype 

 

Table 7.3 Principal Radar Parameters 

Operating (Central) frequency 𝑓𝑐 300 MHz 

FM sweep bandwidth 𝐵 200MHz 

RF power 𝑃𝑡 20 dBm 

Antenna gain 𝐺𝑡, 𝐺𝑟 10 dBi 

Noise figure 𝑁 6 dB (F=4) 

Pulse duration 1 S 

ADC Sampling rate > 12 ksamples/s 

 

 

The deramped signal of loop test is illustrated in Figure 7.10; the IF (intermediate frequency) signal 

was measured directly out of the mixers of IF port. Meanwhile, auxiliary in-line attenuators (30 dB and 

50 dB) were applied to ensure RF (radio frequency) input to the mixer was desired below its saturation 

point. A 145 Hz signal is shown at 1.01 𝑉𝑝𝑝 into high impedance load, consequently the 50 Ω power 

level of -1.95 dBm and -21.06 dBm with the 30 dB and 50 dB attenuators, respectively. The deramped 

frequency in both figures is 145 Hz; the PRF (pulse repetition frequency) is 20 Hz in the right figure. 
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Figure 7.10 Deramped Signals of Loop Test 

 

Figure 7.11 illustrates the frequency spectrum and range profile of the loop test, and both I and Q 

channels flowing through the oscilloscope. As shown in Table 7.4, as an experimental cable with the 

full length of 270 m, the rough estimation of range bin is 135.2190 metres as half (270.4380 metres 

totally); the phase peak degree is -136.9048, and the range error is -0.1736 metres; the final estimated 

range obtained from the phase-sensitive processing is 135.0454 metres as half (270.0908 metres 

totally), indicating that the estimated error is diminished and the estimation performance is enhanced 

after applying the phase-sensitive processing. 

 

 

Figure 7.11 Frequency Spectrum and Range Profile of Loop Test 
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Table 7.4 Processing Results of Loop Test 

Range bin 
metres 

Cable 
length 

Phase peak 
degrees 

Range error Estimated range 
metres 

Vrms 

135.2190 270.4380 -136.9048 -0.1736 135.0454 1.1572 

 

Now set transponder distance to radar 4 metres, local oscillator (LO)power 15.5 dB, and use double 

antennas with 50 centimetres separation, the frequency spectrum and range profile can be seen in 

Figure 7.12 (both I and Q channels still flowing through the oscilloscope). Meanwhile, in Table 7.5, the 

rough estimation of range bin is 135.2190 metres as half (270.4380 metres totally); the phase peak 

degree is -74.7725; the final estimated range obtained from the phase-sensitive processing is 

135.1242 metres as half (270.2484 metres totally), and the range error is -0.0948 metres. 

 

 

Figure 7.12 Frequency Spectrum and Range Profile with LO power 10.5 dBm 

 

Table 7.5 Processing Results with LO power 10.5 dBm 

Range bin 
metres 

Cable  
length 

Phase 
peak degrees 

Range error Estimated 
range metres 

Vrms 

135.2190 270.4380 -74.7725 -0.0948 135.1242 0.0960 
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Figure 7.13 Frequency Spectrum and Range Profile with LO power 15.5 dBm 

 

Table 7.6 Processing Results with LO power 15.5 dBm 

Range bin 
metres 

Cable  
length 

Phase 
peak degrees 

Range 
error 

Estimated 
range metres 

Vrms 

134.5344 269.0687 18.6624 0.0237 134.5580 0.0930 

 

 

Now keep all other conditions fixed and just alter local oscillator (LO)power to 15.5 dB, the 

frequency spectrum and range profile can be seen in Figure 7.13 (both I and Q channels still flowing 

through the oscilloscope). Meanwhile, in Table 7.6, the rough estimation of range bin is 134.5344 

metres as half (269.0688 metres totally); the phase peak degree is 18.6624; the final estimated range 

obtained from the phase-sensitive processing is 134.5580 metres as half (269.1160 metres totally), 

and the range error is 0.0237 metres. 
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Figure 7.14 Frequency Spectrum and Range Profile with LO power 17.5 dBm 

 

Table 7.7 Processing Results with LO power 17.5 dBm 

Range bin 
metres 

Cable  
length 

Phase 
peak degrees 

Range 
error 

Estimated 
range metres 

Vrms 

134.1920 268.3841 145.5005 0.1845 134.3765 0.0979 

 

 

Keep all other conditions fixed and just alter local oscillator (LO)power to 17.5 dB, the frequency 

spectrum and range profile can be seen in Figure 7.14 (both I and Q channels still flowing through the 

oscilloscope). In Table 7.7, the rough estimation of range bin is 134.1920 metres as half (268.3840 

metres totally); the phase peak degree is 145.5005; the final estimated range obtained from the 

phase-sensitive processing is 134.3765 metres as half (269.7530 metres totally), and the range error 

is 0.1845 metres. 

A practical deficiency needed to mention here is that the results section shows distances measured 

to 0.0001 metres accuracy. However, based on the precision of the gauging system, it may not 

necessarily be easy to validate in practice regarding the 0.0001 metres accuracy statement (i.e., the 

precise length of the test cable). 

For the length of a physical RF cable, there is still a method of the finite difference to present results 

to 4 decimal places by means of the difference. The absolute value of length may not be feasible to 

achieve mm-level precision under current circumstance while the result of difference of two sections 

of a range extent cable could reach close but not exact precision. 
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Though the finite difference method mentioned previously may contribute to the statement of 

accuracy, to some extent, I must admit that 0.0001 metres accuracy is currently not practically 

achievable; it is not practical to justify such precise experimental results without using corresponding 

accurate measurements. The feasible level of precision should be 0.001 metres, which can be credibly 

measured and validated by means of regular gauging tools. 

When it comes to the structure of radar systems, whether the radar is coherent or non-coherent 

depends on both the hardware and the processing, respectively. Since the phase information has been 

introduced to the procedure of process, the hardware of a coherent radar will differ from the non-

coherent system (e.g., an extra mixer and the following signal conditioning circuit among the post-

processing chain). On the other hand, a typical FMCW radar may use phase-sensitive processing or 

non-coherent processing, but it’s not the same radar architecture.  

As a coherent ranging approach (ApRES system) presented above, the primary comparison is that 

with ApRES, the approximate position of the peak of the FFT is measured and used in conjunction with 

the phase of the FFT to get high precision. In contrast, the non-coherent approach derived in the thesis 

is to attempt to measure the peak position more precisely, using interpolation. Further free-space 

experimental validations will be undertaken, and precise quantitative analysis will be conducted in the 

next phase. 

Experimental results and discussion are presented in this chapter. Window functions are 

introduced to evaluate and analyse the performance of these techniques. Further results of 

polynomial interpolation are presented as well. At the rest part of the chapter, coherent and non-

coherent ranging approaches are compared based on experimental data to summarise several 

advantages and disadvantages as conclusions for further research. 
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8. Conclusions and Future Work 

This chapter describes the conclusion of this thesis and the future work plan. It summarises the 

whole thesis and goes on to convey the next steps needed to be taken to develop and trial a location 

system that uses non-coherent techniques and compare/contrast it with a coherent approach (i.e., 

the ApRES system). 

 

8.1 Conclusions 

This thesis presents the derivation, simulation and experimental results of two novel ranging 

techniques with high-precision performance, namely, the Kth-order polynomial interpolation 

technique and most-likelihood chirp-Z transform technique. In terms of the KPI technique, a desired 

ranging performance is achieved by a general expression of 𝑁𝑡ℎ order polynomial interpolation for 

the non-coherent ranging estimate. The excellent ranging estimate is obtained through a two-stage 

method applied to DFT domain precision via interpolating around the peak of range profiles of the 

deramped signals. An N-point DFT is implemented to attain a coarse estimation; an accurate process 

around the point of interests determined in the first stage is conducted. This approach is an 

uncomplicated and efficient solution to compromise the instinct deficit of the non-coherent structure. 

Assume that the DFT Y[𝑥] is a function of a continuous frequency index 𝑥, since the goal is to 

estimate a peak location assumed to be between actual sample locations; in the vicinity of the DFT 

peak at 𝑥𝑛, considering those measurements respectively. Quadratic, cubic, and quartic interpolator 

are presented to measure the distinctive of the location of the interpolated peak relative to the index 

of the central sample of the DFT samples applied to the algorithm. The estimated peak positions 

fluctuate around the actual peak position. The interpolated range estimation is best when the actual 

range is either very close to a sample range or exactly halfway 

An inner mathematical law can be found that the coefficients of both numerators and 

denominators satisfy the format of Pascal’s triangle, which is a triangular array of the binomial 

coefficients indeed. A general expression for 𝐾𝑡ℎ order polynomial interpolator can be therefore 

presented by the form of binomial coefficients ， where (
𝑘
𝑖
)  is the corresponding binomial 

coefficient. Note that since the symmetrical property of an 𝐾𝑡ℎ order polynomial will be apparently 

different when 𝐾  is odd or even, it is plausible to have a unique representation for different 

circumstances, respectively. 
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For the most-likelihood chirp-Z transform technique, the computational speed and flexibility of the 

CZT algorithm are related to the FFT. As known, ordinary convolutions can be calculated by adding 

zeroes to the end of one or both sequences so that the correct numerical consequences for the initial 

convolution can be derived by a circular convolution. 

The procedures of the MLCZT algorithm can be described as follow: 

1) Calculate a coarse FFT with a sequence of K points; 

2) Search for the local maximum on the specific FFT range bin and locate its corresponding 

frequency in 𝜔̂; 

3) Set P as the desirable MLCZT frequency precision; 

4) Calculate the CZT within the region (𝜔̂ −
𝜋

𝐾
, 𝜔̂ +

𝜋

𝐾
), and search for the maximum via Most-

likelihood method, using the foreknowledge to asymptotically reach to the MVU estimator; 

5) Repeat step 4 until attaining desirable precision of range performance. 

Such thought could be easily extended to the applications of multi-target ranging estimation, which 

the procedures of the extended MLCZT algorithm for multi-target estimation. 

To evaluate the performance of developed ranging techniques, it is beneficial in practical 

applications to set a lower bound on the variance of any unbiased estimator. Generally, it permits us 

to evaluate whether an estimator is an MVU estimator or not. Meanwhile, it presents a reference to 

compare the performance of any unbiased estimator. It also indicates that it is physically impossible 

to search for an unbiased estimator with the variance less than the bound. Despite the existence of 

various similar variance bounds, the Cramer-Rao lower bound (CRLB) is by far the easiest to determine. 

Besides, the theory permits us to evaluate whether an estimator can hit the bound conveniently. If no 

such estimator exists, then we understand to search for estimators which are asymptotically close to 

the bound.  

Mathematical expressions of CRLB of KPI and MLCZT algorithms are derived in chapter 5, namely 

the asymptotical CRLB under the distinctive circumstance and SNR regarding two algorithms 

respectively. The CRLB of KPI and MLZCT will be further researched to evaluate these techniques 

precisely and computationally conveniently. The CRLB of Kth-order polynomial interpolation (KPI) and 

most-likelihood chirp Z transform (MLCZT)algorithm can be presented as the factors of SNR and other 

significant parameters. 

During the experimental validation shown in Chapter 6 and 7, several processing techniques as 

zero-padding and windowing are introduced to enhance ranging performance via distinct perspectives. 

Zero-padding can enhance the FFT resolution of a time-domain signal, rather than merely increase the 

length of the given sequence. At the same time, zero-padding cannot improve the spectral resolution 
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(the minimum fraction between two frequencies that can be distinguished). Applying an N-point 

window to the full length of a zero-padded sequence has the effect of multiplying the data by a 

truncated and asymmetric window, leading to substantially increased side lobes. Moreover, 

rectangular windows are equivalent to no window. In contrast, non-rectangular windows cause an 

increase in main lobe width, a decrease in peak amplitude, and a decrease in signal-to-noise ratio in 

exchange for substantial reductions in peak sidelobe level. For most common windows introduced 

above, the expansion of the main lobe that results are sufficient to ensure that the apparent peak 

samples and its two adjacent points fall on the just same lobe, in that the underlying assumption of a 

polynomial segment is more valid. 

Range estimation can be operated by both non-coherent and coherent approaches; two distinct 

approaches have their pros and cons correspondingly. The non-coherent approaches are more 

straightforward, more robust to environmental effects such as multipath and clutter. Still, it provides 

lower precision while the coherent techniques offer higher precision but are more vulnerable to noise 

and clutter and phase wrap errors, particularly in a complex or harsh environment. A variety of 

processing techniques are employed to both structures for achieving desired ranging precision 

wherever they emanate from initially. 

Processing outcomes illustrated in Chapter 4 confirm that the interpolators perform better with 

the higher order of the polynomial, though the computational effectiveness drops correspondingly; 

polynomial performance can be enhanced by zero-padding before processing and windowing during 

the processing at a certain extend. Note that those outcomes shown above may look decent, however, 

after introducing a higher noise figure into the processing of simulations, the performances of 

polynomial interpolators deteriorate noticeably. Further research will concentrate on anti-noise 

processing and robustness of the algorithm to mitigate the performance distinction between the ideal 

simulation and practical usage. 

Compared with previous non-coherent raging techniques, coherent range estimation is based not 

only on the amplitude of the signal but on its phase characteristics as well, allowing for greater 

precision than that given by the classic range resolution expression. The received vector is measured 

by relating the phase of the received signal to that of a stable reference oscillator in the radar system. 

The phase relationship is measured and processed over an extended time relative to the range delay 

time. Experimental data stemming from an FMCW radar system are therefore presented in 

comparison with the non-coherent approach. This ApRES system operates on a 200-400 MHz chirp 

signal with a 1 GHz clock. Careful hardware designs and processing techniques are applied to achieve 

a reliable and high-precision performance of range estimation. FMCW signal processing is used to 

detect the targets and measure their coarse ranges. Then phase-sensitive signal processing is applied 



 8.2  Future Work 139 

 
  

to determine their exact ranges from the central unit. Signal processing techniques are implemented 

to integrate standard FFT-based algorithm, providing a rough range estimate to the closest range bin, 

𝑛∆𝑅, with a delicate estimation determined by the phase information. Precise phase estimation is 

needed to determine the exact range bin close where a distinct target is located, and then calculate 

the fractional range within that specific range bin. The fine range is obtained from the phase of the 

range bin with the maximum magnitude 

 

8.2 Future Work 

8.2.1 System Development 

Further research will be kept pushing forward to eventually develop and trial a location system 

using non-coherent techniques and make a comparison to coherent approaches. Potential two-step 

technical schedules in the future are shown as follow:  

 

Technical Objective 1: Algorithm optimisation and Field Validation of Prototype 

Based on the prototype of the ApRES radar, the primary technical objective is to establish an 

optimized architecture for the system and validate the performance of the prototype operating in a 

realistic field environment via outdoor tests. Meanwhile, radar signal processing algorithms will be 

optimised based on current research outcomes to establish a robust method for an estimate the range 

with millimetre-precision and also to attain a user-friendly interface for recording and display. 

Moreover, there is another task to achieve the credible validation regarding the 0.0001 metres precise 

measurement (0.001 metres currently by means of regular gauging tools). It is crucial to justify such 

accurate experimental measurements with corresponding measuring approaches which are required 

to extra considerate considerations . 

 

Technical Objective 2: Cost-Optimisation and Commercialisation 

The aim is to achieve system integration and cost-optimisation study for commercialisation of the 

proposed radar system. This will explore the opportunities for outsourcing radar manufacture in 

production perspective. Additionally, the experimental results achieved from the laboratory and field 

trials, which will be benchmarked against an existing system, will be used to help find and secure the 

potential opportunity of the proposed radar system. 
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8.2.2 High-precision Ranging on radar communication integration 

Apart from the objective of system development, there is also another work proposal concentrated 

on the application of deep learning into the realm of digital radar and radar communication 

integration 

Deep learning has been used for radar signal processing as target classification [120, 121]. It has 

promising potential for radar processing beyond that, for example, adaptive waveform design, precise 

localisation, optimal interference mitigation, and other related applications. In parallel to the 

described deep learning application in radar, the concepts of digital radar based on digital modulation 

like orthogonal frequency-division multiplexing (OFDM) [122, 123] and Phase modulated continuous 

wave (PMCW) have drawn attention much. Differing from FMCW radar, they generate digital 

waveforms and perform digital demodulation. For OFDM radar system, its structure provides 

sufficient flexibility in the waveform choice, which grants available capabilities to embed 

communication information into the radar waveform, even for an adaptive and software-defined 

pattern. 

The OFDM waveform consists of a series of orthogonal components, and its complex amplitudes 

are modulated with radar modulation pattern or communication data. The OFDM waveform can be 

quickly produced through the inverse fast Fourier transform (IFFT) due to the intrinsic characteristics 

of the discrete Fourier transform (DFT). Correspondingly, the radar modulation pattern or 

communication data can be easily extracted at the receiver side via FFT. It provides efficient digital 

demodulation of radar waveforms, and decent efficiency and simple extraction of communication 

data. 

In terms of a PMCW radar system, the phase-modulated waveforms can be efficiently generated 

by CMOS devices. A bank of digital correlators is applied to achieve range detection, while the Doppler 

processing is conducted by FFT or other methods. Multiply transmitting channels can operate 

simultaneously as the usage of orthogonal codes, and so that enables MIMO processing. Moreover, 

varies code selection brings the robustness against interference. Besides, compared to an OFDM radar 

system, Doppler shift harms PMCW waveforms because of the autocorrelation and cross-correlation 

properties, which leads to extra compensation in the domain of signal processing.   

Comparing to typical Fourier-based processing, the performance of radar resolution and range 

unambiguity for related measurement parameters depend individually on sampling frequency and 

observation length to the corresponding dimension. Super-resolution frequency estimation methods 

are introduced to enhance a decent resolution; it can be concluded as a maximum-likelihood method, 
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subspace method, and compressed-sensing method. Furthermore, with the development of 5G 

(International Mobile Telecommunication 2020, IMT2020), the high-performance ranging techniques 

and algorithm can be widely used on massive MIMO systems, autonomous vehicles for detection and 

obstacle avoidance, wearable sensing equipment, Internet of Things, collaborative situational 

awareness, and radar-communication integration. 
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Appendixes 

Appendix A: Matlab codes of polynomial interpolation 
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Appendix B: Matlab codes of the normalised amplitude spectrum of window functions 
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Appendix C: Matlab codes of the normalised amplitude spectrum of window functions 
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Appendix D: Matlab codes of the phase-sensitive process of FMCW radar system 
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