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Abstract 

Future ocean exploration will be dominated by a large-scale deployment of marine robots such as 

unmanned surface vehicles (USVs). Without the involvement of human operators, USVs exploit 

oceans, especially the complex marine environments, in an unprecedented way with an increased 

mission efficiency. However, current autonomy level of USVs is still limited, and the majority of 

vessels are being remotely controlled. To address such an issue, artificial intelligence (AI) such as 

reinforcement learning can effectively equip USVs with high-level intelligence and consequently 

achieve full autonomous operation. Also, by adopting the concept of multi-agent intelligence, future 

trend of USV operations is to use them as a formation fleet. Current researches in USV formation 

control are largely based upon classical control theories such as PID, backstepping and model 

predictive control methods with the impact by using advanced AI technologies unclear. This paper, 

therefore, paves the way in this area by proposing a distributed deep reinforcement learning algorithm 

for USV formations. More importantly, using the proposed algorithm USV formations can learn two 

critical abilities, i.e. adaptability and extendibility that enable formations to arbitrarily increase the 

number of USVs or change formation shapes. The effectiveness of algorithms has been verified and 

validated through a number of computer-based simulations. 
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1. INTRODUCTION 

Our oceans are the least-explored region of planet Earth. Several world leading projects are making 

profound contributions to a better understanding of oceans. For example, a Defence Advanced 

Research Projects Agency (DARPA) funded project, ‘Ocean of Things’, has been proposed to enable 

persistent maritime situational awareness over large ocean areas by deploying thousands of small, low-

cost floats that could form a distributed sensor network [1]. By equipping floats with a suite of 

commercially available sensors, important environmental data such as ocean temperature, sea state, 

salinity and location, can be collected in real-time and transmitted via satellite to a cloud network for 

storage and real-time analysis.  

It can be seen that current trend for next generation ocean exploration is towards automated and 

intelligent operation in extreme and harsh maritime environments. Such an ambition will be largely 

underpinned by recent advances in robotics and artificial intelligence (AI). Marine robots, such as 
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unmanned surface vehicles (USVs), will play an increasingly key role in the near future and this role 

will continually expand and become more challenging as we extend into deeper, remote and hostile 

marine environments. However, current autonomy level of USVs remains relatively low as most 

vessels adopt remote control model. A real-time on-board intelligence is still in absence and requires 

further investigations. 

Currently, one of the promising approaches to increase USVs’ autonomy level is to deploy vessels as 

a formation fleet with multiple USVs simultaneously undertaking missions in a cooperative manner. 

Such an approach can achieve a shared autonomy, where each USV makes its own contribution 

towards a complex mission that requires sophisticated operations. By decomposing missions into 

several sub-missions that are not beyond each USV’s capacity, an improved mission execution 

efficiency can be achieved together with other benefits such as increased mission areas and fault 

tolerance capability.  

Central to the deployment of USV formations is the design and development of a robust formation 

control strategy, which ensures a formation to reach a target point or follow a predefined trajectory by 

retaining a formation shape (triangular, circular or linear shapes). Several studies have been actively 

undertaken in this area by employing classical control strategies such as model predictive control 

(MPC), backstepping control and adaptive control methods. For example, Liu et al. [2] proposed an 

incremental predictive control method for USV formation control and consensus. Issues of network 

delays and uncertainties were specifically addressed by using an incremental observer and predictive 

controller. Qin et al. [3] used the sliding mode control method to solve USV formation problem with 

a specific aim on resolving underactuated issues. Innovatively, high-level decision-making capabilities 

such as task allocation and motion planning have been integrated into formation control algorithm to 

form a holistic hierarchical control framework. Similarly, Liang et al. [4] developed a swarm centre 

position guidance algorithm using neural networks to enable each USV within a formation to follow a 

desired path, and to guarantee path following errors converge to a small neighbourhood of origin. 

Although these conventional control methods can achieve a good control performance, most of these 

approaches require sophisticated calculation on analytical solutions yielding a non-linear control law 

which is difficult to implement on practical USV platforms. 

Machine learning, especially reinforcement learning (RL), can provide new insight into formation 

control. With the underlying concept that training an agent to learn an optimal policy via a trail-and-

error manner, a high-level intelligence can be generated and applied upon many practical applications. 

Successful implementations of RL includes the design of AlphaGo [5] and the most recent 

breakthrough in playing StarCraft Ⅱ [6]. Besides, many researchers are committed to applying RL to 

the control of single-agent such as USV, autonomous underwater vehicle (AUV) and unmanned aerial 

vehicle (UAV). Wu et al. [7] proposed a duelling deep Q-network based method for the autonomous 

navigation and obstacle avoidance of USVs. Sun et al. [8] innovated an optimized sample pools and 

average motion critic network based DDPG algorithm for the path following control of AUVs. An 

actor-critic reinforcement learning algorithm is proposed by Ma et al. [9] for the obstacle avoidance 

of UAVs control in continuous spaces. Although the RL performs well in the control of single-agent, 

some other issues (state-space explosion, the adaptability and extendibility of learned policy) need to 

be resolved for the formation control. 

The application of RL in formation control is also evitable. Wen et al. [10] proposed a fuzzy logic 

based RL control method for multi-agent formation control. Issues such as unknown dynamic and 

inherent nonlinearity that are difficult to be addressed using conventional control methods were well 

addressed. Zuo et al. [11] studies the formation control of multiple robots using RL and a self-learning 

capability can be realised to initiate complex tasks execution in various environments. A 𝐺𝑄(𝜆) 

algorithm was proposed by Knopp et al. [12] for a fleet of humanrobot to achieve a smooth path 

following performance while the formation is being controlled.  
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In terms of using RL for USV formation control, limited studies have been carried out. Most of present 

USV related literature focus on applying RL for single vehicle path following control. Woo et al. [13] 

proposed a deep reinforcement learning (DRL)-based controller for path following of a USV with a 

new Markov decision process (MDP) model for USVs designed. Wu et al. [14] designed a new RL 

method for autonomous navigation and obstacle avoidance using a duelling deep Q-network. Zhou et 

al. [15] innovated a new deep Q-network based control structure for USV formations with advanced 

collision avoidance ability been tested. However, a discretised action, i.e. a USV cannot take a 

continuous adjustment in heading angle and speed, was adopted, which limits the accuracy of real-

time control. 

By summarising current studies in using RL for USVs control especially for USV formation control, 

research gaps remain as follows: 1) the majority of work is investigating RL based control for a single 

USV with limited studies looking into USV formation control; 2) most of the research focuses on only 

one USV formation shape without adaptability and extendibility for different USV formation, i.e. the 

change of the number of vessels in a formation or a change of formation shapes requires a redesign of 

formation scheme; 3) the training of RL algorithm for formations is not adaptive and extendable, i.e. 

any changes of USV formation (number of vehicles or shape) require a redesign of RL networks and 

a rerun of training process. It should be noted that the adaptability and extendibility of a USV formation 

are of great significance. By bringing a new concept of modular design, it would become advantageous 

if a trained and stable RL agent (or a neural network) is readily to be applied onto any newly added 

USVs when a formation needs to make any change. Such a plug-and-play capability will greatly benefit 

the operation of USV formations in complex and demanding scenarios. 

Based upon the discussions above, a new adaptive and extendable control strategy for USV formations 

has been proposed in this paper using distributed DRL. The main contributions are: 1) a new leader-

follower based USV formation method has been proposed using the architecture of distributed DRL; 

2) through a novel design of USV formation structures, a great flexibility can be achieved in a way 

that the number of vessels in a formation or the formation shape can be adjusted by modifying 

associated formation parameters; 3) to enable the adaptability and extendibility of formation control, 

a new USV formation MDP that facilitates the reusing of control strategy has been proposed. Extensive 

computer-based simulations have been conducted to validate the performance of the proposed 

algorithms.  

The rest of the paper is organised as follows. Section 2 provides a fundamental introduction to key 

knowledge underpinning the work in this paper such as USV dynamic model, USV formation control 

strategies and basics in RL. Section 3 specifically introduces the designed new algorithms for adaptive 

and extendable USV formation control based upon DDPG. Section 4 presents a set of simulation results 

to validate the algorithms. Section 5 concludes the paper and discusses future work. 

2. PROBLEM FORMULATION 

2.1. USV dynamic model 

In this work, the motion of a USV is computed using the classical approach with theory of rigid body 

dynamics and kinematics. It should be noted that the conventional dynamic model of a USV belongs to 

6 degrees of freedom (6 DoF), and in this study without losing generality, a USV’s motion is assumed 

to be restricted to the horizontal plane, disregarding pitch and roll motions to maintain the complexity 

of the model at a reasonable level. Considering a coordination system as shown in Fig. 1, the motion of 

a USV can be written as: 
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{

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 ∗ 𝑇 ∗ 𝑐𝑜𝑠𝜙𝑡+1

𝑦𝑡+1 = 𝑦𝑡 + 𝑣𝑡+1 ∗ 𝑇 ∗ 𝑠𝑖𝑛𝜙𝑡+1

𝑣𝑡+1 = 𝑣𝑡 + 𝑎𝑡 ∗ 𝑇
𝜙𝑡+1 = 𝜙𝑡 + 𝜔𝑡 ∗ 𝑇

 (1) 

 

where 𝑥𝑡, 𝑦𝑡 are the position of a USV at time t, 𝑣𝑡, 𝜙𝑡 are the speed and heading angle of a USV at 

time t, 𝑎𝑡, 𝜔𝑡 , as the control inputs for a USV, are the acceleration and angular velocity at time t, 

respectively, 𝑇 is the sampling time for a system. 
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Fig. 1. USV coordination system. 

 

2.2. USV formation control background 

To achieve a USV formation control, three main strategies have been proposed including leader-

follower, virtual structure and behaviour-based methods. A detailed review in formation control can 

be found in [16]. In the leader-follower control approach, one vehicle is regarded as the group leader 

with full access to the overall navigation information and works as the reference vehicle in the 

formation. Apart from the leader vehicle, other vehicles in the formation are viewed as followers. 

Followers operate under the guidance of the leader with the primary aim being retention of the 

formation shape by maintaining the desired distance from and pose angle to the leader. The virtual 

structure (VS) as defined in this context is a collection of elements (unmanned vehicles), which 

maintain a rigid geometric relationship to each other and a frame of reference. By treating the 

formation shape as a VS or a rigid body, the formation is maintained by minimising the position error 

between the VS and actual formation position. Behaviour-based formation control solves the formation 

control problem by using a hybrid vector-weighted control function, which is able to generate the 

control command based upon various kinds of formation missions.  

2.3. Fundamentals in reinforcement learning (RL) 

In this section, the rationale of RL will be discussed. The MDP which is normally used for 

reinforcement environment modelling will be first introduced and then followed by the discussion on 

one of two fundamental RL algorithms – tabular based learning algorithms and approximation based 

learning algorithms. At last, policy gradient and deep deterministic actor-critic algorithms are 

introduced. 
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2.3.1. Markov decision process (MDP) 

A MDP describes an environment for learning, in which a goal can be learned via continuous 

interactions between an agent and the environment. More specifically, an MDP can be represented 

using a 4-element tuple: 

 

M = [𝑠, 𝑎, 𝑟, 𝑝] (2) 

 

where 𝑠 =  𝑠1, 𝑠2, … , 𝑠𝑡, 𝑠𝑡+1 represents the dynamic environment with a finite set of states with 𝑠𝑡 

denoting the state at time t. 𝑎 =  𝑎1, 𝑎2, … , 𝑎𝑡, 𝑎𝑡+1 represents the actions executed by an agent and 𝑎𝑡 

denotes the taken action at time t. r is the reward function with  𝛾 ∈ [0,1] being the discount factor 

which determines the present value of future rewards with discounting. p is the transition probability 

function expressed as: 

 

𝑝𝑠𝑠′
𝑎 = 𝑃[𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3) 

 

The interaction between an agent and an environment is shown in Fig. 2. The agent, i.e., a learner and 

decision maker, selects an action 𝑎𝑡 with observed environment state 𝑠𝑡; the environment, in response 

to the actions taken by the agent, updates its state to 𝑠𝑡+1 and returns an immediate reward 𝑟𝑡+1 to the 

agent [17]. The selection of action is bounded by a policy (𝜋(𝑎|𝑠)), which is a mapping from states to 

probabilities of selecting each possible action. Given a policy 𝜋, the state-value function of a state 𝑠 

can be calculated as: 

 

𝑉𝜋(𝑠) = 𝐸𝜋 [∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

] (4) 

 

Similarly, an action-value function for a policy 𝜋 can be calculated as: 

 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋 [∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

, 𝑎𝑡 = 𝑎] (5) 

 

Solving a RL problem is to find an optimal policy 𝜋∗ to achieve a maximal accumulated discounted 

reward, which can lead to either an optimal state-value function or an optimal action-value function as 

expressed as: 

 

𝜋∗ = argmax
𝜋

𝑉𝜋(𝑠) = argmax
𝜋

𝑄𝜋(𝑠, 𝑎) (6) 
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Fig. 2. The agent-environment MDP interaction framework. 

2.3.2. Tabular and approximation based learning algorithms 
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The core to RL is the calculation of value functions (state-value function or action-value function) 

given the specific problem to be investigated. When state and action spaces have relatively small 

dimension, tabular based RL algorithms can be used where state-value or action-value are stored in 

tables. One of the main advantages of tabular methods is exact optimal value function and optimal 

policy can always be found [18]. Typical tabular based learning algorithms include dynamic 

programming, Monte Carlo methods and temporal-difference (TD) learning. Based upon the criteria 

whether a model of an environment is needed, dynamic programming can be categorised as model-

based algorithms whilst Monte Carlo methods and TD learning are model-free algorithms. Q-learning 

as one of the TD learning algorithms, proposed by [19], is one of the early breakthroughs in RL [18].  

To address the high complexity of the value function calculation when large state spaces exist, 

approximation based RL algorithms are proposed. The essence of such algorithms is to apply function 

approximation to value functions so that an approximated mapping from states (or state-action pairs) 

to value functions can be established to assist with exploring an optimal policy [18]. It should be noted 

that by using the approximation based learning algorithm, not only the problem with large state spaces 

can be addressed, but the capability of dealing with unknown states will also be enabled, which is 

particularly intriguing for practical applications. 

Common function approximation methods include linear combination, kernel-based approximation, 

memory-based approximation and neural networks. Deep Q Network (DQN) is first proposed by [20]. 

Similar to Q-learning, DQN is also an off-policy algorithm. The main components of DQN algorithm 

are Q-network with parameters 𝜃 , target network with parameters 𝜃− , loss function and replay 

memory. Note that the two neural networks share the same structure [20]. There are three 

improvements in DQN algorithm compared to tabular Q-learning. First, DQN uses deep neural 

networks to approximate the action-value function. Therefore, DQN algorithm can be applied to large 

or continuous state space problems without the need of Q table. Second, DQN utilises experience 

replay to enhance the learning process. The main role of experience replay is to overcome the problem 

of correlated data and non-stationary distribution of empirical data by training randomly from previous 

state transitions (experiences). Experience replay has the advantages of high data utilization because 

individual samples can be used multiple times. In addition, the experience replay with mini-batches 

breaks the correlation of consecutive samples which can lead to large variance in network parameters. 

Third, DQN employs two networks with a target network providing fixed targets. The parameters 𝜃 in 

Q-network keep updating in each time step during the training process, while 𝜃− update periodically. 

Such an update strategy improves the training stability. 

2.3.3. Policy gradient and the deep deterministic actor-critic algorithm 

Typical RL algorithms such as tabular Q learning [21] and DQN algorithms belong to action-value 

methods, i.e. the learning process is achieved in a way that values of actions are first learned, and actions 

are selected based upon estimated action values [18]. By integrating a function approximation strategy 

(such as the DQN), problems with a high dimension of state space can be well addressed. However, 

when a continuous action space exists, the iterative calculation of value functions becomes 

computational expensive with a weak guarantee of convergence making it inappropriate to apply value 

function based learning algorithms. Such a problem is of special importance for USV formation control, 

where a continuous and smooth control is always preferred.  

To properly address these issues, policy gradient based learning methods have been proposed and well-

studied. Similar to parameterise a value function, a policy can be parameterised as: 

 

𝜋(𝑎|𝑠, 𝜽) = Pr {𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠, 𝜃𝑡 = 𝜽} (7) 

where 𝜽 ∈ ℜ𝒅′
 is the policy’s parameter vector.  ℜ is the real domain and 𝒅′ is the dimension of 𝜽. A 

scalar performance measure can then be defined as 𝐽(𝜽) . Following the gradient of the scalar 

performance measure, a gradient ascent can be performed to maximise 𝐽(𝜽) as: 
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𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝐽(𝜽𝑡) (8) 

 

where 𝛼 ∈ [0,1] is the learning rate. ∇𝐽(𝜽𝑡) is a stochastic estimate whose expectation approximates 

the gradient of the performance measure. In an episodic case, 𝐽(𝜽) can be defined as:  

 

𝐽(𝜽) = ∑ 𝑑𝜋(𝑠)𝑉𝜋(𝑠) = ∑ 𝑑𝜋(𝑠)

𝑠𝜖𝑆

∑ 𝜋𝜽(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

𝑎∈𝐴𝑠∈𝑆

 (9) 

 

where 𝑑𝜋(𝑠) is the stationary distribution of Markov chain for 𝜋𝜽 and ∇𝐽(𝜽) can thus be written as: 

 

∇𝐽(𝜽) ∝ ∑ 𝑑𝜋(𝑠)

𝑠𝜖𝑆

∑ 𝑄𝜋(𝑠, 𝑎)∇𝜽𝜋𝜽(𝑎|𝑠)

𝑎∈𝐴

 (10) 

 

It can be seen that policy gradient method includes two important components, i.e. the policy model 

(𝜋𝜽(𝑎|𝑠)) and the value function (𝑄𝜋(𝑠, 𝑎)). Several methods, such as REINFORCE [22] and its 

variations, have been proposed to use a sample return to estimate the value function. To improve the 

learning performance, a better estimation of the value function can assist with the policy update, and 

this forms the core of actor-critic training method for policy gradient. By parameterising the value 

function, the actor-critic method works in a way that the critic updates the value function parameters 

whereas the actor updates the policy parameters in the direction suggested by the critic.  

The policy to be updated can be either stochastic or deterministic. A stochastic policy is often 

represented as a set of conditional probability distributions, which return a distribution of actions to take 

at each state. The stochastic policy is better suited in an uncertain environment, where exploration is 

favoured to have an optimal policy update result. However, this is always carried out at the cost of high 

computational complexity. To address this issue, a deterministic policy has been proposed and it 

explicitly depicts a mapping (𝜇𝜽, 𝜽 ∈ ℜ𝒎) from state to action: 𝑆 → 𝐴. Following the same rule in 

stochastic policy gradient, a new algorithm named deterministic policy gradient (DPG) [23] has been 

proposed using the actor-critic method. The performance measure for DPG can be defined as:  

  

𝐽(𝜽) = ∫ 𝜌𝜇(𝑠)𝑄(𝑠, 𝜇𝜽(𝑠))𝑑𝑠
𝑆

 (11) 

 

where 𝜌𝜇(𝑠) is the state distribution and the gradient of the measure 𝐽(𝜽) can be calculated as: 

 

∇𝐽(𝜽) = ∫ 𝜌𝜇(𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)∇𝜽𝜇𝜽(𝑠)|𝑎=𝜇𝜽(𝑠)𝑑𝑠 = 𝐸𝑠~𝜌𝜇[𝛻𝑎𝑄𝜇(𝑠, 𝑎)𝛻𝜽𝜇𝜽(𝑠)|𝑎=𝜇𝜽(𝑠)]
𝑆

 (12) 

 

To ensure a sufficient and satisfactory exploration for deterministic policy gradient, an off-policy 

learning strategy is adopted so that the training trajectories are generated by a stochastic policy 𝛽(𝑎|𝑠) 

and the new performance measure and its gradient can be expressed as: 

 

𝐽𝛽(𝜽) = ∫ 𝜌𝛽(𝑠)𝑄𝜇(𝑠, 𝜇𝜽(𝑠))𝑑𝑠
𝑆

 (13) 

 

∇𝐽(𝜽) = 𝐸𝑠~𝜌𝛽[𝛻𝑎𝑄𝜇(𝑠, 𝑎)𝛻𝜽𝜇𝜽(𝑠)|𝑎=𝜇𝜽(𝑠)] (14) 
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By combining the DPG and DQN, DDPG [24] is proposed as a model-free off-policy actor-critic 

algorithm (pseudocode is shown in Algorithm 1). By retaining the feature of DQN that is stabilizing the 

learning of Q-function by experience replay and the frozen target network, DDPG extends the original 

discrete action space of DQN to a continuous space with the actor-critic framework while learning a 

deterministic policy [25]. Both the critic and actor are equipped with two networks that have the same 

structure, which are the critic/actor networks and the target critic/actor networks, respectively. The 

update of parameters of these networks is similar to that of DQN, i.e. by minimising the loss between 

the target and estimated values. Also, to enable DDPG to have a satisfactory exploration in state and 

action spaces, when selecting an action from the policy 𝜇𝜽(𝑠), noise 𝒩 is added as: 

 

𝑎 =  𝜇𝜽(𝑠) + 𝒩 (15) 

 

In addition, to stabilise the learning process, different to DQN where the target network stays frozen for 

some period of time, a soft update strategy is employed in DDPG for parameters update for both critic 

and actor networks: 𝜽′ ← 𝜏𝜽 + (1 − 𝜏)𝜽′ with 𝜏 ≪ 1. 

 

Algorithm 1 Deep deterministic policy gradient (DDPG) [24] 

Randomly initialise critic network 𝑄(𝑠, 𝑎|𝜽𝑄) and actor 𝜇(𝑠|𝜽𝜇) with weights 𝜽𝑄 and 𝜽𝜇 

Initialise target network 𝑄′ and 𝜇′ with weights 𝜽𝑄′
← 𝜽𝑄 and 𝜽𝜇′

← 𝜽𝜇 

Initialise replay buffer R 

for episode = 1, M do 

     Initialise a random process 𝒩 for action exploration  

     Receive initial observation state 𝑠1 

     for t = 1, T do 

         Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜽𝜇) + 𝒩𝑡 according to the current policy and exploration noise 

         Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1 

         Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in R 

         Sample a random minibatch of N transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1)  from R 

         Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜽𝜇′
)|𝜽𝑄′

) 

         Update critic by minimising the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜽

𝑄)𝑖=1 )2 

         Update the actor policy using the sampled policy gradient: 

∇𝜽𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜽𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜽𝜇𝜇(𝑠|𝜽𝜇)

𝑖

|𝑠𝑖
 

         Update the target networks: 

𝜽𝑄′
← 𝜏𝜽𝑄 + (1 − 𝜏)𝜽𝑄′

 

𝜽𝜇′
← 𝜏𝜽𝜇 + (1 − 𝜏)𝜽𝜇′

 

    end for 

end for 

 

3. DISTRIBUTED DEEP REINFORCEMENT LEARNING BASED ADAPTIVE USV FORMATION CONTROL 

3.1. MDP design for USV formation 

Based upon the leader-follower strategy, a USV formation MDP can be defined. The benefits of using 

the leader-follower strategy include flexibility in describing the formation relationship and easy 
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implementation and adaption of formation shapes. Also, to decouple the relationship between a leader 

USV and a follower USV and to have a better extendibility of formation, instead of employing a unified 

MDP for the whole formation, each vehicle has its own MDP. It means that the state space will not 

change as the number of USV increases in a formation. Besides, deep networks are employed to fit the 

state-action and policy functions for the continuous state space in the DDPG algorithm. The policy is 

iteratively updated to make USVs able to retain the formation shape while navigating towards the goal 

point. More specifically, as shown in Fig. 3, USVs within a formation have been grouped into three 

different categories as: the leader USV (USV0), the follower USV on the left side (USV 1 and 3) 

and the follower USV on the right side (USV 2 and 4). Details can be summarised as: 

1) Leader USV needs to find an optimal policy to traverse to the goal point with the shortest 

distance; 

2) Follower USVs need to identify the specific vessel it must follow and retain the formation 

shape by maintaining a predefined distance and angle with its following vessel. For example, 

as shown in Fig. 3, USV 1 needs to follow USV 0 with a preferred distance 𝑑1 and angle 𝜃1. 

 

d2

d0

d4d3

USV 0

USV 1 USV 2

USV 4USV 3

Goal point

o x

y

d1

θ0

θ1 θ2

θ3 θ4

  

Fig. 3. USV formation configurations. 

 

3.1.1. State space and action space design  

Based upon the categorisation of USVs within a formation, the state spaces can be defined according 

to the specific type of a USV. For a leader USV, with the primary aim being to reach the goal point, the 

state space is defined as: 

 

𝑆𝑙𝑒𝑎𝑑𝑒𝑟 = [Δ𝜃] = [𝜃0 − 𝜑0] (16) 

 

where 𝜃0 is the angle of the goal point with respect to the heading direction of the leader USV and 𝜑0 

is the heading angle of the USV. 

For follower USVs, both types (USV on the left side and USV on the right side) share the same state 

space as: 
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𝑆𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = [
Δ𝑑𝑛

𝑚

𝑑𝑟𝑒𝑞
, Δ𝜃𝑛

𝑚,
Δ𝑣𝑛

𝑣
, 𝜙𝑛,

Δ𝑣𝑚

𝑣
, 𝜙𝑚] (17) 

 

where Δ𝑑𝑛
𝑚 = 𝑑𝑛

𝑚 − 𝑑𝑟𝑒𝑞, 𝑑𝑛
𝑚 is the distance between the mth and nth  USV (the nth  USV is following 

the mth USV), 𝑑𝑟𝑒𝑞 is the required formation distance between two vehicles. Δ𝜃𝑛
𝑚 = 𝜃𝑛

𝑚 − 𝜃𝑟𝑒𝑞 with 

𝜃𝑛
𝑚 being the formation angle of the nth USV and 𝜃𝑟𝑒𝑞 being the required angle. Δ𝑣𝑛 = 𝑣𝑛 − 𝑣, with 𝑣𝑛 

being the velocity of the nth USV and 𝑣 is the desired velocity of the formation (the same definition of 

the mth USV applies to Δ𝑣𝑚). 𝜙𝑛 is the heading angle of the nth USV (the same definition of the mth 

USV applies to 𝜙𝑚). 

The action space can also be defined according to the specific type of USVs. For a leader USV, 

following a common approach of USV manoeuvring, i.e. the heading of a USV is always being adjusted 

while keeping the speed constant, the action space for a leader USV is defined as: 

 

𝐴𝑙𝑒𝑎𝑑𝑒𝑟 = [𝜔0] (18) 

 

where 𝜔0 is the angular velocity of leader USV. 

In terms of follower USVs, following the dynamics of USVs, all followers share the same action space, 

which can be defined as: 

 

𝐴𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = [𝑎𝑛, 𝜔𝑛] (19) 

 

where 𝑎𝑛  is the acceleration of the nth USV and 𝜔𝑛  is the angular velocity of the nth USV. Such a 

configuration has taken into account the fact that different to the leader USV, followers need to change 

their speed to travel to the desired formation positions if a formation shape is not formed or unstable. 

3.1.2. USV formation rewards design 

The rewards design plays a critical role in RL. According to the categories of USVs in a formation, 

different USV have different roles. For example, the pivoting role of a leader USV is to seek an 

optimised trajectory to reach the target point; whereas, followers are mainly to follow the leader vehicle 

and retain the formation shape. As a result of this, the reward functions in this work can be defined 

according to the specific type of USV. For a leader USV, the aim is to reach the goal point and when 

the leader USV arrives at the goal point, a zero reward will be assigned. Otherwise, the reward function 

is defined as: 

 

𝑟0
𝜃 = −|𝜃0 − 𝜑0| (20) 

 

where 𝜃0 is the azimuth angle of the goal point with respect to the leader USV and 𝜑0 is the heading 

angle of the leader USV. 

The total reward of leader USV is defined as: 

 

𝑟𝑙𝑒𝑎𝑑𝑒𝑟 = 𝜆0
𝜃 ∗ 𝑟0

𝜃 (21) 

 

where 𝜆0
𝜃 is a constant which aims to define the importance of the reward 𝑟0

𝜃. In this research, 𝜆0
𝜃 is set 

to 1.0 and it can be adjusted to balance with other rewards in further researches. 
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For any nth follower USV, the aim is to maintain the formation shape, which will be affected by two 

factors including formation distance and formation angle. The reward function evaluating the quality 

of formation distance can be defined as: 

 

𝑟𝑛
𝑑 = −|

𝑑𝑛
𝑚 − 𝑑𝑟𝑒𝑞

𝑑𝑟𝑒𝑞
| (22) 

 

where 𝑑𝑛
𝑚 is the distance between the mth and the nth USV (the nth USV is following the mth USV), 𝑑𝑟𝑒𝑞 

is the required formation distance between two vehicles. 

The reward function expressing the formation angle can be defined as: 

 

𝑟𝑛
𝜃 = −|𝜃𝑛

𝑚 − 𝜃𝑟𝑒𝑞| (23) 

 

where  𝜃𝑛
𝑚 is the formation angle of USV n according to Fig. 3 (USV n is following USV m). 𝜃𝑟𝑒𝑞 is 

the required formation angle. 

The total reward of the nth follower USV is the weighted sum of the two reward functions including 

formation distance and formation angle as: 

 

𝑟𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝜆𝑛
𝑑 ∗ 𝑟𝑛

𝑑 + 𝜆𝑛
𝜃 ∗ 𝑟𝑛

𝜃 (24) 

 

where 𝜆𝑛
𝑑 and 𝜆𝑛

𝜃 are constant coefficients which aim to define the importance of the reward 𝑟𝑛
𝑑 and 𝑟𝑛

𝜃, 

respectively. If the formation distance is more important than the formation angle, 𝜆𝑛
𝑑 will be relatively 

larger than 𝜆𝑛
𝜃 to make sure the formation distance converges more quickly. Besides, 𝜆𝑛

𝑑 and 𝜆𝑛
𝜃 will be 

used to trade off with other rewards in more complex missions. In this research, 𝜆𝑛
𝑑 and 𝜆𝑛

𝜃 are equal to 

1.0.  

3.2. Adaptive and extendable USV formation control using deep deterministic policy gradient 

In this work, an adaptive and extendable USV formation control is achieved using DDPG algorithm. 

Instead of carrying out a centralised training procedure, where USVs are trained as a unit, a distributed 

training strategy has been designed as shown in Fig. 4. Each USV (or agent as shown in Fig. 4) is 

equipped with its own actor-critic network. Rather than using a full observation of the environment and 

all the other vehicles, an observation of its own states (𝑂𝑖, 𝑖 = 1,2, … , 𝑛) can sufficiently enable a USV 

to learn an optimal policy by interacting with the environment using a combined action signal. 

In addition, such a training strategy can largely satisfy the requirement for an extendibility for USV 

formations. Once the networks’ parameters have been successfully updated, the trained neural network 

can be easily extended to other USVs if there is a requirement to increase the number of USVs in a 

formation. Also, because the design of the state space (explained in Section 3.1.1) does not require an 

explicit expression of formation shapes, using the trained networks, new formation shapes can be easily 

adapted, extended and formed by taking in new formation distance and angle specifications. 

The specific training and testing framework is shown in Fig. 5. It is intended that by undertaking the 

RL training on simple USV formations (the training block in Fig. 5), USVs can directly use the learned 

knowledge to conduct more complex formation configurations during the testing procedures (the testing 

block in Fig. 5). More specifically, a triangular USV formation including all USV categories (leader, 

left side follower and right side follower) are involved in the training procedure, and the control policy 

of each USV is optimised separately, which is different from the original DDPG algorithm. In the testing 

phase, cases with different formation numbers and shapes are designed for validating the adaptability 

and extendibility of the proposed approach. With an immense benefit from the specific observation state 
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and reward designs, USVs belonging to the same category can reuse the learned policy from training 

procedure.  
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Fig. 4. The interation of multiple USVs using deep reinforcement learning (DRL). 
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Fig. 5. Agent training and testing framework of adaptive and extendable USV formation control. 

In terms of the specific design for both actor and critic networks for the DDPG algorithm, a structure 

with two hidden layers (each layer containing 400 and 300 neurons respectively) has been adopted 

(shown in Fig. 6) based on the dimension of state and action spaces, which is sufficient to approximate 

the state-action and policy functions in this research. Noise 𝒩 for action selection is constructed using 

Ornstein-Uhlenbeck (O-U) process to make full exploitation of state and action spaces. The O-U process 

can be defined as: 

 

𝒩𝑡+1 = 𝒩𝑡 + 𝜃𝑂𝑈(𝜇𝑂𝑈 − 𝒩𝑡) + 𝜎𝑂𝑈𝒩(0, 1) (25) 

 

where 𝒩𝑡 and 𝒩𝑡+1 are the values of O-U process at time t and t+1, respectively. 𝒩1 is equal to zero. 

𝒩(0, 1) is a Gaussian process with zero mean and a standard deviation of 1. The parameters for O-U 

process in this work are defined as 𝜇𝑂𝑈 = 0, 𝜃𝑂𝑈 = 0.15, 𝜎𝑂𝑈 = 0.2. Other parameters for DDPG based 

adaptive and extendable USV formation control are listed in Table I with the training framework of 

DDPG shown in Fig. 7. All the parameters listed in Table I are already tuned to make sure that the 

training converges within acceptable time in this research. 
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Fig. 6. Neural network design of Actor-Critic Framework. (a) and (b) represent the Actor network and the 

Critic network structure respectively. 

 

TABLE I.  LIST OF PARAMETERS USED IN DEEP DETERMINISTIC ACTOR-CRITIC ALGORITHM 
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ID Parameter Value 

1 Actor learning rate 0.0001 

2 Critic learning rate 0.001 

3 Soft update 𝝉 0.001 

4 Discount rate 0.99 

5 Memory size 100000 

6 Batch size 128 

7 Hidden layer 1 400 units 

8 Hidden layer 2 300 units 
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Fig. 7. The framework of deep deterministic policy gradient (DDPG) algorithm based upon actor-critic 

structure. 

 

3.3. Environment design of USV formation 

The environment of the RL consists of two parts, i.e. the USV dynamic model (see Section 2.1) and 

the USV formation definition (see Section 3.1). Algorithm 2 depicts how the environment of the USV 

formation problem is formulated. Before the start of episodes, all parameters of USV formation should 

be configured. In each learning episode, the environment randomly samples a goal point and resets the 

positions and headings of USV. At each time step of an episode, the action 𝑎𝑡  from the agent is 

determined at state 𝑆 denoted by 𝑠𝑡. Then, the positions and headings are updated with equation (1) 

with the action input 𝑎𝑡 . After that, the observation state 𝑠𝑡+1  and immediate reward 𝑟𝑡  can be 

calculated with equation (16)-(17) and (20)-(24). This process repeats until the Termination is true. 

Note that the environment would carry out the termination of an episode if the leader USV arrives at 

the goal point. In this work, the tolerance for leader USV arriving at the goal point is equal to 5 m, i.e. 

the product of speed (5 m/s) and sampling time (1 s). In addition, termination occurs when the final 

targeted time step has been reached. 
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Algorithm 2 Environment of the USV formation problem 

Set the number of USV in formation 

Determine the category for each USV 

Configure distance and angle of the USV formation 

for episode = 1, M do 

     Randomly select a goal point and reset the positions and headings of USV 

     Set Termination = False 

     Calculate the observation state 𝑠1 with equation (16) and (17) 

     for t = 1, T do 

         With action input 𝑎𝑡 from the agent, at state 𝑆 indexed as 𝑠𝑡 

         Get the next positions and headings of USV with equation (1) 

         Update the next observation state 𝑠𝑡+1 with equation (16) and (17) 

         Calculate the immediate reward 𝑟𝑡 with equation (20)-(24) 

         if leader USV arrives at goal point then 

             Termination = True 

             break 

         end if 

    end for 

Termination = True 

end for 

 

3.4. Agent training 

The target of the USV formation task is to minimise the overall travel cost from the start point to the 

goal point. For the leader USV, the travel cost is the cumulative value which is the sum of the difference 

between the heading and the direction of goal point. With regard to the follower USV, it is the 

cumulative value of the weighted sum of formation distance and angle errors. Such a USV formation 

task is intended to train a group of agents for USV formation control with different numbers and shapes. 

The learning process is an episodic task. In each episode, a set of historical experiences is sampled 

from the replay buffer for the agents to interact with to learn policies minimising the travel cost. This 

process repeats until the average episode reward converges. Historical experience is collected during 

the agents' training procedure. 

The RL agent training and policy application follow the procedure presented in Fig. 8. At the beginning 

of the procedure, the RL training parameters such as the learning rate and the noise of exploration, and 

the USV formation environment parameters such as numbers and shapes in the formation should be 

configured. Once the training is converged, the learned policy, i.e. the strategy of USV formation 

control, needs to be validated using a different set of formation tasks. In the application phase, the 

learned policy needs to be tested in different formation cases. The policy can be applied to future 

formation when it is feasible in all test cases. Otherwise, more training episodes will be needed. 

Usually, in a multi-agent system, the environment for each agent is continuously changing during the 

learning procedure. However, with the special state design, the environment for each USV is relatively 

stable in this research. For example, during the training procedure, the environment for the leader USV 

is always static. Although the environment for follower USVs is dynamic due to the learning of leader 

USV, it will not take much time for leader USV to learn a stable strategy as the task is relatively easy. 

Once the training of leader USV is converged, the action change of the leader USV will not be 
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significant. It means that the environment for follower USVs will become static in a short time, which 

ensures that the proposed distributed training method can successfully solve the unstable environment 

in this research. 

Start

RL training converged?

Set RL training and USV formation 

environment parameters

Train RL agents with experience 

replay

RL policy feasible?

Extract RL learned policy and apply it 

in different formation cases

RL policy to future 

fomation

Yes

No

Yes

No

 

Fig. 8. Reinforcement learning (RL) agent training and policy application procedure. 

 

4. SIMULATION RESULTS AND ANALYSIS 

To verify and validate the performances of the proposed algorithms, a set of computer-based 

simulations have been carried out in this section. The underlying aim of this work is that by employing 

a distributed RL architecture, an adaptive USV formation control can be achieved. More importantly, 

the trained actor-critic neural networks can be directly applied onto any newly added USVs so that a 

USV formation can undertake missions adaptively and in an extendable way. Based upon this, 

intriguing simulation results in this section are presented in following ways: 

1) Demonstrating the performance of the designed distributed RL structure. The training 

results of the developed distributed DDPG algorithms for a USV formation consisting of 3 

vessels are presented in Section 4.1; 

2) Validating the adaptability of the proposed algorithms. Using the trained networks in 

Section 4.1, simulation results that demonstrating the same USV formation can tracking 

different goal points are presented in Section 4.2; 

3) Validating the expendability of the proposed algorithms by changing the number of USVs 

in a formation. A USV formation with 5 vessels is tested in Section 4.3; 
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4) Validating the expendability of the proposed algorithms by changing the shape of USV 

formation. A USV formation with different shapes is tested in Section 4.4 and 4.5. 

 

The algorithms are coded in Python with the deep neural networks built and trained using PyTorch 

v1.4.0. 

4.1. Training results 

The training of the proposed algorithms is carried out on a USV formation with the most common shape, 

i.e. an equilateral shape. It is anticipated that USVs can learn a generalised strategy by performing 

training in a simple scenario and applied the learned strategies to accommodate more complicated 

requirements, such as changing goal points, increasing USV numbers in a formation and varying 

formation shapes.  

The USV formation used for training in this work is shown in Fig. 9. USV 0 is assigned as the leader 

USV while USV 1 and 2 are followers. With the consideration of practical operation situations, 

assumptions have been made that the leader USV will only make a change to its heading whereas 

followers can adjust both their speeds and headings. Such a configuration is to ensure that the USV 

formation can be trained to reach the goal point in the shortest time and well maintain its shape. The 

specific angular velocities and accelerations of leader and follower USVs are listed in Table II. 

The training environment has a dimension of 500 m * 500 m. The maximum step for an episode during 

training is set to be 200, and the positions of three USVs at the beginning of the training are (250, 250) 

m, (220, 220) m and (280, 200) m, respectively with the same initial speed of 5 m/s and initial heading 

angle of 90°. Other important training information such as the formation configuration is also shown in 

Table II. In the process of training, an episode will be terminated if the number of steps has reached the 

maximum in one episode or the leader USV arrives at the goal point. 

In order to have full visibility into the data, model code and parameters of the designed DRL algorithms, 

the randomness of the training process has been taken into account by adopting a random seed across 

the parameters within the built neural networks to achieve reproducibility. A total of 5 pieces of training 

with different seed values have been run with the results shown in Fig. 10. It can be observed that the 

steps of the USV formation to reach the goal point can fast converge to a stable value (Fig. 10(a)). The 

reward values for three different USVs (Fig. 10(b) – (d)) can also converge demonstrating that the 

training of the algorithms has been successful, which is further proved by formation performance 

metrics such as the formation distance and angle (Fig. 10(e) – (h)). Overall, the RL training of USV 

formation converges quickly with a reasonable policy learned thanks to the specific designs of the 

networks and the choice of the parameters listed in Table I for the DDPG algorithm. 
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Fig. 9. USV formation configuration for reinforcement learning (RL) training. 

 

TABLE II.  LIST OF PARAMETERS USED IN TRAINING 

ID Parameter Value 

1 Max steps 200 

2 Initial position of USV 0 (250, 250) m 

3 Initial position of USV 1 (220, 220) m 

4 Initial position of USV 2 (280, 220) m 

5 Initial speed 5 m/s 

6 Initial heading 90° 

7 
Angular velocity range of 

leader USV 
[-4, 4] °/s 

8 
Angular velocity range of 

follower USV 
[-6, 6] °/s 

9 
Acceleration range of 

follower USV 
[1, 9] m/s2 

10 
Distance requirements of 

formation 
30 m 

11 
Angle requirements of 

formation 
150° 

12 Sampling time 1 s 
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(e) (f) 

  

(g) (h) 

Fig. 10. Training result. (a) The steps per episode. (b) - (d) The cumulative rewards per episode 

of USV 0, USV 1 and USV 2, respectively. (e) - (f) The average formation distance errors per 

episode of USV 1 and USV2. (g) - (h) The average formation angle errors per episode of USV 

1 and USV 2. 

4.2. Testing case 1 

Using the trained networks for a USV formation, the learned optimal policy is directly used to test the 

performance of USV formation control by tracking different goal points. As shown in Fig. 11, four 

different testing scenarios have been configured to verify if the formation can take the correct 

manoeuvring actions and keep the formation shapes. Especially, in scenario 3 and 4, goal points are set 
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in positions that are behind the starting point, which requires the formation to take a full turning. Other 

parameters for the USV formation used in this testing are listed in Table III.  

As shown in Fig. 11, the tracking trajectories of the formation have been displayed with the red line 

representing the route taken by the leader USV and the green and blue lines representing the routes 

taken by two followers respectively. The size of formation shape at the starting point is slightly larger 

than the required size and it can be seen that using the trained policy the formation is able to learn to 

adjust its size to the predefined one and well arrived at goal points in four different scenarios. Such a 

performance can be further validated in the quantities evaluation results shown in Fig. 12. These values 

show the performance of the formation executing scenario 3. As reflected in Fig. 12(c) and (d), both the 

formation angle error and distance error can be well minimised close to 0 representing that a good 

formation shape can be maintained. The slight surge of these two values at around step 25 indicates that 

the formation is making a large port side turning. 

TABLE III.  LIST OF PARAMETERS USED IN USV FORMATION TESTING CASE 1 

USV 

ID 

Initial 

position  

Followed 

USV ID 

USV 

Type 

Formation 

Distance 

Formation 

Angle 

0 (250, 250) m 
Goal 

point 
Leader - - 

1 (220, 220) m 0 Left  30 m 150° 

2 (280, 220) m 0 Right 30 m 150° 

 

   

    

Fig. 11. Trajectories of USV formation with 4 different test scenarios in Test case 1. 
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(a) (b) 

    

(c) (d) 

Fig. 12. Formation assessment of follower USVs in scenario 3 in Test case 1. 

 

4.3. Testing case 2 

In this test, the extendibility of the formation by increasing the number of USVs has been verified. Two 

more USVs are added into the formation to form and retain a triangular formation shape. The added 

two USVs have been assigned the USV ID 3 and 4 as shown in Table IV and they are navigating as 

follower USVs in the formation with the USVs to be followed are USV 1 and 2, respectively. The other 

formation parameters are listed in Table IV. 

Using the same simulation environment in Testing case 1, the results revealing the trajectories of the 

USV formation are shown in Fig. 13. The start point is located at the centre and four different goal 

points (as shown as four different test scenarios) are placed at four different corners of the environment. 

A relatively loose formation shape is formed when the formation starts travelling, and it can be observed 

that USVs can well navigate to keep the predefined formation distance of 30 m and formation angle of 

150° and generate the desired shape. Also, such a shape can be retained along the trajectories in all four 

different testing scenarios. In Fig. 14, a quantitative assessment of the USV formation in scenario 3 is 

presented. It can be seen that four follower USVs have learned to adjust their speeds and headings (Fig. 

14(a) and (b)) to perform the formation control and reduce the formation distance and angle error (Fig. 

14(c) and (d)) to a small range around zero. 

 

 

 

 

 

 

TABLE IV.  LIST OF PARAMETERS USED IN USV FORMATION TESTING CASE 2 
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USV 

ID 

Initial 

position  

Followed 

USV ID 

USV 

Type 

Formation 

Distance 

Formation 

Angle 

0 (250, 250) m 
Goal 

point 
Leader - - 

1 (220, 220) m 0 Left  30 m 150° 

2 (280, 220) m 0 Right 30 m 150° 

3 (190, 190) m 1 Left 30 m 150° 

4 (310, 190) m 2 Right 30 m 150° 

 

    

Fig. 13. Trajectories of USV formation with 4 scenarios in Test case 2. 

 

 

 

 

 

(a) (b) 



23 

 

 

 

 

 

(c) (d) 

Fig. 14. Formation assessment of follower USVs in scenario 3 in Test case 2. 

4.4. Testing case 3 

The third test in this work is to verify the capability of using the learned policy to not only extend the 

number of USVs but the shape of a formation. As shown in Fig. 15, a complex double-triangular 

formation shape is adopted. Three more vessels (USV 3, 4 and 5) have been added with USV 3 

following USV 1, USV 4 following USV 3 and USV 5 following USV 3. Based upon the relative 

position of a USV in a formation, neural networks are replicated accordingly, i.e. the network trained 

for USV 1 will be directly used for all left-side USVs and the network for USV 2 will be for right-side 

USVs.  

The simulation results are shown in Fig. 16 and Fig. 17. Fig. 16 displays the trajectories of the USV 

formation while it is tracking four different goal points. Again, a good formation keeping capability can 

be achieved by using the trained optimal policy in a simple formation shape (in Section 4.1). Cases of 

different manoeuvrability including following a straight line (scenario 1), taking port and starboard side 

turning (scenario 2 and 4) and making a large full turn (scenario 3) have all been validated. For the most 

adverse action (a full turn), specific quantitative assessment is shown in Fig. 17. It can be seen that the 

formation distance and angle errors are able to converge to zero demonstrating that the shape of the 

formation can be well maintained.  

TABLE V.  LIST OF PARAMETERS USED IN USV FORMATION TESTING CASE 3 

USV 

ID 

Initial 

position  

Followed 

USV ID 

USV 

Type 

Formation 

Distance 

Formation 

Angle 

0 (250, 250) m 
Goal 

point 
Leader - - 

1 (220, 220) m 0 Left  30 m 150° 

2 (280, 220) m 0 Right 30 m 150° 

3 (250, 190) m 1 Right 30 m 150° 

4 (220, 160) m 3 Left 30 m 150° 

5 (280, 160) m 3 Right 30 m 150° 
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θ1 θ2
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θ4 θ5
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Fig. 15. The USV formation shape used in testing case 3. 

 

   

Fig. 16. Trajectories of USV formation with 4 scenarios in Test case 3. 
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(a) (b) 

    

(c) (d) 

Fig. 17. Formation assessment of follower USVs in scenario 3 in Test case 3. 

4.5. Testing case 4 

To further verify the capability of the learned policy, a more difficult testing case with new initial 

parameters is conducted. The initial positions of USV 3, USV 4 and USV5 are (250, 220) m, (220, 190) 

m and (280, 190) m, respectively. Other configurations are the same as testing case 3 as shown in Table 

V. In this testing case, owing to a significant difference between the initial formation shape and the 

target formation shape, a good adaptability of the proposed method is therefore required and validated. 

The simulation results of this testing case are shown in Fig. 18 and Fig. 19. Similarly, Fig. 18 shows the 

trajectories of the USV formation in four scenarios and specific quantitative assessment of scenario 3 

is shown in Fig. 19. It can be seen that the formation distance and angle errors can still converge to a 

low level around zero, which proves that the proposed method is capable of maintaining the formation 

shape well. 

Albeit only one new formation shape been tested in this section, it should be noted that by specifying 

the formation distance and angle parameters as shown in Table V, arbitrary formation shape can be 

easily defined. By identifying which trained neural networks should be replicated onto the newly added 

vessels, a robust formation control can be achieved in a plug-and-play manner with the evident 

advantages of adaptability and extendibility. 
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Fig. 18. Trajectories of USV formation with 4 scenarios in Test case 4. 

   

(a) (b) 

    

(c) (d) 

Fig. 19. Formation assessment of follower USVs in scenario 3 in Test case 4. 

 

5. CONCLUSIONS AND FUTURE WORK 

In this work, a new leader-follower based USV formation control algorithm has been developed using 
the distributed DRL. The special design of the USV formation structure ensures that the number of 
vessels in a formation or the formation shape can be parameterized. To enable adaptability and 
extendibility of formation control, a new USV formation MDP has been developed, which makes USVs 
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belonging to the same category able to reuse the learned policy from DRL trainings. Such a plug-and-
play functionality can potentially support USVs to undertake missions with an improved flexibility. 

In terms of future work, the training of RL algorithms can be improved. Despite the advantages of 
DDPG algorithm especially in high dimensional action space, more advanced training algorithms such 
as Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO). Both TRPO 
and PPO introduce a surrogate objective function and a Kullback-Leibler divergence constraint, 
guaranteeing non-decreasing long-term reward [[26], [27]]. This will effectively improve training 
performance as well as decrease the complexity of implementation and computation.  

Another important further research direction is to implement the proposed plug-and-play training 
manner in more complex environments. Aspects such as complicated environmental constraints 
including collision avoidance inside and outside the formation, impacts of meteorology and hydrology 
on the movement of USV and demanding mission requirements should be addressed. All of these can 
refer to the research on single USV [[28], [29]]. The USV formation MDP has to be further customised 
to accommodate these challenging conditions while not exponentially increasing the computational 
complexity. 
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