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Productive Ecosystems and the arrow
of development
Neave O’Clery 1,2,3,7✉, Muhammed Ali Yıldırım3,4,7 & Ricardo Hausmann 3,5,6

Economic growth is associated with the diversification of economic activities, which can be

observed via the evolution of product export baskets. Exporting a new product is dependent

on having, and acquiring, a specific set of capabilities, making the diversification process

path-dependent. Taking an agnostic view on the identity of the capabilities, here we derive a

probabilistic model for the directed dynamical process of capability accumulation and product

diversification of countries. Using international trade data, we identify the set of pre-existing

products, the product Ecosystem, that enables a product to be exported competitively. We

construct a directed network of products, the Eco Space, where the edge weight corresponds

to capability overlap. We uncover a modular structure, and show that low- and middle-

income countries move from product communities dominated by small Ecosystem products

to advanced (large Ecosystem) product clusters over time. Finally, we show that our network

model is predictive of product appearances.
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There is strong evidence that as countries experience eco-
nomic growth, they change what they do and undergo
structural transformation via diversification of their eco-

nomic activities1,2 by increasing the number of industries that they
have comparative advantage in. Emergence of a particular industry
in a country depends on the availability of different combinations
of capabilities, including various factors like capital, labour, and
productive knowledge3–5. From this viewpoint, countries grow as
they acquire productive knowledge and/or capabilities, and learn to
combine these complementary capabilities in order to move into
new economic activities. Hence, industrialisation is mostly a path-
dependent process, whereby the appearance of new industries and
economic activities is conditional on having or acquiring the
relevant capabilities and know-how3–8.

Drawing up an exhaustive list of capabilities and/or the pro-
ductive knowledge required for an industry is challenging. For
instance, for a country to develop the fresh-cut flower industry, it
requires capabilities, such as cold storage facilities, airports, irri-
gation systems, suitable climate, efficient customs, a good busi-
ness environment as well as knowledge embedded in its farmers,
botanic experts, engineers, logistic specialists, marketing profes-
sionals, bureaucrats and business executives to name but a few.
This list is by no means exhaustive and the listed components
might not be independent of each other. Since these capabilities
are difficult to observe and measure, we do not try to uncover
their identities and seek to quantify their existence drawing
inspiration from biology and, in particular, the study of genetics.
In genetics, observed phenotypes are the result of genotypes
encoded in genetic material. Mendel, in his landmark study9,
recorded the phenotypes present in successive generations of peas
without directly observing the underlying genes and DNA
structure. Hence, valuable information can be gathered by
observing the phenotypic traits of individuals when the under-
lying genetic structure is unknown. Furthermore, by observing
which phenotypic traits often co-occur in individuals, or which
traits often follow each other, we can uncover genetic relation-
ships or distances10. The genetic distance between phenotypes is
relevant, for example, to inferring relationships between
diseases11.

Here we take an agnostic view on the identity of the capabilities
and we derive a probabilistic model to describe the directed
dynamic process of capability accumulation and product diver-
sification of countries. We use the presence and appearance of
industries in countries (phenotypes) to infer capability and know-
how-based (genotypic) relationships between industries. Using
our genetics-inspired industry capability distance, and modelling
industrial diversification as a process by which countries accu-
mulate capabilities and move into new industries that share
existing capabilities, we can predict the emergence of new
industries.

A number of well-established models of economics can be
interpreted from a genetic or phenotypic perspective. For
instance, standard trade theories first proposed by Ricardo12, and
Hecksher and Ohlin13 take complementary approaches which can
be thought as phenotypic and genotypic stances, respectively, to
explain trade patterns between countries. For example, a recent
and celebrated version of the Ricardian model developed by
Eaton and Kortum14 proposes that technological differences
across countries, and the relative evolution of productivity across
exports, determines the pattern of production in the world. These
authors do not seek to uncover the causes behind the observed
pattern, hence implicitly taking a phenotypic view of the inter-
national trade. On the other hand, the Hecksher–Ohlin model ties
trade patterns to factor differences between countries, and pro-
poses that the relative abundance of factors (labour, capital etc.)
shapes the production choices of a country. This model takes a

genetic perspective, yet quickly becomes intractable for large
numbers of factors and products, constraining detailed insights
into diversification processes.

Turning to models of structural transformation and diversifi-
cation, understanding these processes at a detailed level has been
of keen interest for policymakers and practitioners. However,
analytical intractability and measurement problems require
economists to often focus on few core productive factors such as
capital, labour, human capital and institutions15,16 and techno-
logical differences17–19, usually taking a genetic perspective albeit
with a limited number of factors. But these models struggle to
adequately describe structural transformation at a disaggregate
level. Here, we exploit the fact that we can observe and measure
the phenotypes, namely the presence of industries in countries,
and propose a phenotypic approach to modelling the process
underlying structural transformation at a detailed level.

To date, two coupled but distinct modelling approaches have
emerged aiming to describe the path-dependent process of diver-
sification based on capabilities and productive knowledge using a
phenotypic approach. The first is focused on empirically estimating
the number of complementary capabilities, or complexity, needed
to make a product (or present in a technology or place)4,20. While
a variety of approaches have been proposed, the foundational
method to estimate product complexity4,21 uses information on
which countries make what products to infer product capability
requirements. This model assumes that complex products can only
be made by countries which have many capabilities, and hence,
also make many other products. It has been shown that the
aggregate complexity level of a country is a strong predictor of its
future income growth compared to standard variables often asso-
ciated with country sophistication such as education and quality of
government.

A second class of models seeks to map the path-dependent
dynamical process by which countries move into new products3.
These are connected, both theoretically and methodologically, to
the study of regional and urban industrial diversification5,7,8, and
are based on the assumption that countries will move into pro-
ducts similar to their current export (capability) basket. At the
forefront of these models, the The Product Space3 is a network of
products with edges based on cross-sectional export data. Under
the assumption that a product pair requiring similar capabilities
will be co-exported by many countries, the (cross-sectional) co-
export probability of any two products is assumed to be related to
the capability overlap. The location of products made by a
country in this network determines its future diversification
potential. Countries with products in denser parts of the network
have more options, while those on the periphery share capabilities
with few other products. In related work, Zaccaria et al.22, simi-
larly inspired by a capability-based approach, created a taxonomy
of products based on the excess conditional probability of pro-
ducing a product in the presence of other products, also using the
cross-sectional data. By selecting the maximum among the excess
probabilities, a product hierarchy tree is generated and used to
model the dynamics of the product diversification of countries.
The ability of these network models, and others like it, to generate
detailed metrics related to diversification processes has propelled
the field into development and industrial policy-making at the
global, national and regional level2,23.

Yet, these dual modelling approaches, capturing slightly dif-
ferent elements of the same underlying process, have not been
unified to date. Importantly, these models are motivated via a
capability-based narrative, as introduced above, but they are not
underpinned by a mathematical model that explicitly takes cap-
abilities into account. Additionally, they do not address the
temporal aspect of the diversification process as a result of cap-
ability accumulation directly. Furthermore, they omit a large
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amount of available information on the patterns of diversification
observed over the past couple of decades worldwide. Here we seek
to develop a unified model, which is theoretically grounded in the
path-dependent accumulation of capabilities and products, and
utilises the available data for international export diversification.

Building on Hausmann and Hidalgo24, who developed a
capability-based Leontief-like production function, we propose a
model to describe the pattern of product appearances within and
across countries based on capability accumulation. Within this
framework, a country will jump to a new product with probability
decreasing in the number of missing capabilities to make the
product. We infer the capabilities possessed by a country by
looking at the capabilities of the products it currently produces.
The ability of a country to diversify is, hence, dependent on its
current product basket. Countries with many existing products
will have few missing capabilities, and many options for diver-
sification. Hence, the pattern of product appearances contains
information about the underlying capability overlap between
products. We derive a relationship between the probability of a
product presence (say product i) given the subsequent appearance
of product j, and use this to infer the extent of capability overlap
between the product pair i and j. The Ecosystem of a product i is
then the overlap of product i with all other products j. We
empirically estimate this capability overlap using product pre-
sences and appearances in international export data from 1984
to 2016.

What does it mean for a product j to have a large value in the
Ecosystem of product i? There are several implications that come
directly from the model. First, it means that products i and j share
capabilities and the extent of overlap between the capabilities is
captured by the value of the Ecosystem entry. Secondly, product j
often precedes the product i in appearances in the world (if the
value of the Ecosystem entry is large), giving us a directional
relationship. Third, countries that have j have a higher probability
to jump to product i. This dynamic aspect of the Ecosystem as
captured by this precedence relationship is one of the most
important differences compared to the Product Space.

In order to explore path-dependent diversification processes,
we construct a weighted directed network, the Eco Space. The
direction of the edges connecting nodes (products) represents
export precedence, and the edge weight is given by our estimate of
capability overlap. We analyse a range of network characteristics,
including node in-degree and out-degree. Nodes with high in-
degree (equivalent to the size of the product Ecosystem) are
typically complex products, requiring many inputs. Nodes with
high out-degree, on the other hand, are typically less sophisticated
products which contribute to the Ecosystems of many other
products. We show that the majority of non-zero directed edges
(over 80%) transition from low complexity to high complexity
products as we would expect under a capability-accumulation
model. We also compute the node betweenness centrality, a
measure of the number of shortest paths that transition through a
node. Such nodes exhibit both high in- and out-degree - they are
transition products typically produced by low and middle income
countries as they move into more sophisticated products.

We investigate the structure of this network, finding that it
exhibits a modular structure composed of a number of well-
defined product communities (clusters). These communities are
composed of groups of products that share similar capabilities,
and are detected via an algorithm based on random walker
dynamics25. In essence, if let jump from node to node on a
network with probability proportional to edge weight, a random
walker will become trapped in regions of the network exhibiting
high internal connectivity. Deploying this method, we identify
five stable communities in the Ecosystem network. We explore
the evolution of countries based on the location of product

appearances in the network: countries tend to diversify along the
arrow of development starting in an origin community which is
composed of high out-degree products, and eventually con-
centrating in a variety of distinct but interconnected destination
communities composed of high in-degree products.

Finally, using an out-of-sample approach, we show that our
model (empirically estimated from export data for the period
1984–2009) is informative in predicting the emergence of new
products in the exports of countries for the period 2010–2016.
We can interpret this result as suggesting that a country with an
export basket proximate (in terms of capability gap) to a parti-
cular product is more likely to competitively export that product
in the future. This model compares favourably in comparison to
the Product Space3 in terms of the prediction of export
appearances.

Results
Productive Ecosystems. In order to model the process of product
diversification via capability accumulation, we build on Haus-
mann and Hidalgo24. According to this Leontief-based model,
products require a large number of capabilities in order to be
made, and countries can only make a product if they possess all
the required capabilities. We denote the vector of capabilities of a
product i, pi∈ {0, 1}m where m denotes the (unknown) number of
capabilities and pik= 1 if product i requires capability k. Analo-
gously, the capability vector cn∈ {0, 1}m encodes the capabilities
present in country n. Neither of the vectors pi or cn are directly
observable, but serve as intermediate inputs into our model.

In Hausmann and Hidalgo24, the authors develop a model
based on the capability endowments of countries and the
capability requirements of products in order to explain cross-
sectional patterns in the distribution of product presences across
countries. This model is based on a Leontief-like production
function whereby a product i is produced in country n if and only
if country n has all of the capabilities required by product i. The
number of capabilities that product i requires is k pik1 ¼ pTi � pi
where ∥∥1 denotes the Euclidean 1-norm and T denotes the
transpose of the vector. In the remainder of the paper, we only
use this norm, so we will skip the subscript in the norm and the
transpose sign when we are calculating inner products. Hence,
country n produces product i if and only if cn ⋅ pi= ∥pi∥. The
model is solved assuming that the probability that a country has/
product requires a capability with a constant probability.

Focusing on modelling the temporal dynamics of diversifica-
tion, and specifically product appearances, here we assume that
country n will start making a product i at a future time t1, which it
does not currently make, with a probability that decreases with
the number of capabilities that are not present in the country but
required for product i (at some initial time t0). Formally, if
product i requires ∥pi∥ capabilities, and country n has cn ⋅ pi of
them, country n needs to acquire ∥pi∥− cn ⋅ pi capabilities in
order to produce product i. We name this difference the
capability gap between the capability vector of the country and
capability requirement vector of the product. The probability that
country n will start making product i decreases as size of this gap
increases. Following Hausmann and Hidalgo24, we can assume
that the probability of acquiring a capability is binomial with
mean q. Hence,

PðJt0!t1
n;i ¼ 1Þ ¼ qkpik�cn�pi ð1Þ

where Jt0!t1
n;i ¼ 1 if product i, which was absent in time t0, appears

in country n at time t1, and 0 otherwise (to minimize notational
clutter, we will omit the time indices). Since 0 < q < 1, the
probability of jump decreases with an increase in the
capability gap.
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We show in the ‘Methods’ section that, if we assume that the
probability of a country having each capability is w by making a
mean-field assumption, we can express the capability overlap
between i and j as

Ei;j ¼ log
PðMn;j ¼ 1jJn;i ¼ 1Þ

PðMn;j ¼ 1Þ

 !
¼ � k pji k ð1� wÞlog ðqÞ

ð2Þ
where Mn,i= 1 if product i is present in country n at t0, and E is
the Ecosystem matrix. The overlap vector pji is defined as pjik ¼ 1
if both pik= 1 and pjk= 1 and 0 otherwise. Therefore, the
probability that the product j is already produced in a country,
given the country started making the product i, increases with the
overlap between the capability requirements of these two
products, captured by k pji k up to a constant multiplicative
factor.

We refer to the row vector Ei ¼ fEi;jg j¼1;:::;n as the Ecosystem
of a product i. This captures the extent of capability overlap
between product i and each product j, and is calculated based on
the probability that product j was already present when product i
appeared. In the ‘Methods’ section, we outline how we empirically
estimate the Ecosystem matrix using product presences and
appearances (based on revealed comparative advantage26) in
international trade data. Negative values are set to 0 in this matrix
which corresponds to a ratio P(Mn,j= 1∣Jn,i= 1)/P(Mn,j= 1) less
than 1. In order to study long term diversification trends, we create
a single composite Ecosystem matrix bE using data from 1984 to
2009 for 751 4-digit SITC products (in our prediction exercise, we
use an out-of-sample approach to predict product appearances for
the period 2010–2016). A toy example illustrating the method is
shown in Fig. 1.

As discussed above, a range of approaches have been proposed
to quantify the complexity of a product. Under our capability-
based model, products with large Ecosystems (that have many
non-zero entries in their Ecosystem vector) share capabilities with
many other products. These are complex products, likely
requiring a wide range of distinct capabilities. Let X ¼ bE> 0, an
indicator matrix for the positive entries of bE. We define the
product Ecosystem size of product i as the sum of row i of X, i.e.,
the number of non-zero Ecosystem products. We define the
product Ecosystem input of product i as the sum of column i of
X, i.e., the number of products for which product i is an
Ecosystem product.

Figure 2 A presents a visual representation of the entries in
matrix X, where blue dots in row i correspond to non-zero entries
in the Ecosystem vector of product i. Products are sorted by
Ecosystem size in the rows and Ecosystem input for the columns.

The nested structure of the matrix shows that large size
Ecosystems products rely on capabilities present in both small
and large Ecosystem input products (top rows are densely filled),
whereas small Ecosystem products rely on capabilities present in
products common to many Ecosystems (bottom rows are filled
only on the left hand side). These patterns are consistent with the
nested pattern observed in cross-sectional data for product
presences by Bustos et al.21.

Consistent with our capability-based model, Fig. 2B shows that
almost no products have both a large Ecosystem size and input
(i.e. the top right corner is empty). In other words, as we would
expect, products requiring many capabilities with a large
Ecosystem size are not simultaneously (input) Ecosystem
products for many products. Machinery and transport equipment
products (blue) tend not to be high input products, while most
food products (yellow) have a small Ecosystem size.

Next, we explore how the Ecosystem input and Ecosystem size
relate to product ubiquity, which is the number of countries that
has comparative advantage in the product (above the threshold).
According to Hidalgo and Hausmann4, high product ubiquity is
associated with low complexity products as these products can be
made by many countries. Figure 2C shows the positive relation-
ship between Ecosystem input and product ubiquity. Note that
the denominator of the Ecosystem equation, Eq. (2), is effectively
equal to the product ubiquity. For this reason one might be
concerned that high ubiquity products may not be present in the
Ecosystems of many products. Figure 2C shows that this is not
the case. Figure 2D confirms the negative relationship between
Ecosystem size and product ubiquity.

Table 1 shows the top 15 products in terms of Ecosystem size,
and the top 15 products in terms of Ecosystem input. In the first
case we observe a range of sophisticated products, including
machinery and electrical appliances, vehicles and engines, and
chemicals. In the second case we have less complex products,
including raw textiles and fabrics, simple garments and basic
chemicals. In Supplementary Note 1 of the Supplementary
Information, we show that the overall pattern of entries in the
Ecosystem matrix is robust to alternative Revealed Comparative
Advantage (RCA) thresholds associated with product absences,
presences and appearances, and to variation in the time period
used.

The arrow of development. Countries diversify into new pro-
ducts that are similar (in terms of required capabilities) to what
they currently produce. In order to model this process, we con-
struct a network of products. Directed edges connect the pro-
ducts: there is an arrow from node j to node i if product j is in the
Ecosystem of product i, which implies that j tends to be produced

Fig. 1 A simple toy example. This figure illustrates the main concept behind the calculation of the Ecosystem for a product. We compute the Ecosystem
entries for product car. Here N= 100 is the total number of countries and NA= 20 is the total number of appearances of cars at t1. We observe NP, the total
number of presences of each product at t0, and NAP, the number of presences of the product in countries where cars appeared at t1. In this case engines,
bicycles and tyres were the most over-produced in the earlier period by countries who later had an appearance of car as shown by NPA/NA. LR is the
likelihood ratio of this compared to what would be expected (NP/N). Finally, E ¼ log ðLRÞ contains the Ecosystem entries. Note: entries less than 0
correspond to a ratio LR less than one.
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before i appears. The weight of the edge is an estimate of cap-
ability overlap between i and j as determined by the corre-
sponding positive Ecosystem entry.

We can ask questions such as: do we observe clusters of
products sharing many capabilities? Which products are most

likely to be part of a development path? How do countries
diversify in this network?

Formally, the Eco Space is a network with n nodes (or vertices).
The structure of any network can be encoded by the adjacency
matrix A 2 Rn ´ n where entries Aij correspond to the weight of

Fig. 2 Products with a large ecosystem, which are themselves rare, are rarely inputs to the ecosystem of other products. A We create a single
composite Ecosystem matrix using data from 1984 to 2010. Rows contain the Ecosystem entries for each product. Products in the rows are sorted by
Ecosystem size, defined as the row-sum of positive entries (from high to low) and columns are sorted by Ecosystem input, defined as the column-sum of
positive entries. The nested structure of the matrix shows that large size Ecosystems products rely on capabilities present in both small and large
Ecosystem input products (top rows are densely filled), whereas small Ecosystem products rely on capabilities present in products common to many
Ecosystems (bottom rows are filled only on the left hand side). B We plot the Ecosystem size vs. Ecosystem input. The negative relationship confirms that
products with a large Ecosystem are rarely inputs to the Ecosystems of other products. C, D We show that the Ecosystem input (size) is positively
(negatively) correlated with product ubiquity.

Table 1 Largest Ecosystem size and input products.

(1) (2)

Rank Largest Ecosystem size products Largest Ecosystem input products

1 Complete digital central processing units, digital processors Asbestos
2 Diodes, transistors, photocells, etc. Cotton fabrics, woven, unbleached, not mercerized
3 Mechanically propelled railway, tramway, trolleys, etc. Drawn or blown glass (flashed glass), unworked, in rectangles
4 Rail locomotives, electric Kelem, schumacks and karamanie rugs and the like
5 Railway, tramway passenger coaches, etc, not mechanically propelled Sisal, agave fibres, raw or processed but not spun, and waste
6 Domestic dishwashing machines Carpets, carpeting and rugs, knotted
7 Uranium depleted in U235, thorium, and alloys, nes, waste and scrap Raw cotton, excluding linters, not carded or combed
8 Power hand tools, pneumatic or non-electric, and parts thereof, nes Mineral or chemical fertilizer, potassic
9 Chemical wood pulp, soda or sulphate Wool greasy or fleece-washed of sheep or lambs
10 Peripheral units, including control and adapting units Linens and furnishing articles of textile, not knitted or crocheted
11 Motor vehicles piston engines, headings: 722, 78, 74411 and 95101 Silk worm cocoons and silk waste
12 Complete digital data processing machines Jute, other textile bast fibres, nes, raw, processed but not spun
13 Other sound recording and reproducer, nes, video recorders Blouses
14 Silicones Other outer garments
15 Office machines, nes Fur clothing (not headgear) and other articles made of furskins

Column (1) shows the top 15 products in terms of Ecosystem size and column (2) shows the top 15 products in terms of Ecosystem input. In the first column we observe a range of sophisticated products
including engines, chemicals, equipment and vehicles. In the second column, overall we have less complex products including food, textiles, metals and basic chemicals.
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the directed edge from node i to node j. In this case,

A ¼ ðX � bEÞT is the adjacency matrix for the Eco Space where
T denotes the transpose of the matrix and ∘ denotes the
Hadamard product (element-wise multiplication) operator. Using
this adjacency matrix we can compute a host of network metrics,
including, for example, the in-degree di= ∑j Xji (equivalent to the
Ecosystem size), and the in-strength, si= ∑j Aji for each node i.
Note that the in-degree is exactly Ecosystem size shown Fig. 2.
Similarly, the node out-degree is the Ecosystem input.

We construct a reduced version of this network, calculating the
mean edge weight between products in 2-digit divisions (there are
63 2-digit product divisions). Figure 3A illustrates the directional
relationship between divisions, showing mean edge weights over a
threshold of 0.2 (this includes about the top 12.5% of edges). The
software programme Gephi27 has been used to generate the
network layout using the automated Force Atlas algorithm.

In order to probe the structure of this network, we search for
clusters of nodes (communities) which exhibit high internal
connectivity, but sparse connections between communities.
Within this context, communities represent groups of products
with shared capabilities. The presence of modular structure,
whereby sparse connections lie between clusters, could prove an
obstacle to diversification processes, as countries become
trapped in a community. This type of network topology has
been detected in a wide range of networks, particularly social
and biological networks, and is often indicative of an underlying
functional organisation28,29.

There are a large variety of approaches to community
detection, many based on comparison of the network structure
to a statistical null model (i.e., the connectivity structure if edges
were placed at random, see Fortunato28 for a review). Most
traditional methods seek to find a single optimal partition, yet this

approach often neglects the presence of modular structure at a
range of scales (e.g. few large communities vs many small
communities). Here we apply the Stability algorithm25, which is
based on the dynamics of a random walker on a network. In
essence, a random walker jumps from node to node with
probability proportional to edge weight. If the walker gets trapped
in a region of high connectivity, the corresponding group of
nodes corresponds to a tightly knit community. The longer the
walker jumps, the larger the communities she finds. Hence, a time
parameter enables us to control the scale (from many small
communities to few larger communities) at which communities
are uncovered. In the Supplementary Information, we describe
the optimization process to find a node partition for which the
algorithm is most robust.

We apply this algorithm to our reduced two-digit network
representation. In Fig. 3A, we observe clear groupings, with
food, animals, crude materials and textiles dominating the
yellow community on the right-hand-side. As we move to the
left we observe clusters of transportation equipment and
machinery (green), and manufacturing (orange). In the center
(purple) we have processed petroleum products, metals and
chemicals/plastics. Moving to the far left (blue), we have
sophisticated products such as medicines and pharmaceuticals,
scientific equipment and electrical machinery. The inset shows
a further reduced version of the network, where each node
corresponds to a community. We clearly observe the arrow of
development, as countries begin their development path in the
yellow community, and progressively jump into new products
located in the center and far left of the network layout. The blue
and green (and to a lesser extent orange and purple)
communities represent destination products typically produced
in highly developed nations.

Fig. 3 The arrow of development can be described by the Ecosystem network. A We construct a reduced representation of our Ecosystem network at a
2-digit product division level (63 divisions). The edges are the mean edge weights between 2-digit node groupings in the 4-digit product network (not
shown). Nodes are coloured by node community. In the inset, we show the overall network aggregated to the community level. Node size in the inset
corresponds to the number of 2-digit products within each community. B The relationship between mean Ecosystem input and mean Ecosystem size at the
2-digit division level. In the inset, we show the same relationship at the community level with node size corresponding to the number of 2-digit product
divisions in the community. C, D Ecosystem network at 2-digit level with node sizes proportional to the mean Ecosystem size and mean Ecosystem input.
We can clearly see that the large Ecosystem input products are located on the right and large Ecosystem size products are located in the left. Hence, the
arrow of development often follows this right to left trajectory. E We compute the betweenness centrality of each node (in the 4-digit network), a measure
of the number of times a shortest path between any two nodes traverses the node, and visualise the mean for each 2-digit division. These transition
products have high in and out degree.
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Figure 3B shows the relationship between mean Ecosystem
input and mean Ecosystem size at the 2-digit division level (63
divisions), with points coloured by community assignment. In the
inset, we show the same relationship aggregated to the
community level. We confirm that the yellow community is
dominated by high Ecosystem input but low Ecosystem size
products. On the other hand, the blue and green communities are
dominated by high Ecosystem size but low Ecosystem input
products. Figure 3C, D shows the Ecosystem network at 2-digit
level with node sizes proportional to the mean Ecosystem size and
mean Ecosystem input. We can clearly see that the large
Ecosystem input products are located in the right and large
Ecosystem size products are located in the left.

We can also extract information about intermediate steps. We
compute the betweenness centrality of each node, a measure of
the number of times a shortest path between any two nodes
traverses the node. In Fig. 3E we visualise the mean betweenness
for each 2-digit division. These transition products tend to have
high in and out degree - they are stepping stones.

An alternative widely-used metric to estimate the productive
sophistication of a product, the product complexity index (PCI)4,
is derived from export data based on the hypothesis that rare or
complex products are only made by few countries that possess
many capabilities (and, therefore, produce many other products).
As shown by Hausmann et al.2, higher complexity products are
mostly associated with (rare) highly diversified developed
countries (who produce both common and rare products) while
lower complexity products are produced in countries at all levels
of development. Here, we investigate the relationship between the
Ecosystem of a product and its PCI value. We would expect that
products with a high PCI value, requiring many (and rare)
capabilities, have a large Ecosystem size. On the other hand,
products with a low PCI value, needing fewer more common

capabilities, would be expected to have few Ecosystem products.
Figure 4A shows the distribution of PCI within the Eco Space (e.g.
the mean PCI of products within the 2-digit divisions). As
confirmed in Fig. 4B, high PCI products coincide with those with
a high Ecosystem size. On the other hand, Fig. 4C shows that low
PCI products tend to be inputs to the Ecosystem of many
products.

If capability accumulation underlies the development process, we
expect countries to move from less complex products towards
sophisticated products over time. Hence, we expect diversification
from low complexity to high complexity products as countries
upgrade their complexity level. We look at the directed edges
between products of different complexity levels and ask, is it more
likely that an edge connects a lower complexity node to a higher
complexity node? In other words, are the input products within a
product’s Ecosystem less complex than the product itself? Hence,
we are interested to see whether the directionality of edges moves
from lower to higher PCI products. For each node we show the
relationship between its own PCI, and the mean PCI of its top x=
10 incoming neighbours (Ecosystem entries) in Fig. 4D. We observe
that most products (83% of products) have a higher PCI than the
mean of their top 10 Ecosystem products. Next, we compute the
PCI of the product minus the mean PCI of its top x= 10 incoming
neighbours. The histogram in Fig. 4E shows a clear bias towards
positive values—the PCI of the product is higher than its incoming
neighbours. Finally, by looking at the mean of this distribution
across a range of x in Fig. 4F, we find, as expected, that the mean
decreases as we increase the number of neighbours.

How do these product attributes relate to the wealth of the
countries who produce them? For each country, we compute the
mean Ecosystem size and mean Ecosystem input level of the
products it exports with RCA higher than the presence threshold.
Figure 5A plots these values for each country, where the points

Fig. 4 Large Ecosystem products tend to be complex products with high product complexity index (PCI). A Here we show the mean PCI of products in
2-digit division. B, C Large Ecosystem sizes are associated with complex products, and less complex products are inputs to many Ecosystems. Colour
legend is the same as Fig. 2. D The relationship between the PCI of a product and the mean PCI of its top 10 incoming neighbours. 83% of the products are
to the right of the 45 degree line, showing that non-zero directed Ecosystem edges go from low-complexity to high-complexity products. E For each
product, we compute the PCI of the product minus the mean PCI of its top x= 10 incoming neighbours. The histogram shows a clear bias towards positive
values—the PCI of the product is higher than its incoming neighbours. F By looking at the mean of the distribution across a range of x, we find that, as
expected, this mean moves towards zero as we increase the number of neighbours.
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are coloured according to GDP per capita. There is a clear
negative relationship between the size and the input, with higher
GDPpc countries—located in the lower right portion of the graph
—exhibiting mainly high Ecosystem size/low Ecosystem input
products. We label the outliers in the graph, which are mostly oil
or natural gas rich countries. Figure 5B, C shows maps with
countries shaded by mean Ecosystem size and Ecosystem input.
Finally, Fig. 5F, G confirms that wealthier countries export
products with high mean Ecosystem size and low mean
Ecosystem input.

We can also examine the share of products in advanced
communities (defined here as all communities except the yellow
community), and the log-betweenness centrality of their pro-
ducts, for each country. Figure 5D, H confirm that wealthier
countries tend to be concentrated in advanced communities.
Products with high betweenness centrality can be seen as
transition products, and would be expected to be produced by
low-middle income countries as seen in Fig. 5E, I.

Next, we explore the evolution of these metrics over time
(1984–2016), dividing countries into four equally-sized income

groups (by GDP per capita). Figure 5J–M show that middle
income countries increased their share of products in high
Ecosystem size products (and those in advanced communities),
while both poor and middle income countries decreased their
share of products in high Ecosystem input products, and moved
out of transition products with high betweenness centrality.

How do individual countries transform their export composi-
tion over the communities we identified from the Ecosystem
network? Here, we explore in more detail the temporal evolution
of the product basket of nations as they diversify into new
products and move through the network over time. Using data
for 2016, the central map in Fig. 6 shows countries shaded by the
colour of community that has the highest share among their
products. We observe that a majority of countries currently
export products concentrated within three communities: yellow
(food, animals, crude materials and textiles), purple (petroleum
products, metals and chemicals/plastics), and blue (medicines and
pharmaceuticals, scientific equipment and electrical machinery).
In Supplementary Note 5 of Supplementary Information, we
show the relative share of each country’s export presences across

Fig. 5 The poorest countries dominate products with large Ecosystem input, while wealthy countries tend of have products with large Ecosystem size.
A First, we show the mean Ecosystem size vs. mean Ecosystem input level for each country. The points are coloured according to per capita GDP. There is
a clear negative relationship—countries that tend to have many large Ecosystem size products also seem to have few high Ecosystem input products and
vice versa. We label the outliers, which are mostly oil or natural gas rich countries. B–E We show maps with countries shaded by mean Ecosystem size,
Ecosystem input, share of products in advanced communities and the log-betweenness centrality of their products for year 2016. The colormap is rescaled
for each variable, with yellow corresponding to minimum value and dark blue corresponding to maximum value. F–I The poorest countries dominate
products with large Ecosystem input, and transition products with high betweenness centrality. On the other hand, wealthy countries tend to have the
largest Ecosystem size, and have a higher share of products in advanced communities (all data for 2016). J–M Over time, from 1984 to 2016, we observe
that poor countries moved out of transition products with high betweenness centrality, and middle and high income countries increased their share of
products in the advanced communities.
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each individual community. The inset next to the map shows the
mean Ecosystem size vs. PRODY30, which is calculated as the
RCA weighted average of the GDPpc of countries for each
product. The size of the points is the number of 2-digit products
in the community. This plot confirms that the yellow and purple
communities are dominated by products exported by low GDPpc
nations, while the blue community is dominated by products
exported by high GDPpc nations.

Over time, from 1984 to 2016, we see that many countries go
through transformations by changing their share of products in
different communities. For example, we observe a number of
countries transitioning over this period from a concentration of
products in the yellow community to those in the blue
community. We can distinguish between those who transitioned
early in the period in the 1980s (SGP-Singapore), those who
transitioned in the middle of the period around the year 2000
(HUN-Hungary, KOR-Korea, MYS-Malaysia, and MEX-Mexico)
and those who transitioned more recently (CHN-China). India
(IND) appears to be on this path, with a future transition on the
horizon. Norway (NOR) is dominated by products in the purple
community, while Germany (DEU) and the USA are dominated
by products in the blue community.

Predicting product appearances. Beyond analysing network
properties and diversification paths, we wish to assess whether the
model is informative in predicting the appearance of new pro-
ducts, or equivalently the export of new products with com-
parative advantage, for the set of all countries. For each product-
country pair, this translates to estimating the exponent in Eq. (1),
the gap between the capabilities required by the product and the
capabilities held by the country. Our strategy is to infer the
capabilities required for a product by looking at its maximum

Ecosystem entry, which is an estimate of the maximum capability
overlap with all other products. While we simply introduce our
new metric here, a comprehensive derivation and explanation is
provided in the Methods Section.

To predict the likelihood of an appearance of product i in
country c, we estimate the capability gap in the exponent of Eq.
(1) via

dEn;i ¼ qmaxj Êi;j�maxj2J n
Êi;j ð3Þ

where J n is the set of products present in country n. We call this
metric the Ecosystem density. We complement our derivation in
the ‘Methods’ section with a graphical explanation. In order to
reduce noise, we take the mean value over the top k= 25 entries
for each maxj Êi;j and maxj2J n

Êi;j. The robustness of our results
in terms of parameter k is given in Supplementary Note 3.3 of
the Supplementary Information. We note that the Ecosystem
encoded in matrix Ê was constructed using data from 1984 to
2009. Product presences in Eq. (3) are measured in 2010, and we
seek to predict appearances during the period 2010–2016.

We measure the predictive power of our variables using area
under the curve (AUC) of the receiver operating characteristic,
which plots the rate of true positives of a continuous prediction
criterion as a function of the rate of false positives. For a standard
probit model, Table 2 shows that Ecosystem density variable has
predictive power for country-product appearances with AUC=
0.715 (column 1), increasing to AUC= 0.813 when country and
product fixed effects are included (column 4).

We compare the ability of this metric to predict product
appearances with the Product Space density3,31, a predictive
metric based on the structure of the Product Space (see ‘Methods’
for details). We find that our Ecosystem based metric outperforms
the Product Space density which has AUC= 0.623 (column 5, no
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Fig. 6 Structural transformation through the lens of Ecosystem communities. (Center) Countries are coloured according to the community that has the
highest share of their products. (Center inset) In the inset we show the mean Ecosystem size vs. PRODY30 for the products in each community. PRODY
captures the wealth associated with a product and is computed as the RCA weighted average of the GDPpc of the countries in which the product is present.
(Outer figures) For a variety of countries, we show the evolution of each country’s share of products in each of the communities over time, from 1984 to
2016. We can distinguish between those who transitioned early in the period in the 1980s (SGP-Singapore), those who transitioned in the middle of the
period around the year 2000 (HUN-Hungary, KOR-Korea, MYS-Malaysia, and MEX-Mexico) and those who transitioned more recently (CHN-China).
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fixed effects). When both measures are included together, the sign
of the Product Space density becomes negative after controlling
for the Ecosystem density in Column 6, but it recovers its positive
sign when the fixed effects are included in Column 7. An increase
in the predictive power is also evident in the pseudo-R2 measure,
which increases to 6.5% from 1.5% when Ecosystem density is
used compared to the Product Space density.

Product appearances are dependent on two thresholds: one for
product absences (τ0) and one for product presences (τ1), see Eqs.
(6) and (7) in the ‘Methods’ section. The default values of these,
discussed below, are τ0= 0.1 and τ1= 1. As we decrease τ0, we
have fewer absences (and hence fewer possible appearances). As
we increase τ1, we also have fewer appearances. In order to
explore variation in the predictive ability of our model for
variation in these parameters, in Fig. 7, we show a heat map for
the AUC values for various combinations of τ0 and τ1
corresponding to column 1 of the table. We observe, for

reasonable combinations τ0 and τ1, the base-line (no fixed effects)
AUC scores are consistently close to 0.72.

In the Supplementary Information, we apply a number of tests
to assess the robustness of our results:

● We vary the number of products used in the computation of
the maximum in the exponent of q that we use to create our
density measure in Eq. (3), further explained in the ‘Methods’
section (Supplementary Fig. 10).

● We split the countries into different categories such as high
vs. low per capita GDP, high vs. low complexity and high vs.
low export volume (Supplementary Table 1).

● In order to test for redundancy in the product classification,
we omit products from the same SITC division in the
construction of the Ecosystem (columns 1 and 2 of
Supplementary Table 2).

● We split the products into different groups such as
manufacturing vs. non-manufacturing, high vs. low complex-
ity, high vs. low ubiquity, and high vs. low export volume
(columns 3–10 of Supplementary Table 2).

● We modify our criteria in order to observe a jump of a
country into a new product in terms of the number of years of
product absence followed by product presence required
(Supplementary Tables 3–5).

● We use an alternative measure of RCA, which compares a
country’s per capita production levels in a product to the
world’s overall per capita production of the product to reveal
the comparative advantage (Supplementary Table 6).

Our results remain robust to these various tests.
Our regression results indicate our Ecosystem measure

captures path-dependent diversification patterns and surpasses
the current best comparator, the Product Space, in its predictive
ability. It is important to acknowledge that our results do not
predict future jumps perfectly. Our Ecosystem density measure
captures potential products which require few additional
capabilities for countries to move into, but given the limited
resources of countries to exploit these adjacent products, not all
possible jumps are realised. As a consequence, we are trying to
predict rare events, only 1831 jumps were observed out of 49,352
absences, which is close to rate of 3.7%. In addition, there are
many other factors that prompt countries to begin production of
new products for export, including path-defying factors32,33

which are not captured by our model.

Table 2 We seek to predict appearances during the period 2010–2016.

(1) (2) (3) (4) (5) (6) (7)

Variables

Eco Density 9.4924***
(0.3934)

11.3625***
(0.5415)

9.0869***
(0.4314)

10.5294***
(0.7503)

10.4047***
(0.4731)

9.4294***
(0.7246)

PS Density 1.7168***
(0.0986)

−0.6110***
(0.1451)

6.4706***
(0.6467)

Constant −10.4983***
(0.3650)

−12.1721***
(0.5118)

−9.7782***
(0.4467)

−11.1787***
(0.7240)

−1.9996***
(0.0167)

−11.2588***
(0.4285)

−10.3521***
(0.6941)

Observations 49,352 49,195 39,420 39,280 49,352 49,352 39,280
Number of App. 1831 1831 1831 1831 1831 1831 1831
Country FE No Yes No Yes No No Yes
Product FE No No Yes Yes No No Yes
Pseudo R2 0.065 0.112 0.114 0.164 0.015 0.066 0.172
AUC 0.715 0.773 0.764 0.813 0.623 0.718 0.819

For a standard probit model, we see that the Ecosystem density metric has predictive power for country-product appearances with AUC=0.715 (column 1), increasing to AUC=0.813 when country and
product fixed effects are included (column 4), and compares favourably to a similar metric based on the Product Space (column 5). The number of observations in columns 3, 4 and 6 are lower because
of the inclusion of the country and product fixed effects. With country fixed effects, the countries that do not observe any jumps drop out. With product fixed affects, the products into which no countries
jump drop out.
Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Fig. 7 Heat map for the AUC values for various combinations of
parameters τ0 (absences) and τ1 (presences). The reported AUC values
correspond to an equivalent regression to column 1 of Table 2 with
presence and absence thresholds reported in row and column labels,
respectively.
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Discussion
Classical growth and trade theory has struggled to reconcile
macro variables such as factor endowments with differences in
the productive structure and know-how of nations. One approach
would be to increase the number of factors measured and write
down more detailed production functions to understand the
dynamics. A complementary approach might take an agnostic
stance towards the identity of the capabilities or factors but focus
on the development paths associated with this deeply granular
process. In this paper, we took the latter approach and, inspired
by early approaches to the study of genetics, we develop a model
for product diversification based on capability accumulation.

We propose a new metric, the Ecosystem of a product, which
contains information on other products sharing a high-level of
capability overlap. Empirically, this is the set of pre-existing pro-
ducts that are typically necessary for a future appearance of that
product. Given the temporal nature of this measure, we construct
a directed network, the Eco Space, to describe probable develop-
ment paths. Exploiting tools from network science, we identify
product clusters and transition sectors governing dynamics on the
network. Finally, we show that the model is a good predictor of
export diversification, performing favourably compared to the
well-known Product Space framework3.

This work contributes to both the theoretical literature on the
modelling of capabilities and knowledge accumulation, and more
generally the processes underlying economic growth. It is parti-
cularly relevant for the literature on economic complexity4, and
the on-going search for empirical methods to quantify, measure
and validate complexity3,20,34,35. Similarly, it is embedded in the
literature on path-dependent diversification3,5,7, including regio-
nal dynamics and related varieties similarly derived from an
evolutionary or capability-based perspective. Future work could
include estimating this model for industry employment or
establishment data, which provides additional information on
domestic production (and by extension domestic and service
capabilities) not contained in export data31,36.

Our framework can also be potentially applied to a range of
other settings where path-dependent diversification occurs. The
first obvious extension is to the regional or urban setting where
firms/industries need specific locally available capabilities to
flourish. This will result in a path-dependent process of diversi-
fication, which underlies some of the dynamics behind industrial
cluster formation37 and urban agglomeration8. In a similar vein,
technology adoptions by countries38 also follow a path-dependent
process: many technologies require other technologies to be
present in advance in a country. Finally, in biology, from where
we borrow the term ecosystem, organisms require the presence of
other animals or plants to populate a location, and, hence, this
mechanism also leads to path-dependent dynamics. This process
is intimately linked to observed nested structure emphasised in
the ecology (and economics) literature21,39–41.

As confidence in market efficiency has declined, particularly
since the 2008-9 financial crisis, industrial policy has enjoyed
somewhat of a global resurgence42. Although, there have been
clear examples of path-defying changes32,33, the metrics derived
here aim to aid countries or regions to connect their current
productive capabilities to future possibilities. In particular, we
hope that the Ecosystem metric is helpful to policymakers seeking
to analyse the preparedness of a nation or region to move into a
new product, or trying to identify key transition sectors which
could open up future opportunities. Additionally, policymakers
can also use this methodology retrospectively to identify market
failures. This is possible by identifying products that had a high
likelihood of appearance, but have not yet been observed. Factors
that prevented the appearance of these products can then be
investigated. While there are clear policy applications for our

work, it is also prudent to highlight limitations of the model.
Firstly, although an improvement on previous approaches, the
predictive power of the model suffers from false positives since
many possible jumps are not realised due to external factors.
Secondly, evolving production technologies impact the under-
lying capability requirements of many products, leading to an
evolution of Ecosystem matrix over time, albeit at a slow pace.
Based on this, and the predictive power of our model over a five-
year period, we suggest that this tool is most suited to deliver
short to medium term policy insights. Overall, we believe this
methodology will be a valuable asset for policymakers.

Methods
The model. Let Mn,i= 1 if product i is present in country n, and otherwise 0.
Similarly, let Jn,i= 1 if product i appeared in country n, and otherwise 0.

For a product i and a country n, pi∈ {0, 1}m is the capability requirement vector
of product i, and cn∈ {0, 1}m represents the capabilities present in country n with
m representing the number of the capabilities. Following Hausmann and
Hidalgo24, country n makes the product i if country n has all necessary capabilities
to make i. Formally:

Mn;i ¼ 1 () k pi k¼ cn
T:pi:

where ∥∥1 denotes the Euclidean 1-norm and T denotes the transpose. We drop the
subscript of the norm and transpose sign for notational brevity. We assume that
the country will jump to the product upon acquisition of all missing capabilities
required to make the product. Hence, the probability of a jump depends on the
capability gap between the country and the product capability vectors:

Δn;i ¼k pi k �cn:pi:

We wish to quantify the likelihood of country n producing product i given that the
country is already producing product j. We can split the capability vector of
product i into two parts, one which contains the capabilities overlapping with j, and
other the non-overlapping capabilities. We write pi ¼ pji þ pji, where

● pjik ¼ 1 if both pik= 1 and pjk= 1 and 0 otherwise, and
● �pjik ¼ 1 if pik= 1 and pjk= 0 and 0 otherwise.

Since country n is already making product j, it has all the necessary capabilities
for it. Hence, the probability that country n starts making product i can be
expressed as:

PðJn;i ¼ 1jMn;j ¼ 1Þ ¼ qkp
j
ik�cn �pji

where q is the mean probability of acquiring a capability under a binomial model.
We can apply Bayes’ Rule:

PðMn;j ¼ 1jJn;i ¼ 1Þ ¼ PðJn;i¼1jMn;j¼1ÞPðMn;j¼1Þ
PðJn;i¼1Þ

¼ q
kpj

i
k�cn �pji

qkpik�cn �pi PðMn;j ¼ 1Þ
¼ q�ðkpjik�cn �pjiÞPðMn;j ¼ 1Þ

and take logarithms:

log
PðMn;j ¼ 1jJn;i ¼ 1Þ

PðMn;j ¼ 1Þ

 !
¼ ðk pji k �cn � pjiÞlog ð1=qÞ:

If we assume that the probability of a country having each capability is w, this
expression becomes

Ei;j ¼ log
PðMn;j ¼ 1jJn;i ¼ 1Þ

PðMn;j ¼ 1Þ

 !
¼ � k pji k ð1� wÞlog ðqÞ: ð4Þ

Hence, the probability that the product j is already produced in a country, given
the country started making the product i, increases with the overlap between the
capability requirements of these two products, captured by k pji k up to a constant
multiplicative factor.

Algorithm. We construct the Ecosystem matrix Ê using export data from the
Standard International Trade Classification (SITC) revision 2 at the 4-digit level
beginning in 1984 using data from Harvard Dataverse present at https://dataverse.
harvard.edu/dataverse/atlascleaned by Bustos and Yildirim.

In order to estimate the matrices M and J, we measure product presences and
appearances via international export competitiveness. In particular, we measure the
intensity with which a country exports each product by computing its Revealed
Comparative Advantage (RCA), first proposed by Balassa26. The RCA that a
country has in a product is defined as the ratio between the share of the product in
the country’s export basket and the overall share of the product in the global export
basket. Equivalently, we can also think of RCA as the share of the country in the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21689-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1479 | https://doi.org/10.1038/s41467-021-21689-0 | www.nature.com/naturecommunications 11

https://dataverse.harvard.edu/dataverse/atlas
https://dataverse.harvard.edu/dataverse/atlas
www.nature.com/naturecommunications
www.nature.com/naturecommunications


product divided by the total share of the country in the world exports. A product is
over-represented in a country’s export basket if its RCA is above a threshold.

Formally, if Xn,i is equal to the export of country n in product i, then the RCA of
country n in product i is defined as:

Rn;i ¼
Xn;i=

P
kXk;iP

iXn;i=
P

k;iXk;i
ð5Þ

Mn;i ¼
1 if Rn;i > τ1 in t

0 otherwise

�
ð6Þ

An appearance of product i in country n is defined as:

PðJt0!t1
n;i ¼ 1Þ ¼ 1 if Rn;i < τ0 in t0 andRn;i > τ1 in t1

0 otherwise

�
ð7Þ

Since we will aggregate all jumps for each country-product pair in the analysis
below, we will drop the time indices in the J matrix.

Based on our definitions of jumps and presences, we compute the entries Êi;j as
follows:

Êi;j ¼ log ðPðMn;j ¼ 1jJn;i ¼ 1Þ=PðMn;j ¼ 1ÞÞ: ð8Þ
We will show how we build the P(Mn,j= 1∣Jn,i= 1) and P(Mn,j= 1) terms separately
to create a single composite Ecosystem matrix (using data from 1984-2010).

Building the P(Mn,j= 1∣Jn,i= 1) term:

1. For each country and product pair, we calculate RCA values (top row in
Fig. 8).

2. We designate a product absent if its RCA value is below τ0 (= 0.1 in Fig. 8)
and present if its RCA value is above τ1 (=1 in Fig. 8). If the RCA value is
between these two thresholds we designate this product undefined. If the
country-product pair is missing for that year, we also designate it undefined
(middle row in Fig. 8).

3. We collapse all consecutive absences—and absences interspaced with
undefined values—to the latest absence (bottom row in Fig. 8).

4. We collapse all consecutive presences—and presences interspaced with
undefined values—to the earliest presence (bottom row in Fig. 8).

5. After collapsing, we are guaranteed to have a single absence followed by at
most a single presence. After the presence, however, another absence could
be present. A jump occurs when a country transitions from an absence to a
subsequent presence (bottom row in Fig. 8).

6. For a product i: we search for the set of countries Ki in which it appeared.
For each of these countries, we detect which other products j were present in
the jump start year. A product j was present in the start year if its RCA value
was greater than τ1.

7. For each i and j, we compute the total number of presences of each product j
(given an appearance of product i), and divide it by the number of
appearance countries (e.g. the size of set Ki).

Building the P(Mn,j= 1) term:

1. For each product j, we compute the total number of presences of each
product j across all countries (i.e., RCAn,j > τ1) and years.

2. We divide the total number of presences of product j across all years by the
total number of countries (each country is counted once for each year it
appears in the sample).

Finally, the Ecosystem is a log of the ratio of the P(Mn,j= 1∣Jn,i= 1) and
P(Mn,j= 1) terms.

Notes:

● Unless otherwise specified, we set standard values for parameters for absence
and presence: τ0= 0.1 and τ1= 1.

● Following Hausmann et al.2, we restrict our sample to countries with
population greater than 1.2 million and total exports of at least $1 billion in
2008. There are also countries with known data reporting issues that were
removed by Hausmann et al.2. The sample reduces to 125 countries for the
Ecosystem matrix computation.

● The full SITC Rev.2 has 786 4-digit products in 1984. We omit 6 products with
one-digit code 9 (‘Commodities and transactions not classified elsewhere in
the SITC’), and drop to 780 products. Then we drop products that do not
constitute more than one in one millionth of world trade and have at least 5
million USD exports in all 33 years, which reduces the number of products to
756. Eliminated products are very small in terms of export volume, and create
spurious jumps.

● The definition of RCA enables small countries to surpass the presence
threshold easily. To minimize noise, we converted presences (RCA > 1) to
undefined if the countries’ export in the product is less than $10 thousand or
the country exports less than one in ten thousandth of the product. Overall, in
33 years, we have 474,494 presences and this change affects 4801 of
them (~1%).

Predicting product appearances. A country n has capabilities cn, and products
j 2 J n . We want to compute the probability that country n will acquire the missing
capabilities for the appearance of product i:

PðJn;i ¼ 1Þ ¼ qkpik�cn �pi

We do not know which capabilities country n already has, but we can proxy for
them by looking at the capabilities of products already present in the country:

cn ¼ 1
X
j2J n

pj

 !
where the function 1 sets the entry of a vector to be 1 if the corresponding entry of
the input vector is greater than or equal to 1, i.e., the entry k of cn is 1 if at least one
product present in country n requires capability k.

For each product i, we do not know the length of its capability vector, ∥pi∥, but
using the Ecosystem entries, we obtain estimates for the overlaps, k pji k’s. We will
assume that these overlaps between the products are uniformly distributed. Under
this assumption, we can estimate ∥pi∥ as the maximum of the k pji k’s. Then the
maximum likelihood estimator of the maximum statistic for a uniform distribution
is:

k bpi k¼ Np þ 1

Np
max

j
k pji k

where Np is the number of products. Figure 9 depicts this process. Hence, we
estimate the number of capabilities needed for i by computing its maximum
overlap with all other products j.

Country n makes only a subset of these products and from this subset we can
estimate the pi.cn term. The maximum likelihood estimator (up to the same
multiplicative factor as above) for the overlap pi.cn is then:

dpi:cn ¼ max
j2J n

k pji k

Years 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 2009 2010

RCA . 0.2 0.05 0.08 0.16 0.09 0.3 0.75 1.02 1.09 0.96 1.1 0.86 0.75

Threshold . . 0 0 . 0 . . 1 1 . 1 . .

Present: > 1
Absent:  0.1

Undefined: (> 0.1 AND  1)

Collapse consecutive absences (to the last absence)
and presences (to the first presence)

Consecutive Absences Consecutive Presences

Jump

Collapse . . . . . 0 . . 1 . . . . .

Fig. 8 Example of a jump. We calculate RCA values for each year (top row). We convert the RCA values to absences and presences based on
corresponding thresholds (middle row). We merge consecutive absences to the latest year and consecutive presences to earliest year. A jump is defined as
transforming an absence to presence.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21689-0

12 NATURE COMMUNICATIONS |         (2021) 12:1479 | https://doi.org/10.1038/s41467-021-21689-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


This is the maximum overlap between product i and any product j which is present
in country n.

Empirically, we estimate k bpi k as maxj Êi;j and dpi:cn as maxj2J n
Êi;j. Therefore,

we estimate the likelihood of an appearance of a product i in country c as

dEn;i ¼ qmaxj Êi;j�maxj2J c
Êi;j

where q is the probability of acquiring a new capability, and J n is the set of
products present in country n. In order to reduce noise, we take the mean value
over the top k= 25 entries for each maxj Êi;j and maxj2J n

Êi;j . The robustness of
our results in terms of parameter k is given in Supplementary Note 3.4 of
the Supplementary Information.

The product space. The Product Space3 is a network that was proposed to model
the process of industrial diversification of nations. Similar to the Eco Space, nodes
represent products, and edges are intended to capture capability overlap. The
Product Space is built from a cross-section of data—as opposed to the time-series
data required to build the Eco Space. The edge weight between two nodes is
estimated using a measure of co-export—i.e., a pair of products is connected by an
edge if they are exported by a similar set of countries. It has been shown that the
Product Space is a good predictor of product appearances3,31.

Hidalgo et al.3 define the Product Space as a matrix P such that

Pi;j ¼
P

n Mn;iMn;j

maxðPn Mn;i;
P

n Mn;jÞ
where Mn,i= 1 if country n makes product i, and 0, otherwise. The logic behind
this approximation is that if a pair of products is co-exported by a large subset of
countries, then these products must require a similar capability base.

Consequently, countries are expected to move into industries which are close or
similar to activities they are already successful at. From a network perspective, this
is equivalent to saying that the probability of a product appearance in the future is
dependent on the RCA that the country currently enjoys in neighbouring products.
Mathematically, we write the Product Space density of product i in country n as

dPn;i ¼
P

jPj;iMn;jP
jPj;i

: ð9Þ

where the matrix P represents the network proximity or adjacency matrix for the
Product Space as defined above.

Probit model. We perform a standard Probit regression for the probability of a
product appearance of the form:

Jn;i ¼ Φðαþ βEd
E
n;i þ βPd

P
n;i þ γi þ ηnÞ ð10Þ

where the binary variable Jn,i is defined by Eq. (7), Φ is a normal cumulative
distribution function, dE corresponds to the Ecosystem density, and dP corresponds
to the Product Space density, and γi and ηn are product and country fixed effects
respectively.

We construct the Ecosystem for years 1984–2009, and use RCA values from the
year 2010, to compute the density metrics for both the Eco Space and the Product
Space. Our dependent variable is defined for appearances during the 6-year period
2010–2016. Note that we condition on the product being absent at the start of the
period, e.g., we only include country-product pairs that were absent in 2010.

In order to quantify the predictive power of each density metric, and their
combination, we compute the AUC or Area Under the Curve of the ROC (Receiver
Operating Characteristic). The ROC curve plots the rate of true positives of a
continuous prediction criterion as a function of the rate of false positives. The area
under the curve (AUC) statistic is equivalent to the Mann–Whitney statistic (the

probability of ranking a true positive ahead of a false positive in a prediction
criterion). By definition, a random prediction will find true positives and false
positives at the same rate, and hence will result in an AUC= 0.5, whereas AUC= 1
for a perfect prediction.

Data availability
All data that we use in this study is publicly available. The trade data is available from the
Atlas of Economic Complexity Dataverse, http://dataverse.harvard.edu/dataverse/atlas.
Country level indicators were obtained from the World Development Indicators
database, http://datatopics.worldbank.org/world-development-indicators/. The shape
files for the world maps were downloaded from https://thematicmapping.org/downloads/
world_borders.php. The shape files were not altered, and only used for mapping levels of
several variables. The shape files are licensed under Creative Commons Attribution-
Share Alike License (https://creativecommons.org/licenses/by-sa/3.0/).

Code availability
The analysis in this study was done using Stata and Matlab. The Stata and Matlab code is
available upon request. The network layout was generated using Gephi (https://gephi.org/).
The communities in the network were identified using the Partition Stability algorithm
(http://wwwf.imperial.ac.uk/~mpbara/Partition_Stability/).
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