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DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of

treatment-resistant schizophrenia
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Abstract

We performed a systematic analysis of blood DNA methylation profiles from 4,483 participants from
seven independent cohorts identifying differentially methylated positions (DMPs) associated with
psychosis, schizophrenia and treatment-resistant schizophrenia. Psychosis cases were characterized by
significant differences in measures of blood cell proportions and elevated smoking exposure derived
from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia
patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study
(EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1,048 DMPs
associated with schizophrenia, with evidence of colocalization to regions nominated by genetic
association studies of disease. Many schizophrenia-associated DNA methylation differences were
only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the
atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to
identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors

associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.
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Introduction

Psychosis is a complex and heterogeneous neuropsychiatric condition characterized by a loss of
contact with reality, whose symptoms can include delusions and hallucinations. Episodic psychosis
and altered cognitive function are major features of schizophrenia, a severe neurodevelopmental
disorder that contributes significantly to the global burden of disease (Whiteford et al., 2013).
Schizophrenia is highly heritable (Hilker et al., 2018; Sullivan, Kendler, & Neale, 2003) and recent
genetic studies have indicated a complex polygenic architecture involving hundreds of genetic
variants that individually confer a minimal increase on the overall risk of developing the
disorder(Purcell et al., 2009). Large-scale genome-wide association studies (GWAS) have identified
approximately 160 regions of the genome harboring common variants robustly associated with the
diagnosis of schizophrenia, with evidence for a substantial polygenic component in signals that
individually fall below genome-wide levels of significance (Pardifias et al., 2018; Schizophrenia
Working Group of the PGC et al., 2014). As the majority of schizophrenia-associated variants do not
directly index coding changes affecting protein structure, there remains uncertainty about the causal

genes involved in disease pathogenesis, and how their function is dysregulated (Maurano et al., 2012).

A major hypothesis is that GWAS variants predominantly act to influence the regulation of gene
expression. This hypothesis is supported by an enrichment of schizophrenia associated variants in
core regulatory domains (e.g. active promotors and enhancers)(Hannon, Marzi, Schalkwyk, & Mill,
2019). As a consequence, there has been growing interest in the role of epigenetic variation in the
molecular etiology of schizophrenia. DNA methylation is the best-characterized epigenetic
modification, acting to influence gene expression via disruption of transcription factor binding and
recruitment of methyl-binding proteins that initiate chromatin compaction and gene silencing. Despite
being traditionally regarded as a mechanism of transcriptional repression, DNA methylation is
actually associated with both increased and decreased gene expression(Wagner et al., 2014), and other
genomic functions including alternative splicing and promoter usage (Maunakea et al., 2010). We
previously demonstrated how DNA methylation is under local genetic control(Hannon, Gorrie-Stone,

et al., 2018; Hannon, Spiers, et al., 2015), identifying an enrichment of DNA methylation quantitative
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trait loci (mQTL) among genomic regions associated with schizophrenia(Hannon, Spiers, et al.,
2015). Furthermore, we have used mQTL associations to identify discrete sites of regulatory variation
associated with schizophrenia risk variants implicating specific genes within these regions (Hannon et
al., 2016; Hannon, Gorrie-Stone, et al., 2018; Hannon, Spiers, et al., 2015; Hannon, Weedon, Bray,
O'Donovan, & Mill, 2017). Of note, epigenetic variation induced by environmental exposures has
been hypothesized as another mechanism by which non-genetic factors can affect risk for

neuropsychiatric disorders including schizophrenia(E. Dempster, Viana, Pidsley, & Mill, 2013).

The development of standardized assays for quantifying DNA methylation at specific sites across the
genome has enabled the systematic analysis of associations between methylomic variation and
environmental exposures or disease(Murphy & Mill, 2014). Because DNA methylation is a dynamic
process, these epigenome-wide association studies (EWAS) are more complex to design and interpret
than GWAS(Mill & Heijmans, 2013; Rakyan, Down, Balding, & Beck, 2011; Relton & Davey Smith,
2010). As for observational epidemiological studies of exposures and outcomes, a number of
potentially important confounding factors (e.g. tissue- or cell-type, age, sex, lifestyle exposures,
medication, and disorder-associated exposures) that can directly influence DNA methylation need to
be considered along with the possibility of reverse causation. Despite these difficulties, recent studies
have identified schizophrenia-associated DNA methylation differences in analyses of post-mortem
brain tissue(Jaffe et al., 2015; Pidsley et al., 2014; Viana et al., 2016; Wockner et al., 2014), and also
detected disease-associated variation in peripheral blood samples from both schizophrenia-discordant
monozygotic twin pairs (E. L. Dempster et al., 2011) and clinically-ascertained case-control cohorts
(Aberg et al., 2014; Hannon et al., 2016; Kinoshita et al., 2014). We previously reported an EWAS of
variable DNA methylation associated with schizophrenia in >1,700 individuals, meta-analyzing data
from three independent cohorts and identifying methylomic biomarkers of disease(Hannon et al.,
2016).Together these data support a role for differential DNA methylation in the molecular etiology
of schizophrenia, although it is not clear whether disease-associated methylation differences are

themselves secondary to the disorder itself, or a result of other schizophrenia-associated factors.
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In this study we extend our previous analysis, quantifying DNA methylation across the genome in a
total of 4,483 participants from seven independent case-control cohorts including patients with
schizophrenia or first-episode psychosis (FEP) (Figure 1). This represents the largest EWAS of
schizophrenia and psychosis, and one of the largest case-control studies of DNA methylation for any
disease phenotype. In each cohort, genomic DNA was isolated from whole blood and DNA
methylation was quantified across the genome using either the lllumina Infinium
HumanMethylation450 microarray (“450K array”) or the HumanMethylationEPIC microarray (“EPIC
array”) (see Methods). We implemented a stringent pipeline to meta-analyze EWAS results across
datasets to identify associations between psychosis cases and variation in DNA methylation. We show
how DNA methylation data can be leveraged to identify biological (e.g. differential cell counts) and
environmental (e.g. smoking) factors associated with psychosis, and present evidence for molecular

variation associated with clozapine exposure in patients with treatment-resistant schizophrenia.

Results

Study overview and cohort characteristics

We quantified DNA methylation in samples derived from peripheral venous whole blood in seven
independent psychosis case-control cohorts (total n = 4,483; 2,379 cases and 2,104 controls). These
cohorts represent a range of study designs and recruitment strategies and were initially designed to
explore different clinical and etiological aspects of schizophrenia (see Methods and Table 1); they
include studies of first episode psychosis (EU-GEI and Io0PPN), established schizophrenia and/or
clozapine usage (UCL, Aberdeen, Dublin, IoPPN), mortality in schizophrenia (Sweden), and a study
of twins from monozygotic pairs discordant for schizophrenia (Twins). All cohorts were characterised
by a higher proportion of male participants (range = 52.1-71.1% male, pooled mean = 62.6% male,
Table 1) than females. Although there was an overall significantly higher proportion of males
amongst cases compared to controls (3* = 37.5, P = 9.35x10™), consistent with reported incidence
rates (Aleman, Kahn, & Selten, 2003; van der Werf et al., 2014), there was significant heterogeneity
in the sex by diagnosis proportions across different cohorts (x* = 348, P = 4.86x10°%%) with the overall

excess of male patients driven by two cohorts (UCL (y* = 52.7, P = 3.81x10™") and EU-GEI (y* =
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25.9, P = 3.68x107)). Most cohorts were enriched for young and middle-aged adults although there
was considerable heterogeneity across the studies reflecting the differing sampling strategies (Table
1). For example, the 10PPN cohort has the lowest average age, reflecting the inclusion of a large
number of first episode psychosis (FEP) patients (mean = 34.9 years; SD = 12.42 years)(Di Forti et
al., 2009). In contrast, individuals in the Sweden cohort were older (mean = 60.0 years; SD = 8.9
years)(Kowalec et al., 2019). There was no overall difference in mean age between cases and controls
(mean difference = 0.076 years, P = 0.975) (Figure 1 — supplement 1), although differences were
apparent in individual cohorts; in UCL (mean difference = 6.8 years; P = 6.55x10%) and 1oPPN (mean
difference = 6.2 years; P = 1.46x10™™") patients were significantly older than controls, while in the EU-
GEI (mean difference = -7.9 years; P = 1.24x107%%) and the Sweden cohort (mean difference = -7.3
years; P = 1.05x10™) the cases were significantly younger. With the exception of individuals in the
IoPPN and EU-GEI cohorts, which are more ethnically diverse, individuals included in this study
were predominantly Caucasian. SNP array data from each donor was merged with HapMap Phase 3
data, and genetic principal components (PCs) were calculated with GCTA (Yang, Lee, Goddard, &

Visscher, 2011) to further confirm the ethnicity of each sample (Figure 1 — supplement 2).

Psychosis patients are characterized by differential blood cell proportions and smoking levels using
measures derived from DNA methylation data

A number of robust statistical classifiers have been developed to derive estimates of both biological
phenotypes (e.g. age (Hannum et al., 2013; Horvath, 2013; Zhang et al., 2019) and the proportion of
different blood cell types in a whole blood sample (Houseman et al., 2012; Koestler et al., 2013)) and
environmental exposures (e.g. tobacco smoking (Elliott et al., 2014; Sugden et al., 2019)) from DNA
methylation data. These estimates can be used to identify differences between groups and are often
included as covariates in EWAS analyses where empirically-measured data is not available. For each
individual included in this study we calculated two measures of “epigenetic age” from the DNA
methylation data; DNAmMAge using the Horvath multi-tissue clock, which was developed to predict
chronological age (Horvath, 2013), and PhenoAge, which was developed as biomarker of advanced

biological aging (Levine et al., 2018). We found a strong correlation between reported age and both
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derived age estimates across the cohorts (Pearson correlation coefficient range 0.821-0.928 for
DNAmMAge and 0.795-0.910 for PhenoAge) and no evidence for age acceleration - i.e. the difference
between epigenetic age and chronological age - between patients with psychosis and controls

(Kowalec et al., 2019) (Figure 1 - supplement 3 and 4).

Because of the importance of considering variation in the composition of the constituent cell types in
analyses of complex cellular mixtures (Mill & Heijmans, 2013; Relton & Davey Smith, 2010), we
used established methods to estimate the proportion (Houseman et al., 2012; Koestler et al., 2013) and
abundance (Horvath, 2013) of specific cell-types in whole blood. Using a random effects meta-
analysis to combine the results across the seven cohorts, which were adjusted for age, sex and DNAm
smoking score, we found that psychosis cases had elevated estimated proportions of granulocytes
(mean difference = 0.0431; P = 5.09x10) and monocytes (mean difference = 0.00320; P = 1.15x10"
%), and significantly lower proportions of CD4" T-cells (mean difference = -0.0177; P = 0.00144),
CD8" T-cells (mean difference = -0.0144; P = 0.00159) and natural killer cells (mean difference = -
0.0113; P =0.00322) (Table 2 and Figure 2). Interestingly, the differences in granulocytes, natural
Killer cells, CD4" T-cells and CD8" T-cells were most apparent in cohorts comprising patients with a
diagnosis of schizophrenia (Figure 2), with cohorts including FEP patients characterized by weaker
or null effects. Limiting the analysis of derived blood cell estimates to a comparison of schizophrenia
cases and controls did not perceivably change the estimated differences of our random effects model
but did reduce the magnitude of heterogeneity compared to including the FEP cases (Supplementary
Table 1). This indicates that changes in blood cell proportions may reflect a consequence of
diagnosis, reflecting the fact that people with schizophrenia are likely to have been exposed to a
variety of medications, social adversities and somatic ill-health - and for longer periods - than FEP
patients. Finally, we used an established algorithm to derive a quantitative DNA methylation
“smoking score” for each individual (Elliott et al., 2014), building on our previous work
demonstrating the utility of this variable for characterizing differences in smoking exposure between
schizophrenia patients and controls, and using it as a covariate in an EWAS (Hannon et al., 2016). We

observed a significantly increased DNA methylation smoking score (Figure 3) in psychosis patients
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compared to controls across all cohorts (mean difference = 3.89; P = 2.88x10*). Although of smaller
effect, this difference was also present when comparing FEP and controls in the EU-GEI cohort
(mean difference = 2.38; P = 2.68x10®). As expected, for individuals where self-reported smoking
data was available, the DNA methylation smoking score was significantly elevated in current and

former smokers compared to never smokers (Figure 3 — supplement 1).

An epigenome-wide association study meta-analysis identifies DNA methylation differences
associated with psychosis

To identify differentially methylated positions (DMPSs) in blood associated with psychosis, we
performed an association analysis within each of the seven schizophrenia and FEP cohorts controlling
for age, sex, derived cellular composition variables (from DNA methylation data), derived smoking
score (from DNA methylation data), and experimental batch (see Methods). We used a Bayesian
method to control P-value inflation using the R package bacon (van Iterson, van Zwet, Heijmans, &
Consortium, 2017) before combining the estimated effect sizes and standard errors across cohorts
with a random effects meta-analysis, including all autosomal and X-chromosome DNA methylation
sites analyzed in at least two cohorts (n = 839,131 DNA methylation sites) (see Methods). Using an
experiment-wide significance threshold derived for the lllumina EPIC array (Mansell et al., 2019) (P
< 9x10°®), we identified 95 psychosis-associated DMPs mapping to 93 independent loci and annotated
to 68 genes (Figure 4A and Supplementary Table 2). Across these DMPs, the mean difference in
DNA methylation between cases and controls was relatively small (0.789%, SD = 0.226%) and there
was a striking enrichment of hypermethylated DMPs in psychosis cases (n = 91 DMPs (95.8%)
hypermethylated, P = 1.68x10%%). A number of the top-ranked DMPs are annotated to genes that have
direct relevance to the etiology of psychosis including the GABA transporter SLC6A12(Park et al.,
2011) (cg00517261, mean difference = 0.663%, P = 1.53x10'®), the GABA receptor GABBR1(Le-
Niculescu et al., 2007) (cg00667298, mean difference = 0.619%, P = 5.07x10®), and the calcium
voltage-gated channel subunit gene CACNAL1C (cg01833890, mean difference = 0.458%, P = 8.42x10°

%) that is strongly associated with schizophrenia and bipolar disorder (Consortium, 2013; Psychiatric
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GWAS Consortium Bipolar Disorder Working Group, 2011; Schizophrenia Working Group of the

PGCetal., 2011) (Figure 5).

A specific focus on clinically-diagnosed schizophrenia cases identifies more widespread DNA
methylation differences

We next repeated the EWAS focussing specifically on the subset of psychosis cases with diagnosed
schizophrenia (schizophrenia cases = 1,681, controls = 1,583). Compared to our EWAS of psychosis
we identified more widespread differences in DNA methylation (Figure 4B), with 1,048
schizophrenia associated DMPs (P < 9x10®) representing 1,013 loci and annotated to 692 genes
(Supplementary Table 3). Although the list of schizophrenia-associated DMPs included 61 (64.21%)
of the psychosis associated DMPs, the total number of significant differences was much larger,
potentially reflecting the less heterogeneous clinical characteristics of the cases. Schizophrenia-
associated DMPs had a mean difference of 0.789% (SD = 0.204%), and like the psychosis-associated
differences, were significantly enriched for sites that were hypermethylated in cases compared to
controls (n = 897 (87.4%), P = 1.27x10™%)). A number of the top-ranked DMPs are annotated to
genes that have direct relevance to the etiology of schizophrenia and gene ontology (GO) analysis
highlighted multiple pathways previously implicated in schizophrenia including several related to the
extracellular matrix(Berretta, 2012) and cell-cell adhesion(O'Dushlaine et al., 2011) (Supplementary
Table 4). Given the large range of ages across the samples included in this study, we tested whether
there was evidence for a relationship between age and differential DNA methylation at the 1,048
schizophrenia DMPs by refitting our analysis model using an additional interaction term between age
and schizophrenia status individually for each cohort prior to the interaction effects being meta-
analysed (see Methods). Overall, we found limited evidence for a relationship between age and DNA
methylation at schizophrenia-associated DMPs; controlling for multiple testing (P < 0.00004771),
only two (0.002%) DMPs were identified as showing a significant interaction with age
(Supplementary Table 5). We used the same approach to explore for an interaction between sex and
DNA methylation, finding no evidence for sex differences at these sites or evidence for a significant

interaction between sex and DNA methylation (P < 0.00004771) (Supplementary Table 6). Finally,
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although most of the cohorts included in this study were predominantly Caucasian, there was some
ethnic heterogeneity in the loPPN and EU-GEI cohorts. To explore the extent to which this diversity
might be influencing our results we merged SNP array data from each donor with HapMap Phase 3
data and calculated genetic PCs using GCTA (Yang et al., 2011) (Figure 1 — supplement 2). We
reanalyzed data from individual cohorts including increasing numbers of genetic PCs to the model,
finding that even in the most ethnically diverse cohort (Il0PPN) the inclusion of up to five genetic PCs
had negligible effects, with a very strong correlation in test statistics between models (Figure 4 —

supplement 1).

Schizophrenia-associated DNA methylation differences show overlap with previous analyses of
schizophrenia and other traits

Two of our experiment-wide significant SZ-associated DMPs (cg00390724 and cg09868768)
overlapped with those reported in a previous smaller whole blood schizophrenia EWAS performed by
Montano and colleagues (Montano et al., 2016) with the same direction of effect; of note, 119
(71.3%) of the 167 replicated DMPs reported by this study were characterized by a consistent
direction of effect in our meta-analysis, representing a significantly higher rate than expected by
chance (P = 3.83x10°®). Unfortunately, we could not check the extent to which our schizophrenia-
associated DMPs were replicated in the Montano et al dataset because the full results from their
analysis are not publicly available. We next compared our results with those from a prefrontal cortex
(PFC) EWAS meta-analysis of schizophrenia also performed by our group (Viana et al., 2017),
finding that 627 (60.2%) of the 1,042 DMPs tested in both analyses had the same direction of effect, a
significantly higher rate than expected by chance (P = 5.43X10™). Finally, we also explored the
extent to which DMPs associated with schizophrenia overlapped with other traits using the database

of results in the online EWAS catalog (http://ewascatalog.org/); across EWAS studies undertaken

using blood DNA (isolated from whole blood or cord blood) this resource includes 101,091
significant DMPs (at P < 1X10°) associated with 87 traits. Of the 1,048 schizophrenia-associated

DMPs identified in our meta-analysis, 219 (20.9%) were present in the database and significantly
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associated with 18 different traits (Supplementary Table 7). Where effect sizes for individual DMPs
were available in the EWAS catalog, we tested for an enrichment of consistent (or discordant)
associations to those identified with schizophrenia. Schizophrenia DMPs also associated with C-
reactive protein (CRP) and gestational age, for example, were significantly enriched for a consistent
direction of effect (CRP: 10 overlapping DMPs, 10 consistent direction of effect, P = 0.001953;
gestational age: 105 overlapping DMPs, 72 consistent direction of effect, P = 0.000178). In contrast,
schizophrenia DMPs also associated with age and high-density lipoprotein (HDL) cholesterol were
enriched for discordant effect directions (age: 30 overlapping DMPs, 28 same direction of effect, P =

8.68X10"; HDL: 12 overlapping DMPs, 12 same direction of effect, P = 0.00049) (Figure 6).

Schizophrenia-associated DMPs colocalize to regions nominated by genetic association studies

As the etiology of schizophrenia has a large genetic component, we next sought to explore the extent
to which DNA methylation at schizophrenia-associated DMPs is influenced by genetic variation.
Using results from a quantitative genetic analysis of DNA methylation in monozygotic and dizygotic
twins (Hannon, Knox, et al., 2018), we found that DNA methylation at schizophrenia-associated
DMPs is more strongly influenced by additive genetic factors compared to non-associated sites
matched for comparable means and standard deviations (Figure 7) (mean additive genetic component
across DMPs = 23.0%; SD = 16.8%:; P = 1.61x10®"). Using a database of blood DNA methylation
guantitative trait loci (mQTL) previously generated by our group (Hannon, Gorrie-Stone, et al., 2018)
we identified common genetic variants associated with 256 (24.4%) of the schizophrenia-associated
DMPs. Across these 256 schizophrenia-associated DMPs there were a total of 455 independent
genetic associations with 448 genetic variants, indicating that some of these DMPs are under
polygenic control with multiple genetic variants associated. Of note, 31 of these genetic variants are
located within 12 schizophrenia-associated GWAS regions (Supplementary Table 8) with 19 genetic
variants associated with schizophrenia DMPs located in the MHC region on chromosome 6. To
further support an overlap between GWAS and EWAS signals for schizophrenia, we compared the list
of genes identified in this study with those from the largest GWAS meta-analysis of schizophrenia

(Pardifias et al., 2018) identifying 21 schizophrenia-associated DMPs located in 11 different GWAS
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regions. To more formally test for an enrichment of differential DNA methylation across
schizophrenia-associated GWAS regions, we calculated a combined EWAS P-value for each of the
GWAS associated regions using all DNA methylation sites within each region identifying 21
significant regions (P < 3.16x10™, corrected for testing 158 regions; Supplementary Table 9). Three
of these regions also contained a significant schizophrenia-associated DMP and a genetic variant
associated with that schizophrenia-associated DMP. These include a region located within the MHC,
another located on chromosome 17 containing DLG2, TOM1L2 and overlapping the Smith-Magenis

syndrome deletion, and another on chromosome 16 containing CENPT, and PRMT7.

Schizophrenia-associated patterns of DNA methylation are observed in individuals with first-episode
psychosis

To explore whether schizophrenia-associated differences in DNA methylation are present before a
formal diagnosis of schizophrenia we next performed an EWAS of FEP in the loPPN and EUGEI
cohorts (total n = 698 FEP cases and 724 controls), meta-analysing the results across 384,217
common DNAm sites. Although we identified no significant DMPs at our stringent experiment-wide
significance threshold, this is not surprising given the greatly attenuated sample size and the high
phenotypic heterogeneity amongst individuals with FEP compared to diagnosed schizophrenia; both
factors negatively influence power to detect effects. We next repeated our EWAS of diagnosed
schizophrenia, excluding the 1o0PPN cohort to ensure that there were no overlapping samples between
the schizophrenia vs control analysis and the FEP vs control analysis, identifying 125 significant
DMPs of which 101 were also tested in the FEP EWAS. To see if there was any evidence for
differential DNAm at these sites prior to a diagnosis of schizophrenia, we compared the estimated
differences between schizophrenia cases and controls and FEP cases and controls (Supplementary
Table 10). Strikingly, 96 (95.0%) of the tested DMPs had a consistent direction of effect in the FEP
EWAS, a significantly higher rate than expected by chance (P = 6.58 x10-23). While this result is
consistent with schizophrenia-associated differences being present prior to diagnosis, it is not
sufficient to state that they are causal; they may still reflect some underlying environmental risk factor

or be a consequence of FEP (e.g. medication exposure).
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Treatment-resistant schizophrenia cases differ from treatment-responsive schizophrenia patients for
blood cell proportion estimates and smoking score derived from DNA methylation data

Up to 25% of schizophrenia patients are resistant to the most commonly prescribed antipsychotic
medications, and clozapine is a second-generation antipsychotic often prescribed to patients with such
treatment-resistant schizophrenia (TRS) who may represent a more severe subgroup (Ajnakina et al.,
2018). Using data from four cohorts for which medication records were available (UCL, Aberdeen,
IoPPN, and Sweden), we performed a within-schizophrenia analysis comparing schizophrenia patients
prescribed clozapine (described as TRS cases) and those prescribed standard antipsychotic
medications (total n = 399 TRS and 636 non-TRS). Across each of the four cohorts the proportion of
males prescribed clozapine was slightly higher than the proportion of males on other medications (5
=7.04, P = 7.96x10%; Supplementary Table 11) consistent with findings from epidemiological
studies that report increased rates of clozapine prescription in males(Bachmann et al., 2017), although
there was statistically significant heterogeneity in the sex distribution between groups across cohorts
(x* = 20.5, P =0.0150). TRS cases were significantly younger than non-TRS cases (mean difference =
-5.48 years, P = 0.00533), although there was significant heterogeneity between the cohorts (1? = 89%;
P = 7.40x10%). There was no evidence of accelerated epigenetic aging between TRS and non-TRS
patients (Figure 1 —supplement 5 and Figure 1 — supplement 6). Interestingly, cellular composition
variables derived from the DNA methylation data suggests that TRS cases are characterized by a
significantly higher proportion of granulocytes (meta-analysis mean difference = 0.00283; P =
8.10x10®) and lower proportions of CD8" T-cells (mean difference = -0.0115; P = 4.37x10°
(Supplementary Table 12 and Figure 2 — supplement 1) compared to non-TRS cases. Given the
finding of higher derived granulocyte and lower CD8" T-cell levels in the combined psychosis patient
group compared to controls described above, a finding driven primarily by patients with
schizophrenia, we performed a multiple regression analysis of granulocyte proportion to partition the
effects associated with schizophrenia status from effects associated with TRS status. After including a
covariate for TRS, schizophrenia status was not significantly associated with granulocyte proportion

using a random effects model (P = 0.210) but there was significant heterogeneity of effects across the
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four cohorts (1 = 91%, P = 4.93x10™). Within the group of patients with schizophrenia, however,
there were notable differences between TRS and non-TRS groups (mean difference = 0.0275; P =
3.22x10°°; Figure 2 — supplement 2). In contrast a multiple regression analysis found that both
schizophrenia status (mean difference = -0.0113; P = 0.00818) and TRS status (mean difference = -
0.0116; P = 2.82x107°) had independent additive effects on CD8" T-cell proportion (Figure 2 —
supplement 3). Finally, TRS was also associated with significantly higher DNA methylation-derived
smoking scores than non-TRS in all four cohorts (mean difference = 2.16; P = 7.79x10”°; Figure 3 —
supplement 2). Testing both schizophrenia diagnosis status and TRS status simultaneously, we found
that both remained significant; schizophrenia diagnosis was associated with a significant increase in
smoking score (mean difference = 3.98, P = 2.19x10°®) with TRS status associated with an additional

increase within cases (mean difference = 2.15, P = 2.22x10™) (Figure 3 — supplement 3).

There are widespread DMPs between treatment-resistant schizophrenia patients and treatment-
responsive patients

We next performed an EWAS within schizophrenia patients comparing TRS cases to non-TRS cases,
including each autosomal and X-chromosome DNA methylation site analyzed in at least two cohorts
(n = 431,659 DNA methylation sites). We identified seven DMPs associated with clozapine exposure
(P < 9x10®; Supplementary Table 13) with a mean difference of 1.47% (SD = 0.242%) and all sites
being characterized by elevated DNA methylation in TRS cases (P = 0.0156). We were interested in
whether the DNA methylation differences associated with TRS overlapped with those identified
between all schizophrenia cases and non-psychiatric controls. Although there was no direct overlap
between the clozapine associated DMPs and the schizophrenia associated DMPs identified for each
analysis, the direction of effects across the 1,048 schizophrenia-associated DMPs were enriched for
consistent effects (n = 738 (70.4%) DMPs with consistent direction; P = 7.57x10™"). Given these
observations, we formally tested whether the schizophrenia-associated differences are driven by the
subset of TRS cases on clozapine by fitting a model that simultaneously estimates the effect of
schizophrenia status and TRS status across all 1,048 sites (Supplementary Table 14). While the vast

majority of schizophrenia associated DMPs remained at least nominally significant (h = 1,003 95.7%,
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P < 0.05) between schizophrenia patients and controls, amongst those that didn’t 25 (2.39%) had a
significant effect associated with TRS status. For example, differential DNA methylation at the
schizophrenia-associated DMP cg16322565, located in the NR1L2 gene on chromosome 3
(schizophrenia EWAS meta-analysis: mean DNA methylation difference = 0.907%, P = 3.52x10°®), is
driven primarily by cases with TRS (Figure 8; multiple regression analysis mean DNA methylation
difference between schizophrenia cases and controls = 0.323%, P = 0.123, mean DNA methylation
difference between TRS cases and non-TRS controls = 1.01%, P = 8.71x10°). 152 (14.5%) of the
schizophrenia associated DMPs were associated with a significant effect between schizophrenia cases
and controls and a significant affect within schizophrenia patients between TRS and non-TRS
patients, with the majority (128 (84.2%)) characterized by the same direction of effect in both groups
and indicative of an additive effect of both schizophrenia diagnosis and TRS status (e.g. Figure 8 —
supplement 1). Of particular interest are 24 DMPs which are significantly associated with both
schizophrenia and TRS but with an opposite direction of effect, highlighting how that at some DNA
methylation sites, TRS counteracts changes induced by schizophrenia (e.g. Figure 8 — supplement 2).
Taken together, 177 (16.9%) of the schizophrenia-associated DMPs identified in our EWAS meta-
analysis are influenced by TRS and reflect either differences induced by exposure to a specific
antipsychotic therapy or other differences (e.g. treatment resistance) in individuals who are prescribed

clozapine.
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Discussion

We report the most comprehensive study of methylomic variation associated with psychosis and
schizophrenia, profiling DNA methylation across the genome in peripheral blood samples from 2,379
cases and 2,104 controls. We show how DNA methylation data can be leveraged to derive measures
of blood cell counts and smoking that are associated with psychosis. Using a stringent pipeline to
meta-analyze EWAS results across datasets, we identify novel DMPs associated with both psychosis
and a more refined diagnosis of schizophrenia. Of note, we show evidence for the co-localization of
genetic associations for schizophrenia and differential DNA methylation. Finally, we present evidence
for differential methylation associated with treatment-resistant schizophrenia, potentially reflecting
differences in DNA methylation associated with exposure to the atypical antipsychotic drug

clozapine.

We identify robust psychosis-associated differences in cellular composition estimates derived from
DNA methylation data, with cases having increased proportions of monocytes and granulocytes and
decreased proportions of natural Killer cells, CD4" T-cells and CD8" T-cells compared to non-
psychiatric controls. This analysis extends previous work based on a subset of these data, which
reported a decrease in the proportion of natural killer cells and increase in the proportion of
granulocytes in schizophrenia patients, with the large number of samples enabling us to identify
additional associations with other cell types. We also confirm findings from an independent study of
schizophrenia which reported significantly increased proportions of granulocytes and monocytes, and
decreased proportions of CD8" T-cells using estimates derived from DNA methylation data (Montano
et al., 2016). Of note, because we can only derive proportion of cell types from whole blood DNA
methylation data, and not actual counts, an increase in one or more cell types must be balanced by a
decrease in one or more other cell types and an apparent change in the proportion of one specific cell
type does not mean that the actual abundance of that cell type is altered. Despite this, the results from
DNA methylation-derived cell proportions are consistent with previous studies based on empirical
cell abundance measures which have reported increased monocyte counts(Beumer et al., 2012;

Moody & Miller, 2018), increased neutrophil counts(Garcia-Rizo et al., 2019; Nufiez et al., 2019),
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increased monocyte to lymphocyte ratio(Mazza, Lucchi, Rossetti, & Clerici, 2019; Steiner et al.,
2019) and increased neutrophil to lymphocyte ratio (Karageorgiou, Milas, & Michopoulos, 2019;
Mazza et al., 2019) in both schizophrenia and FEP patients compared to controls. Previous studies
have also shown that higher neutrophil counts in schizophrenia patients correlate with a greater
burden of positive symptoms(Nufez et al., 2019) suggesting that variations in the number of
neutrophils is a potential marker of disease severity(Steiner et al., 2019). Our sub-analysis of
treatment-resistant schizophrenia, which is associated with a higher number of positive symptoms
(Bachmann et al., 2017), found that the increase in granulocytes was primarily driven by those with
the more severe phenotype, supporting this hypothesis. Importantly, the differences we observe may
actually reflect the effects of various antipsychotic medications that have been previously shown to
influence cell proportions in blood(Steiner et al., 2019) or a recruitment bias whereby patients with

low levels of granulocytes are not prescribed clozapine given the risk of agranulocytosis.

We also identified a highly-significant increase in a DNA methylation-derived smoking score in
patients with schizophrenia, replicating our previous finding (Hannon et al., 2016). The smoking score
captures multiple aspects of tobacco smoking behaviour including both current smoking status and the
guantity of cigarettes smoked; our results therefore reflect existing epidemiological evidence
demonstrating that schizophrenia patients not only smoke more, but also smoke more heavily (de
Leon, Becofia, Gurpegui, Gonzalez-Pinto, & Diaz, 2002; de Leon & Diaz, 2005; McClave,
McKnight-Eily, Davis, & Dube, 2010). We also report an increased smoking score in patients with
FEP, although not to the same extent as seen in schizophrenia, consistent with a meta-analysis
reporting high levels of smoking in FEP (Myles et al., 2012). In the subset of treatment-resistant
patients, we found that there was an additional increase in smoking score relative to schizophrenia
cases prescribed alternative medications, supporting evidence for higher rates of smoking in TRS
groups relative to treatment-responsive schizophrenia patients(Kennedy, Altar, Taylor, Degtiar, &
Hornberger, 2014). These results not only highlight physiological (i.e. cell proportions) and
environmental (i.e. smoking) differences associated with psychosis and schizophrenia and the utility

of DNA methylation data for deriving these variables in epidemiological studies, but also highlight
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the importance of controlling for these differences as potential confounders in analyses of disease-

associated DNA methylation differences.

Our epigenome-wide association study, building on our previous analysis on a subset of the sample
cohorts profiled here (Hannon et al., 2016), identified 95 DMPs associated with psychosis that are
robust to differences in measured smoking exposure and heterogeneity in blood cellular composition
derived from DNA methylation data. Of note, we identified a dramatic increase in sites characterized
by an increase in DNA methylation in patients. A key strength of our study is the inclusion of the full
spectrum of schizophrenia diagnoses, from FEP through to treatment-resistant cases prescribed
clozapine. While this may introduce heterogeneity into our primary analyses, we used a random
effects meta-analysis to identify consistent effects across all cohorts and diagnostic subtypes. We also
performed an additional analysis focused specifically on cases with a more refined diagnosis of
schizophrenia excluding those with FEP, which identified over 1,000 DMPs. A number of the top-
ranked DMPs are annotated to genes that have direct relevance to the etiology of schizophrenia and
gene ontology (GO) analysis highlighted multiple pathways previously implicated in schizophrenia
including several related to the extracellular matrix (Berretta, 2012) and cell-cell adhesion
(O'Dushlaine et al., 2011). Given the known genetic component to the etiology of schizophrenia, it is
interesting that schizophrenia-associated DMPs were found to colocalize to several regions nominated
by genetic association studies. Our results suggest that this analysis of a more specific phenotype in a
smaller number of samples is potentially more powerful and that schizophrenia cases have a more
discrete molecular phenotype that might reflect both etiological factors but also factors associated
with a diagnosis of schizophrenia (e.g. medications, stress, etc). The mean difference in DNA
methylation between cases and controls for both psychosis and schizophrenia was small, consistent
with other blood-based EWAS of schizophrenia (Montano et al., 2016) and complex traits (Hannon,
Schendel, et al., 2018; Hannon, Schendel, et al., 2019; Marioni et al., 2018) in general. While
individually they may be too small to have a strong predictive power as a biomarker, together they

may have utility as a molecular classifier (Chen et al., 2020).
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To explore whether schizophrenia-associated differences in DNA methylation are present before a
formal diagnosis of schizophrenia we also performed an EWAS of individuals with first-episode
psychosis. Strikingly, the majority of our schizophrenia-associated DMPs were found to have a
consistent direction of effect in the EWAS of individuals with FEP. While this result is consistent
with schizophrenia-associated differences being present prior to a formal diagnosis of schizophrenia,
it is not sufficient to state that they are causal; they may still reflect some underlying environmental
risk factors or be a consequence of having FEP (e.g. medication exposure or other psychiatric
condition). Further work is needed to explore the extent to which the DMPs associated with psychosis

and schizophrenia in this meta-analysis might have a causal role in disease.

Finally, we also report the first systematic analysis of individuals with TRS, identifying seven DMPs
at which differential DNA methylation was significantly different in the subset of schizophrenia cases
prescribed clozapine. These data are informative for the interpretation of our schizophrenia-associated
differences, because a number of these DMPs are driven by the subset of patients on clozapine.
Furthermore, a number of sites show opposite effects in our analyses of TRS vs our analysis of
schizophrenia, suggesting they might represent important differences between diagnostic groups.
Because the prescription of clozapine is generally only undertaken in patients with treatment-resistant
schizophrenia, we are unable to separate the effects of clozapine exposure from differences associated

with a more severe sub-type of schizophrenia such as the influence of polypharmaceutical treatment.

Our results should be considered in light of a number of important limitations. First, our analyses
were constrained by the technical limitations of the lllumina 450K and EPIC arrays which only assays
~ 3% of CpG sites in the genome. Second, this is a cross-sectional study and was not possible to
distinguish cause from effect. It is possible, and indeed likely, for example, that the differences
associated with both schizophrenia and TRS reflect the effects of medication exposure or other
consequences of having schizophrenia, e.g. living more stressful lives, poorer diet and health. The
importance of such confounding variables is demonstrated by our findings of differential smoking

score and blood cell proportions derived directly from the DNA methylation data, although these
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examples also highlight the potential utility of such effects for molecular epidemiology. Third,
although our aim was not to make inferences about mechanistic changes in the brain associated with
psychosis, it is important to note that our study analyzed DNA methylation profiled in peripheral
blood and therefore can provide only limited information about variation in the primary tissue
associated with disease(Hannon, Lunnon, Schalkwyk, & Mill, 2015). Although this limits mechanistic
conclusions about the role of DNA methylation in schizophrenia, biomarkers, by definition, need to
be measured in an easily accessible tissue and don’t need to reflect the underlying pathogenic process.
Furthermore, because most classifiers used to quantify variables such as smoking exposure and age
have been trained in blood, this represents the optimal tissue in which to derive these measures. Of
course, blood may also be an appropriate choice for investigating medication effects, particularly
given the known effects on white blood cell counts associated with taking clozapine(Alvir,
Lieberman, Safferman, Schwimmer, & Schaaf, 1993). Fourth, while we have explored the potential
effects of clozapine on DNA methylation by assessing a sub-group of individuals with TRS, this is
just one of a range of antipsychotics schizophrenia and psychosis patients are prescribed. The fact that
the TRS group show more extreme differences for many of the schizophrenia-associated DMPs
suggests that the polypharmaceutical treatment regimens often prescribed to schizophrenia patients
may produce specific DNA methylation signatures in patients, akin to the effect seen for smoking.
Fifth, although we found no evidence for a significant interaction between sex and DNA methylation
at DMPs associated with schizophrenia, it is possible that there are other DNA methylation
differences associated with disease only in males or females. Finally, although we found some
evidence that schizophrenia-associated DMPs colocalize to regions nominated by GWAS, the
integration of our DNA methylation data with genetic data was beyond the scope of this analysis. Of
note, we have previously used mQTL associations to identify discrete sites of regulatory variation
associated with schizophrenia risk variants to prioritize specific genes within broad GWAS regions
(Hannon et al., 2016; Hannon, Gorrie-Stone, et al., 2018; Hannon, Spiers, et al., 2015; Hannon et al.,
2017) and future work will aim to further explore explore interactions between genetic and epigenetic

risk factors.
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In conclusion, our analysis of 4,483 participants represents the largest study of blood-based DNA-
methylation in schizophrenia and psychosis yet performed, and one of the largest EWAS studies for
any disease phenotype. Our study also includes the first within-case analysis of treatment-resistant
schizophrenia yet performed, providing important molecular insights into genomic differences
associated with poor outcome to standard therapeutic approaches. Our results highlight differences in
measures of blood cellular composition and smoking behaviour derived from methylomic dats
between not just cases and controls, but also between treatment-resistant schizophrenia patients
prescribed clozapine and those prescribed alternative medications. We report widespread differences
in DNA methylation in psychosis and schizophrenia, a subset of which are driven by the more severe
treatment-resistant subset of patients. On a practical level, our study demonstrates the utility of DNA
methylation data for deriving measures of specific physiological phenotypes (e.g. blood cell-type
proportions) and environmental exposures (e.g. exposure to tobacco smoke) that can be used to
identify epidemiological associations with health and disease, but also highlights the importance of
properly controlling for these potential confounders in EWAS analyses. Our results are important
because they suggest there are also clear molecular signatures of schizophrenia and psychosis that can
be identified in whole blood DNA. Although it is unlikely these differences are mechanistically
related to neuropathological changes in the brain, they may have utility as diagnostic and prognostic
biomarkers in individuals with FEP and may potentially be used to differentiate individuals with TRS
at an early stage of disease. Future work should aim to prospectively profile DNA methylation in
individuals at risk for FEP and schizophrenia to explore how methylomic variation at baseline can
predict outcome and the extent to which longitudinal changes at psychosis-associated DMPs map on

to clinical trajectories.
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612  Materials and Methods:

613  Cohort descriptions

614  University College London (UCL) samples

615 447 schizophrenia cases and 456 controls from the University College London schizophrenia sample
616  cohort were selected for DNA methylation profiling. A full description of this cohort can be found
617  elsewhere(Datta et al., 2010) but briefly comprises of unrelated ancestrally matched cases and

618  controls from the United Kingdom. Case participants were recruited from UK NHS mental health
619  services with a clinical ICD-10 diagnosis of schizophrenia. All case participants were interviewed
620  with the Schedule for Affective Disorders and Schizophrenia-Lifetime Version (SADS-L)(Spitzer &
621  Endicott, 1977) to confirm Research Diagnostic Criteria (RDC) diagnosis. A control sample screened
622  for an absence of mental health problems was recruited. Each control subject was interviewed to

623  confirm that they did not have a personal history of an RDC defined mental disorder or a family

624  history of schizophrenia, bipolar disorder, or alcohol dependence. UK National Health Service

625  multicentre and local research ethics approval was obtained and all subjects signed an approved

626  consent form after reading an information sheet.

627

628  Aberdeen samples

629 482 schizophrenia cases and 468 controls from the Aberdeen schizophrenia sample were selected for
630  DNA methylation profiling. The Aberdeen case-control sample has been fully described elsewhere
631  (International Schizophrenia Consortium, 2008) but briefly contains schizophrenia cases and controls
632  who have self-identified as born in the British Isles (95% in Scotland). All cases met the Diagnostic
633  and Statistical Manual for Mental Disorders-1V edition (DSM-1V) and International Classification of
634  Diseases 10th edition (ICD-10) criteria for schizophrenia. Diagnosis was made by Operational

635  Criteria Checklist (OPCRIT). Controls were volunteers recruited through general practices in

636  Scotland. Practice lists were screened for potentially suitable volunteers by age and sex and by

637  exclusion of subjects with major mental illness or use of neuroleptic medication. VVolunteers who

638  replied to a written invitation were interviewed using a short questionnaire to exclude major mental
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illness in individual themselves and first-degree relatives. All cases and controls gave informed

consent. The study was approved by both local and multiregional academic ethical committees.

Monozygotic twins discordant for schizophrenia

The monozygotic twin cohort is a multi-centre collaborative project aimed at identifying DNA
methylation differences in monozygotic-twin pairs discordant for a diagnosis of schizophrenia. 96
informative twin-pairs (n = 192 individuals) were identified from European twin studies based in
Utrecht (The Netherlands), Helsinki (Finland), London (United Kingdom), Stockholm (Sweden), and
Jena (Germany). Of the monozygotic twin pairs utilized in the analysis, 75 were discordant for
diagnosed schizophrenia, 6 were concordant for schizophrenia and 15 twin pairs were free of any
psychiatric disease. Each twin study has been approved; ethical permission was given by the relevant

local ethics committee and the participating twins have provided written informed consent.

Dublin samples

361 schizophrenia cases and 346 controls were selected from the Irish Schizophrenia Genomics
consortium, a detailed description of this cohort can be found in the Morris et al manuscript (Morris et
al., 2014). Briefly, participants, from the Republic of Ireland or Northern Ireland, were interviewed
using a structured clinical interview and diagnosis of schizophrenia or a related disorder
[schizoaffective disorder; schizophreniform disorder] was made by the consensus lifetime best
estimate method using DSM-1V criteria. Control subjects were ascertained with written informed
consent from the Irish GeneBank and represented blood donors from the Irish Blood Transfusion
Service. Ethics Committee approval for the study was obtained from all participating hospitals and

centres.

IoPPN samples
The I0PPN cohort comprises of 290 schizophrenia cases, 308 first episode psychosis (FEP) patients
and 203 non-psychiatric controls recruited from the same geographical area into three studies via the

South London & Maudsley Mental Health National Health Service (NHS) Foundation Trust.
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Established schizophrenia cases were recruited to the Improving Physical Health and Reducing
Substance Use in Severe Mental Iliness (IMPACT) study from three English mental health NHS
services (Gaughran et al., 2019). First episode psychosis patients were recruited to the GAP study(Di
Forti et al., 2015) via in-patient and early intervention in psychosis community mental health teams.
All patients aged 18-65 years who presented with a first episode of psychosis to the Lambeth,
Southwark and Croydon adult in-patient units of the South London & Maudsley Mental Health NHS
Foundation Trust between May 1, 2005, and May 31, 2011 who met ICD-10 criteria for a diagnosis
of psychosis (codes F20-F29 and F30-F33). Clinical diagnosis was validated by administering the
Schedules for Clinical Assessment in Neuropsychiatry (SCAN). Cases with a diagnosis of organic
psychosis were excluded. Healthy controls were recruited into the GAP study from the local
population living in the area served by the South London & Maudsley Mental Health NHS
Foundation Trust, by means of internet and newspaper advertisements, and distribution of leaflets at
train stations, shops and job centres. Those who agreed to participate were administered the Psychosis
Screening Questionnaire(Bebbington & Nayani, 1995) and excluded if they met criteria for a
psychotic disorder or reported to have received a previous diagnosis of psychotic illness. All
participants were included in the study only after giving written, confirmed consent. The study
protocol and ethical permission was granted by the Joint South London and Maudsley and the

Institute of Psychiatry NHS Research Ethics Committee (17/N1/0011).

Sweden

190 schizophrenia cases and 190 controls from the Sweden Schizophrenia Study (S3) [31] were
selected for DNA methylation profiling details of which have been described previously [2]. Briefly,
S3 is a population-based cohort of individuals born in Sweden including 4,936 SCZ cases and 6,321
healthy controls recruited between 2004 and 2010. SCZ cases were identified from the Sweden
Hospital Discharge Register [32, 33] with >2 hospitalizations with an ICD discharge diagnosis of SCZ
or schizoaffective disorder (SAD) [34]. This operational definition of SCZ was validated in clinical,
epidemiological, genetic epidemiological, and genetic studies [31]. More generally, the Hospital

Discharge Register has high agreement with medical [32, 33] and psychiatric diagnoses [35]. Controls
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were also selected through Swedish Registers and were group-matched by age, sex and county of
residence and had no lifetime diagnoses of SCZ, SAD, or bipolar disorder or antipsychotic
prescriptions. Blood samples were drawn at enrolment. All subjects were 18 years of age or older and
provided written informed consent. Ethical permission was obtained from the Karolinska Institutet

Ethical Review Committee in Stockholm, Sweden.

The European Network of National Schizophrenia Networks Studying Gene-Environment Interactions
(EU-GEI) cohort

458 first-episode psychosis (FEP) cases and 558 controls from the incidence and case-control work
package (WP2) of the European Network of National Schizophrenia Networks Studying Gene-
Environment Interactions (EU-GEI) cohort were selected for DNA methylation profiling (Jongsma et
al., 2018). Patients presenting with FEP were identified, between 1/5/2010 and 1/4/2015, by trained
researchers who carried out regular checks across the 17 catchment area Mental Health Services
across 6 European countries. FEP were included if a) age 18-64 years and b) resident within the study
catchment areas at the time of their first presentation, and with a diagnosis of psychosis (ICD-10 F20-
33). Using the Operational Criteria Checklist algorithm (McGuffin, Farmer, & Harvey, 1991;
Quiattrone et al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin,
Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et
al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey,
1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin,
Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et
al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey,
1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin,
Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et
al., 2018)(McGuffin, Farmer, & Harvey, 1991; Quattrone et al., 2018)(McGuffin et al., 1991,
Quiattrone et al., 2018) all cases interviewed received a research-based diagnosis. FEPs were excluded
if a) previously treated for psychosis, b) they met criteria for organic psychosis (ICD-10: F09), or for

a diagnosis of transient psychotic symptoms resulting from acute intoxication (ICD-10: F1X.5). FEP
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were approached via their clinical team and invited to participate in the assessment. Random and
Quota sampling strategies were adopted to guide the recruitment of controls from each of the sites.
The most accurate local demographic data available were used to set quotas for controls to ensure the
samples’ representativeness of each catchment area’s population at risk. Controls were excluded if
they had received a diagnosis of and/or treatment for, a psychotic disorder. All participants provided
informed, written consent. Ethical approval was provided by relevant research ethics committees in

each of the study sites.

Genome-wide quantification of DNA methylation

Approximately 500ng of blood-derived DNA from each sample was treated with sodium bisulfite in
duplicate, using the EZ-96 DNA methylation kit (Zymo Research, CA, USA). DNA methylation was
guantified using either the lHlumina Infinium HumanMethylation450 BeadChip (lllumina Inc, CA,
USA) or lllumina Infinium HumanMethylationEPIC BeadChip (Illumina Inc, CA, USA) run on an
[llumina iScan System (Illumina, CA, USA) using the manufacturers’ standard protocol. Samples
were batched by cohort and randomly assigned to chips and plates to ensure equal distribution of
cases and controls across arrays and minimize batch effects. For the monozygotic Twin cohort, both
members of the same twin pair were run on the same chip. A fully methylated control sample (CpG
Methylated HeLa Genomic DNA; New England BioLabs, MA, USA) was included in a random
position on each plate to facilitate plate tracking. Signal intensities were imported in R programming
environment using the methylumIDAT function in the methylumi package (Davis, Du, Bilke, Triche, &
Bootwalla, 2015). Our stringent quality control pipeline included the following steps: 1) checking
methylated and unmethylated signal intensities, excluding samples where this was < 2500; 2) using
the control probes to ensure the sodium bisulfite conversion was successful, excluding any samples
with median < 90; 3) identifying the fully methylated control sample was in the correct location; 4) all
tissues predicted as of blood origin using the tissue prediction from the Epigenetic Clock software
(https://DNAmMAge.genetics.ucla.edu/) (Horvath, 2013); 5) multidimensional scaling of sites on X and
Y chromosomes separately to confirm reported gender; 6) comparison with genotype data across SNP

probes; 7) pfilter function from wateRmelon package (Pidsley et al., 2013) to exclude samples with >
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1% of probes with detection P-value > 0.05 and probes with > 1% of samples with detection P-value
> 0.05. PCs were used (calculated across all probes) to identify outliers, samples > 2 standard
deviations from the mean for both PC1 and PC2 were removed. An additional QC step was performed
in the Twins cohort using the 65 SNP probes to confirm that twins were genetically identical.
Normalization of the DNA methylation data was performed used the dasen function in the
wateRmelon package(Pidsley et al., 2013). As cell count data were not available for these DNA
samples these were estimated from the 450K DNA methylation data using both the Epigenetic Clock
software (Horvath, 2013) and Houseman algorithm (Houseman et al., 2012; Koestler et al., 2013),
including the seven variables recommended in the documentation for the Epigenetic Clock in the
regression analysis. For cohorts with the EPIC array DNA methylation data, we were only able to
generate the six cellular composition variables using the Houseman algorithm(Houseman et al., 2012;
Koestler et al., 2013), which were included as covariates. Similarly as smoking data was incomplete
for the majority of cohorts, we calculated a smoking score from the data using the method described
by Elliot et al(Elliott et al., 2014) and successfully used in our previous (Phase 1) analyses(Hannon et
al., 2016). Raw and processed data for the UCL, Aberdeen, Dublin, IoPPN and EU-GEI cohorts are
available through GEO accession numbers GSE84727, GSE80417, GSE147221, GSE152027 and

GSE152026 respectively.

Data analysis
All analyses were performed with the statistical language R unless otherwise stated. Custom code for
all steps of the analysis are available on GitHub:

(https://github.com/ejh243/SCZEWAS/tree/master/Phase2).

Comparison of estimates of cellular composition and tobacco smoking derived from DNA methylation
data

A linear regression model was used to test for differences in ten cellular composition variables
estimated from the DNA methylation data, reflecting either proportion or abundance of blood cell

types. These estimated cellular composition variables were regressed against case/control status with
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covariates for age, sex and smoking. Estimated effects and standard errors were combined across the
cohorts using a random effect meta-analysis implemented with the meta package(Schwarzer, 2007).
The same methodology was used to test for differences in the smoking score derived from DNA

methylation data between cases and controls including covariates for age and sex. P values are from

two-sided tests.

Within-cohort EWAS analysis

A linear regression model was used to test for differentially methylated sites associated with
schizophrenia or first episode psychosis. DNA methylation values for each probe were regressed
against case/control status with covariates for age, sex, derived cellular composition scores (from the
DNA methylation data), derived smoking score (from the DNA methylation data) and experimental
batch. For the EU-GEI cohort there was an additional covariate for contributing study. For the Twins
cohort, a linear model was used to generate regression coefficients, but P-values were calculated with
clustered standards errors using the pIm package (Croissant & Millo, 2008), recognising individuals

from the same twin pair.

Within-patient EWAS of clozapine prescription

Four individual cohorts (UCL, Aberdeen, 1o0PPN and Sweden) had information on medication and/or
clozapine exposure and were included in the treatment-resistant schizophrenia (TRS) EWAS. TRS
patients were defined as any case that had ever been prescribed clozapine, and non-TRS patients were
defined as schizophrenia cases that had no record of being prescribed clozapine. Within each cohort
DNA methylation values for each probe were regressed against TRS status with covariates for age,

sex, cell composition, smoking status, and batch as described for the case control EWAS.

Multiple regression analysis of schizophrenia and clozapine prescription
Using the four cohorts that were included in the TRS EWAS (UCL, Aberdeen, IoPPN and Sweden),
we fitted a multiple regression model with two binary indicator variables: one that identified the

schizophrenia patients and a second that identified the TRS schizophrenia patients. Within each
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cohort DNA methylation values for each probe were regressed against these two binary variables,
with covariates for age, sex, derived cellular composition scores (from the DNA methylation data),
derived smoking score (from the DNA methylation data) and experimental batch as described above

for the other EWAS analyses.

Meta-analysis

The EWAS results from each cohort were processed using the bacon R package(van Iterson et al.,
2017), which uses a Bayesian method to adjust for inflation in EWAS P-values. All probes analysed
in at least two studies were taken forward for meta-analysis. This was performed using the metagen
function in the R package meta(Schwarzer, 2007), using the effect sizes and standard errors adjusted
for inflation from each individual cohort to calculate weighted pooled estimates and test for
significance. P-values are from two-sided tests and significant DMPs were identified from a random
effects model at a significance threshold of 9x10°, which controls for the number of independent tests
performed when analysis data generated with the EPIC array(Mansell et al., 2019). DNA methylation
sites were annotated with location information for genome build hg19 using the Illumina manifest

files (CHR and MAPINFO).

Overlap with schizophrenia GWAS loci
The GWAS regions were taken from the largest published schizophrenia GWAS to date by Pardinas
and colleagues (Pardifias et al., 2018) made available through the Psychiatric Genomics Consortium

(PGC) website (https://www.med.unc.edu/pgc/results-and-downloads). Briefly, regions were defined

by performing a “clumping” procedure on the GWAS P-values to collapse multiple correlated signals
(due to linkage disequilibrium) surrounding the index SNP (i.e. with the smallest P-value) into a
single associated region. To define physically distinct loci, those within 250kb of each other were
subsequently merged to obtain the final set of GWAS regions. The outermost SNPs of each associated
region defined the start and stop parameters of the region. Using the set of 158 schizophrenia-
associated genomic loci we used Brown’s method (Brown, 1975) to calculate a combined P-value

across all probes located within each region (based on hg19) using the probe-level P-values and
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correlation coefficients between all pairs of probes calculated from the DNA methylation values.
Briefly, correlation statistics were calculated and (along with the P values) were inputted into Brown’s
formula. As correlations between probes could only be calculated using probes profiled on the same
array, this analysis was limited to probes included on the EPIC array. Correlations between probes

were calculated within the EU-GEI cohort as this had the largest number of samples.

Enrichment analyses

Enrichment of the heritability statistics of DMPs was performed against a background set of probes
selected to match the distribution of the test set for both mean and standard deviation. This was
achieved by splitting all probes into 10 equally sized bins based on their mean methylation level and
ten equally sized bins based on their standard deviation, to create a matrix of 100 bins. After counting
the number of DMPs within each bin, we selected the same number of probes from each bin for the
background comparison set. This was repeated multiple times, without replacement, until all the
probes from at least one bin were selected giving the maximum possible number of background

probes (n = 42,968) such that they matched the characteristics of the test set of DMPs.

Gene ontology (GO) analysis

Illumina UCSC gene annotation, which is derived from the genomic overlap of probes with RefSeq
genes or up to 1500bp of the transcription start site of a gene, was used to create a test gene list from
the DMPs for pathway analysis. Where probes were not annotated to any gene (i.e. in the case of
intergenic locations) they were omitted from this analysis, and where probes were annotated to
multiple genes, all were included. A logistic regression approach was used to test if genes in this list
predicted pathway membership, while controlling for the number of probes that passed quality control
(i.e. were tested) annotated to each gene. Pathways were downloaded from the GO website
(http://geneontology.org/) and mapped to genes including all parent ontology terms. All genes with at
least one 450K probe annotated and mapped to at least one GO pathway were considered. Pathways
were filtered to those containing between 10 and 2000 genes. After applying this method to all

pathways, the list of significant pathways (P < 0.05) was refined by grouping to control for the effect
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of overlapping genes. This was achieved by taking the most significant pathway, and retesting all
remaining significant pathways while controlling additionally for the best term. If the test genes no
longer predicted the pathway, the term was said to be explained by the more significant pathway, and
hence these pathways were grouped together. This algorithm was repeated, taking the next most
significant term, until all pathways were considered as the most significant or found to be explained

by a more significant term.
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Figure Legends

Figure 1: Overview of the sample cohorts and analytical approaches used in this study of altered

DNA methylation in psychosis and schizophrenia.

Figure 1 — supplement 1: Forest plot showing the difference in mean age between psychosis
cases and controls across each cohort. TE — treatment effect (i.e. the mean difference between cases

and controls), seTE — standard error of the treatment effect.

Figure 1 — supplement 2: Scatterplot of the relationship between the first two genetic principal
components merged with HapMap Phase 3 data for individual cohorts. With the exception of the
I0PPN and EUGEI cohorts, there is little ethnic heterogeneity in each of the cohorts with samples

being predominantly of Caucasian origin.

Figure 1 — supplement 3: Scatterplots of DNAmMAge derived from the DNA methylation data
against actual chronological age for each of the cohorts. DNAmMAge was calculated using the
algorithm described by Horvath (Horvath, 2013). Each point represents an individual and is coloured
by psychosis status (blue = psychosis, red = control). The solid diagonal line depicts x=y, i.e. where
the estimated and actual values are the same. The dashed diagonal line depicts the line of best fit.
Presented at the top of the graph is the Pearson’s correlation coefficient (r) between the estimated and
actual age across all samples in that cohort. Also shown in the bottom right hand corner of each panel
is an interaction P value from a test for different correlations between DNAmMAge and actual age

between psychosis cases and controls.

Figure 1 — supplement 4: Scatterplots of PhenoAge derived from DNA methylation data against
actual chronological age for each of the cohorts. PhenoAge was calculated using the algorithm
described by Levine et al. (Levine et al., 2018). Each point represents an individual and is coloured by

psychosis status (blue = psychosis, red = control). The solid diagonal line depicts x=y, i.e. where the
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estimated and actual values are the same. The dashed diagonal line depicts the line of best fit.
Presented at the top of the graph is the Pearson’s correlation coefficient (r) between the estimated and
actual age across all samples in that cohort. Also shown in the bottom right hand corner of each panel
is an interaction P value from a test for different correlations between PhenoAge and actual age

between psychosis cases and controls.

Figure 1 — supplement 5: Scatterplots of DNAmAge derived from the DNA methylation data
against actual chronological age for each of the cohorts. DNAmAge was calculated using the
algorithm described by Horvath (Horvath, 2013). Each point represents an individual and is coloured
by medication status (yellow = schizophrenia cases not prescribed clozapine, green = treatment-
resistant schizophrenia cases prescribed clozapine). The solid diagonal line depicts x=y, i.e. where the
estimated and actual values are the same. The dashed diagonal line depicts the line of best fit.
Presented at the top of the graph is the Pearson’s correlation coefficient (r) between the estimated and
actual age across all samples in that cohort. Also shown in the bottom right hand corner of each panel
is an interaction P value from a test for different correlations between DNAmMAge and actual age for
schizophrenia patients prescribed clozapine and schizophrenia patients prescribed alternative

medications.

Figure 1 — supplement 6: Scatterplots of PhenoAge derived from the DNA methylation data
against actual chronological age for each of the cohorts. PhenoAge was calculated using the
algorithm described by (Levine et al., 2018). Each point represents an individual and is coloured by
schizophrenia status (yellow = schizophrenia cases not prescribed clozapine, green = treatment-
resistant schizophrenia cases prescribed clozapine). The solid diagonal line depicts x=y, i.e. where the
estimated and actual values are the same. The dashed diagonal line depicts the line of best fit.
Presented at the top of the graph is the Pearson’s correlation coefficient (r) between the estimated and
actual age across all samples in that cohort. Also shown in the bottom right hand corner of each panel

is an interaction P value from a test for different correlations between PhenoAge and actual age for
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schizophrenia patients prescribed clozapine and schizophrenia patients prescribed alternative

medications.

Figure 2 Blood cell-type proportions derived from DNA methylation data are altered in
psychosis. Shown are forest plots from meta-analyses of differences in blood cell proportions derived
from DNA methylation data between psychosis patients and controls for A) monocytes B)
granulocytes C) natural Killer cells D) CD4+ T-cells and E) CD8+ T-cells. TE — treatment effect (i.e.

the mean difference between cases and controls), seTE — standard error of the treatment effect.

Figure 2 — supplement 1: Treatment-resistant schizophrenia patients prescribed clozapine are
characterized by altered blood cell proportions. Shown are forest plots from meta-analyses of
differences in estimated blood cell proportions derived from DNA methylation data between
treatment-resistant schizophrenia patients prescribed clozapine and schizophrenia patients prescribed
other medications for granulocytes, CD8+ T-cells. TE — treatment effect (i.e. the mean difference

between cases and controls), seTE — standard error of the treatment effect.

Figure 2 — supplement 2: Additive effect of schizophrenia and treatment-resistance on
granulocyte proportions. Shown are forest plots from meta-analyses of differences in estimated
granulocyte proportions derived from DNA methylation data between A) schizophrenia patients and
controls and B) treatment-resistant schizophrenia patients prescribed clozapine and schizophrenia
patients prescribed other medications. TE — treatment effect (i.e. the mean difference between cases

and controls), seTE — standard error of the treatment effect.

Figure 2 — supplement 3: Additive effect of schizophrenia and treatment-resistance on CD8+ T-
cell proportions. Shown are forest plots from meta-analyses of differences in estimated granulocyte
proportions derived from DNA methylation data between A) schizophrenia patients and controls and

B) treatment-resistant schizophrenia patients prescribed clozapine and schizophrenia patients
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prescribed other medications. TE — treatment effect (i.e. the mean difference between cases and

controls), seTE — standard error of the treatment effect.

Figure 3: Smoking scores derived from DNA methylation data highlight that psychosis patients
are characterized by an elevated exposure to tobacco smoking. Forest plot from a meta-analysis of
differences in smoking score derived from DNA methylation data between psychosis patients and
controls. The smoking score was calculated from DNA methylation data using the method described
by Elliott and colleagues (Elliott et al., 2014). TE — treatment effect (i.e. the mean difference between

cases and controls), seTE — standard error of the treatment effect.

Figure 3 — supplement 1: Current and former smokers are characterized by a significantly
higher smoking score derived from DNA methylation data than non-smokers. Shown is the DNA
methylation smoking score (y-axis) from individuals in the IoPPN cohort for whom self-reported
smoking data was available regarding current (left panel) and former (right panel) smoking behavior.

0=no, 1 =yes.

Figure 3 — supplement 2: Treatment resistant schizophrenia is associated with significantly
higher DNA methylation-derived smoking scores. Forest plot from meta-analyses of differences in
smoking derived from DNA methylation data between treatment-resistant schizophrenia patients
prescribed clozapine and schizophrenia patients prescribed other medications. TE — treatment effect

(i.e. the mean difference between cases and controls), seTE — standard error of the treatment effect.

Figure 3 — supplement 3: Treatment-resistant schizophrenia patients show an elevated exposure
to tobacco smoking relative to non-treatment-resistant schizophrenia and controls in a model
testing both schizophrenia diagnosis status and TRS status simultaneously. A) schizophrenia
diagnosis was associated with a significant increase in smoking score (mean difference = 3.98, P =

2.19x10-8) with B) TRS status associated with an additional increase within cases (mean difference =
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2.15, P = 2.22x10-7). TE — treatment effect (i.e. the mean difference between cases and controls),

seTE — standard error of the treatment effect.

Figure 4: Differential DNA methylation at multiple loci across the genome is associated with
psychosis and schizophrenia. Manhattan plots depicting the —log10 P value from the EWAS meta-
analysis (y-axis) against genomic location (x-axis). Panel A) presents results from the analysis
comparing psychosis patients and controls, and panel B) presents results from the analysis comparing

diagnosed schizophrenia cases and controls.

Figure 4 — supplement 1: Including genetic principal components PCs into DNA methylation
analysis models has little effect on the results in ethnically heterogeneous cohorts. Shown is a
scatterplot of statistics (—log10(P-value)) from an EWAS of psychosis in the IoPPN cohort without
the inclusion of any genetic principal components in the analysis model (x-axis) compared to an

EWAS of psychosis including five genetic principal components in the analysis model (y-axis).

Figure 5: Psychosis-associated differential DNA methylation at sites annotated to genes
previously implicated in disease etiology. Shown are forest plots for DMPs annotated to the GABA
transporter SLC6A12 (cg00517261, P = 1.53x10°®), the GABA receptor GABBR1 (cg00667298, P =
5.07x10°®%), and the calcium voltage-gated channel subunit gene CACNALC (cg01833890, P =
8.42x10°%). TE — treatment effect (i.e. the mean difference between cases and controls), seTE —

standard error of the treatment effect.

Figure 6: Comparison of effect sizes for schizophrenia-associated DMPs overlapping with
EWAS results for other traits. Shown for each overlapping DMP is the association effect size for
the other trait (x-axis) taken from the online EWAS catalog (http://ewascatalog.org/) compared to the

effect size identified in our meta-analysis of schizophrenia (y-axis).
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Figure 7: DNA methylation at sites associated with schizophrenia is more strongly influenced by
genetic factors and common environmental influences than equivalent matched sites across the
genome. A series of density plots for estimates of additive genetic effects (A, left), common
environmental effects (C, middle), and non-shared environmental effects (E, right) derived using data
from a dataset generated by Hannon and colleagues (Hannon, Knox, et al., 2018) schizophrenia DMPs

(red) and matched background sites (green).

Figure 8: Differences in DNA methylation between schizophrenia cases and controls are
partially influenced by a subset of cases with treatment resistant schizophrenia. Forest plots
from a meta-analysis of differences in DNA methylation at cg16322565 located in the NR1L2 gene on
chromosome 3 between A) schizophrenia patients and controls and B) TRS patients prescribed
clozapine and non-TRS prescribed other medications. TE — treatment effect (i.e. the mean difference

between cases and controls), seTE — standard error of the treatment effect.

Figure 8 — supplement 1: Forest plot of a site where DNA methylation is significantly associated
with schizophrenia and within cases, with treatment-resistant schizophrenia. TE — treatment
effect (i.e. the mean difference between cases and controls), seTE — standard error of the treatment

effect.

Figure 8 — supplement 2: Forest plot of a site where DNA methylation is significantly associated
with schizophrenia and within cases, with treatment-resistant schizophrenia but with an
opposite directions of effect. TE — treatment effect (i.e. the mean difference between cases and

controls), seTE — standard error of the treatment effect.
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Tables
Cohort UCL Aberdeen Twins lIoPPN Dublin EU-GEI Sweden Total
Total sample 675 847 192 800 679 912 378 4483
% Cases 52.3 48.9 45.3 74.6 51.3 429 50.0 53.1
% Schizophrenia 52.3 48.9 45.3 36.3 51.3 0.0 50.0 37.5
% First episode psychosis 0.0 0.0 0.0 38.4 0.0 42.9 0.0 15.6
% All 58.7 71.1 52.1 63.0 71.0 54.4 59.5 62.6
Males | Cases 72.0 68.4 54.0 65.3 71.6 64.2 60.3 66.8
Controls 44.1 73.7 50.5 56.2 70.4 47.0 58.7 57.8
Chi-square test 3.81E-13 0.103 0.730 0.024 0.804 | 3.68E-07 0.834 9.35E-10
P value
Age Mean 40.4 44.6 35.3 28.8 41.7 35.3 60.0 40.5
(years) [ sp 15.0 12.9 10.8 9.46 12.0 12.8 8.86 14.7
Mean in 43.7 44.2 37.9 27.8 414 30.7 56.3 41.6
controls
Mean in cases 36.8 44.9 33.3 30.3 42.0 38.7 63.7 39.4
T-test P value 6.55E-09 0.529 0.033 0.007 0.505 | 1.24E-22 | 1.05E-16

Table 1. Summary of cohort demographics included in the psychosis EWAS meta-analysis.
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Cell type Measure | Number Random effects model Fixed effects model Heterogeneity
type of Mean SE P value Mean SE P value P value
cohorts | gifference difference

Monocytes Proportion 7 0.00320 0.00083 0.000115 0.00320 0.00083 | 0.000115 0.6490
Granulocytes Proportion 7 0.04312 0.01241 0.000509 0.03930 | 0.00315 | 1.21E-35 2.22E-16
Natural Killer cells | Proportion 7 -0.01135 0.00385 0.003221 -0.00827 | 0.00133 | 4.48E-10 2.43E-08
CD4+ T-cells Proportion 7 -0.01767 0.00555 0.00144 -0.01569 | 0.00196 | 1.15E-15 1.23€-07
CD8+ T-cells Proportion 7 -0.01444 0.00457 0.001586 -0.01443 | 0.00148 | 1.31E-22 8.13E-10
B-cells Proportion 7 -0.00495 0.00280 0.077103 -0.00477 | 0.00102 | 2.75E-06 2.25E-07
PlasmaBlast Abundance 5 0.05626 0.02987 0.059671 0.05332 | 0.00722 | 1.55E-13 8.45E-13
CD8pCD28nCD45RAN | Abundance 5 0.06280 0.22674 0.781792 0.10797 | 0.14981 0.4711 0.0826
CD8.naive T-cells | Abundance 5 7.21687 3.12594 0.02096 8.03957 | 1.89169 | 2.14E-05 0.0443

CD4.naive T-cells | Abundance 5 11.77240 4.72532 0.012726 11.77240 | 4.72532 0.0127 0.824

Table 2. Results of a meta-analysis of differences in blood cell compositionestimates derived from DNA methylation data between schizophrenia

cases and controls.
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Twins 1.8260 1.0104 = 1.8260 [-0.1543;3.8063] 2.7%  10.6%
loPPN 3.4133 0.4541 - 3.4133 [2.5232;4.3034] 13.3%  14.8%
Dublin 4.7285 0.3993 -  4.7285 [3.9460;5.5111] 17.3%  15.2%
EUGEI 2.3840 0.3140 " 2.3840 [1.7685;2.9995] 27.9%  15.7%
Sweden 4.7253 0.6144 ~—@— 47253 [3.5212;5.9295] 7.3%  13.7%
Fixed effect model 0 3.7968 [3.4717; 4.1220] 100.0% -
Random effects model - 3.8944 [2.8224; 4.9665] -—  100.0%

Heterogeneity: 12 = 90%, p < 0.01 [ T
-6 4 -2 0 2 4 6
Mean difference
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Study TE seTE
UCL 1.3864 0.7807
Aberdeen 1.7389 0.7924
loPPN 3.3740 0.5433
Sweden 1.5786 0.9822

Fixed effect model
Random effects model
Heterogeneity: 12 = 52%, p = 0.10

|
E—

-2 0 2
Mean difference

I
4

Weight

Weight

95%-Cl (fixed) (random)

1.3864 [-0.1438; 2.9165] 21.4%
1.7389 [0.1858; 3.2920] 20.8%

—Jl— 3.3740 [2.3092;4.4388] 44.2%

1.5786 [-0.3464; 3.5036] 13.5%

2.3651 [1.6569; 3.0734] 100.0%
2.1585 [1.0877; 3.2292] -

24.4%
24.0%
32.8%
18.9%

100.0%



Weight  Weight
Study TE seTE 95%-ClI (fixed) (random)

UCL 5.7591 0.5366 —l- 5.7591 [4.7075; 6.8107] 27.3% 25.7%

Aberdeen 3.0181 0.4567 —.— 3.0181 [2.1230; 3.9131] 37.6% 26.8%
loPPN 2.8300 0.6856 —— 2.8300 [1.4863;4.1738] 16.7% 23.5%
Sweden 4.2588 0.6535 ——  4.2588 [2.9780; 5.5396] 18.4% 24.0%

Fixed effect model 0 3.9622 [3.4130; 4.5114] 100.0% -
Random effects model - 3.9760 [2.5835; 5.3686] -— 100.0%
|
4

Heterogeneity: 12 = 84%, p <0.01 ! ! ! ! !

-6 4 -2 0 2 6
SCZ vs CON

Weight  Weight
Study TE seTE 95%-ClI (fixed) (random)
UCL 1.8987 0.6847 —.— 1.8987 [0.5568; 3.2406] 26.0% 26.0%
Aberdeen 1.5785 0.6887 —.— 1.5785 [0.2286; 2.9283] 25.7% 25.8%
loPPN 3.2036 0.6125 + 3.2036 [2.0031;4.4042] 32.4% 30.2%
Sweden 1.5835 0.8734 — B — 1.5835 [-0.1284; 3.2954] 16.0% 18.0%
Fixed effect model ‘ 2.1895 [ 1.5058; 2.8732] 100.0% -
Random effects model - 2.1539 [ 1.3389; 2.9689] -—  100.0%

Heterogeneity: 1% = 28%, p=0.24 ! ! ! !
-4 -2 0 2 4
TRS vs non-TRS
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Study TE seTE
UCL 1.14 0.4022
Aberdeen 0.87 0.2814
Twins 1.19 0.4143
loPPN 0.67 0.3587
Dublin 0.49 0.3229
EUGEI 0.51 0.2122
Sweden 0.24 0.3428

Fixed effect model
Random effects model
Heterogeneity: /2 = 0%, p = 0.44

-2

Study TE seTE
UCL 0.81 0.3519
Aberdeen 0.72 0.2475
Twins 0.15 0.4316
loPPN 0.76 0.2882
Dublin 0.67 0.2991
EUGEI 0.60 0.2156
Sweden 0.44 0.2616

Fixed effect model
Random effects model
Heterogeneity: I? = 0%, p =0.88

Study TE seTE
UCL 0.42 0.2313
Aberdeen 0.43 0.1703
Twins 0.76 0.3668
loPPN 0.73 0.1886
Dublin 0.49 0.2268
EUGEI 0.26 0.1577
Sweden 0.37 0.3223

Fixed effect model
Random effects model
Heterogeneity: I? = 0%, p =0.62

cg00517261(SLC6A12) g50, ¢

——=&—— 1.14 [0.35;1.93]

—— 0.87 [0.32;1.42]

—i—-— 1.19 [0.38;2.00]

 — 0.67 [-0.03; 1.38]

- 0.49 [-0.14;1.12]

—— 0.51 [0.10;0.93]

— 0.24 [-0.43; 0.91]

< 0.66 [ 0.43; 0.89]

| | ‘| |0.66 [ 0.43; 0.89]
-1 0 1 2

Mean difference in DNAmM (%)

C900667298(GABBR 1) 95°%—ClI
— 0.81 [0.12;1.49]
—— 072 [0.24;1.21]
= : 0.15 [-0.70; 0.99]
—@—— 0.76 [0.20;1.33]
—®—— 0.67 [0.09;1.26]
—— 0.60 [0.18;1.02]
T 0.44 [-0.07; 0.96]
— 0.62 [0.41;0.83]
— |‘ | 0.62 [0.41;0.83]
-1 -05 0 05 1
Mean difference in DNAmM (%)
cg01833890(CACNA1C) 5o, ¢
—=— 0.42 [-0.04; 0.87]
—— 0.43 [0.10; 0.76]
—= 0.76 [0.04;1.47]
~—f— 073 [0.36;1.10]
—.— 0.49 [0.05;0.94]
- 0.26 [-0.05; 0.57]
——l— 0.37 [-0.26; 1.00]
< 0.46 [0.30; 0.61]
- ol | 0.46 [0.30;0.61]
-1 =05 0 05 1

Mean difference in DNAmM (%)

Weight Weight

(fixed) (random)
8.5% 8.5%
17.4% 17.4%
8.0% 8.0%
10.7% 10.7%
13.2% 13.2%
30.5% 30.5%
11.7% 11.7%
100.0% —
- 100.0%
Weight Weight
(fixed) (random)
9.1% 9.1%
18.3% 18.3%
6.0% 6.0%
13.5% 13.5%
12.5% 12.5%
24.1% 24.1%
16.4% 16.4%
100.0% —
— 100.0%
Weight Weight
(fixed) (random)
11.8% 11.8%
21.8% 21.8%
4.7% 4.7%
17.8% 17.8%
12.3% 12.3%
25.4% 25.4%
6.1% 6.1%
100.0% -
- 100.0%
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Density

Schizophrenia DMPs
Matched background

| |
0.0 0.2 0.4 0.6 0.8 1.0
A estimate

Density
15
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2.0
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0.2

| |
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C estimate

0.8

1.0

Density
1.5

2.5 3.0

2.0

0.5 1.0

0.0

0.0

0.2

| |
04 0.6
E estimate

0.8

1.0



Study TE seTE
UCL —0.0000 0.0003
Aberdeen 0.0005 0.0002
loPPN 0.0077 0.0051
Sweden 0.0059 0.0044

Fixed effect model
Random effects model
Heterogeneity: I? = 45%, p =0.14

Study TE seTE
UCL 0.0067 0.0067
Aberdeen 0.0145 0.0059
loPPN 0.0109 0.0051
Sweden 0.0087 0.0054

Fixed effect model

cg16322565(NR1L2)

Weight Weight
95%-Cl (fixed) (random)
E —-0.0000 [-0.0006; 0.0006] 40.6% 46.7%
. 0.0005 [0.0000;0.0010] 59.1% 52.1%
@ 0.0077 [-0.0022;0.0177] 0.1% 0.5%
; 0.0059 [-0.0028; 0.0146] 0.2% 0.6%
0 0.0003 [-0.0001; 0.0007] 100.0% —_—
® 0.0003 [-0.0004; 0.0010] - 100.0%
— T T T T T 1
-0.015 -0.0050 0.005 0.015
SCZvs CON Weight Weight
95%-Cl (fixed) (random)
B , 0.0067 [-0.0066; 0.0199] 17.8% 17.8%
— 0.0145 [0.0029; 0.0261] 23.2% 23.2%
—#—— 0.0109 [0.0010;0.0208] 31.6%  31.6%
——-_— 0.0087 [-0.0019; 0.0194] 27.4% 27.4%
- 0.0104 [ 0.0048; 0.0160] 100.0% —
—— 0.0104 [ 0.0048; 0.0160] — 100.0%
| I I |

Random effects model
Heterogeneity: 12 = 0%, p =0.83

-0.02-0.01 O 0.01 0.02
TRS vs non-TRS



Study TE seTE
UCL 0.0106 0.0081
Aberdeen 0.0185 0.0056
loPPN 0.0170 0.0084
Sweden 0.0094 0.0078

Fixed effect model
Random effects model
Heterogeneity: 1% = 0%, p =074

cg04173586

- 0.0106
—il— 0.0185

- 0.0170
L 0.0094
- 00147
— 0.0147

[ I I | | |
-0.03 -0.01 0 0.010.020.03
SCZ vs CON

Study TE seTE
UCL 0.0226 0.0096
Aberdeen 0.0313 0.0080
loPPN 0.0253 0.0084
Sweden 0.0289 0.0096

Fixed effect model
Random effects model
Heterogeneity: 12 =0%, p =0.90

—8@— 0.0226
—3— 0.0313

—— 0.0253
—— 0.0289

-  0.0273
-  0.0273
| | | |
-0.04 -002 0 0.02 0.04

TRS vs non-TRS

Weight Weight
95%-Cl| (fixed) (random)
[-0.0052; 0.0265] 19.6% 19.6%
[0.0075; 0.0295] 40.9%  40.9%
[ 0.0006; 0.0334] 18.3% 18.3%
[-0.0058; 0.0246] 21.3% 21.3%
[ 0.0077; 0.0218] 100.0% -
[ 0.0077; 0.0218] == 100.0%
Weight Weight
95%~-Cl (fixed) (random)
[0.0037; 0.0414] 20.8% 20.8%
[0.0157; 0.0469] 30.4% 30.4%
[0.0089; 0.0417]) 27.7% 27.7%
[0.0101; 0.0476] 21.1% 21.1%
[0.0187; 0.0359] 100.0% --
[0.0187; 0.0359] --  100.0%



€g26263239

Weight Weight

Study TE seTE 95%=Cl (fixed) (random)
UCL 0.0097 0.0031 BN e 0.0097 [0.0037;0.0157] 26.5% 26.5%
Aberdeen 0.0104 0.0025 —.— 0.0104 [0.0056; 0.0153] 40.3% 30.4%
loPPN 0.0151 0.0035 —+ 0.0151 [0.0082; 0.0220] 19.9% 23.7%
Sweden -0.0001 0.0043 —l—;. -0.0001 [-0.0085; 0.0084] 13.3% 19.4%
Fixed effect model ’ 0.0098 [0.0067; 0.0129] 100.0% -
Random effects model —~=Si 0.0093 [0.0042; 0.0144] --  100.0%

Heterogeneity: 12 = 60%, p =0.06 ! J J !
-0.02 -0.01 0 0.01 0.02

SCZ vs CON

Weight Weight
Study TE seTE 95%-Cl (fixed) (random)
UCL -0.0079 0.0036 . -0.0079 [-0.0150; -0.0007] 27.8% 27.8%
Aberdeen -0.0046 0.0035 . -0.0046 [-0.0115; 0.0023] 29.5% 29.5%
loPPN -0.0089 0.0035 - -0.0089 [-0.0158; -0.0020] 29.7% 29.7%
Sweden -0.0003 0.0053 : » -0.0003 [-0.0108; 0.0101] 13.0% 13.0%
Fixed effect model -‘- -0.0062 [-0.0100; -0.0025] 100.0% —
Random effects model e -0.0062 [-0.0100; -0.0025] == 100.0%

| T T 1 | |

Heterogeneity: 1% = 0%, p =0.53
-0.015 -0.005 0 0.0050.010.015
TRS vs non-TRS
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