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Abstract— Objective: In this work, an endoscopic tactile robotic 

capsule embedding miniaturized MEMS force sensors is 
presented. The capsule is conceived to provide automatic 
palpation of non-polypoid colorectal tumours during colonoscopic 
procedures, since they are characterized by a high degree of 
dysplasia, higher invasiveness and lower detection rates with 
respect to polyps. Methods: A first test was performed employing 
a silicone phantom that embedded a set of inclusions with variable 
hardness and curvature. In this scenario, a hardness-based 
classification was implemented, demonstrating detection 
robustness to curvature variation. By following a comparison of 
several well-known supervised classification algorithms, we chose 
a weighted 3-nearest neighbor classifier to detect the inclusions. 
We also introduced a bias force normalization model in order to 
make different acquisition sets consistent. The parameters of this 
model were chosen through a particle swarm optimization 
method. Additionally, an ex-vivo test was performed to assess the 
capsule detection performance when magnetically driven along a 
colonic tissue. An external permanent magnet positioned at the 
end-effector of an anthropomorphic robotic arm was used to drive 
the capsule. In this framework, lumps were identified as voltage 
peaks with a prominence depending on the total magnetic force 
applied to the capsule. Results: In a 94 % accuracy in hardness 
classification is achieved, while a 100% accuracy is obtained for 
the lump detection within a tolerance of 5 mm from the central 
path described by the capsule. Conclusion: In the real application 
scenario, we foresee our device aiding the physician to detect 
tumorous tissues. 

 
 
Index Terms— Abnormal tissue localization; Robotic tissue 

palpation of non-polypoid tumours; Robotic endoscopic capsule; 
MEMS tactile sensors; Particle swarm optimization; ex-vivo 
phantom. 
 

I. INTRODUCTION 

EDICAL literature highlights the importance of detecting 
non-polypoid tumours (NPT) in colorectal endoscopy, in 

particular laterally spreading lesions larger than 10 mm. NPTs 
may be flat, slightly elevated or depressed, exhibiting 
submucosal invasion, even in the case of small neoplasms [2]. 
Colorectal lesions show a higher elastic modulus compared to 
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non-cancerous tissues [1], as well as characteristic vascular 
patterns and sub-mucosal pit-patterns, generally observed 
through magnified endoscopy, narrow band imaging (NBI) or 
chromo-endoscopy techniques [3]–[5]. However, chromo-
endoscopy has a slow learning curve requiring over 200 
procedures for an endoscopist to be considered competent in the 
technic [5]. Clinical studies have reported high sensitivity and 
specificity for these techniques. A study conducted on 200 
colorectal polyps reported a sensitivity and specificity of 90.5 
% and 89.2 % for NBI with magnification, and of 91.7 % and 
90 % respectively, for magnified end chromo-endoscopy [6]. 
On the other hand, NPTs are difficult to detect by inexperienced 
physicians [2]. Besides optical imaging techniques, ultrasound 
pills, using piezoelectric micro electro mechanic systems 
(MEMS), have also been researched to detect gastrointestinal 
tumours, as well as other diseases/conditions of the 
oesophagus[7], [8]. Similar technology is now featured in 
commercial endoscopes. 

A. State of the Art and related work 
The characteristic elastic modulus and submucosal pit 

pattern of colorectal tumours have inspired the design of tactile 
sensing devices for tumour detection in endoscopic procedures 
[9]–[12]. Moreover, tactile sensing devices were successfully 
used in several biomedical applications such as: RMIS, 
prosthesis and tissue characterization, [13]–[19]. 
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1) Hardness detection 
Many researchers have focused on the development of new 

sensing components used to detect hardness variations in soft 
tissues. Such works deals with the development of ad-hoc 
artificial phantoms while others deployed hard inclusions in ex-
vivo or in-vivo animal tissue in order to assess the performance 
of their sensing components and detection strategies. TABLE I 
reports a brief overview of tumour phantoms, used for hardness 
or stiffness detection and reported in literature, with a focus on 
NPT tumours (hard mass included in a soft tissue with small or 
no prominence). Gwilliam et al. published a study comparing 
human and robotic sensing capabilities (employing a capacitive 
sensor), while localizing lumps in soft tissues; results show that 
the tactile sensor outperforms the human finger [20]. Ahn et al. 
proposed a palpation method for prostate cancer detection 
inspired by actual finger sweeping motion [21]. Ahmadi et al. 
built a beam-type optical sensor to measure the distribution of 
force in order to detect hardness in tissues [22]. Jia et al. 
demonstrated the capabilities of an elastomeric-based device, 
named GelSight, to detect lumps down to 2 mm in diameter. 
However, the GelSight requires the application of a force of 25 
N on the tissue [23] (unbearable for a human bowel, which 
would perforate applying a force of about 13.5 N on a surface 
of 3.5 mm2 [24]). Chuang et al. presented a 1.4 mm diameter 
piezoelectric tactile sensor for hardness detection which can fit 
into an endoscope. Its main drawback is the impossibility to 
detect hardness under static conditions. Also, even if the 
resulting force applied to the tissue was 0.6 N, they drove the 
sensor with 12 N at 1 Hz by employing a shaker [25], [26]. 
Arian et al. used a sensor resembling an artificial finger, called 
BioTac® to detect artificial tumours in the form of rubber 
inclusions into a silicone matrix, and provided haptic feedback 

to the user. The authors reported an average accuracy of 72 %, 
but it required the application of a 25 N force applied on the 
phantom [27]. Xie et al. build a tactile probe head, with a 
diameter of 14 mm, equipped with 14 tactile elements, each one 
ranging from 0 to 0.5 N with a resolution of 0.05 N. The authors 
reported an estimated output force exceeding 0.4 N during the 
palpation over hard inclusions, while a force of 0.15 - 0.25 N 
were recorded in nodule-free area [19]. Nichols et al. presented 
a method to segment hard inclusions from soft tissue by 
applying machine learning methods to data acquired with a load 
cell (Nano-17, ATI Industrial Automation, Apex, North 
Carolina, USA) attached to the end point of a robotic arm 
(Phantom Premium 1.5, Geomagic, Morrisville, North 
Carolina, USA). The authors reported a sensitivity above 0.95 
and a specificity above 0.92 for this method, with a maximum 
stiffness ratio of 2.4 between hard and soft tissue [28]. Hui et 
al. published a study investigating the robustness of perceptual 
methods applied to tactile tumour detection. The authors claim 
an accuracy of 80% using a binary pairwise comparison method 
[29]. Furthermore, Winstone et al., through a bioinspired 
remote tactile sensing endoscopic capsule, demonstrated using 
classifier systems (Support Vector Machine - SVM and 
Classifier Neural Network - CNN) the capability of detecting 
lumps of different shapes, sizes and hardnesses [30]. 

It is worth mentioning the work of Beccani et al., who 
presented a wireless device for tissue palpation in laparoscopy 
[31], [32]. The tool is deployed and maneuverer by means of a 
trocar. The sensing element consists of a magnetic field sensor, 
which localizes the tool based on an external magnetic source. 
This allows estimating the reaction pressure and the indentation 
depth on the tissue. The device has demonstrated to detect 
lumps both in synthetic and in-vivo conditions with 5% and 8% 

TABLE I  
TUMOUR PHANTOMS IN LITERATURE 

Ref. Phantom Shape Surround material Lump material Lump shape 

[29] Rectangular 
305 x 280 x 38 mm EcoFlex 00-10 ABS 

Spherical 
3.5; 6.5; 9.5; 12.5; 15.5 

mm in diameter 

[30] Tube 74mm internal 
diameter Acrylic Silicon (shore 30A to 

60 A) 
Disc-shape approx. 

Diam. around 36mm 

[19] Rectangular Silicone RTV6166 
Staedtler Mars plastic 

526-50 (Shore 47 - 
50A) 

Spherical 

[27] Rectangular Silicone (Shore 10A 
and 30A) 

Urethane rubber (shore 
30A, 40A and 60A) 

Hemispherical (3.72; 
6.35; 12.7; 25.4) 

[21] Rectangular 150x85x50 
mm 

Silicone (DSE 7310) 
[Y.mod. 12kPa] 

PDMS 
[Y.mod. 200kPa] 

Rectangular 
50x10x15mm 

[33] 

Rectangular (no 
dimension) 

Rectangular (no 
dimension) 

Gelatin (10.2gr/250ml) 
PVC plastisol (1.75:1) 

Gelatin (28.8gr/250ml) 
PVC plastisol (pure 

liquid plastic) 

Cubic (25mm side) 
 

Cubic (25mm side) 

[20] Cubic 32mm side 
approx. 

Ecoflex 00-10 and 
Ecoflex 00-30 Delrin 

Spherical (6.5, 9.5, 
12.5mm diam.) depths of 

1.5, 2.5, 3.5mm 
[23] Cubic Ecoflex 00-30 Delrin See table 1 [23] 

[22] Rectangular Silicone Rubber 10 
Shore 00 Solid plastic Cylindrical 

[59] N.D. Porcine Stomach See Table 4 in [59] Cubic (15x15x10 mm) 

[32] N.D. Porcine Liver Objet VeroWhite 
(Y. Mod. 1100 MPa) Squared (16x16x2 mm) 

[31] N.D. Porcine Liver (in-vivo) Agar gelatine 
(30:1 mixture) N.D. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

errors, respectively.  

2) Automatic classification 
Machine learning techniques have been employed to classify 

hard inclusions in soft tissues. Nichols et al. presented a method 
to segment hard inclusions using a Gaussian discriminant 
classifier. Its accuracy in segmenting 25 mm length inclusions 
was above 95 % [33]. Hui et al. employed the BioTac® finger 
and acquired two datasets from a silicone sample with hard 
lumps embedded. They showed that a Gaussian model trained 
on one dataset performs poorly on the other one. They proposed 
a binary pairwise comparison technique to match the two 
datasets which lead to a 80 % accuracy rate [29]. Winstone et 
al. introduced a bio-inspired tactile device, called TacTip, 
which measures its deformation due to the interaction with an 
object. The device consists of a deformable layer equipped with 
internal pins, which movement is optically detected. The 
authors demonstrated the device capabilities in classifying 
lumps of different size, shape and hardness [34]–[36]. They also 
trained a SVM classifier and a CNN to detect 3 mm silicone 
protuberant inclusions obtaining 81 % and 77 % accuracy rates, 
respectively [30]. 

B. Contribution 
In this work, we demonstrate an endoscopic tactile capsule 

for automatic detection and classification of NPTs during 
colonoscopy. An early version of the capsule has been already 
presented demonstrating its capabilities to navigate applying a 
constant force on the tissue [37]. The capsule sensing 
mechanism is based on a MEMS tri-axial force sensor, 
originally developed for tactile restoration in upper limb 
prostheses [38], [39]. The same sensor has been used for MIS 
applications. A preliminary study of tactile tool for foetal 
surgery proved the reliability of the sensor [40]. Here, we 
employ the same sensing technology together with machine 
learning techniques to classify the hardness of rubber 
inclusions, independently of their curvature, in a silicone 
phantom (Fig. 2). Such inclusions are inserted in a phantom, 
avoiding protuberant lumps, and have size of 10 mm in order to 
resemble NPTs [2]. The robotic capsule palpates the phantom 
by sliding on it, and not just vertically indenting, in order to be 
consistent with a realistic magnetically-driven endoscopic 
procedure [41], [42]. The normal force applied on the tissue, 
while sliding, is 0.4 N, which is in line with what reported in 
literature for magnetically-driven capsule endoscopy [43], [44]. 
Then, we trained a weighted 3-nearest neighbor algorithm for 
classification and normalized the sensor outputs with the bias 
force applied to the tissue using a custom normalization model. 
The parameters of the normalization model were chosen based 
on a particle swarm optimization (PSO) in order to allow the 
device to be used with variable contact forces. We used 
different datasets for training and testing, thus addressing the 
issue of algorithm robustness discussed by Hui et al. in [29], 
and the results significantly outperform the literature.  

The paper is organized as follows. The robotic tactile capsule 
is described in Section II.A. The two test protocols together 
with their relative data processing are reported respectively in 

Section II.B and Section II.C. Section III presents the results 
and Sections IV and V report the discussion and conclusions, 
respectively. 

II. MATERIALS AND METHODS  

A. Tactile capsule  
The tactile capsule consists of an array of 4 tri-axial force 

MEMS sensors, with their conditioning electronics, and a 3D-
printed body hosting a N50 NdFeB axially magnetized 
permanent magnet with dimensions 12 mm (l), 8 mm (w), and 
8 mm (h). The magnetization axis is orthogonal to the sliding 
direction. The capsule is covered with Dragon Skin® 20 
silicone (Smooth-on, Pennsylvania, USA), with a spherical 
dome over the sensors array as can be observed in Fig. 1(a). The 
capsule prototype dimensions are 33 mm (l), 26 mm (w), and 
17 mm (h). Each MEMS force sensor is composed of a central 
pillar, which mechanically deflects 4 piezoresistive channels 
when in contact with an external body [38], [45] Fig. 1 (b) and 
Fig. 1 (c). The sensitivity of the bare MEMS force sensor ranges 
from around 30 mV/N to 60 mV/N between different sensors 
with a force range up to 3 N [46]–[48]. The voltage signal is 
acquired and conditioned from an ADC (Analog Digital 
Converter) with 16 channels and 24 bits resolution (ADS1258, 
Texas Instruments) [46]. The silicone elastic cover insulates the 
MEMS sensors and transduces the external forces applied on 
the sensors array, thus, influencing the performance of the 
MEMS sensors by extending the maximum range of perceived 
forces, while decreasing the sensitivity of the transducers [49]–
[51].  

B. Test phantom and experimental set-up  
The test phantom is composed of Dragon Skin® shore 10A 

(Smooth-on, Pennsylvania, USA) with dimensions 100 mm (l), 
100 mm (w), and 17 mm (h). It embeds 5 lines of rubber 
inclusions (which are inserted to have no superficial lumps) 
with increasing hardness according to Fig. 2: i) DragonSkin® 

 
Fig. 1 - a) Rendering of the tactile capsule; b) microscope picture of the array 
of MEMS sensors embedded into the capsule; c) layout of the 4 MEMS sensors 
and 16 channels; d) experimental set-up composed of three micrometric stages 
programmatically controlled with a LabVIEW routine, a 6-axis load cell, the 
tactile capsule and a synthetic test phantom. 
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shore 20A (yellow line, marked with the Y letter - Smooth-on, 
Pennsylvania, USA), ii) DragonSkin® shore 30A (red line, R - 
Smooth-on, Pennsylvania, USA), iii) SORTA-Clear® shore 
40A (green line, G - Smooth-on, Pennsylvania, USA), iv) 
PDMS shore 44A, [52] (blue line, B - Sylgard 184, Dow 
Corning, USA), and v) Econ® shore 80A (black line, K - 
Smooth-on, Pennsylvania, USA). Within the present study, 
authors designed the phantom in order to reproduce the stiffness 
variation between tumours and healthy tissues (tumours are 
approximately 10 times stiffer than healthy tissues, [1]), instead 
of emulating the tissue mechanical properties that are difficult 
to be obtained in an in-vivo scenario. Each rubber inclusion has 
circular shaped base with 10 mm diameter, height of 5 mm, 
centre to centre distance of 17 mm from the neighboring lumps, 
and it is placed at 7 mm depth. Referring to Fig. 2, each column 
corresponds to a different radius of curvature, increasing 
according to the numeration, going from a semi-sphere (1) to a 

cylinder (5). The term curvature refers to the radius of the 
embedded lumps in the used phantom (both synthetic and ex-
vivo).  

The capsule is mounted on a 3D-printed support, and it is 
fixed while the test phantom moves below it. A 6-axis load cell 
(Nano 43, ATI Industrial Automation, Apex, NC, USA) is 
placed just over and connected to the capsule, in order to 
measure the force acting on the capsule while sliding. In parallel 
with the MEMS sensors responsible for measuring local 
interaction Fig. 1 (d). The test phantom is moved by a set of 
three motorized micrometric stages: an 8MTF-102LS05 x-y 
stage and an 8MVT120-25- 4247 vertical positioner, (Standa, 
Vilnius, Lithuania). Motors are programmatically controlled by 
a LabVIEW routine. 
 
1) Experimental test protocol 

The test phantom is moved vertically, along the z axis, to 
approach the capsule Fig. 1 (d). The indentation stops when a 
threshold force of 0.4 N is reached, based on the load cell 
measures. Then, after a pause of 2 s, it starts sliding, moving in 
position control along the x-axis for 85 mm, with a speed of 5 
mm/s, which represents the average operating speed for a 
magnetically-driven capsule endoscopy [43], [44]. The 
phantom is horizontally scanned: one scan for each line of 
rubber inclusions, plus one on a line without any inclusions 
(hereafter called out). The aforementioned experimental 
protocol is repeated 5 times.  

Two datasets are acquired by placing the test phantom in two 
different configurations. According to Fig. 2, the Dataset 1 (DS 
1) is obtained by scanning the rows of the test phantom, i.e. for 
each scan the capsule runs on inclusions of different material 
(different hardness) but with the same curvature. By rotating the 
phantom of 90 degrees, the Dataset 2 (DS 2) is acquired by 
sliding on the columns of Fig. 2, thus experiencing inclusions 
of same material but with different curvature. Each dataset 
contains 30 scans per iteration of the protocol (from the 25 
different rubber inclusions of the test phantom, plus 5 related to 
the line out). This sums up to 150 measurements considering 
that the protocol is repeated 5 times. 

 
2) Data pre-processing and features extraction 

The acquired data are processed off-line with Matlab® 
(MathWorks, Inc., MA, USA). For each scan, the array 
corresponding to the voltage output of each MEMS channels is 
programmatically divided in 5 parts (hereafter named 
inclusions) to isolate the peaks contained (see Fig. 3(a)). Even 
the line with no rubber inclusions (out) is divided in 5 parts. All 
the arrays have same length and the peaks of the inclusions are 
located in the middle of the arrays. The minimum value of the 
whole scan is subtracted to each of them, and they are labelled 
according with the naming given to the rubber inclusions in Fig. 
2, i.e. a letter for the material and a number for the curvature 
(e.g. Y4 stands for DragonSkin® shore 20, curvature 4).  

Two features are associated to MEMS data gathered while 
interacting with each inclusion: i) the area, and ii) the standard 
deviation. These values are related to the hardness and the 
curvature of the material, respectively. Such features are used 

 
Fig. 3 - Feature representation on example voltage output data from channels 
3 and 15, selected as the channels with the most significant output signal with 
respect to the experimental conditions. Three different scanned lines, with 
highlighted inclusions: a) dragon skin 30, curvature 4 (R4), b) PDMS, 
curvature 2 (B2) and c) no inclusion (out). 

  
            
           
                

 
Fig. 2- Graphical representation of the silicone test phantom embedding rubber 
inclusions with different hardness and curvature. The Dataset 1 was collected 
by scanning the rows of the phantom, Dataset 2 scanning the columns. 
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as predictors for the classification algorithm. Fig. 3 shows 
examples of raw voltage outputs from channels 3 and 15 (single 
inclusions are highlighted; the label associated to them and the 
related features are reported). 

 
3) Normalization with the bias force 

As expected, either little imperfections in positioning the 
phantom, or small variations in the indentation force can lead 
to significant changes in the inclusion features. Fig. 4 (a) shows 
how the features vary in the two datasets (curvature and 
hardness) and across the different materials (change in 
hardness). Ideally, the two datasets should overlay, being 
representations of the same items. On the other hand, in order 
to be correctly classified, each material should be isolated from 
the other ones. However, since the capsule is moved without 
continuous force-feedback control, the contact force fluctuation 
can be significant, leading to misalignments across the different 
hardness (e.g. R-Y and K have huge overlaps). For this reason, 
it is important to normalize the features with the bias force 
affecting the capsule and monitored by the load cell. The 
following model of normalization with respect to the force has 
been adopted for correction:  

 
 𝐹𝐹𝚤𝚤��⃗ = 𝑎𝑎𝑖𝑖𝐹𝐹𝑥𝑥���⃗ + 𝑏𝑏𝑖𝑖𝐹𝐹𝑧𝑧���⃗   

 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑖𝑖|𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑖𝑖 (𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖)𝑛𝑛⁄  (1) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖|𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 (𝑆𝑆𝑖𝑖𝐹𝐹𝑖𝑖)𝑛𝑛⁄   

where the i subscript stands for the channel number. So, for 
each i channel, the normalization force Fi is given by a different 
combination of Fx and Fz. But also, the two features (i.e. area 
and standard deviation) have a different relationship with the 
applied force, which is described by the coefficients ci, di, and 
m, n, which are constant for all channels. After the 
normalization, as shown in Fig. 4 (b) , the datasets regrouped 
closer, but clearly separated for each hardness.  

Particle Swarm Optimization is adopted to solve this multi-
dimensional problem. One more variable for each channel is 
added to enable the algorithm to switch off a number of 
channels in order to improve the performances. After each 
iteration, the classifier is trained according to the subset of 
channels in use, and the classifier loss resulting from the test is 
used as cost function. Upper and lower bounds, xU and xL, have 
been set to 1 and 0.01 for all the variables, except m and n, 
which upper bound has been chosen to be 3 (zero has been 
excluded to avoid division by zero). The other PSO parameters 
are: i) number of iterations 1000, ii) population size 50, iii) 
inertia coefficient w 0.72, iv) cognitive acceleration and social 
acceleration coefficients, c1 and c2, equal to 1.49 [53]. 

 
4) Classification algorithm 

Two types of classification tests have been conducted in 
order to choose the classification algorithm: i) hardness 
classification, involving 6 classes, which refer to the 5 different 
types of material plus the out, and ii) hardness and curvature 
classification, considering all the 26 classes resulting by 
aggregating material and curvature information, plus out. These 

tests are performed on the single datasets (DS 1 and DS 2), and 
also merging the two (DS 1,2). 

Several supervised classification algorithms have been 
considered as potential candidates. More specifically, we have 
compared: i) Support Vector Machine (SVM), with quadratic, 
cubic and Gaussian kernels; ii) Linear Discriminant; iii) k-
nearest neighbor (kNN); and iv) weighted k-nearest neighbor. 
For kNNs, we have performed an exhaustive comparison by 
varying the number of neighbors from 1 to 10, also considering 
all the possible combinations of channels subset. The 
algorithms have been compared based on a 5-fold cross-
validation, without involving force normalization. Then, the 
best classifier has been trained on DS 1, and tested on DS 2, by 
applying bias force normalization, only for Hardness 
classification (which has clinical relevance for tumour 
detection).  

C. Ex-vivo tests and experimental set-up  
The ex-vivo phantom is presented in Fig. 5 (b). The phantom 
consists of a Dragon Skin® shore 10A (Smooth-on, 
Pennsylvania, USA) with dimensions 300 mm (l), 70 mm (w), 
and 6.5 mm (h) and with 15 PDMS shore 44A inclusions 
embedded in it [52]. The phantom surface is flat since all the 
rubber inclusions are covered by Dragon Skin® shore 10A. The 
inclusions are randomly placed within a 34 mm width strip, 

centred on the median along the y-axis and with a pace of 19 
mm along the x-axis as presented in Fig. 9 (g). Each PDMS 
inclusion is a 5 mm radius hemisphere (i.e. curvature r1 in Fig. 
2). The outer surface of this polymer-based phantom is lined 

 
Fig. 4 Representation of features associated to the different datasets and across 
the different materials: a) area function of the standard deviation, and b) area 
function of the standard deviation normalized with the bias force. 
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with a sample of fresh explanted swine large intestine. Such a 
coating has been sewed to the silicone to obtain a flat ex-vivo 
phantom mimicking the properties of NPTs. 
 
1) Experimental test protocol 

As shown in Fig. 5, the set-up used for the ex-vivo test 
consists of a N52 NdFeB external permanent magnet (EPM), 
with cylindrical shape (radius 45 mm and height 80 mm), 
integrated with the end-effector of an anthropomorphic robotic 
arm (Racer3, Comau S.p.A, Turin, Italy) Fig. 5 (a). By 
translating the EPM, a magnetic force along the x-axis is 
imposed to the capsule causing it to translate, mimicking real 
conditions. The tissue is stitched to the phantom Fig. 5 (b) and 
fixed to the structure as showed in Fig. 5 (c). Unlike in tests 

with the synthetic phantom, the capsule was equipped on the 
top side with a rigid plastic cover leaving exposed the capsule 
sensible area. In order to monitor the position of the capsule 
within a specific plane , a 2D RGB camera (Basler ACE, 1300-
30gc, Ahrensburg, Germany) Fig. 5 (c) was integrated with the 
experimental set-up detecting and tracking an ad-hoc target, 3D 
printed and fixed to the capsule bottom.  

We positioned the EPM on top of the capsule at two different 
relative distances (h) and then moved for 200 mm (Δx) linearly 
along the x-axis at 5 mm/s. Then the capsule was manually 
positioned at its initial position. Three independent trials for 
each of the two tested distances (short distance h1 equal to 45 
mm, large distance h2 of 65 mm) were performed in order to 
evaluate system repeatability. It is worth mentioning that the 
selected distances were chosen in order to guarantee a magnetic 
navigation force compatible with the integrated magnets (not 
optimized for real magnetic colonoscopy). During each trial, 
the force sensed by the capsule (16 channels), the robot end-
effector position (X, Y, Z), and the capsule position monitored 
through the 2D camera (X, Y) at a frequency of 380 Hz, were 
recorded. Moreover, for each test, the robot end-effector 
velocity and its relative distance with the ex-vivo phantom were 
maintained constant due to a precise positioning control of the 
robotic end-effector (estimated error in the Cartesian space 
within 0.1 mm). 

 
2) Data processing and lump detection 
In order to detect the embedded lumps, we assumed static 
conditions and small tissue displacements so that the tissue in 
contact with the capsule could be modelled as a linear elastic 
material. The applied magnetic force on the capsule surface is 
supported as follows (Eq. 2). 
 
𝐹𝐹𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 = � 𝑘𝑘(𝑥𝑥, 𝑦𝑦)Δ𝐿𝐿𝑆𝑆𝐴𝐴

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
   

=  � (1𝐴𝐴𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡  ksoft + 1𝐴𝐴𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠  kstiff) Δ𝐿𝐿𝑆𝑆𝐴𝐴
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  (2) 

+ � (1𝐴𝐴𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 ksoft + 1𝐴𝐴𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠  kstiff) Δ𝐿𝐿𝑆𝑆𝐴𝐴 
𝐴𝐴𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠

  
 
where ksoft represents the stiffness of the soft surrounding 
material, kstiff (> ksoft) represents the stiffness of the lumps, ΔL 
represents the depth of the phantom compression, A represents 
the area, and 1𝐴𝐴𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 is a discrete function that takes the value of 

Fig. 5-Ex-vivo experimental set-up: a) silicone phantom, b) ex-vivo animal 
tissue sewed on the silicone phantom, and c) experimental set-up. 

 
Fig. 6 - Accuracy (94.7 %) of training and validation of a weighted 3-NN 
classifier for hardness and curvature discrimination, trained with both the 
curvature and hardness Datasets (5-fold cross-validation). 

TABLE II 
CLASSIFIERS ACCURACY COMPARISON 

Classifier Hardness Hardness and curvature 

 DS 1 DS 2 DS 1,2** DS 1 DS 2 DS 1,2* 
Quadratic 
SVM 100 100 100 98.7 94.7 93 

Cubic SVM 100 100 100 98.7 92.7 91 
Gaussian SVM 100 99.3 100 98 88 93.3 
Linear 
Discrim. 99.3 100 95.7 98.7 91.3 76.7 

1-kNN 100 100 100 96 83.3 92.7 
3-wkNN 100 100 100 96.7 94.7 94.7 
10-wkNN 100 99.3 100 94.7 86.7 89.3 
* Result obtained without bias force normalization, by merging the two 

Datasets. 
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1 in the stiff region and 0 elsewhere (vice versa for 1𝐴𝐴𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡). It is 
clear from (2) that, for a known magnetic force applied, the 
force sensed by the capsule will be higher when the sensible 
area is placed on top of a locally stiffer surface. It is also 
relevant to mention that the model predicts that, for a given 
hardness distribution of the tissue, the sensed force will vary 
proportionally to the magnetic force applied, which will be 
known when using the capsule [54]. 
The acquired data are processed off-line with Matlab® 
(MathWorks, Inc., Natick, Massachusetts, USA). For each 
scan, the array corresponding to the voltage output of each 
MEMS channels is isolated in order to compute the peaks 
contained. Each test starts with the EPM centre of gravity 
positioned vertically on top of the sensitive capsule at one of 
the two tested distances (h1 or h2). The measured voltages of 
each of the capsule sensor channels at this starting condition are 
used as sensor offsets for the rest of the experiment. Thus, 
sensor variation from its baseline is monitored and used in order 
detect lumps once a specific threshold is exceeded. In 
particular, a lump has been defined to be a local peak with a 
prominence larger than 0.4 mV for the short distance tests and 
of 0.25 mV for the large distance tests. A lump has been 
identified using the sum signal of the selected 4 capsule sensor 

channels. The change of peak prominence threshold is inversely 
related to the total force applied at the capsule. Starting from 
the achieved results, a confusion matrix is then built up in order 
to analyse the number of lumps correctly detected.  

In a real scenario, where the gastrointestinal environment 
shows a complex 3D configuration, a magnetic closed loop 
navigation by means of a capsule localization system is 
fundamental to calculate the magnetic interaction force in order 
to continuously set the sensor baseline for an accurate local 
force monitoring based on the embedded MEMS [55].  

III. RESULTS 

A. Synthetic phantom test 
1) Classifiers comparison 

The results of the classifiers comparison are summarized in 
TABLE II. The Quadratic SVM and the weighted 3-NN 
achieved the best performances. Although the two have 
comparable results in terms of accuracy (i.e. correct predictions 
divided by the total number of predictions), the weighted 3-NN 
is much faster because of the lower computational cost (3700 
observations per second versus 200, for the Quadratic SVM). 
Therefore, we chose the weighted 3-NN as our best performing 
method, which would be more suitable for a future real-time 
application of the classification method. The hardness 
classification obtained by merging both the datasets (DS 1,2) 
has a 100 % accuracy, after a 5-fold cross-validation. While 
addressing the additional classification of curvature 
information, and therefore enlarging the number of classes to 
26, the hardness and curvature classification with the weighted 
3-NN classifier has 94.7 % accuracy. Fig. 6 shows a confusion 
matrix of this classification test. It is worth noting that the errors 
refer only to neighboring curvatures, e.g. R2 is misclassified 
with R1 or R3, but neither with R5, nor with items of other 
materials.  

 
2) Classification with bias force normalization 

A weighted 3NN hardness classifier (on 6 classes) trained on 
DS 1 and tested on DS 2, and applying the bias force 
normalization, has 94 % accuracy, Fig. 8 (b). The model 
described in (1), with the parameters defined by the PSO 
involves only the channels 11, 12 and 15. The complete solution 
of the PSO is summarized in TABLE III. It is worth noting that 
a weighted 3NN classifier, without bias force normalization, 

TABLE III 
PSO OPTIMUM SOLUTION 

Parameter Channel 11 Channel 12 Channel 15 

A 0.01 0.17 0.01 
b 1 1 1 
c 0.43 1 0.74 
d 0.93 0.87 0.7 

m  2.41  
n  1.51  

The channels that have been disabled by the optimization process are not 
reported in the table. 

 
 

 
Fig. 7. Accuracy (31.5%) of training and validation of a weighted 3-NN 
classifier for hardness and curvature discrimination, trained with Dataset 1 
and tested with Dataset 2, and applying the bias force normalization model. 

 
Fig. 8 - Accuracy of a weighted 3-NN classifier for hardness discrimination 
(channels in use: 11, 12 and 15), trained with Dataset 1 and tested with Dataset 
2: a) without bias force normalization (69 % accuracy), and b) with bias force 
normalization (94 % accuracy). 
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using all available channels has 47 % accuracy, and restricting 
to the channels selected by the PSO, but without normalization, 
has 69 % accuracy, Fig. 8 (a). This confirms that different sets 
of acquisition, having different bias forces, are not consistent if 
not normalized. It is worth mentioning that such classifications 
are consistent with the results highlighted in Fig. 4. Indeed, it is 
evident that before the normalization misclassification mainly 
occurs between the Y-R and K materials, that show huge 
overlaps in the graph. While, after normalization, since the 
points representing the different materials in the graph are 
separated, accuracy increases.  
 

B. Ex-vivo tests 
The lump detection results are presented in TABLE IV. The 
lump detection resulted in two false positives within 2 mm of 
the lump projection on the x-axis, Fig. 9 (g). On the other hand, 
6 out of the 9 lumps were always detected for both manipulation 
distances and the fourth lump was never detected. Fig. 9 
presents the results obtained for both the evaluated distances. Is 
important to note that the only indicator used to identify a lump 
has been the peak prominence. Such indicator can be evaluated 
online just depending on the total force applied to the capsule, 
which can be predicted if the relative pose between the EPM 
and the capsule is known [55]. 

 

IV. DISCUSSION 

A. Synthetic phantom test 
The results obtained with this system, combining both the 

proposed device and the chosen classification method, give 
almost perfect results in terms of hardness classification. 

For the sake of completeness, even if out of the main topic of 
this work, we tried a hardness and curvature classification test, 
with bias force normalization. Anyhow, the optimization 
process has been affected by stagnation. The problem we tried 
to solve has 47 dimensions and the local minima are at least 511 
(equal to all the possible channels combinations) times the 
number of classes to discriminate. So, going from the 6 classes 
of the hardness classification to the 26 of the hardness and 
curvature classification, the local minima almost increase 
fivefold. The PSO algorithm tends to converge quickly to the 
swarm minimum, leaving potentially out of the search the 
actual global minimum. Fig. 7 shows that the classifier which 
performed 94% for hardness detection drops to 31.5% accuracy 
enlarging to 26 classes, (involving the bias force normalization 
reported in TABLE III). We also run a PSO with the purpose to 
maximize hardness and curvature classification, but we did not 
exceed 49% accuracy. Nonetheless, the results shown in Fig. 7 
do not present errors related to the out class, which is always 
discriminated from all the other items. Furthermore, we can see 
that the items are almost exclusively misclassified with their 
immediate neighbors. 

B. Ex-vivo tests 
The presented results demonstrate that the interpretation of 

the sensed forces, by means of a static elastic model of the tissue 
interaction, is sufficient to successfully detect lumps embedded 
in a silicone phantom covered with ex-vivo animal tissue 
(TABLE IV). Such results prove the capability of the capsule 
to perform tissue palpation in order to identify regions of 
interest to further analyse and label the tissue as malign or 
benign using the presented classification method. 

 To the best of our knowledge this is the first time that a 
magnetically driven capsule, presenting tactile force sensors on 
its surface, is exploited for NPT detection in endoscopy both on 
artificial phantom and ex-vivo animal tissues. Compared to 
related works, [10], [18], [19], [23], [32], [34], [56], [57], our 
capsule shares the scope of tactile palpation for diagnostics for 
different medical applications. A biomimetic tactile capsule for 
endoscopic procedures was proposed by Winstone et al., [34], 
[57], whereas, diverging from our study, the experiments were 
performed using a rigid link to drive the capsule. Moreover, the 
invasiveness of our system is definitely lower due to the 
reduced dimensions (close to a real capsule dimension) and 

Fig. 9 - Panels (a-f) show the average signal of the four capsule channels used 
(6, 7, 10 and 12) to detect the lumps. Panels (a-c) present the tests performed 
with the EPM moving at 45 mm (short distance) on top of the capsule while 
(d-f) present the results when the EPM moved at 65 mm (large distance) on top 
of the capsule. The red strips represent the projection of the lumps into the 
capsule path. Red and green marks identify the lumps detected using the 
proposed method. Red marks are lumps detected within the expected lump 
location while green marks are lumps detected outside of the expected lump 
location. In panel (g), the path executed by the EPM on top of the phantom is 
highlighted. 

TABLE IV 
PERCENTAGE OF LUMPS DETECTED ALONG THE PHANTOM 

      

Lumps 1 2 3 4 5 6 7 8 9 
Short distance 100% 100% 100% 0% 100% 100% 33% 100% 67% 
Long distance 100% 100% 100% 33% 100% 100% 0% 100% 0% 
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thanks to the magnetically driven navigation approach [58]. 

V. CONCLUSIONS 
In this work, an endoscopic tactile capsule for NPT automatic 

detection based on hardness classification, that is also 
compatible with applications in laparoscopy, has been 
presented. The prototype consists of an array of piezoresistive 
MEMS force sensors. There is potentiality for further 
dimensional scalability of the system, to make it compatible 
with the standards of colonoscopy (up to 16-17 mm (Φ) and 26-
32 mm (l)). The device has been used for a proof of concept in 
a synthetic environment and results show a good accuracy, up 
to 94%, in discriminating different inclusions in a soft tissue, 
based on hardness. The low computational cost (3700 
observations per second) allows translating this method into a 
real-time algorithm, in order to perform future tests in operative 
conditions. As arisen from the experiments, the device needs a 
calibration test before operation, in order to define the 
parameters for the force normalization algorithm. 

In the real application scenario we foresee for our device, the 
tactile capsule is magnetically pulled by an external robotic arm 
equipped with a permanent magnet mounted on its tip. The 
capsule will be navigated by the physician towards a suspected 
lesion, which will be recognized with the help of image-based 
tools, and then a classification based on hardness will contribute 
evaluating whether the tissue is tumorous or not. A model that 
generalizes the sensors reading with the bias force makes the 
hardness classification robust and allows training the classifier 
with a subset of indentation forces, since the bias force model 
can generalize the output to a generic indentation force. The 
model we obtained with a heuristic optimization shows good 
results for the purposes of this study, i.e. discriminating areas 
with different hardness while sliding onto a surface. 
Furthermore, in the realistic scenario, a capsule magnetic 
localization system plays a central role. The localization output 
and magnetic force calculation will provide the Fx and Fz 
components to the normalization model and therefore the tactile 
system reliability will be significantly conditioned by the 
magnetic localization accuracy. For such magnetic navigation 
and localization system, currently under development, we 
expect a position error around ±5 mm, leading to a worst-case 
force error of ±40 mN.  

The obtained results pave the way for further engineering and 
clinical studies, including hardness classification in ex-vivo 
conditions that will be part of a future extensive and focused 
contribution in the field of advanced diagnostics for endoscopic 
procedures, together with complementary in-vivo tests.  
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