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ABSTRACT Minor unmarked changes to
this paper have been made
according to US English,
journal style (use of italic for
emphasis is not permitted),
etc. In addition, marginal
queries have been added
where major changes have
been made or the meaning is
unclear. Please check all text
carefully throughout.

Dynamic trading strategies, in the spirit of trend-following or mean reversion, rep-
resent an only partly understood but lucrative and pervasive area of modern finance.
By assuming Gaussian returns and Gaussian dynamic weights or “signals” (eg, linear
filters of past returns, such as simple moving averages, exponential weighted moving
averages and forecasts from autoregressive integrated moving average models), we
are able to derive closed-form expressions for the first four moments of the strategy’s
returns in terms of correlations between the random signals and unknown future
returns. By allowing for randomness in the asset allocation, and by modeling the
interaction of strategy weights with returns, we demonstrate that positive skewness
and excess kurtosis are essential components of all positive Sharpe dynamic strate-
gies (as is generally observed empirically), and that total least squares or orthogonal
least squares are more appropriate than ordinary least squares for maximizing the
Sharpe ratio, while canonical correlation analysis is similarly appropriate for the
multi-asset case. We derive standard errors on Sharpe ratios that are tighter than the
commonly used standard errors from Lo, and derive standard errors on the skewness
and kurtosis of strategies that are apparently new results. We demonstrate that these Text regarding future work

has been moved to the
conclusions section, as the
abstract should describe only
the work done in this paper –
OK?

results are applicable asymptotically for a wide range of stationary time series. Pos-
sible future extensions of this work to normalized signals, to multi-period returns and
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to nonlinear transforms, together with extensions to multi-asset dynamic strategies,
are discussed.

Keywords: algorithmic trading; dynamic strategies; overfitting; quantitative finance; signal
processing.

1 INTRODUCTION

Commodity trading advisors (CTAs) or managed-future accounts are a subset
of asset managers with over US$341 billion of assets under management as of
2017 Q2.1 The predominant strategy CTAs employ is trend-following. Meanwhile, Updated amount/date needed

for 2020 publication?

bank structuring desks have devised a variety of risk premium or styles strategies
(including momentum, mean reversion, carry and value) estimated to correspond
to between approximately US$150 billion (Miller 2016) and US$200 billion (Allen-
bridge 2014) assets under management. Responsible for over 80% of trade volume in
equities and a large but undocumented amount (due to their over-the-counter nature)
of the foreign exchange market (Avramovic 2017), high-frequency trading (HFT)
firms and e-trading desks in investment banks are known to make use of many strate-
gies that are effectively short-term mean-reversion strategies. In spite of the relatively
large industry undergoing recent significant growth, a careful analysis of the statis-
tical properties of strategies, including their optimization, has only been undertaken
in relatively limited contexts.

The corresponding statistics for the Société Générale Trend Index area in Figure 1 Changes to sentence OK?
Should this be “SGI FX
Trend Following Index” here
and in the captions for both
the figure and table for
consistency? Please advise.

and Table 1 show that, except for some noise, skewness and excess kurtosis are
largely positive for CTAs.

The algorithmic trading strategies we consider are time series strategies (often Changes to sentence OK?

divided into mean-reverting or reversal strategies, trend-following or momentum
strategies) and value strategies (also sometimes known as mean-reversion).2 Each
such time-series-related strategy is a form of signal processing. In more standard
signal processing, the major interest is in the de-noised or smoothed signals and
their properties. In algorithmic trading, the interest is instead in the relationship
between statistics such as the moving average or some other form of smoothed his-
toric returns (unfortunately, usually termed the “signal”) and the unknown future
returns. We show that, when we consider both to be random variables, it is actually
the interaction between these so-called signals and future returns that determines the
strategy’s behavior.

1 See https://www.barclayhedge.com/research/indices/cta/Money Under Management.html.
2 Other common strategies include carry and short-gamma or short-vol. Unlike mean reversion,
momentum and value, these do not rely on the specifics of the autocorrelation function.
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Optimal dynamic strategies on Gaussian returns 3

FIGURE 1 SGI Trend Followers Index: daily returns and monthly returns profiles.
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TABLE 1 Société Générale Trend Index daily and monthly statistics.

Daily Monthly

Average annual return (%) 5.695 5.752
Volatility (%) 13.283 14.088
Sharpe ratio 0.429 0.408
Skewness �0.448 0.186
Excess kurtosis 3.845 0.807

Equities, in particular the Standard & Poor’s 500, are known to mean-revert over
short horizons (eg, less than one month, and typically on the order of five to ten
days), trend over longer horizons (ie, three to eighteen months) and mean-revert “medium”? “intermediate”?

Other minor changes to this
sentence and the next – OK?again over even longer horizons (ie, two to five years), as has been well established

by the quant equities literature following on from the study of Jegadeesh and Titman
(1993) and the work of Fama and French (1992). This distinct form of behavior, with
reversals on a small timescale, trend on an intermediate timescale and reversion on
a long timescale, is frequently observed across a large number of asset classes, and

www.risk.net/journals Journal of Investment Strategies



4 N. Firoozye and A. S. Koshiyama

strategies can be designed to take advantage of the behavior of asset prices across
each timescale.

Our initial goal is to find a signal, Xt , usually a linear function of historic log
(excess) returns fRtg, which can be used as a dynamic weight assigned to the under- Change OK? Should

summation lower limit be
k D 1 in the next sentence
and similarly elsewhere?
Please mark any notation for
amendment.

lying asset on a regular basis. We assume log price Pt D
Pt
1Rk . Examples of com-

monly used signals for macrotraders (CTAs and other trend followers) include the
following.

� Simple moving average (SMA):

Xt D
1

T

TX
1

Rt�k :

� Exponentially weighted moving average (EWMA):

Xt D c.�/

1X
kD1

�kRt�k :

� Holt–Winters (HW), or double exponential, smoothing with or without sea-
sonals, and damped HW. Changes to sentence OK?

� Difference between current price and moving average:3 Change to layout of
summation in footnote OK?

Xt D Pt�1 �
1

T

TX
1

Pt�k :

� Forecasts from autoregressive–moving-average ARMA.p; q/ models:

Xt D �1Rt�1 C � � � C �pRt�p C �1"t�1 C � � � C �q"t�q:

� Differences between SMAs:

Xt D
1

T1

T1X
1

Pt�k �
1

T2

T2X
1

Pt�j :

� Differences between EWMAs:

Xt D c.�1/
X

�k1Rt�k � c.�2/
X

�k2Rt�k :

3 We note that if we replace P by log.P / and Rt D log.Pt / � log.Pt�1/, this filter amounts to
Xt D

P
.T � k/Rt�k=T , ie, a triangular filter on returns, which bears some similarity to the

EWMA on returns.

Journal of Investment Strategies www.risk.net/journals



Optimal dynamic strategies on Gaussian returns 5

Variations include using volatility or variance weighting such as z-scores (SMAs or
EWMAs weighted by a simple or weighted standard deviation (see Harvey et al
2018)), and transformations of each of the signals listed above (eg, allocations
depending on sigmoids of moving averages, reverse sigmoids, Winsorized signals).
Other signals commonly used in equity algorithmic trading include economic and
corporate releases and sentiment as derived from unstructured data sets such as news
releases.

The returns from algorithmic trading strategies are well documented (see, for
example, Asness et al 2013; Baltas and Kosowski 2013; Hurst et al 2017; Lempérière
et al 2014). Although many methods have been used to derive signals by practition-
ers (see, for example, Bruder et al (2011) for a compendium), many of these methods
are equally good (or bad) and it makes little practical difference whether we use the
ARMA, EWMA or SMA as the starting point for a strategy design (see, for exam-
ple, Levine and Pedersen 2015). In this paper, we only touch on normalized signals
(eg, z-scores) and strategy returns, leaving their discussion for a subsequent study.
We meanwhile note that the spirit of this paper’s results carries through for the case
of normalized signals and strategy returns.

Frequently, exponential smoothers have effectively been the best models in vari- Change OK? Or “have been
the most effective models”?

ous economic forecasting competitions (see, for example, the results of the first three
M-competitions (Makridakis 2000)), showing perhaps that their simplicity bestows a
certain robustness, and their original intuition was sound even if the statistical foun- “theory”?

dation took a significant time to catch up. In fact, EWMA and HW can both be jus-
tified as state-space models (see Hyndman et al 2008), and this formulation brings
with it a host of benefits, from mere intellectual satisfaction to statistical hypothe-
sis tests, change-point tests and a metric for goodness-of-fit. Exponential smoothing
with multiplicative or additive seasonals and dampened weighted slopes are used
to successfully forecast a significant number of economic time series (eg, invento-
ries, employment, monetary aggregates). EWMA (and the related (S)MA) and HW
remain the most commonly used filtering methods for CTAs and HFT shops.

In the case of returns that are normal with fixed autocorrelation function (ie, those
that are covariance stationary), signals created from linear combinations of historic
returns are indeed normal random variables that are jointly normal with returns.
External data sets (eg, unstructured data, corporate releases) are less likely to contain
normally distributed variables, although there is an argument for asymptotic normal-
ity. Nevertheless, our approach is to assume normality of both returns and signals as
a starting point for further analysis.

While there is significant need for further study, there have nonetheless been a
number of empirical and theoretical results of note in this area. Fung and Hsieh
(1997) were the first to look at the empirical properties of momentum strategies, not-
ing (without any theoretical foundation) the resemblance of strategy returns to strad-

www.risk.net/journals Journal of Investment Strategies



6 N. Firoozye and A. S. Koshiyama

dle payoffs.4 Potters and Bouchaud (2005) studied the significant positive skewness
of trend-following returns, showing that for successful strategies the median prof-
itability of trades is negative. The empirical returns of dynamic strategies are far from
normal, and common values for skewness and kurtosis for single strategies can have
skewness in the range Œ1:3; 1:7� and kurtosis in the range Œ8:8; 15:3�, respectively (see
Hoffman and Kaminski 2016).

Bruder and Gaussel (2011) and Hamdan et al (2016) used stochastic differen-
tial equations to study the power-option-like behavior of payoffs (see Hamdan et al Changes to sentence OK? Is

the ‘Appendix 2’ referred to
here in Hamdan et al (2016)
or is it an online appendix for
your present paper?

(2016, Appendix 2) for a superlative use of stochastic differential equation-based
methods for analyzing a wide variety of dynamic strategies). Martin and Zou con-
sidered general but independent and identically distributed (iid) discrete-time distri-
butions (see Martin and Bana 2012; Martin-Zou 2012) to study the term structure of
skewness over various horizons and the effects of certain nonlinear transforms on the
term structure of return distributions. More recently, Bouchaud et al (2016) consid-
ered more general discrete-time distributions to study the convexity of payoffs and
the effective dependence of returns on long-term versus short-term variance. Other
studies have focused predominantly on the empirical behavior of returns, the rela-
tionship to macrofinancial conditions, the persistence of trend-following returns and
the benefits from their inclusion in broader portfolios.

In the majority of theoretical studies, assumptions have been minimal in order
to consider more general return distributions. Due to their generality, the derived
results are somewhat restrictive. Rather than opting for the most general assumptions,
we choose more specific distributional assumptions in the hope that we can obtain
broader, possibly more practical results. We have extended the work in this study Changes to sentence OK?

further to consider the endemic problem of overfitting (see Koshiyama and Firoozye
2018), proposing total least squares with covariance penalties as a means of model
selection, showing they outperform standard methods, using ordinary least squares
(OLS) with the Akaike information criterion (AIC).

In this paper, we consider underlying assets with stationary Gaussian returns and
a fixed autocorrelation function (ie, they are a discrete Gaussian process). While we
make no defense for the realism of using normal returns, we find that normality can Change OK?

be exploited in order to ensure we understand how the returns of linear and nonlinear
strategies should work in theory and to further the understanding of the interaction
between properties of returns and of the signals as a basis for the development and
analysis of dynamic strategies in practice.

Given a purely random mean-zero covariance-stationary discrete-time Gaussian
process for returns, the signals listed above, whether an EWMA or an ARMA fore-

4 Or, as they claimed, the returns of trend-following resemble those of an extremely exotic option
(which is not actually traded), daily traded “look-back straddles”.

Journal of Investment Strategies www.risk.net/journals



Optimal dynamic strategies on Gaussian returns 7

cast, can be expressed as convolution filters of past returns, ie, our signal Xt can be
expressed as

Xt D
X
k>1

�.k/Rt�k :

This is an example of a time-invariant linear filter of a Gaussian process. If we restrict
our attention to those filters that are square summable, ie,

P1
1 �.k/

2 <1, then it
is well known that the resulting filtered series is also Gaussian and jointly Gaussian
with Rt .

Our underlying premise is that the important distribution to consider for the analy-
sis of dynamic strategies is a product of Gaussians (rather than a single Gaussian, as
would usually apply in asymptotic analysis of asset returns). This product measure
can be justified on many levels, and we discuss large sample approximations in the
online appendix.

The resulting measure, which determines the success of the strategy, is the correla-
tion between the returns and the signals, a measure which, in the context of measur-
ing an active manager’s skill, is known as the “information coefficient”, as given in
the “Fundamental Law of Active Management” detailed in Grinold and Kahn (1999).
While there is a large literature on the information coefficient and its relationship to
information ratios (see, for example, Lee (2000) for formulas similar to (2.5)), the
derivations, resulting formulas and conclusions differ significantly.

We should also mention the work on random matrix theory by Bouchaud and
Potters (2009), which touches on many of the topics we consider in this paper. In
particular, their analysis of returns as products of Gaussians or t -distributions is very
close to our own. While many of the emphases are different from ours, we believe the
general area of random matrix theory to be a fruitful approach to trading strategies.

The primary tool we use to derive results is Isserlis’s theorem (Isserlis 1918) (or
Wick’s theorem, as it is known in the context of particle physics (Wick 1950)). This
relates products and powers of multivariate normal random variables to their means
and covariances. Wick’s theorem has been applied in areas from particle physics to
quantum field theory to stock returns, and there have been some recent efforts to
extend it to non-Gaussian distributions (see, for example, Michalowicz et al (2011)
for Gaussian-mixture distributions and Kan (2008) for products of quadratic forms
and elliptic distributions). It has also been applied to continuous processes via the
central limit theorem (see Parczewski 2014). We have used these theorems in the
context of dynamic (algorithmic) trading strategies to find expressions for the first
four moments of strategy returns in closed form. While it is not necessarily the aim
of all scientific studies of trading strategies to find closed-form expressions, the ease
with which we can describe strategy returns makes this direction relatively appealing
and allows for a number of future extensions.

www.risk.net/journals Journal of Investment Strategies



8 N. Firoozye and A. S. Koshiyama

The paper considers one asset over a single period. With a normal signal, we will Minor changes to this
paragraph – OK?

show there is a universal bound on the one-period Sharpe ratio, skewness and kur-
tosis. We explain the role of total or orthogonal least squares as an alternative to
OLS for strategy optimization. We look at the corresponding refinements to mea-
sures of Sharpe ratio standard error for these dynamic strategies, improving on the
large-sample theory-based standard errors in more common use. We also introduce
standard errors on skewness and kurtosis, which are distinct from those for Gaus-
sian returns, and present some basic results about multiple assets and diversification.
Finally, we discuss the role of product measures, which are more pertinent than sim-
ple Gaussian measures to the study of dynamic strategies. In the online appendixes,
we present closed-form solutions to Sharpe ratios in the case of nonzero means. We
also discuss extensions to our optimizations in the presence of transaction costs. We
touch on the extension to multiple periods as well. As mentioned, further extensions
to overfitting by the use of covariance penalties (akin to Mallow’s Cp , the AIC or the
Bayesian information criterion) are presented separately in Koshiyama and Firoozye
(2018).

2 SINGLE-PERIOD LINEAR STRATEGIES

We consider the (log) returns of a single asset, Rt � N .0; �2R/ returns with auto-
covariance function at lag k, .k/ D EŒRtRt�k�, together with the corresponding
autocorrelation function c.k/ D .k/=.0/ at lag k.

Our main aim is to work with strategies based on linear portfolio weights (or
signals)Xt D ˙11 akRt�k for coefficients ak generating the corresponding dynamic Do you mean the partitioned

correlation matrix˙ defined
later or should this be a
summation sign? Please
clarify. Journal style is to use
centered dots only for
“placeholders” and scalar
products. I have assumed that
the centered dot denoted
simple multiplication of
scalars and deleted it here and
elsewhere. Please mark any
that denote scalar product and
should be reinstated.

strategy returns St D XtRt (here, and always, the signal Xt is assumed to only
have appropriately lagged information). Example strategy weights include EWMAs
ak / �k , SMAs ak D .1=T /1Œ1;:::;T � and forecasts from ARMA models. Most
importantly, the portfolio weightsX are normal and jointly normal with returnsR. In
Appendix B online, we show that, for the wide set of signals discussed in Section 1,
when applied to Gaussian returns, the signal and returns are jointly Gaussian.

We restrict our attention to return distributions over a single period. In the case
of many momentum strategies, this period can be one day, if not longer. For higher-
frequency intraday strategies, this period can be much shorter. The pertinent concern
is that the horizon (ie, one period) is the same as that over which the rebalancing
of strategy weights is done. If weights are rebalanced every five minutes, then the
period should be five minutes. This is a necessary assumption in order to ensure the
joint normality of (as yet indeterminate) signals and future returns. Moreover, this
assumption will give some context to our results, which imply a maximal Sharpe
ratio, maximal skewness and maximal kurtosis for dynamic linear strategies.

Journal of Investment Strategies www.risk.net/journals



Optimal dynamic strategies on Gaussian returns 9

We are interested in characterizing the moments of the strategy’s unconditional
returns, the corresponding standard errors on estimated quantities and the means of
optimizing various nondimensional measures of returns, such as the Sharpe ratio, via
the use of nonlinear transformations of signals. Our goal is to look at unconditional
properties of the strategy. It is important to avoid foresight in strategy design, and
this directly impacts the conditional properties of strategies (eg, conditional densities
involve conditioning on the currently observed signal to determine properties of the
returns, which are just Gaussian). In the context of our study, we are concerned with
one-period-ahead returns of the unconditional returns distribution of our strategy,
where both the signals and the returns are unobserved, and the resulting distributions
(in our case, the product of two normals) are much richer and more realistic; for
the interested reader, we have added a more detailed discussion of our framework in
Appendix G online.

2.1 Properties of linear strategies

Given the joint normality of the signal and the returns, we can explicitly characterize
the one-period strategy returns (see Cui et al 2016). To allow for greater extendibility,
we prefer to only consider the moments of the resulting distributions. These can be
characterized easily using Isserlis’s theorem (Isserlis 1918), which gives all moments
for any multivariate normal random variable in terms of the mean and variance. We
also refer the reader to Haldane (1942), which meticulously produces both noncentral
and central moments for powers and products of Gaussians. While this is a routine
application of Isserlis’s theorem, the algebra can be tedious, so we quote the results.

THEOREM 2.1 (Isserlis 1918) If X � N .0;˙/, then

EŒX1X2 � � �X2n� D

2nX
iD1

Y
i¤j

EŒXiXj �

and

EŒX1X2 � � �X2n�1� D 0;

where the
PQ

is over all the .2n/Š=.2nnŠ/ unique partitions of X1; X2; : : : ; X2n
into pairs XiXj .

Haldane’s paper quotes a large number of moment-based results for various
powers of each normal. We quote the relevant results.

www.risk.net/journals Journal of Investment Strategies



10 N. Firoozye and A. S. Koshiyama

THEOREM 2.2 (Haldane 1942) If x; y � N .0; 1/ with correlation �, then

EŒxy� D �;

EŒx2y2� D 1C 2�2;

EŒx3y3� D 3�.3C 2�2/;

EŒx4y4� D 3.3C 24�2 C 8�4/;

and thus the central moments of xy are

�1 D �; (2.1)

�2 D 1C �
2; (2.2)

�3 D 2�.3C �
2/; (2.3)

�4 D 3.3C 14�
2
C 3�4/: (2.4)

From these one-period moments (and a simple scaling argument giving the
dependence on �.x/ and �.y/) we can characterize Sharpe ratio, skewness, etc, and
can also define objective functions in order to determine some sense of optimality
for a given strategy.

THEOREM 2.3 (Linear Gaussian) For single-asset returns and a one-period strat-
egy, Rt � N .0; �2R/ and Xt � N .0; �2X / jointly normal with correlation �, the
Sharpe ratio is given by

SR D
�p
1C �2

; (2.5)

the skewness is given by

3 D
2�.3C �2/

.1C �2/3=2
(2.6)

and the kurtosis is given by

4 D
3.3C 14�2 C 3�4/

.1C �2/2
: (2.7)

In the online appendix, we extend (2.5) and (2.6) to the case of nonzero means.

PROOF A simple application of Theorem 2.2 gives us the following first two
moments for our strategy St D XtRt :

�1 D EŒSt � D EŒXR� D �X�R�;

�2 D varŒSt � D �2X�
2
R.�

2
C 1/:

Thus, we can derive the following results for the Sharpe ratio: Change from “Sharpe” to
“SR” as defined above – OK?

Journal of Investment Strategies www.risk.net/journals



Optimal dynamic strategies on Gaussian returns 11

SR D
�1

�
1=2
2

D
�X�R�

�X�R
p
�2 C 1

D
�p
�2 C 1

:

Moreover, we can see that the skewness is equal to

3 D
�3

�
3=2
2

D
2�.3C �2/

.1C �2/3=2
:

Finally, the kurtosis is given by

4 D
�4

�22
D
3.3C 14�2 C 3�4/

.1C �2/2
:

�

If we restrict our attention to positive correlations, all three dimensionless statis-
tics are monotonically increasing in �. Consequently, strategies that maximize one
of these statistics will maximize the others, although the impact of correlation
upon the Sharpe ratio, skewness and kurtosis is different. We illustrate the cross-
dependencies in the following charts, depicting the relationships between the vari-
ables. In Figure 2, the (blue) shaded histograms correspond to the correlation ranges
fŒ�1;�0:5�; Œ�0:5; 0�; Œ0; 0:5�; Œ0:5; 1�g. We note that a uniform distribution in corre-
lations maps into a higher likelihood of extreme Sharpe ratios and an even higher
likelihood of extreme skewness and kurtosis.

The skewness is in the ranges Œ�23=2; 23=2� � Œ�2:8; 2:8�. Unlike the Sharpe
ratio, the skewness’s dependence on correlation tends to flatten; to achieve 90% peak
skewness we need only achieve a 0.60 correlation, while for a 90% peak Sharpe ratio
we need a correlation of 0.85. Kurtosis is an even function and varies from a minimal
value of 9 to a maximum of 15. In practice, correlations will largely be close to zero,
and the resulting skewness and kurtosis will be significantly less than the maximal
values.

Although we analyze the moments of the strategy St D XtRt , the full product
density is actually known in closed form (see Appendix A online; see also Cui et al
2016; Nadarajah and Pogány 2016). It is clear that the distribution of the strategy is
leptokurtic even when it is not predictive (when the correlation is exactly zero, the
strategy has a kurtosis of 9). In the limit as �! 1, the strategy’s density approaches
that of a noncentral �2, an effective “best case” density when considering the design
of optimal linear dynamic strategies.

An optimized strategy with sufficient lags (and a means of ensuring parsimony)
may be able to capture both mean reversion and trend and result in yet higher corre-
lations. Annualized Sharpe ratios of between 0:5 and �1:5 are most common (ie,
correlations of between 3% and 9%) for single-asset strategies in this relatively
low-frequency regime.

www.risk.net/journals Journal of Investment Strategies



12 N. Firoozye and A. S. Koshiyama

FIGURE 2 Correlation, Sharpe ratio (SR), skewness and kurtosis pairwise relationships.
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by the different shades in the bar charts. After transforming the correlation into SR, 3 and 4, the frequencies are
no longer uniform.

2.2 Optimization: maximal correlation, total least squares

Many algorithmic traders will explain how problematic strategy optimization is,
given the endless concerns of overfitting, etc. Although these are a concern, the naive
use of strategies that are merely pulled out of thin air is equally problematic, where
there is no explicit use of optimization (and, in its place, more eye-balling strategies
or targeting Sharpe ratios rather loosely, effectively a somewhat loose optimization
mental exercise). Practical considerations abound and real-world returns are neither
Gaussian nor stationary. We argue that, regardless, using optimization and a well-
specified utility function as a starting point is a means of preventing strategies from
being merely untested heuristics. Unlike most discretionary traders’ heuristics (or
“rules of thumb”), which have their place as a means of dealing with uncertainty
(see, for example, Gigerenzer et al 1999), heuristic quantitative trading strategies
run the risk of being entirely arbitrary, or are subject to a large number of human
biases, in marked contrast to “quantitative” investment strategies.

Where optimization is used, the most common optimization method is to minimize
the mean-squared error (MSE) of the forecast. Our results show that, rather than

Journal of Investment Strategies www.risk.net/journals



Optimal dynamic strategies on Gaussian returns 13

FIGURE 3 EWMA strategy Sharpe ratio versus ˛, mean square error and correlation for
S&P 500 reversal strategies.
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FIGURE 4 Holt–Winters strategy Sharpe ratio versus mean square error and correlation
for S&P 500 reversal strategies.
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minimizing the L2 norm between our signal and the forecast returns (or to maximize
the likelihood), if the objective is to maximize the Sharpe ratio, we must maximize
the correlation.

Figures 3 and 4 depict fits of strategies applied to S&P 500 using EWMA and
HW filters for a variety of parameters. The relationship between MSE and Sharpe
ratio is not monotone in MSE for the EWMA filter, as we see in Figure 3, while Changes to sentence OK?

the relationship between correlation and Sharpe ratio is much closer to being linear.
For the case of HW (with two parameters) in Figure 4, any given MSE can lead to a
nonunique Sharpe ratio, sometimes with a very broad range, leading us to conclude
that the optimization is poorly posed. The relationship of correlation to Sharpe ratio
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14 N. Firoozye and A. S. Koshiyama

is obviously closer to linear, with higher correlations almost always leading to higher
Sharpe ratios.

In the case of a one-dimensional forecasting problem with (unconstrained) linear
signals, optimizing the correlation amounts to using what is known as total least
squares (TLS) regression or “orthogonal distance regression”, a form of principal
components regression (see, for example, Golub and Van Loan 1980; Markovsky
and Van Huffel 2007). In the multivariate case, it would be more closely related to
canonical correlation analysis (CCA).

Unlike OLS, where the dependent variable is assumed to be measured with error
and the independent variables are assumed to be measured without error, in TLS
regression, both dependent and independent variables are assumed to be measured
with error, and the objective function compensates for this by minimizing the sum
squared of orthogonal distances to the fitted hyperplane. This simple form of errors- Changes to sentence OK?

in-variables regression has been studied since the late 1870s, and it is most closely
related to principal component analysis. For k regressors, the TLS fit will produce
weights orthogonal to the first k � 1 principal components.

So, if we consider the signal X D Zˇ to be a linear combination of features, with
Z 2 Rk a k-dimensional feature space, then we note that

ǑOLS
D .Z0Z/�1Z0R

but
ǑTLS
D .Z0Z � �2kC1I /

�1Z0R;

where �kC1 is the smallest singular value for the T � .k C 1/-dimensional matrix
QX D ŒR;Z� (ie, the concatenation of the features and the returns (see, for example,

Rahman and Yu 1987)).5 It is well known that, for the case of OLS, the smooth or
hat matrix OR DMR is given by

MOLS
D Z.Z0Z/�1Z0

with tr.MOLS/ D k, the number of features. In contrast,

M TLS
D Z.Z0Z � �2kC1I /

�1Z0

and effectively has a greater number of degrees of freedom than that of OLS, ie,

tr.M TLS/ > tr.MOLS/

with equality only when there is complete collinearity.6 For this reason, many people
see TLS as an antiregularization method that may result in a less stable response to Changes to sentence OK?

5 A more common method for extracting TLS estimates is via a principal component analysis of the
concatenation matrix QX , where ǑTLS is chosen to cancel the least significant principal component.
6 In this case, it is also known that tr.M/ D tr.L/, where L D .Z0Z � �2

kC1
I /�1Z0Z and we
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outliers (see, for example, Zhang 2017, pp. 334–335). Consequently, there has been
extensive study of regularized TLS, typically using a weighted ridge-regression (or
Tikhonov) penalty (see the discussion in Zhang (2017) for more detail on this large
body of research). The stability of TLS in out-of-sample performance is an issue we
broach in our study of overfitting penalties (see Koshiyama and Firoozye 2018).

While maximizing correlation rather than minimizing the MSE seems a very
minor change in objective function, the formulas differ from those of standard OLS.
The end result is a linear fit that takes into account the errors in the underlying con-
ditioning information. We believe that it should be of relatively little consequence
when the features are appropriately normalized, as is the case for univariate time
series estimation, although some authors have suggested that optimizing TLS is not
appropriate for prediction (see, for example, Fuller 1987, Section 1.6.3). When we
seek to maximize the Sharpe ratio of a strategy, the objective should be not prediction
but rather optimal weight choice.

2.3 Maximal Sharpe ratios, maximal skewness, minimal kurtosis

Surprisingly, there appears to be a maximal Sharpe ratio for linear strategies. In the
case of normal signals and normal returns, the maximal Sharpe ratio is that of a
noncentral �2 distribution, and the resulting maximal statistics are

SRmax
D

p
2

2
� 0:707;

max
3 D 2

p
2 � 2:828;

max
4 D 15:000:

While the estimate for the Sharpe ratio may seem surprisingly low, we comment Singular OK?

that this is for a single period, for a single rebalancing. For a daily rebalanced strat-
egy, if we naively annualize the Sharpe ratio (by a factor of

p
252), we get a maxi-

mal Sharpe ratio, SRmax
� 11:225, a level generally well beyond what is attained in Suffix set as superscript to

match notation in the display
above – OK? Also
“approximately” deleted here
as this is implied by the
symbol – OK?

practice. The statistics max
3 and max

4 do not scale when annualized, but are still large
irrespective of the time horizon.

know that the singular values of �.L/ D f�2i =.�
2
i � �

2
kC1

/g, where �i are the singular values of
Z (or correspondingly, �2i are the singular values of Z0Z) and �1 > � � � > �k > 0 (Leyang 2012).
By the Wilkinson interlacing theorem, �k > �kC1 > 0 (see Rahman and Yu 1987). Consequently,

tr.MTLS/ D
X
i

�2i

�2i � �
2
kC1

> k D tr.MOLS/

with equality if and only if �2
kC1

D 0 (ie, when R2 D 100% and consequently OLS and
TLS coincide). In other words, tr.MTLS/ > tr.MOLS/.
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We note that our assumption of normality could easily be relaxed by considering
nonlinear transforms of the signals X with the end result that the maximal Sharpe
ratio bounds are relaxed. While this is beyond the scope of this paper, we note that it
is easy to show that simple nonlinear strategies, going long one unit if the signal is
above a threshold k and short one unit if it is below �k (ie, fk.X/ D 1X>k �1X<k), Changes to sentence OK?

can be shown to have arbitrarily large Sharpe ratios, depending on the choice of
threshold, k. The probability of initiating such an arbitrarily high Sharpe ratio
trade likewise decreases to being negligible. Thus, stationary returns with a small
nonzero autocorrelation can lead to violations of Hansen–Jagannathan (or “good
deal”) bounds.

It is also noticeable from these formulas that, while Sharpe ratio and skewness
may change sign, kurtosis is always bounded below and takes a minimum value of 9
(ie, an excess kurtosis of 6). The normality of the resulting strategy returns is not
a good underlying assumption, since the theoretical value of the Jarque–Bera test
would be

JB.n/ D
n � k C 1

6

�
23 C

.4 � 3/
2

6

�
>
.n � k C 1/

6

�
36

4

�
D 1:5.n � k C 1/;

and this is asymptotically �2.2/ (ie, rejection of normality at a 0.99 confidence inter-
val of JB > 9:210). Theoretically, we would need a relatively small sample to be
able to reject normality.

3 REFINED STANDARD ERRORS

Given that we have closed-form estimates of a number of relevant statistics for
dynamic linear strategies, it makes sense to consider the effects of estimation error
upon quantities such as the Sharpe ratio. Many analysts and traders who consider
dynamic strategies in practice will consider altering them on an ongoing basis, and Changes to sentence OK?

when they do make changes to their strategies they are typically in a quandary as
to whether the observed change in Sharpe ratio or skewness is in fact statistically
significant.

3.1 Standard errors for Sharpe ratios

While there are formulas for standard errors for Sharpe ratios of generic assets, these
are not specific to Sharpe ratios generated by dynamic trading strategies, and as a
consequence there is some possibility of refining them.

Journal of Investment Strategies www.risk.net/journals
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We refer the reader to Pav (2016) for an exhaustive overview of the mechanics
of Sharpe ratios and, in particular, to Section 1.4 therein, which quotes many of the
known results about standard errors. Specifically, we look to Lo (2002) for large-
sample estimates of standard errors for Sharpe ratios of generic assets, given the
asymptotic normality of returns. For a sample of size N and iid returns, Lo obtains
the large-sample distribution cSR � N .SR; stderr2Lo/;

giving a standard error Changes to sentence OK?

stderrLo D

s�
1C

SR2

2

�
1

T
;

which he suggests should be approximated using the standard errors�
1C

cSR2

2

�
1

T
:

While Lo’s estimates may be appropriate for generic assets, for Sharpe ratios
derived from dynamic strategies we have a somewhat more refined characterization
of the variability of the estimated Sharpe ratios. With correlated Gaussian signals
and returns, we derive the following result.

COROLLARY 3.1 (Standard errors) For returns Rt � N .0; �2R/ and signal Xt �
N .0; �2X / with correlation � and sample size T , the standard errors are given by

stderrimplied D
1

. O�2 C 1/3=2

r
1 � O�2

T � 2
(3.1a)

� .1 �cSR2/

s
1 � 2cSR2

T � 2
(3.1b)

for jcSRj <
p
2=2.

PROOF As is well known, for a bivariate Gaussian process of sample size T , the
distribution for the sample (Pearson) correlation is given by

O� � f�. O�/ D
.T � 2/.1 � �2/.T�1/=2.1 � O�2/.T�4/=2

�

Z 1
0

dw
.cosh.w/ � � O�/T�1

:

(3.2)
The standard errors that approximate those in (3.2) for O� are

stderr� D

r
1 � O�2

T � 2
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(attributed to Sheppard, and used by Pearson (see, for example, Hald 2008)). Taken
together with the results of Theorem 2.3, we apply the delta method to find that the
resulting standard error for our plug-in estimate for the Sharpe ratio,

cSR D
O�p
O�2 C 1

;

is given by

stderrimplied D
@cSR
@ O�

stderr� D
1

. O�2 C 1/3=2

r
1 � O�2

T � 2
;

which gives us (3.1a). If we solve for O� in terms of cSR, we are able to derive (3.1b).
�

We note that in spite of the fact that Lo’s standard errors are very near our estimates
for large sample size, the entire sampling distribution from our estimates is much
more concentrated than the N .0; stderr2Lo/, potentially leading to tighter confidence
intervals at the 99% or higher confidence levels. We can see in Figure 6 that the tail
of the distribution given by Lo is much fatter than ours.

Mertens (2002) gives a refinement of Lo’s result by including adjustments for
skewness and excess kurtosis:

stderr2Mertens D

�
1C 1

2
OSR
2
� 3 OSRC

4 � 3

4
OSR
2
�
: (3.3)

If we plug our estimates for skewness and excess kurtosis from (2.6) and (2.7) into Changes to this sentence and
the next OK?

(3.3), we find a slightly tighter estimate of the standard error than Lo. For most
smaller amplitude correlations the estimate given by (3.3) comes very close to our
estimate of standard error (see Figure 7), and for small N and low correlations Lo’s
standard errors are in fact tighter. For large correlations our standard errors are signif-
icantly tighter. For large sample sizes there is little difference between them. Using
our estimates for 3 and 4, Mertens’s approximation is always tighter than Lo’s; in
particular, for correlations j�j < 0:5, Mertens’s approximation appears almost iden-
tical to our own. Nonetheless, we argue in Section 5 that our standard errors are more Change OK?

appropriate for dynamic strategies if there is any significant difference between the
measures.

3.2 Standard errors for higher moments

Using exactly the same procedure, we can easily derive standard errors for both
skewness and kurtosis. In terms of classical confidence intervals, we consider Joanes
and Gill (1998) and Cramér (1946), which apply to Gaussian (and non-Gaussian)
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FIGURE 5 Sharpe ratio and confidence interval comparisons, based on different sample
sizes.
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(a) N D 252. (b) N D 756. (c) N D 1260. We note that the implied confidence intervals are within Lo’s, although
primarily for greater predictive power.

FIGURE 6 Sharpe ratios: full distribution.
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(a) N D 252. (b) N D 756. (c) N D 1260. While the 95th percentile shows close agreement between Lo’s
large-sample standard errors and implied standard errors, the implied distribution is far more fat-tailed.
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FIGURE 7 Standard errors based on different sample sizes and formulas.
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(a) N D 252. (b) N D 756. (c) N D 1260. Ignoring parameter uncertainty, Merten’s adjustment to Lo’s stan-
dard errors improves standard errors to be nearly as tight as implied. In practice, parameter uncertainty hurts the
performance.

distributions, noting that Lo (2002) is a broader result on the large-sample limits of
Sharpe ratios. We are concerned with Pearson skewness and kurtosis, ie,

3 D
�3

m
u
3=2
2 ; 4 D

�4

�22
;

although it is not hard to consider other definitions of skewness and kurtosis using
unbiased estimators of the moments, as given in Joanes and Gill (1998) – in this
case originally from Cramér (1946). Given these definitions, under the assumption of
normality for the underlying returns (or, correspondingly, using large-sample limits)
where the sample size is T , standard errors are given as

stderr3 D

s
6.T � 2/

.T C 1/.T C 3/
; stderr4 D

s
24T .T � 2/.T � 3/

.T C 1/2.T C 3/.T C 5/
:

In the case of dynamic strategies, using our assumption of normal signal and
normal returns, we are able to derive the following.
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COROLLARY 3.2 (Higher moment standard errors) For returns Rt � N .0; �2R/

and signalXt � N .0; �2X / with correlation � and sample size T , the standard errors
are given by7 Minor changes to footnote –

OK?

stderr3 D �
6. O�2 � 1/

. O�2 C 1/5=2

r
1 � O�2

T � 2

and

stderr4 D �
48 O�. O�2 � 1/

. O�2 C 1/3

r
1 � O�2

T � 2

for j O�j < 1.

We rely on the delta method, recognizing that stderrk D .@k=@�/ stderr� for
k D 3; 4, given the following easily calculated derivatives: Changes to sentence OK?

@3

@�
D �

6.�2 � 1/

.�2 C 1/5=2
; (3.4)

@4

@�
D �

48�.�2 � 1/

.�2 C 1/3
: (3.5)

As we can tell from the formulas in Corollary 3.2, the derived standard errors for
both skewness and kurtosis collapse to zero when � D 1.

While we can solve for � in terms of k for k D 3; 4, the formulas are not easy
to present (especially for kurtosis), and we believe that the statement in terms of “derive”, “use”?

correlation is easier to use.
We note that, unlike the argument for using our refined standard errors over those

presented in Lo (2002), the rationale for using the skewness and kurtosis standard
errors presented in (3.4) is that returns are, for most practical purposes, not close to
normal, and the product of two normals is more relevant for dynamic strategies. We
elaborate on this in Section 5.

4 MULTIPLE ASSETS

We now consider whether there is a diversification benefit from adding more inde-
pendent “bets” to our portfolio, and to what extent we can benefit from this. For con-
text we note that portfolios of dynamic strategies can behave very differently from
single strategies. For instance, Hoffman and Kaminski (2016) have noted that, while

7 While � can be expressed in terms of either 3 or 4 in order to eliminate it from these expres-
sions, unlike the case of the standard errors of the Sharpe ratio, the expressions are too complicated
to be that useful.
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FIGURE 8 Standard errors for skewness for different sample sizes, implied versus
Gaussian.
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(a) N D 252. (b) N D 756. (c) N D 1260. Implied standard errors, especially for skewness, are generally larger
than those for normal distributions. We argue that the implied standard errors are more appropriate for dynamic
strategies.

single strategies can have skewness ranging around Œ1:3; 1:7� and kurtosis around
Œ8:8; 15:3�, portfolio skewness can be as low as 0:1.

We first consider N independent returns as an N -vector, Rt � N .0; �2I /,
assumed to have the same variance. We devise signals Xt � N .0; 2I /. The inner
product Xt � Rt has a density  whose moment generating function is given by
(Simon 2006, Chapter 6)

MN .t/ D .1 � 2t�� � �
22t2.1 � �2//�N=2:

From this we can easily derive four moments:

�1 D N��;

�2 D N�
22..N C 1/�2 C 1/;
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FIGURE 9 Standard errors for kurtosis for different sample sizes, implied versus
Gaussian.
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(a) N D 252. (b) N D 756. (c) N D 1260. Implied kurtosis standard errors are sometimes larger and some-
times tighter than the Gaussian case. We argue that the implied standard errors are more appropriate for dynamic
strategies.

�3 D N.N C 2/�
33�..N C 1/�2 C 3/;

�4 D �
44..N C 6/.N C 4/.N C 2/N�4

C 3.N C 2/N.1 � �2/2

C 6.N C f 4/.N C 2/N�2.1 � �2//:

This leads to the centralized moments

�2 D N.�2 C 1/

and

�c3 D 2N�.�
2
C 3/:
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From these we derive the Sharpe ratio,

SR D

p
N�p
�2 C 1

:

Maximizing the Sharpe ratio over � leads to
p
N
p
2=2, clearly showing the benefit

of diversification when measuring the Sharpe ratio.
The skewness is

3 D
1
p
N

2�.�2 C 3/

.�2 C 1/3=2

and if we consider the maximal Sharpe ratio, the corresponding skewness,

max
3 D

8N

.2N/3=2
D
2
p
2

p
N
;

will show reductions on the order of 1=
p
N in the total number of (orthogonal)

assets. This is as expected from large diverse portfolios. In the limit, simple appli-
cation of the central limit theory should give us asymptotic normality. Effectively,
introducing more purely orthogonal assets will increase Sharpe ratios but decrease
the (relatively desirable) positive skewness.

If we have multiple possibly correlated assets and multiple possibly correlated
signals, we assert that an optimal strategy would be to perform CCA,8 resulting in
a set of decorrelated strategies (using a combination of signals to weight a port- Changes to sentence OK?

folio of assets). The resulting strategies are decorrelated but with unequal returns
and variances. Many results in this section will apply after scaling the portfolio Changes to this sentence and

the next OK?

8 Canonical correlation (from Hotelling (1936): see, for example, Rencher and Christiansen (2012,
Chapter 11)) is defined by first finding the linear vectorsw1 and v1 with jw1j D jv1j D 1, such that
�.w1 �R; v1 �X/ is maximized. The resulting correlation is the canonical correlation. The canonical
variates are defined by finding subsequent unit vectorswk and vk such that �.wk �R;wj �R/ D ıkj ,
�.vk �X; vj �X/ D ıkj and �.wk �R; vk �X/ is maximized, leading to �.wk �R; vj �X/ D rkıkj .
The solution is obtained via a generalized eigenvalue problem:

˙�1RR˙RX˙
�1
XX˙XRwk D r

2
kwk ; ˙�1XX˙XR˙

�1
RR˙RXvk D r

2
kvk ;

where˙ is the partitioned correlation matrix of .R;X/ and the canonical correlates wk and vk are
the eigenvectors with the same eigenvalues rk . The corresponding portfolios of canonical strategies
SCCA
k
� .vk �X/.wk �R/ each have returns and variances as characterized by (2.1) and (2.2) with

corresponding correlations rk (ie, with Sharpe ratios given by SRŒSk � D rk=
p
r2
k
C 1). Due to

their independence, they can easily be weighted to optimize the portfolio Sharpe ratio. The method
of weighting the canonical strategies is, of course, similar to a risk-parity portfolio, due to the
independence of the asset returns. We assert that this method gives the maximal Sharpe ratio for
the linear combination of signals and returns, although we leave this proof to a subsequent paper.
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returns. The end result may easily be optimized using simple mean–variance analy-
sis (reweighting the returns on the independent strategies). We leave the details for
another study.

While our optimizer is unlikely to be in use among CTAs, it is still notable that
widely diversified CTAs (irrespective of underlying asset correlations) appear to have
decent Sharpe ratios but lower positive skewness, much in line with the discussion
in this section. Our simple results here about the final Sharpe ratio and skewness
depend, of course, not only on the independence of the underlying assets but the sig- Changes to sentence OK?

nals themselves, which must only be correlated with their respective asset returns.
While this is not an altogether natural setting, it is suggestive of the gains that can
be made by introducing purely orthogonal sources of risk, or perhaps by orthogo- Changes to sentence OK?

nalizing (or attempting to orthogonalize) asset returns prior to forming signals, later
recombining them into a portfolio. This may lead to far more desirable properties of
portfolios than finding strategies on multiple nonorthogonalized assets.

5 GAUSSIAN RETURNS VERSUS PRODUCTS OF GAUSSIAN
RETURNS

While we believe that the assumption of Gaussian returns (and Gaussian signal) is a
simplification, we also believe this is far more realistic than the assumption of Gaus-
sian returns for a dynamic strategy. Throughout this paper, we consider Gaussian
(log) returns R � N .0; �2R/ and Gaussian signal X � N .0; �2X /, which together are
jointly Gaussian and form components of the dynamic strategy St D XtRt , whose
properties we study.

To be clear, our signal is not considered to have foresight and is fully known as
of time t , while the return Rt is from t to t C ıt . All expectations calculated are
unconditional, or can be thought of as conditioned on t0 < t < tCıt . Consequently,
each element, the signal and the return, will be random variables.

Were we to consider expectations conditional on t , then the resulting strategy
returns St would be trivially Gaussian. In the unconditional case, the resulting returns
are far more interesting and relevant.

CTA returns are known to generally be positively skewed and highly kurtotic over
the relevant horizons we are concerned with (ie, daily, weekly, monthly), as has been
noted by Potters and Bouchaud (2005), Hoffman and Kaminski (2016) and others. If
we measure far longer horizon returns, asymptotic theory should show that favorable
qualities such as skewness may disappear.

Consequently, even though we make many comparisons to results either stemming Changes to sentence OK?

from asymptotic theory (see, for example, Lo 2002) or using exact normality, this
comparison does not, in fact, compare like for like. Clearly, Lo (2002) is appropri-
ate for large samples, as is possible under conditions when the central limit theorem
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holds, eg, with weak dependence, summing returns over increasingly longer hori-
zons or in the case of a large cross-sectional dimension with increasing numbers of
decorrelated assets. For dynamic strategies, asymptotic normality should be expected
for large numbers of decorrelated dynamic strategies as well as for long-horizon (eg,
annual or longer, nonoverlapping) returns for single dynamic strategies.

Consequently, we believe our standard error results are more appropriate for
hypothesis testing on statistics for dynamic strategies. We discuss a strategy for
establishing product measures as large-sample limits in Appendix A online, although
asymptotics are beyond the scope of the current study.

6 CONCLUSION

Fully systematic dynamic strategies are used by a large portion of the asset manage-
ment industry as well as by many noninstitutional participants. Meanwhile, they are
only partly understood. Many funds and strategies (eg, especially investment bank
“smart-beta” or styles-based products) involve investment in strategies that are not
optimized in any sense. Strategies that are paid via index swaps have many limits Change OK?

in terms of their adaptability, leading to often highly suboptimal end results. While
there have been some very significant results derived in the theoretical properties of
these dynamic strategies, there is still much more work left to do. Given that most
academic literature in this area considers more general distributions, there has not
been a firm foundation on which to build and extend these results.

It is hoped that this paper will form a foundational approach to the study of
dynamic strategies and how to optimize them. We make efforts to understand their
properties without claiming to understand why they work (ie, why there are stable
autocorrelation functions in the first place). Given that most asset returns are known
to have nontrivial autocorrelations, we can establish many results. In particular, we
derive a number of results merely by applying well-known techniques to dynamic “obtain”? Changes to this

sentence and displayed list
items OK (I have assumed
these are the results obtained
herein rather than being
hypothetical examples)?
Otherwise please advise.

strategies; for example:

� strategy returns are shown to be positively skewed and leptokurtic;

� Sharpe ratios are characterized, as are skewness and kurtosis;

� the standard errors for Sharpe, skewness and kurtosis are derived;

� strategies designed to optimize Sharpe ratios should be based on TLS rather
than minimizing prediction error; and

� gains from adding orthogonal assets/risks are quantified.

Some of these items are empirically well known, but others are genuinely new. Mean-
while, we have extended our results to the derivation of overfitting penalties akin to
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Mallow’s Cp or AIC, and these can be used for model selection and to predict likely
out-of-sample Sharpe ratios from in-sample fits (see Koshiyama and Firoozye 2018).

Our study is incomplete. We believe that there is a good deal of interesting work
to be done in areas such as

� optimal linear strategies incorporating transaction costs;

� optimal linear strategies relaxing normality;

� normalized linear signals (eg, z-scores) and optimal nonlinear functions of
z-scores;9

� nonlinear strategies that are optimized to specific utility functions, possibly
incorporating smoothness constraints, especially when relaxing normality;

� local optimality when relaxing stationarity; and

� good-deal bounds in the presence of autocorrelated assets with possible
nonstationarity or structural breaks.

We note that our assumptions were never meant to be completely realistic: sta-
tionary returns with fixed autocorrelation function and Gaussian innovations can
only work in theory, not in reality. Many quantitative traders design strategies to
overcome the challenges of dealing with real-world data issues and the issues of
overfitting. We nonetheless present them as a good starting point for further analysis,
hoping to use this work as the basis for further exploration and to place the general
study of dynamic strategies onto a more firm theoretical footing.

Some of our findings should be relevant to practitioners. In particular, the Change OK?

use of OLS and other forecast-error-minimizing methods is not necessarily opti-
mal, depending on the problem at hand; total least squares or other correlation-
maximizing methods such as CCA may be more efficient. High Sharpe ratios and
positive skewness are often quoted as rationales for entering into strategies, and
strategies are changed with the rationale of increasing these measures. The relative
significance of any of these changes depends on confidence intervals or standard
errors, and we have derived these to be specifically suited for dynamic trading strate- Words added – OK?

gies. Kurtosis is not studied as often, but as we show, all dynamic strategies should
be leptokurtic, and this is an important attribute of these strategies. Other results,
such as overfitting penalties and optimal nonlinear strategies, we save for subsequent

9 We note that normalized signals applied to normalized returns series can be represented as the
product of two Student t distributions, which has also been relatively well studied (Joarder 2007;
Nadrajah and Kotz 2004), and the results are qualitatively very similar to those of this study. How-
ever, the more commonly used strategy of applying normalized signals to returns, with the resulting
strategies then volatility scaled, cannot be derived as a trivial application of well-known results.
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papers. With a more solid theoretical footing as a sort of rule-of-thumb for the devel-
opment, optimization, selection and alteration of dynamic strategies, we only hope
that there is room to improve strategy design.

In two follow-up papers, we shall use the same basic set-up to introduce an Text from abstract added here
– OK? Citations/reference
details needed?overfitting penalization on Sharpe ratios, which is meant to be a better predictor

of out-of-sample performance, contrasting this to other overfitting techniques such
as information criteria and cross-validation. We will also consider utility-optimizing Changes to sentence OK?

nonlinear transforms of signals, their properties and standard errors.
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