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Abstract

Extracting species calls from passive acoustic recordings is a common preliminary

step to ecological analysis. For many species, particularly those occupying noisy,

acoustically variable habitats, the call extraction process continues to be largely

manual, a time-consuming and increasingly unsustainable process. Deep neural

networks have been shown to offer excellent performance across a range of acous-

tic classification applications, but are relatively underused in ecology. We describe

the steps involved in developing an automated classifier for a passive acoustic

monitoring project, using the identification of calls of the Hainan gibbon Nomas-

cus hainanus, one of the world’s rarest mammal species, as a case study. This

includes preprocessing—selecting a temporal resolution, windowing and annota-

tion; data augmentation; processing—choosing and fitting appropriate neural net-

work models; and post-processing—linking model predictions to replace, or more

likely facilitate, manual labelling. Our best model converted acoustic recordings

into spectrogram images on the mel frequency scale, using these to train a convo-

lutional neural network. Model predictions were highly accurate, with per-second

false positive and false negative rates of 1.5% and 22.3%. Nearly all false negatives

were at the fringes of calls, adjacent to segments where the call was correctly iden-

tified, so that very few calls were missed altogether. A post-processing step identi-

fying intervals of repeated calling reduced an 8-h recording to, on average, 22 min

for manual processing, and did not miss any calling bouts over 72 h of test record-

ings. Gibbon calling bouts were detected regularly in multi-month recordings

from all selected survey points within Bawangling National Nature Reserve, Hai-

nan. We demonstrate that passive acoustic monitoring incorporating an auto-

mated classifier represents an effective tool for remote detection of one of the

world’s rarest and most threatened species. Our study highlights the viability of

using neural networks to automate or greatly assist the manual labelling of data

collected by passive acoustic monitoring projects. We emphasize that model

development and implementation be informed and guided by ecological objec-

tives, and increase accessibility of these tools with a series of notebooks that allow

users to build and deploy their own acoustic classifiers.
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Introduction

Deep learning holds enormous promise for automating

the labelling of bioacoustic data. The number of appli-

cations is growing (Christin et al., 2019), but the

majority of datasets are still labelled manually (Fairbrass

et al., 2019; Kiskin et al., 2020; Pamula et al., 2019),

even as the rate of data collection makes this approach

increasingly unsustainable. The mismatch between the

potential of deep learning approaches and their actual

uptake among practitioners occurs because getting mod-

els to perform as well as an experienced human is dif-

ficult. Human-like performance usually requires

substantial amounts of training data or relatively stable

background environments, conditions that are often

absent in ecological applications. Model tuning and

data manipulation is often required, and while guideli-

nes are emerging (Patterson & Gibson, 2017; Stowell

et al., 2019b), these can, with some justification, appear

subjective and case specific. A lack of computing

resources and user-friendly software can also be a bar-

rier to entry. Case studies reporting successful applica-

tions play an important role in developing and

disseminating best practices, and in discriminating

between those tasks that current deep learning methods

are able to automate and those they cannot. Previous

applications have used convolutional neural networks

(CNNs; LeCun et al. (2015)) to identify various bird

(Grill & Schlüter, 2017; Kahl et al., 2017; Stowell et al.,

2019b) and whale species (Bergler et al., 2019; Bermant

et al., 2019; Jiang et al., 2019; Shiu et al., 2020), bees

(Kulyukin et al., 2018; Nolasco et al., 2019), as well as

anomalous acoustic events in soundscapes (Sethi et al.,

2020). These have shown, for example, that a generally

good approach is to represent data as spectrograms and

treat the problem as an image classification one, as well

as providing specialized approaches for data augmenta-

tion on spectrogram inputs, such as pitch and time

shifting and introducing background noise (Bergler

et al., 2019; Sprengel et al., 2016).

Despite this, no studies report the process of applying

deep learning within the scope of a typical acoustic moni-

toring project designed to answer a well-defined research

question. Most applications are either smaller – using

data collected for the purpose of testing a deep learning

approach, and often written for a machine learning rather

than ecological audience (e.g. Kiskin et al., 2020; Kulyu-

kin et al., 2018); or larger – aggregating datasets across

several independent studies to investigate if models gener-

alize (Bergler et al., 2019; Shiu et al., 2020; Stowell et al.,

2019b) – than most monitoring projects. In this paper we

address this gap, describing the development of a classifier

for identifying Hainan gibbon Nomascus hainanus calls in

passive acoustic recordings collected as part of a long-

term monitoring project, with the aim of providing prac-

titioners with a realistic and relatable idea of the process,

and modelling choices, involved, as well as guidelines for

these choices.

The Hainan gibbon is the world’s rarest primate and

one of the world’s rarest mammals, with only a single

population of about 30 individuals surviving in Bawan-

gling National Nature Reserve (BNNR), Hainan, China

(Chan et al., 2005; Liu et al., 2020; Turvey et al., 2015).

Improved monitoring of this population using novel

methods, to understand factors affecting successful disper-

sal, breeding group formation and colonization of new

habitat, has been identified as an urgent short-term con-

servation goal for the species (Turvey et al., 2015; Zhang

et al., 2020). Gibbons call regularly to advertise territory

and maintain group cohesiveness against rivals, using a

complex structure consisting of short individual vocal syl-

lables or ‘notes’ of ca. 0.2–2.75 s assembled together into

longer ‘phrases’ consisting of one to six notes, which are

themselves organized into ‘songs’ of several minutes

(Deng et al., 2014). Gibbon population surveys are usu-

ally conducted by detecting this daily song using a fixed-

point count survey method, whereby researchers listen

opportunistically for calls at elevated listening posts

(Brockelman & Srikosamatara, 1993; Kidney et al., 2016).

However, this traditional monitoring approach is labour

intensive and is only conducted for discrete survey peri-

ods. Gibbons are therefore prime candidates for passive

acoustic monitoring and recent studies have used data

collected in this way to model occupancy (Vu & Tran,

2019) and to discriminate between individuals using spec-

tral features (Clink et al., 2019; Zhou et al., 2019). All of

these studies, however, have relied on an initial manual

extraction of calls.

In order to develop a continuous monitoring protocol

for Hainan gibbons we conducted long-term passive

acoustic monitoring and developed an automated classi-

fier able to identify whether gibbons were calling in the

vicinity of a particular recorder, with the aim of establish-

ing whether the area proximal to the recorder was occu-

pied that day. It was therefore important to be able to

detect individual gibbon calling bouts, but not necessarily

to be able to discriminate every phrase made during the

bout. We address issues that are important to the overall

usefulness of a classifier, including deciding how much

data to manually label, data augmentation, operationally

meaningful definitions of classifier success and the devel-

opment of user-friendly software. Our study provides an

effective new monitoring method for the world’s rarest

primate, and also has wider applicability for applying

deep learning to develop passive acoustic monitoring

frameworks for other conservation-priority loud-call
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species such as cetaceans, elephants or other primates

(Crunchant et al., 2020).

Materials and Methods

Data collection

Eight Song Meter SM3 recorders (Wildlife Acoustics,

Maynard, Massachusetts) were used to collect acoustic

data from 1 March to 20 August 2016 within BNNR.

Recorders were attached to trees at a height of approxi-

mately 1.5 m in tropical evergreen forest. Four recorders

were situated within the known home ranges of the four

Hainan gibbon social groups existing during the study

period (Groups A–D; see Bryant et al. (2017)), three were

situated at locations intermediate between known home

ranges, and a further recorder was placed in an area

where a solitary male gibbon was thought to occur (Bry-

ant et al., 2016). They were placed at locations that were

used as regular listening posts for monitoring gibbons by

reserve staff (Fig. 1). The peak Hainan gibbon calling per-

iod is 06:00–07:00, with calling continuing at decreasing

regularity for several hours (Chan et al., 2005). Recorders

were therefore set to record for 8 h each day from the

time of sunrise, which varied between approximately

05:00 and 06:00 during the study period. Memory cards

and batteries were changed every 40 days. Devices did not

record continuously throughout the entire survey period

due to logistical and technical issues; in total, survey days

per recorder varied between 79 and 129 days, and roughly

6000 h of recordings were collected. The majority of

recordings were made with a sampling rate of 9600 Hz

and bit depth of 16, with isolated recordings at

28 800 Hz.

Data analysis

We manually labelled 32 8-h recordings by inspecting

spectrograms and listening to audio using Sonic Visu-

aliser (Cannam et al., 2010), and end times, and the

number of notes, of each observed gibbon phrase. Four

files containing no gibbon calls were discarded, as peri-

ods without gibbon calls are readily available from the

remaining 28 files. This process yielded 1246 gibbon

phrases.

To construct the fixed-length inputs required by CNNs,

we divided each 8-h recording into segments with win-

dow length 10 s and hop length 1 s (starting times of

consecutive 10 s segments differ by 1 s, Fig. 2). This win-

dow length was chosen so that even the longest phrase

(8 s, Supplementary Material A) fits within a single seg-

ment; using a slightly longer segment length allows for

potentially longer unseen phrases, and results in more

positive segments after windowing. All audio was con-

verted into mono, as done in various applications (e.g.

Bergler et al., 2019; Qazi et al., 2018; Stowell et al.,

2019a). By cross-referencing the time intervals of each

segment with the logged start and end times of known

gibbon phrases, each segment was labelled as (a) a ‘pres-

ence’, if its time interval completely contained the interval

of at least one labelled phrase, (b) an ‘absence’, if its time

interval contained no part of any phrase or (c) a ‘partial

presence’, if its time interval intersected but did not com-

pletely contain the interval of at least one labelled phrase

(Fig. 2). Partial presences were excluded from further

analysis.

Each recording was downsampled to 4800 Hz, so that

the Nyquist rate was higher than the maximum fre-

quency of Hainan gibbon calls (2000 Hz). No anti-alias-

ing was performed although, because we downsampled

entire recordings, we would expect any artefacts to be

unrelated to the presence of gibbon calls. This was con-

firmed by a post hoc comparison of aliased and non-

aliased versions of a 5% sample of segments. The down-

sampled inputs – each segment a time series of 48 000

sample points – used as inputs to the 1-D CNNs

described in the next section. In addition, we converted

each audio segment into a mel-scale spectrogram (Ber-

gler et al., 2019; Huang et al., 2001), to be used as an

input image to a 2-D CNN, using a Hann analysis win-

dow size of 1024 samples (213 ms), a hop size of 256

samples (53.3 ms, 75% overlap) and 128 mel frequency

bins with centres uniformly spaced between 1 and 2k Hz,

a conservative interval following Deng et al. (2014) and

our own exploratory analyses. This results in 188 time

steps by 128 frequency bands. These were computed

using the Librosa library. These values were chosen on

the basis of preliminary investigations, although the

results were not particularly sensitive to these choices.

The spectrogram images had a size of 128 × 188 pixels;

larger image sizes can capture greater detail but typically

require more network parameters and computation time

to do so.

After processing, our dataset consisted of 5285 seg-

ments containing at least one complete phrase. While the

vast majority of segments do not contain any gibbon

calls, we restricted the number of absence segments to the

same number as presences, to avoid a large class imbal-

ance. Absence segments were initially collected by ran-

domly sampling, but we found that better results were

obtained by specifically including absence segments that

contained typical ambient noise, such as bird calls, rain

events and other background noises that could potentially

confuse the classifier (Stowell et al., 2019a). Extracting

these required additional manual processing of the audio

data.
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Figure 1. Locations of eight Song Meter SM3 recorders (labelled 1–8) used to detect gibbons in 2016 within Bawangling National Nature

Reserve, Hainan, China, in relation to approximate distributions of four Hainan gibbon social groups (A–D). Mapped distributions of groups A–C
are based on field data collected in 2010–2011 (see Bryant et al., (2017)); the groups all changed their location slightly between 2011 and 2016,

but data on exact group locations in 2016 are unavailable. Approximate location of Group D indicated with hatching based on Bryant et al.,

(2016).

Figure 2. Hainan gibbon calls consist of a sequence of ‘phrases’, each phrase consisting of variable (typically, 1–6) ‘notes’ and often with

relatively large intervals between phrases. Left: a two-note phrase followed by a three-note phrase. A single calling bout may last anywhere from

a few to dozens of minutes. Our model divides the recording interval into sliding 10 s windows or ‘segments’ (blue boxes), with 80% overlap

between adjacent segments. Segments are classified as contained at least one full gibbon phrase (Present; solid line), a partial phrase (Partial;

dotted line), or no part of a phrase (Absent; dashed line). Partial presences were excluded from further analysis, creating a two-class audio

classification problem. Right: a gibbon phrase partially obscured by noisy background conditions, in this case other species calling (red boxes).
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Data augmentation

Data augmentation – boosting sample sizes by adding

new samples artificially created by manipulating existing

ones, for example using geometric operations like transla-

tions and rotation – is commonly used to improve classi-

fier performance, particularly when the training dataset is

relatively small (Hestness et al., 2017; Sun et al., 2017).

We used data augmentation to create either one or two

copies of each 10 s segment in both presence and absence

classes. For each presence segment x(pre), we randomly

selected two absence segments, x i
(abs), i = 1,2. We ran-

domly shifted the starting time of each absence segment

forward by 0 < ti<9 s, with the absence segment wrap-

ping back on itself so that it remained 10 s long (Fig. 3

C), to obtain the shifted segment x i
(shift). Presence seg-

ments were not shifted, as this already occurred during

the windowing process used to create the original seg-

ments. Segments contain amplitude values and thus allow

for arithmetic operations to be performed on them. We

blended the presence segment with each shifted

segment to create augmented presence segments

x
augð Þ
i ¼ αx preð Þ þ 1�αð Þx shiftð Þ

i , where α is a mixing param-

eter, here chosen to be 0.9 (Fig. 3D). We created aug-

mented absence segments using the same approach, that

is, combining pairs of absence segments to create a mix-

ture of background scenes.

After augmenting the original segments, we obtained

18 992 segments (9496 presence, 9496 absence) from 19

recordings to train the neural networks. We randomly

selected 60% of the data for training (5697 presence,

5697 absence) and used the remaining 40% for valida-

tion (3799 presence, 3799 absence). Non-augmented seg-

ments from nine separate recordings (2231 presence,

23 689 absence) were kept aside for testing. The files

which were used for training and testing were randomly

selected and each file contained at least one presence of

a gibbon call.

Neural networks

We considered two kinds of CNN architectures: a 1-D

CNN using preprocessed amplitudes of 10 s segments as

inputs, and a 2-D CNN that had inputs consisting of

spectrogram images constructed from the preprocessed

amplitudes. A CNN with a large number of network

parameters (e.g. MobileNetV2 (Sandler et al., 2018) which

has over 3 million parameters) can result in overfitting –
due to degree of freedom given the large number of

parameters – if the network is trained on a relatively

small number of examples. This observation is often

reported in the literature and has also been reported in

applications of CNNs in ecology (Chilson et al., 2019). As

we had relatively little training data by deep learning stan-

dards, we chose these networks as they use simple archi-

tectures requiring relatively few parameters. Both 1-D and

2-D CNNs use up to three convolutional layers, each fol-

lowed by a max pooling layer that reduces the size of the

intermediate input passed to the next layer of the net-

work. We used 16 × 1 and 16 × 16 convolutional kernels

for 1-D and 2-D CNNs respectively. The stack of convo-

lutional layers was followed by one or two dense layers

(Fig. 4). The resulting model outputs a detection proba-

bility that the input segment (1-D or 2-D) contains at

least one complete gibbon phrase.

We chose model hyperparameters using a grid search

over the number of convolutional (1, 2, 3) and dense (1,

2, 3) layers, nodes in each of the dense layers (8, 16, 32),

filters in each convolutional layer (8, 16, 32), kernel size

in each convolutional and max pooling layer (4, 8, 16),

and dropout rate (0, 0.2, 0.4, 0.6). Each model was

trained for 50 epochs using the Adam optimizer (Kingma

Figure 3. Data augmentation steps involve (a) selecting a presence segment containing a Hainan gibbon phrase, (b) randomly selecting a

segment containing only background noise, (c) shifting the starting time of the absence segment forward by a random amount, here 2 s and (d)

blending together the presence and shifted absence segments.
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& Ba, 2014) a batch size of eight segments, and a learning

rate of 0.001. Models were evaluated based on test set

accuracy (proportion of all predictions that were correct),

sensitivity (recall) (proportion of true positives divided by

positive examples), specificity (proportion of true nega-

tives divided by negative examples), precision (portion of

true positives divided by true positives and false positives)

and F1-score (harmonic mean between precision and F1-

score). Optimal thresholds for converting detection prob-

abilities into binary classifications were those that mini-

mized the ratio of sensitivity and false discovery rate in

the validation dataset.

Models were implemented in Python 3 using the Ten-

sorFlow (Abadi et al., 2015) library with Keras (Chollet,

2015) for the neural network component, and the Librosa

library for audio processing and spectrogram construction

(McFee et al., 2020). Model training and testing was done

on a machine running Ubuntu 16.04 LTS with an Intel

i7-6700K CPU, 16GB of RAM, and an Nvidia GTX 1070

8GB Graphics Processing Unit. Code and analysis scripts

are available online at https://github.com/emmanuelduf

ourq/GibbonClassifier.

Post-processing

For an audio recording of arbitrary duration, our

approach was to break that recording into overlapping

10 s segments, and to use a trained CNN to output, for

each segment starting at second s = 0, 1, 2, . . ., a detec-

tion probability indicating the likelihood that at least one

complete gibbon phrase is contained in the next 10 s.

These probabilities are based only on the acoustic content

2D CNN
with augmentation

2D CNN
without augmentation

1D CNN
with augmentation

1D CNN
without augmentation

Conv2D, 8 filters of
size 16x16, ReLU

activation

MaxPool2D, size of
4x4

MaxPool2D, size of
4x4

MaxPool2D, size of
4x4

MaxPool2D, size of
4x4

Dense, 32 units,
ReLU activation

Dense, 2 units,
softmax activation

Dense, 2 units,
softmax activation

Conv2D, 8 filters of
size 16x16, ReLU

activation

Conv2D, 8 filters of
size 16x16, ReLU

activation

Conv2D, 8 filters of
size 16x16, ReLU

activation

Dense, 32 units,
ReLU activation

Dense, 32 units,
ReLU activation

Conv1D, 8 filters of
size 16, ReLU

activation

MaxPool1D, size of
16

Conv1D, 8 filters of
size 16, ReLU

activation

MaxPool1D, size of
16

Conv1D, 8 filters of
size 16, ReLU

activation

MaxPool1D, size of
16

Dense, 16 units,
ReLU activation

Dense, 16 units,
ReLU activation

Dense, 2 units,
softmax acitvation

Conv1D, 8 filters of
size 16, ReLU

activation

MaxPool1D, size of
16

Conv1D, 8 filters of
size 16, ReLU

activation

MaxPool1D, size of
16

Conv1D, 8 filters of
size 16, ReLU

activation

MaxPool1D, size of
16

Dense, 16 units,
ReLU activation

Dense, 2 units,
softmax acitvation

Input spectrogram
with size

(128x188x1)

(13,28,8)

(28,43,8)

(113,173,8)

(3,7,8)

(32)

Input spectrogram
with size

(128x188x1)

Input amplitudes with
size (48000)

(2)

(113,173,8)

(28,43,8)

(13,28,8)

(3,7,8)

(32)

(2)

(32)

(2)

(2)

(47985,8)

(2999,8)

(2984,8)

(186,8)

(171,8)

(10,8)

(16)

(16)

Input amplitudes with
size (48000)

(47985,8)

(2999,8)

(2984,8)

(186,8)

(171,8)

(10,8)

(16)

Figure 4. Best architectures for 1-D and 2-D CNNs, for both augmented and non-augmented training datasets. Selected architectures were those

with intermediate numbers of free parameters, particularly for 2-D CNNs. The dimensions of the data after each operation is provided in

parentheses.
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of their associated segments, and can give rise to biologi-

cally unrealistic call patterns. We used a post-processing

step to remove isolated detected presence segments which

are highly likely to be false positives rather than actual

calls, and to obtain start and end times for each detected

calling bout, to facilitate manual verification and support

the main research objective of detecting and monitoring

gibbon activity.

To do this, we formed connected components of pres-

ence segments that occur close together in time and in

sufficient numbers that, given known gibbon call charac-

teristics (i.e. song duration, inter-phrase duration), they

are likely to be part of a single calling bout (Supplemen-

tary Material A). With presence segments arranged in

temporal order, presence segment i is included in the

same component as segment i-1 if they are separated by

less than 200 s; otherwise segment i begins a new compo-

nent. This process allocates each presence segment to

exactly one component. Any component consisting of

fewer than 20 segments (equivalent to roughly four

phrases of length 5 s) are automatically removed. This

was done given our analysis of the characteristics of the

calls which revealed that the calls are typically repetitive

over a period of time and the total duration was never

less than 20 s. Additionally, any component where the

average time between consecutive presence segments in

the component was greater than 10 s, was removed (sug-

gesting a ‘chain’ of isolated presence predictions, since

calls usually persist over multiple consecutive segments).

The first and last presence segment in each remaining

component give the start and end times of each predicted

gibbon calling bout. To evaluate the potential usefulness

of the post-processing step, we recalculated accuracy mea-

sures under the assumption that all detected bouts were

subsequently passed to an observer for manual processing,

and that this observer correctly identified all presence seg-

ments within the bout. This mimics the intended applica-

tion of our approach, but means that post-processing

accuracy measures are conditional on the use of addi-

tional, error-free manual verification.

Results

Hainan gibbon calls could be detected with a high degree

of accuracy. Without post-processing, nearly 80% of seg-

ments containing gibbon calls were correctly identified,

with very few false positives (Table 1). Even with false

negative rates of 20% very few gibbon phrases were

missed altogether, because phrases occur across multiple

overlapping segments and nearly all segments incorrectly

identified as absences occurred at the beginning and end

of a phrase, abutted by several segments where the phrase

was correctly detected (Fig. 5). After post-processing,

fewer than 2% of all presence segments occurred outside

of detected call bouts (Table 1), and all 20 call bouts

across nine test set recordings were detected, with two

predicted call bouts being false positives (Supplementary

Material B). In the training set, 34 of 35 call bouts were

correctly recognised with two false positive call bouts.

The best performing approach was a 2-D CNN with

both data augmentation and post-processing. Data aug-

mentation improved specificity by 5.6%, a relative reduc-

tion in false positives of 79% but without associated

relative reduction in sensitivity; post-processing further

improved both sensitivity (20.6%) and specificity (0.9%,

Table 1). Accuracy was substantially higher when treating

the task as an image (spectrogram) classification problem

than if the preprocessed acoustic data were directly used

as input to a 1-D CNN. Using the 2-D CNN with both

data augmentation and post-processing, an 8 h test file

took on average 6 min to process of which 3 min 10 s

were used for reading in the audio file and 2 min 42 s to

convert to spectrograms; the remaining time was used to

compute the CNN predictions.

We applied the 2-D CNN with both data augmentation

and post-processing on the entire monitoring project and

Table 1. Average performance and parameter settings for the best 2-D and 1-D CNN models across 72 h of test recordings (2231 segments con-

taining gibbon phrases, 23 689 without). Gibbon calls can be identified with very high accuracy, and performance is improved by data augmenta-

tion and a post-processing heuristic.

CNN 2-D 2-D 2-D 1-D 1-D 1-D

+ Augmentation Yes Yes No Yes Yes No

+ Post-processing Yes No No Yes No No

Accuracy 99.37% 97.60% 92.32% 94.30% 94.76% 94.76%

Sensitivity 98.30% 77.68% 79.65% 54.21% 40.98% 25.56%

Specificity 99.42% 98.51% 92.92% 95.96% 96.91% 97.60%

Precision 85.30% 70.28% 45.78% 49.14% 41.35% 44.58%

F1-score 90.55% 72.18% 53.14% 46.36% 38.42% 27.09%

Model Parameters 23 922 23 922 24 978 2650 2650 2378

Train Duration (sec) 644 643 265 628 627 117
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gibbon calls were detected on 71% of recording days

across all locations. Gibbons were detected regularly at all

locations, with recorders situated within known group or

solitary home ranges detecting calls on 33–86% of record-

ing days, and those situated between home ranges detect-

ing calls on 46–89% of recording days. Mean durations of

calling bouts per recorder varied between 24.2 and

40.8 min (overall mean = 29.7 min), with mean starting

times of 06:16–07:56 AM and mean finishing times of

09:12–10:15 AM (Fig. 6; Table 2). Calls were detected less

frequently during the wet season (March–April) than the

dry season (May–August), with inter-season differences

varying substantially between locations (Supplementary

Table C).

Discussion

Long-term monitoring will generate thousands of hours

of recordings across multiple survey sites, and manually

labelling these recordings is typically infeasible given

logistical constraints. Our results demonstrate that passive

acoustic monitoring incorporating an automated classifier

can be an effective tool for remote detection of calling

species, potentially enabling systematic monitoring while

saving time, funds and manpower. Our approach, applied

to Hainan gibbons, is general and easily extended to other

calling species.

Our models allow new recordings to be classified on a

per-second basis, to a high degree of accuracy. Although

perhaps false negative rates of 1.7% may not be suffi-

ciently low for full automation of Hainan gibbon call

monitoring, they greatly facilitate the process of manually

annotating these datasets by ruling out large portions of

recordings that have a relatively low probability of con-

taining gibbon song. In our test datasets, this reduced the

amount of audio to be manually processed by 95%. Our

model clearly detected all calling bouts in the test data, at

the cost of two false positives. Where false negatives are

particularly costly, this is easily incorporated by lowering

the threshold required for manual verification. We expect

that with more, and more diverse, training data, error

rates would decline further.

Where environmental conditions were similar to those

used to train the model, predictions were almost perfect

and could be used to identify start and end times of call

phrases and bouts, returning almost identical values to a

human observer. It is impossible to know in advance

whether environmental conditions are similar enough to

Figure 5. Per-second detected probabilities that a gibbon phrase is contained within the next 10 s of audio, over (A) an 8-h file, (B) a 5-min

window. Segments with detected probabilities above an optimized threshold of 0.76 (red line) are classified as containing a gibbon phrase, with

misclassifications denoted by crosses. Observed and detected classes are plotted above the probabilities, using the same notation. Colour is used

to denote the observed class. Most incorrect false negative classifications are at the beginning and end of phrases, separated by segments that

correctly identify the call. In this way, nearly all phrases are clearly identified, and a practitioner can be pointed to those regions that contain calls.
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warrant confidence in the associated predictions, but

these results suggest that, as more training data covering

a range of environmental conditions are added, model

applications may go beyond gibbon detection, by auto-

matically extracting inputs for more detailed behavioural

analyses, for example of gibbon call syntax (Clarke et al.,

2006).

Practically, developing an acoustic classifier such as

ours requires a number of steps: deciding on an appropri-

ate unit of analysis; manually labelling data; augmenting

data and allocating it between training, validation and test

sets; choosing and fitting appropriate neural network

models; and selecting a preferred model and using it to

process the unlabelled portion of the data. Our study

illustrates how model development and implementation

are informed and guided by ecological objectives, here

primarily detecting gibbon vocalizations over time scales

of minutes or hours, and domain knowledge of Hainan

gibbon call behaviour.

We based our classifier on phrases, rather than shorter

notes or longer calling bouts, to balance ease of identifica-

tion with data availability and computational require-

ments. Individual notes are easily confused with other

sources (see Fig. 2B). While calling bouts are highly

Table 2. Calling behaviour across eight survey locations for the 161 day survey period March–August 2016.

Location Survey days % days calls detected Mean calling time per day (min) Mean start time of first bout Mean end time of last bout

1 87 70 24.2 07:34 09:41

2 90 46 29.9 06:58 09:12

3 103 82 31.3 07:30 10:15

4 105 86 26.5 07:44 09:52

5 79 33 29.9 07:31 09:23

6 103 79 24.4 07:56 10:15

7 129 89 30.9 06:53 09:54

8 105 65 40.8 06:16 10:01

Recorders were situated within the known home ranges of the four Hainan gibbon social groups existing during the study period, at locations

intermediate between known home ranges, and in an area where a solitary male gibbon was thought to occur. Locations of home ranges are

indicated by numbers 1, 2, 3 and 4. 6 = solitary.

Figure 6. Daily patterns in gibbon calling activity. The red line denotes, per 10 min, the proportion of recordings across all locations in which a

call was detected (e.g. 05:00–05:10, 05:10–05:20,...). The black line smooths the observed proportions using a GAM (see Supplementary Material

D for details). The bottom plot shows the number of recordings per 10-min segment, showing the survey effort from 05:00 to 14:00. Peak

activity occurs shortly after dawn, dropping rapidly but with some calling activity recorded throughout the morning. Plot inset shows the duration

of independent call bouts detected by the classifier. Call bouts are intervals of regular calling, with no detected call 200 s either side of the bout.

Daily calling typically consists of a number of calling bouts.
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distinctive, there are relatively few of them and, being

longer in duration, they require more parameters to cap-

ture the same degree of detail. Phrases are far more

numerous, less variable and require fewer parameters.

Given this choice, segment duration was chosen to be

longer than the longest phrase across all training data

(8 s). The slightly longer segment length provides more

presence segments – for example, an 8 s phrase results in

three 10 s presence segments, but would only result in a

single segment if the segment length was restricted to 8 s.

Preliminary runs based on shorter segments of 0.5–2 s

and partial phrases did not yield good performance, with

many false positives, probably because a small segment is

not enough to distinguish gibbons from other species

calling within the same frequency range.

Even using phrases, we have relatively few positive

examples and these occur within a highly variable back-

ground environment, which is likely to be a common sit-

uation for ecological applications. The amount of data

available to train neural networks is important, and

CNNs tend to require relatively large amounts of data to

generalize well. While preempting the exact amount of

data required to train CNNs is challenging, one approach

is simply to attempt to train a network and evaluate its

performance on a test set and iteratively add data if need

be. It may often be possible, as in our case, to collect or

label additional data, but data augmentation is a valuable

low-cost strategy for increasing sample sizes in conjunc-

tion with these other more effort-intensive approaches

(Bergler et al., 2019; Hestness et al., 2017; Kahl et al.,

2017; Sun et al., 2017). In practice the process can be an

iterative one guided by subjective judgement. We initially

annotated only 40 h across five recordings, but models

based on these were poor, even with augmentation.

Model performance (on the same test set) improved as

we add more training data; we were also able to create

more complex neural networks. Gains in accuracy

decreased with additional annotations, and we stopped

when these became marginal, but presumably further

increases are possible as novel environments are included.

Training, validation and test datasets should be con-

structed by allocating longer contiguous sequences of

audio to each of these, and then preprocessing each of

these, rather than randomly allocating the segments them-

selves, which are highly autocorrelated and will thus over-

state test accuracy. Wherever possible, we recommend

using entirely independent recordings in the test dataset.

We found that 2-D CNNs based on spectrograms per-

formed substantially better than 1-D CNNs that use

amplitude time series following some initial preprocess-

ing, mirroring Stowell et al. (2019b). Deep neural net-

works are often motivated by an argument that they learn

salient features, rather than having to have these provided

to them, but where intermediate features (here, spectral

densities) can be provided, these speed up the learning

process and provide measurable benefits. Beyond the 2-D/

1-D distinction, we found that there was little impact on

the model performance when different configurations (i.e.

changing the number of filers or units) to small networks

were explored. Large networks with a much larger num-

ber of layers did not improve the performance and we

achieved good performance using relatively small, simple

network architectures. We used few dense layers, each

with only a small number of nodes, as these are particu-

larly parameter hungry. Our basic approach was to start

with simple architectures, evaluate them, and then add

complexity in an iterative manner.

Traditional performance metrics such as precision and

sensitivity (recall), while important, are not the only rele-

vant measures of classifier success. Practically, classifiers

such as ours can be used to point to audio segments that

possibly contain gibbon calls, and that require manual ver-

ification. Where classification accuracy lags behind that of

human experts, or where errors are costly – that is, in

many ecological applications – attention shifts from

replacing manual annotation to facilitating it. Probability

cutoffs can be calibrated to balance the costs of false posi-

tives and negatives, and, even if the model is wrong by a

few seconds, the amount of time spent in manual verifica-

tion, compared to that required to processing the entire

file manually, is minimal. Our classifier reduces an 8-h

recording to on average 22 min with false positive and

negative rates under 2%. This time can be further reduced

by playing back only those 10 s segments that are pre-

dicted to contain phrases, although in our case the reduc-

tion in overall time was offset by the difficulty of manually

verifying segments that are often not contiguous in time.

Analysis of our multi-month dataset demonstrated that

gibbons could be detected regularly across all selected sur-

vey points, with call detection consistent with known pat-

terns of gibbon behaviour and ecology. Calls were

detected at expected times (Chan et al., 2005), and our

dataset provides a more precise baseline on Hainan gib-

bon call timing and duration. Hainan gibbon calling

bouts were also generally detected less frequently during

the wet season, a period when other gibbon species are

also known to sing less frequently (Cheyne, 2008; Clink

et al., 2020). Interestingly, call bouts recorded within the

area occupied by a solitary male gibbon were among the

shortest recorded bouts, and started and finished later

than bouts from known social groups. While we cannot

exclude the possibility of detecting group calls at this

location, this finding suggests important new information

on the behavioural ecology of solitary Hainan gibbons

that may assist future monitoring and conservation

planning.
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It is uncertain whether within-recorder and between-

recorder variation in calling bout detections represents

variation in calling frequency between groups, and/or

variation in detection effectiveness by recorders, with the

latter possibility likely associated with specific recorder

placement, local terrain, specific gibbon movement pat-

terns across landscapes, and group home range size (cf.

Bryant et al., (2017)). Future work could investigate

detection likelihood in relation to specific environmental

parameters and local weather conditions (e.g. rainfall,

wind, temperature), data on which were not available for

our survey period but are known to affect calling beha-

viour in other gibbons (Coudrat et al., 2015; Yin et al.,

2016).

Where calls can be detected across multiple recording

locations, acoustic spatial capture–recapture methods pro-

vide a means of estimating animal abundance (Stevenson

et al., 2015). While our locations are too far apart for this

to be feasible, this represents an important next step in

monitoring a critically endangered population. Classifiers

capable of discriminating between groups or individuals

can be valuable inputs to this process (Augustine et al.,

2020), as well as providing insight into the behavioural

ecology of groups or individuals. We also recommend that

call detection ranges should be determined for the specific

field conditions at BNNR (e.g. slope, vegetation density),

to calibrate monitoring effectiveness of specific recorders,

and determine effective recorder placement (grid area/den-

sity) to ensure saturation of monitoring coverage. How-

ever, passive acoustic monitoring can now be introduced

as an important component of the Hainan gibbon conser-

vation toolkit, both for future use at BNNR and also to

potentially detect unknown remnant gibbon populations

elsewhere across Hainan (Turvey et al., 2017). Our classi-

fier permits rapid and potentially real-time monitoring of

Hainan gibbons, and we hope that the approach we

describe in developing this classifier can serve as a road-

map for practitioners to implement their own classifier for

other passive acoustic monitoring projects, and contribute

to the effective conservation of calling species.
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