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Phasic dopamine reinforces distinct striatal
stimulus encoding in the olfactory tubercle driving
dopaminergic reward prediction
Lars-Lennart Oettl1,5,6, Max Scheller1,6, Carla Filosa1,2,6, Sebastian Wieland1, Franziska Haag1, Cathrin Loeb1,

Daniel Durstewitz3, Roman Shusterman4, Eleonora Russo 3,6✉ & Wolfgang Kelsch 1,2,6✉

The learning of stimulus-outcome associations allows for predictions about the environment.

Ventral striatum and dopaminergic midbrain neurons form a larger network for generating

reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to

generate predictive signals in these distributed circuits have not been entirely clarified. Also,

direct evidence of the underlying interregional assembly formation and information transfer is

still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of

stimulus representations in the ventral striatum even in the absence of reward. Upon such

reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive

dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically

encode the predicted reward value of conditioned stimuli. Together, our data reveal that

ventral striatal and midbrain reward networks form a reinforcing loop to generate reward

prediction coding.
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Relevant events in the external world can be predicted
through learning of associations between stimuli and out-
comes. During stimulus–outcome learning, an initially

neutral stimulus becomes a conditioned stimulus (CS+) when
paired repeatedly with a reward as unconditioned stimulus (US).
Midbrain dopamine neurons (DAN) show transient firing
responses to US and CS+1–6. These firing responses encode the
reward prediction error (RPE) signal, which computes the mis-
match between the value of the received reward and the expected
reward. These transient firing responses of DAN elicit phasic
dopamine release that is thought to provide a reinforcement
learning signal to the ventral striatum1. RPE signals change with
learning7,8. Initially, when stimulus–outcome relationships are
uncertain, DAN mainly fire bursts at US, reflecting the positive
surprise to the obtained rewards1,9. Then, during learning, an
additional response evolves at CS+, reflecting the reward pre-
dicted by the conditioned stimulus1,9. This latter evolving signal
represents the prediction component of the RPE. Despite broad
experimental evidence of this reward prediction signal, the
mechanisms leading to its formation are still not entirely clear1.

DAN receive inputs from distributed brain networks10. In these
circuits, stimulus value is dynamically encoded by populations of
neurons with excitatory and inhibitory stimulus responses that
evolve with learning11,12. Reward prediction is represented in the
ventral striatum (VS), as shown in human imaging studies and
recordings from other species1,8,13,14. Neuronal activity in the VS is
modified when subjects learn to predict future rewards from sen-
sory cues1,14,15. VS and DAN interactions take place in a network of
reciprocal direct and indirect connections, resulting in a mutual
functional modulation. On the one hand, phasic dopamine release
to VS is critical to reinforcement learning6,16, induces synaptic
plasticity to SPN in vitro17–19, and, at the level of behavior, is
sufficient to generate conditioned responses to stimuli20–22. On the
other hand, theoretical and experimental work has suggested that
VS is an important source of the reward prediction component to
DAN4,10,14,23–27. For instance, systematic input mapping10 has
revealed that VS contains a relatively high fraction of neurons
encoding dominantly stimulus-driven expectation coding among
the regions that provide input to DAN.

The emergence of the reward prediction signals during learn-
ing should, therefore, result from the reciprocal interactions
between VS and VTA. Within this emerging concept, direct
experimental evidence is missing for two important points: It is
not entirely clear whether phasic dopamine (pDA) release is
sufficient to induce plasticity in the encoding of stimuli in VS of
awake animals and through which network modifications this
plasticity is achieved. Moreover, direct evidence of the coordi-
nated inter-areal activity is missing for the directional informa-
tion transfer mediating the learned stimulus–outcome association
from striatal projection neurons (SPN) to DAN.

VS is composed of the olfactory tubercle (OTu) and nucleus
accumbens. The OTu provides the main direct access of olfactory
information and also input from other sensory modalities to the
limbic reward system28,29 and shares functions in stimulus–
outcome learning with nucleus accumbens22,28,30. The OTu of VS
is therefore of particular interest to understand the interaction of
striatal networks with VTA in generating reward prediction sig-
nals from sensory cues. We tested in awake animals first whether,
in the absence of physical rewards, optogenetically evoked pDA
release is sufficient to induce selective plasticity in SPN of
the OTu. Second, we tested whether, during the formation of
stimulus–outcome associations, the evolving CS+ representations
in OTu may generate a prediction signal that leads DAN firing.
For this latter aim, we examined the dynamics of interregional
assemblies from dual-site VS–VTA recordings of a within-session
reversal learning task.

Results
Phasic dopamine induces plasticity to striatal odor responses.
In behavioral tasks, it is difficult to isolate the direct effects of DA
on the neuronal representation of stimuli. First, it cannot be
disentangled whether changes in stimulus encoding are deter-
mined by direct effects of DA on the striatal network or rather by
task-related motivational states and preparation for reward
retrieval. Second, the manipulation of DA release changes beha-
vior. Behavioral changes impact neuronal coding. It is therefore
difficult in tasks involving animal behavior to disentangle indirect
DA effects from those directly induced by DA in the target circuit.
To examine the effects of pDA on sensory representations in the
ventral striatal OTu, we designed a paradigm where pDA release
is decoupled from reward retrieval in awake mice.

We recorded single units from the OTu (Fig. 1a, Supplemen-
tary Fig. 1a-b) with a custom-designed light-weight tetrode array
that was chronically implanted and allowed for recordings with
up to 128 channels (Supplementary Fig. 1c-f). Sniffing activity
was continuously monitored (Fig. 1a). Release of pDA was evoked
through fiber optics placed bilaterally above OTu in DAT:Cre
mice that were injected with a Cre-dependent AAV and expressed
ChR2 selectively in DAN (DATChR2) (Supplementary Fig. 2a).
Animals with selective expression of YFP in DAN served as a
control cohort (DATYFP). DATYFP mice were also implanted
with optic fibers above OTu to control for intracranial heating
effects.

We designed a protocol consisting of three phases (Fig. 1b).
Brief 0.5 s bouts of two natural flower odors were applied
throughout all phases in a pseudorandomized order. After
sampling odor responses in a ‘pre’ phase, one of the two odors
was paired with a brief burst of optogenetic excitation of
dopaminergic terminals in the ventral striatal OTu (12 pulses at
40 Hz) (‘pairing’ phase); then a ‘post’ phase followed to track the
further evolution of odor responses after evoked pDA. We will
refer to these two odors as ‘paired’ and ‘non-paired’ odors,
respectively. Except for the pairing phase of the paired odor, all
odor presentations were combined with a sham laser light of the
same wavelength and intensities above the animals’ head to
account for visual stimulation effects (12 pulses at 40 Hz). It is
important to note that mice never experienced reward following
stimulus presentation, neither prior to the experiment, nor
during it.

We recorded a total of 195 single units in 6 DATYFP mice and
198 units in 6 DATChR2 mice. Among them, only units with a
baseline firing rate <5 Hz were considered SPN (Supplementary
Fig. 2b). We analyzed only units with stable odor responses
throughout the ‘pre’ phase. SPN displayed inhibitory or excitatory
responses to the odors. The time to peak odor response varied
among SPN between 0 to 1 s (Supplementary Fig. 2c).

To examine pDA-induced plasticity, we computed the distance
from baseline of the population vector during the ‘pre’ and ‘post’
phases. Distances were computed both with a cosine and a
Euclidean metric to account for differences in angle and rate in
the population activity. This approach is sensitive to small
changes in rate, if coherent throughout the population, and sums
the contribution of both excitatory and inhibitory responses. In
DATYFP mice, no change was observed from ‘pre’ to ‘post’ for
either odor response (Fig. 1c, Supplementary Fig. 2d). In
DATChR2 mice, the deflection from baseline increased selectively
in response to the paired odor; while it remained unchanged for
the non-paired odor (Fig. 1d, Supplementary Fig. 2d). Thus, the
enhanced deflection from baseline corresponded to a selective
change in SPN responses to the paired stimulus. In fact, the
change in odor response from the ‘pre’ to ‘post’ phase exceeded
the trial-by-trial variability within the ‘pre’ phase only for the
paired odor in DATChR2 mice (Fig. 1e, f, Supplementary Fig. 2e).
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The selective plasticity of the paired odor response was also
confirmed when neuronal activity was aligned to the onset of the
first inhalation after stimulus onset (Supplementary Fig. 2f). SPN
displayed relatively long firing rate increases over multiple sniff
cycles to even short odor presentations (cf. Fig. 1). These net
firing rate increases were not correlated to the sniff frequency in
DATYFP mice (data not shown). Further, population vectors were
obtained by concatenating units across sessions with maintained
trial order. We excluded that the specific order of trial
concatenation across sessions influenced our results by repeating
all main analyses with 300 random permutations of cross-session

trial matching (see Supplementary Material and Supplementary
Fig. 3a-d).

At the single-unit level, we observed plasticity only for
excitatory responses in DATChR2 mice (Fig. 1g, h). After the
pairing phase, this subset increased its firing response to the
paired odor, while no change occurred in response to the non-
paired odor. Inhibitory stimulus responses remained unchanged
in DATChR2 mice and no changes were observed for responses in
DATYFP mice (Supplementary Fig. 3e,f). The effects of pDA
stimulation on population and single-unit odor responses
persisted without further stimulation for at least 20 min (‘post’
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Fig. 1 Phasic DA modifies striatal population encoding selectively of the paired odor. a Two odors were applied for 0.5 s in pseudorandomized order to
head-fixed DATChR2 or DATYFP mice. b During the ‘pairing’ phase, one odor was paired transiently with brief laser trains delivered to the recording site in
the OTu to evoke phasic DA (pDA) release. c, d Cosine distance from baseline of the of the population vector for the two odors during the ‘pre’ and ‘post’
phases (displayed mean ± S.E.). Phasic DA pairing enhanced exclusively the paired odor response of (d) DATChR2, but not (c) DATYFP mice (two-sided
t-test, asterisks mark significance at α= 0.05 with Benjamini–Hochberg correction). DATYFP: n= 10 trial-averages of three trials, respectively, for both ‘pre’
and ‘post’; DATChR2: n= 8/10 trial-averages of three trials, respectively, for ‘pre’/‘post’. e, f Distribution of cosine distances between response vectors
within the ‘pre’ phase (black) and between the ‘pre’ and ‘post’ phase (red). Only the response to the paired odor of (f) DATChR2 mice changed after pDA
pairing (three-way ANOVA; factors: cohort, phase, odor; interaction effect: F(1,498)= 8.0, p= 0.005; post hoc tests indicated, Tukey’s correction).
g Example of the normalized peri-stimulus histograms (PSTH) for excitatory odor responses of 3 SPN in DATChR2 mice for ‘pre’ and ‘post’ phases. h Mean
PSTH ± S.E. of SPN with excitatory responses to the paired (left) and non-paired (right) odor in DATChR2 mice (two-sided paired Wilcoxon signed-rank test
of the averaged time bin from 0 to 1 s) (see also Supplementary Fig. 3e,f). Source data are provided as a Source data file. See also Supplementary Figs. 1–3.
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phase). In summary, pDA evoked plasticity selectively in the
subpopulation with excitatory response to paired sensory objects.

Phasic dopamine increases discriminability of odor encoding.
Such pDA-induced plasticity may render the representation of the
paired odor more distinct from other stimuli. Indeed, the distance
between the two odor representations increased after pairing in
DATChR2, but not in DATYFP mice (Fig. 2a, Supplementary Fig. 4).
To explicitly test whether this effect enhanced discriminability
between the two odor representations, we performed a quadratic
discriminant analysis on the population vectors of the paired and
non-paired odor responses during the ‘pre’ and ‘post’ phases. We
found that in DATChR2 mice, the accuracy of the classifier
improved after pDA pairing (Fig. 2b). No change occurred instead
in DATYFP mice (Fig. 2b). In line, the plasticity elicited by pDA
pairing altered selectively the evolution of the population trajectory
of the paired odor response (Fig. 2c). Such deflection had the effect
of both increasing the odor response, by increasing its deviation
from the resting condition (Fig. 2c) and setting it apart from the
representation of other odors (Fig. 2d). We asked, then, whether
this enhanced discriminability also increased perceived stimulus
salience. We used the sniffing frequency as proxy for the perceived
salience of the stimuli31,32 and found that sniff frequency increased
selectively for the paired odor after evoked pDA release in DATChR2

mice (Fig. 2e, Supplementary Fig. 5). In summary, pDA was suf-
ficient to induce plasticity to make natural odor stimuli more salient
over others, both in their neuronal representations and perception.

Value assignment to striatal encoding during learning. In the
next step, we tested whether the plasticity observed in SPN by
evoked pDA release matched changes in stimulus representations
in these neurons during stimulus-reward learning, and whether
the plasticity in the stimulus responses in SPN may generate a
reward prediction signal driving DAN during association

learning. We examined this question in an odor-guided reversal
learning go/no-go task and recorded simultaneously from the
OTu and VTA (Fig. 3a, Supplementary Fig. 6a). During record-
ings, mice learned to lick during the rewarded odor and not to
lick during the non-rewarded one. Once the animal reached
criterion (80% correct responses over 50 trials), reward con-
tingencies were reversed within the same session and the new
association was learned (Fig. 3b, Supplementary Fig. 6b).

To assess plasticity in CS representations before the onset of
reward, odors were presented for 3 s and the reward could only be
released by licking three times 1.5 s after odor onset. Under this
specific condition, 28 out of 75 recorded units had features of
putative SPN and many responded to CS (Supplementary Fig. 7a-c).
To study the effect of learning on odor encoding, we compared the
neuronal responses of SPN in the first 12 trials of the session when
animals were unsure about the association of odor and reward, with
the last 12 trials when animals had reached criterion (Fig. 3b). The
SPN population vector analysis revealed that the neuronal
representation to CS+ became more distinct from baseline when
animals learned to assign value to the stimulus, while no changes
occurred in response to CS− (Fig. 3c, d, Supplementary Fig. 7d). At
the single-unit level, excitatory responses to CS+ increased (Fig. 3e).
Moreover, as predicted, the population vectors of the responses to
the rewarded odor and those to the non-rewarded odor became
more dissimilar after learning (Fig. 3f, Supplementary Fig. 7e,f).
During the reversal phase, a similar effect was observed (Fig. 3f,
Supplementary Fig. 7g). Re-learning of odor-reward associations
increased the odor response to the now rewarded odor, while
slightly decreasing the response to the non-rewarded one
(Supplementary Fig. 7h,i).

SPN lead DAN in interregional assemblies. The plasticity
observed during association learning matched the pDA-induced
plasticity. During stimulus–outcome learning, SPN responses to
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CS+ increased and moved away from the responses to CS−. We
therefore tested whether this enhanced network response to CS+
may generate a reward prediction signal conveyed from SPN to
DAN. To this aim, we recorded 878 additional units from 68
different sessions. To make sure that the obtained results did not
depend on a specific task setting, sessions were performed with
longer and shorter stimulus presentations (1–3 s) and delays of
the retrieval window (0.75–1.5 s) (see Methods). DAN were
classified according to previously established criteria5 on the basis
of their transient reward and stimulus responses (see Methods)
and confirmed by optogenetics-assisted tagging in these animals
(Fig. 4a, b, Supplementary Fig. 8).

To study the formation of functional assemblies in the
VS–VTA circuit, we used a cell assembly detection algorithm
(CADopti, see Supplementary Information) that enables the
identification of arbitrary spike activity patterns that repeat above
chance level (hereafter termed ‘assembly activation’). Both the
time lags l between the activation of assembly units and the
precision Δ of their coordination are free parameters estimated
from the experimental data (Fig. 4c). Importantly, the method
automatically corrects for non-stationarities at multiple time
scales typical of learning paradigms.

The analysis of assembly-pairs revealed that SPN and DAN
formed functional assemblies at two main time scales: a sharper
one that peaked around 100 ms and a broader one, with firing
rate coordination at or above 600 ms (Fig. 4d). We further
analyzed only assemblies with temporal precision smaller than
250 ms as compatible with reward prediction signaling. The
distribution of the time lags between the activation of the
two assembly units peaked at a lag of 200 ms (Fig. 4e). The lag
was directional with SPN leading DAN. This directionality was
confirmed and even more pronounced when testing only
assemblies with optogenetically tagged DAN (Fig. 4f). Interest-
ingly, assemblies composed of other putative striatal and VTA cell

types than SPN and DAN, did not display a preferential
directionality (Fig. 4g). Thus, during the learning paradigm
directional SPN–DAN assemblies are in a position to transfer
information from VS to VTA.

SPN–DAN assemblies emerge with stimulus–outcome learn-
ing. The hypothesis that SPN–DAN directional assemblies
encode reward prediction signals comes with two predictions:
First, SPN–DAN assemblies activate preferentially to CS+ com-
pared with CS−; second, SPN–DAN assembly activation emerges
during learning of the stimulus–outcome association.

To test for these predictions, we analyzed the assembly
activation during the task. Most SPN–DAN assemblies displayed
significantly more stimulus-related activation during CS+
triggered hit trials than CS− triggered correct rejection trials
(Supplementary Fig. 9a,b). To capture the evolution of such
activation, we compared the assembly activity during the initial 12
and the last 12 trials of the learning of specific stimulus–outcome
pairs (Fig. 5a). While no change was observed for CS− trials, the
activity of SPN–DAN assemblies significantly increased for CS+
trials in both the original and reversal phase (Fig. 5a–c,
Supplementary Fig. 9c-f). In addition, in the reversal phase,
responses to the now non-rewarded odor tended to decrease
(Supplementary Fig. 9c,d). Thus, the selective activation to CS+
compared to CS− evolved only when animals learned the
stimulus–outcome association (Supplementary Fig. 9e,f). We also
tested whether these assemblies would occur with different
durations of the stimulus presentations (1, 1.5, or 3 s) or delays to
the onset of the retrieval window (0.75 or 1.5 s). Directional
SPN–DAN assemblies occurred robustly with comparable like-
lihoods in all sessions (Supplementary Fig. 9g-h). In the assembly
analyses, we therefore pooled sessions with different odor
durations and reward delays.
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SPN–DAN assembly activity represents learned stimulus value.
The emerging selective activation to CS+ during learning is in line
with SPN–DAN assemblies encoding the subjective value assigned
to the stimulus. To further prove this hypothesis, we explicitly
tested if the activity of these assemblies correlated with the value
VCS+(t) assigned by the animal to CS+ at each trial. Value updates
were tracked by a reinforcement learning model fit on the beha-
vioral data of each animal. The model generalized a Q-learning
model33 with a hybrid Rescorla–Wagner rule and Pearce–Hall
update mechanism34–36 by adding a time-dependent forgetting
component37, and was selected among three alternative models for
its best fit of the behavioral data (for discussion of the model and
model selection see Methods and Supplementary Fig. 10a). The
value VCS+(t) assigned to the conditioned stimulus at each trial
was regressed on the activity of the assemblies during the first 0.7 s
from CS+ onset (see Methods). As predicted, SPN–DAN
assembly activity correlated positively with VCS+ (Fig. 5d). Again,
the relative occurrence of assemblies significant for VCS+ did
not depend on the duration of the odor presentation or on

the delay time to the reward retrieval window (Supplementary
Fig. 10b). Further, as expected, the representation of CS+ changed
during learning both in SPN and DAN composing the assemblies
significant for VCS+ (Fig. 5e and Supplementary Fig. 10c,d). While
learning increased significantly CS+ responses in SPN partici-
pating in directional assemblies, this plasticity was only weakly
expressed in the population of SPN with excitatory responses to
CS+ that did not participate in directional assemblies (Supple-
mentary Fig. 10e-g). SPN with inhibitory responses to CS+ did
not change with learning. Together this may suggest some func-
tional specialization of the assembly-forming SPN within VS. In
summary, we observed that during stimulus–outcome learning,
the firing of SPN to CS+ is reinforced to inform DAN in inter-
regional assemblies about the predicted reward.

We finally examined whether the interregional activity is
compatible with a model in which DA could reinforce the
response to CS+ in SPN during initial trials of the association
learning. During initial trials of association learning, pDA is
prominently elicited at US and predicted to function as a
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reinforcement signal in OTu of the VS1,16. SPN responses to
stimuli were relatively long and lasted often until US (cf. Fig. 3).
Indeed, SPN in assemblies with excitatory responses at CS+
showed also preferentially excitatory responses at US in the initial
trials (Supplementary Fig. 11). It is, therefore, possible that pDA
release at US could serve as initial reinforcement signal to enhance
responses to CS+ in SPN and thereby initiates the formation of
the reward prediction signal. Consistent with this scenario, SPN
with excitatory responses at US in initial trials also displayed the
most pronounced plasticity at CS+ (Fig. 5f, g). These observations
support the concept that the initial reinforcement of CS+ in VS
are at least in part mediated by DA release at US.

Discussion
The present study investigates the plasticity in SPN–DAN inter-
actions for the encoding of stimulus-triggered reward prediction

signals. Behaviorally, the reinforcement of conditioned stimuli
depends on phasic DA. As a neuronal correlate, we demonstrate
that phasic DA is sufficient to induce plasticity in the SPN
population encoding the paired odorant even in the absence of
reward. At the level of single-unit responses, pairing with phasic
DA increased the intensity of excitatory stimulus responses in
SPN, a modification that is compatible with DA-induced synaptic
plasticity of SPN in vitro17–19. Specifically, in a recent study in
acute slice preparations of the adult OTu, SPN displayed post-
synaptic potentiation upon pairing with phasic DAN stimulation
and consequently an increased firing output to olfactory input
stimulation19. The plasticity induced by optogenetic DAN sti-
mulation was blocked by D1 receptor type antagonists. Further,
pharmacologic D1 receptor activation was sufficient to induce
plasticity. Thus, DA is necessary and sufficient to induce plasticity
in olfactory input synapses of SPN. Besides dopamine, DAN also
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co-release the fast neurotransmitter glutamate to OTu and
thereby modify firing of striatal cholinergic interneurons38.
Future studies may clarify whether such fast co-release from DAN
may potentially further promote SPN plasticity.

At the population level, the plasticity pushed the network
representation of the paired stimulus to stand out both from the
resting state activity and from other odor representations. Such
modifications were selective to the odor paired with phasic DA;
hence, leaving the responses to other non-paired odors unchan-
ged. Compatible with the concept that VS encodes the value of
stimuli13,24,39–41, the decoding of stimulus representations
increased after pairing with phasic DA. This increased distinct-
ness of stimulus representation was also reflected in the perceived
salience of the stimulus paired with phasic DA. In line with
selective stimulus reinforcement, only the paired stimulus dis-
played a sustained increased sniffing response indicating a
heightened perceived salience. Together, these findings provide a
neuronal plasticity correlate of the previous behavioral observa-
tions that phasic DA release to both the nucleus accumbens or the
olfactory tubercle of the VS transforms neutral stimuli into
conditioned ones and elicits behavioral preference20,22. The pre-
sent findings also reveal a central function of the olfactory
tubercle among the specialized circuits of the ventral striatum in
transforming external world stimuli into reward prediction
signals.

Remarkably, while the observed plasticity in VS was exclusively
the result of the stimulation of DAN terminals, a similar selective
reinforcement of SPN stimulus representations was also observed
for the rewarded stimulus during stimulus–outcome learning.
This latter finding matches other recent observations that pairing
with reward enhanced odor responses in SPN of the OTu42 and
their immediate early gene expression43; taken together these
results highlight the role of the OTu as a region in the VS where
sensory input is transformed into expected value signals to guide
behavior. Phasic DA-release occurs at unexpected rewards as a
positive salience signal1,44. Thus, during the initial trials of
stimulus–outcome learning, SPN representations of CS+ could be
reinforced by DA bursts released at US. Indeed, SPN active at US
in the initial trials were also those with higher plasticity in their
CS+ responses. It is certainly possible that additional phasic DA
signals, for instance those evoked by stimulus novelty, may
contribute as well to VS plasticity. Future studies designed to
disentangle the respective contributions of DA signals at CS and
US may detail this question.

Based on the dopaminergic reinforcement of stimulus repre-
sentations in VS, we investigated whether these enhanced
representations of CS+ could drive VTA firing for the encoding
of reward predictive signals. VS has been proposed to influence
dopaminergic discharge in reinforcement learning35,45. VS sends
outputs to VTA10,46,47 that will subsequently activate DAN and
elicit stimulus-locked conditioned behavior25. To directly exam-
ine physiological interregional VS–VTA interactions in dynamic
reinforcement learning, we performed simultaneous dual-site
recordings from VS and VTA. We had therefore designed a dual-
site recording array adapted to the anatomical geometry. Inter-
regional assemblies between SPN and DAN were then identified
through CADopti, a further development of the unsupervised
mining technique CAD for the detection of assembly activa-
tions48. CADopti could reveal even sparse spiking patterns as in
SPN–DAN assemblies, owing to the implemented non-
stationarity correction. Characteristics of SPN–DAN assemblies
were estimated from the data. These characteristics fulfilled cri-
teria to communicate reward predicting stimulus signals from VS
to VTA. First, the temporal precision and the delay in activation
after stimulus onset matched the valuation component of reward
prediction signals1,9. Second, the assemblies were directional with

SPN activation leading DAN firing. Within the assembly activa-
tion, SPN and DAN had a lag of about 100–200 ms. As SPN are
inhibitory neurons, DAN activation by SPN firing is thought to
be mediated predominantly through disinhibition via inter-
mingled GABAergic neurons in VTA or ventral pallidum46,47,49.
In principle, direct inhibitory inputs can also elicit rebound
bursting with a delay in DAN. Yet, subsets of SPN in nucleus
accumbens that project directly onto DAN10,49, inhibited DAN
firing, but did not elicit bursts49. The subset of SPN found in
nucleus accumbens directly inhibiting DAN suppress behavior,
while the SPN evoking DAN firing through disinhibition promote
reward-related behaviors49. In the OTu, SPN in directional
assemblies drove firing in DAN with a lag compatible with di-
synaptic disinhibition or, less likely, transient monosynaptic
inhibition followed by rebound bursting.

In line with directional SPN–DAN assemblies conveying the
information of predicted reward from CS+, assembly activity
developed during stimulus–outcome learning. We captured the
dynamics of learning with a reinforcement learning model fit to
the animals’ behavioral choices. SPN–DAN assembly activation
correlated positively with the evolution of the value associated by
the animal to CS+. Timing, amount and probability of reward are
known to all add to the subjective value of a stimulus26,50. Future
studies may dissect further whether SPN–DAN assemblies encode
multiple or single factors contributing to the subjective value.

In summary, our data provide evidence for a model favoring a
central role of VS in reinforcement learning, whose bidirectional
communication with VTA computes the prediction component
of the RPE. As a novel stimulus is paired with an unexpected
reward, DAN fire bursts at US. As a consequence, pDA is released
in the VS, reinforcing those SPN that responded to sensory sti-
muli and are still active during US. As learning progresses, the
strengthened SPN response to CS+ gradually drives the firing of
DAN to CS+, to encode the reward prediction component of the
RPE. These SPN-recruited DAN, then, release DA back to VS that
is suited to maintain reward prediction responses as long as the
stimulus–outcome association exists. These reinforcement pro-
cesses in the VS–VTA loop for predictive value assignment may
be crucial to functional and dysfunctional social behaviors51,52

and for the development of mental disorders as drug addiction53

and psychoses54.

Methods
Animals and husbandry. DAT:(IRES)Cre mice (B6.SJL-Slc6a3tm1.1(cre)Bkmn/J;
RRID: IMSR_JAX:006660)55 were maintained in a heterozygous C57BL/6J
(Charles-River) background. For the optogenetic tagging in mice performing the
reversal learning task, we crossed DAT:(IRES)Cre+ with Ai32(RCL-ChR2(H134R)/
EYFP) mice (B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J)56 to obtain
heterozygous mice for both alleles expressing ChR2-YFP in DAN. Expression of
ChR2:YFP fluorescence was restricted to DAN (not shown). Mice were single
housed upon implantation of the recording array at a 12-h day-and-night cycle
(room temperature ~24 °C, air humidity 45–50%). Recordings were performed
with male mice that were 3–6 months old. All procedures were approved by the
Regierungspräsidium Karlsruhe, State of Baden-Wuerttemberg, Germany and in
accordance with NIH guidelines.

Virus preparation. To generate cell-type specific expression of ChR2, we injected a
Cre-inducible recombinant adeno-associated virus (AAV) vector rAAV1/2-double
floxed(DIOA)-EF1a-hChR2(H134R):mCherry-WPRE-HGHpA (RRID:
Addgene_20297)57 into heterozygous DAT:Cre mice. For control experiments,
DAT:Cre mice were injected with a rAAV1/2-DIOA-EF1a-eYFP virus (RRID:
Addgene_27056). Cre-inducible recombinant AAV vectors were produced in-
house using CRL-11268 293T/17 HEK cells (ATCC LOT:62312975) with AAV1/2
coat proteins (plasmids gift of M. Klugmann) to a final viral concentration of 1016

genome copies/ml after purification over heparin columns (GE HiTrap Heparin
HP columns). DAT:Cre positive mice 8 weeks of age were anesthetized with iso-
flurane; and 0.75 µl of purified virus was injected into each hemisphere of the
ventral midbrain (location from Bregma: posterior, 3.0 mm; lateral, 0.8 mm; ven-
tral, 4.4 mm). All mice recovered for at least 21 days before undergoing implan-
tation of the recording array. Expression was confirmed in post hoc histological
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exam. Selectivity of viral overexpression to TH positive ventral midbrain neurons
had been previously determined19 and was confirmed in the present cohort (not
shown), generating mice with ChR2:mCherry expression in dopaminergic neurons
(DATChR2 mice) or control mice (DATYFP).

Recording array. For the recordings during reversal learning, the OTu and VTA
were targeted unilaterally with 16–20 tetrodes per array and for the DA plasticity
experiment each array contained up to 32 tetrodes. Given the depth of the target
structures (>5 mm) and curvature of the OTu (Supplementary Fig. 1b), we
developed an array to address these challenges with a flexible design adaptable for
single- or multi-site configurations (Supplementary Fig. 1c-f). The design exploits
the high precision of printed circuit boards (PCB) (±10 µm, Würth Electronics) to
achieve accurate x–y placement of the guiding channels for tetrodes (spun from
12.5 µm teflon-coated tungsten wire, California Fine Wire) and optical fibers
(Thorlabs FT-200-EMT). As a building scaffold, six identical PCBs were stacked
precisely on top of each other via 26-gauge steel tubing threaded through four holes
placed peripherally. This allowed for an easy placement and parallel alignment of
multiple recording electrodes (and optical fibers) in the guiding channels formed
by the aligned holes. An identical PCB was stacked on top of the scaffold and
equipped with a soldered-on Molex SlimStack connector (mated height: 1 mm,
pitch: 0.4 mm, 70 channels, model n. 502426-7030), providing the implanted
electrode interface board (EIB). For our application, the board was placed above a
molding of the rostro-ventral brain surface, so tetrodes and an optical fiber mat-
ched the bowl-shaped 3D-curvature of the OTu. The tetrodes were then fixed in
place with a drop of acrylic adhesive. The single wires were connected by threading
them through 200 µm through-hole vias to achieve reliable mechanical and elec-
trical contacts with the EIB. To protect them from damage, they were encased in
two-component epoxy. After assembly of the recording arrays, tetrode tips were
gold-plated with a NanoZ-device (Multichannelsystems) to target an electrode
impedance of 300 kOhm at 1 kHz. To connect to the Intan RHD2164 head stage
during recordings, a custom-built adapter from the Molex SlimStack connector to
two 36 Omnetics Nano Strip connectors was used.

Implantation of recording array. Mice were anesthetized with isoflurane and pre-
and post-surgery analgesia was administered. A roughly circular patch of skin
above the skull was removed. Local anesthesia was applied to the skull. The lateral
and nuchal muscle insertions were left intact. The operative field was then prepared
by attaching the margins of the skin to the circumference of the top of the skull
with VetBond (3 M), to protect soft tissue from damage, contamination or necrosis,
and leaving only the surface of the skull exposed. Holes were drilled in the skull
above the regions where tetrodes and fiber optics were inserted and for grounding
above cerebellum. The skull was then coated with Super-Bond C&B (Sun Medical)
following insertion of a small Neuralynx gold pin as ground connected to the
recording array through an insulated copper wire. The tetrode array was slowly
lowered into the brain with a motorized 3-axes micromanipulator (Luigs & Neu-
mann). The center of the tetrode bundle was targeted from Bregma for the OTu:
anterior 1.6 mm, lateral 1.3 mm, and ventral 4.9 mm from dorsal brain surface, and
for VTA: posterior, 3.1 mm lateral, 0.5 mm, and ventral, 4.4 mm from dorsal brain
surface. After reaching target depth, dental cement (Kulzer Palladur) was applied at
the margins of the recording array so that gravity and capillary force ensured
complete filling of the narrow gap between the bottom of the array and the
adhesive-coated skull. After the cement hardened, animals recovered in their home
cage. The entire surgical procedure took ~1 h. Animals were normally fit and eating
after <30 min.

After completion of the recordings, animals were euthanized and perfused with
4% PFA and postfixed for at least 2 weeks in toto comprising the brain, skull, and
implant. Sectioning confirmed rostrocaudal and mediolateral placement in the
borders of the OT and VTA (Supplementary Figs. 1a,b and 6a). Due to low levels of
scar formation and microglia activation with the tetrode array, we could not
reliably detect tetrode tracts in histological sections with Nissl stain or
immunohistochemistry against glial proteins (not shown).

Recording configurations. After recovery, the mice were placed in the head-fixed
setup. The first few sessions were brief (5–20 min) and served to habituate the
animals to head fixation in the setup. Mice accommodated typically after
2–3 sessions to head fixation. Then, odor sessions started. For odor delivery, a
custom-built air-dilution olfactometer was used (Shusterman et al.58). Odors
were kept in liquid phase (diluted 1:100 in mineral oil) in dark vials and mixed into
the nitrogen stream that was further diluted 1:10 into a constant air stream in the
olfactometer. The following natural flower odors were used in the dopamine
plasticity experiments: geranium and ylang-ylang (Sigma-Aldrich W250813 and
W311936, respect.). The two odors at the chosen concentration evoked in
recordings from the OTu comparable responses. Odors were delivered in a pseudo-
randomised order. Odors were applied for 500 ms with an inter-trial interval of
10 s. Recordings were performed with two Intan 64 channel RHD2164 miniature
amplifier boards connected to a RHD2000 interface board and open-source Intan
interface software. Inputs from the laser, olfactometer and sniff sensor were
simultaneously recorded with the same interface board, as were reward application

and licking activity (via an infra-red beam break sensor positioned in front of the
licking spout, Omron Electronics EE-SX3009-P1). Data were sampled at 30 kHz.

Sniff recording. To monitor the sniff signal, we used a custom-built snout mask
that was gently pressed against the snout to generate a cavity in the mask in which
pressure fluctuations were continuously measured through a HDI pressure sensor
HDIM020GBY8H3 from First Sensor Inc. connected to the analog input of the
Intan RHD2000 interface board. The mask was modified based on the original
design of Dmitry Rinberg. The influx of odorized air into the cavity of the mask
was calibrated to the outflow through continuously measured vacuum. The mask
allowed for measurement of the breathing cycle as the system was calibrated to
keep the (odorized) air inflow constant relative to the outflow. The animals quickly
adapted and tolerated the pressure mask.

The sniff signal was converted and analyzed with custom-written MATLAB
scripts using a 1–50 Hz band pass filter. For monitoring changes in the sniff
frequency, we analyzed the duration of two full sniff cycles before and after odor
onset. Averages were formed for each recording the ‘pre’ and ‘post’ phase of each
recording session. Throughout the experiment, the baseline sniff frequency
remained constant (Supplementary Fig. 5a,b). An initial small increase in response
to the odor presentation habituated over the duration of the recording session in
DATYFP mice (Fig. 2e).

For sniff aligned data, trials were aligned to the first onset of inhalation after
odor presentation. The results in SPN for DA-induced plasticity were also observed
after sniff alignment (Supplementary Fig. 2f).

Optogenetic plasticity experiments. Awake head-fixed mice were habituated to
the recording setup for at least a week to minimize distress and movement artifacts.
To obtain efficient DA release, we used viral overexpression of ChR2 in DAN that
we had found to produce sharp DA-release transient in OTu upon stimulation with
brief laser bursts38. The plasticity experiments involving evoked phasic DA release
followed a design with three phases: Two odors were applied in a pseudor-
andomized fashion for 500 ms with an inter-trial interval of 10 s. In each phase no
odor was consecutively applied more than three times in a row. We initially
pseudo-randomly varied the number of trials per phase around 30. In later
experiments we consistently used 40 trials in the first phase (the first 10 were
omitted for the analysis), 30 trials in the second phase and 30 trials in the third
phase. A further extension of the third phase was not possible in our experimental
conditions as in sessions longer than 50 min in total, mice became frequently
drowsy and neuronal baseline firing rates changed globally (data not shown). The
odor responses before pairing with evoked DA release were recorded in the ‘pre’
phase, followed by a ‘pairing’ phase during which one of the two odors was paired
with a train of 5 ms laser pulses at 40 Hz for 300 ms starting simultaneously with
onset of the odor application. TTL-driven laser pulses (5 ms duration, 2–5 mW at
fiber tip) were delivered from 200 µm multimode optical fibers (Thorlabs) coupled
to a 25 mW, 473 nm, diode-pumped solid-state laser. One of the two odors was
paired with pDA per session. In the same animal, we repeated the experiment after
a week with pairing to the other odor. Data were then pooled for further analyses.
To then monitor changes in responses, odors were continued to be applied in the
‘post’ phase. Usually two sessions were performed in each DATChR2 or control
DATYFP mouse, and the odor that was paired with the ‘pairing’ laser, was switched
from session to session. A second laser provided ‘sham’ stimulation above the head
of the animal with the same intensity and frequency in all other trials, except when
the ‘pairing’ laser was on. In addition, blue light illumination was constantly
provided in the recording chamber.

Behavioral conditioning in the go/no-go task. We trained the animals in the
head-fixed setup described above. Mice received water in their home cage so that
their body weight stabilized at 85% of baseline body weight. The training com-
prised multiple stages and progressed after reaching a performance criterion
defined as at least 80% correct responses in 50 consecutive trials. Trials were
considered correct if either at a ‘go’-response the reward was retrieved, by licking at
least three times within a fixed window of time (‘retrieval window’), or at a ‘no-go’-
response no licking was detected during the retrieval window. In the initial ses-
sions, the animals’ licking behavior was shaped by first presenting them with a drop
of water and subsequently letting them obtain more water when they licked at the
licking spout (available in a random interval schedule, 0.5–12 s). Stage 1: A single
odor (1.5 s stimulus duration) was presented. Animals could obtain a 5-µl drop of
water if they licked at least three times during a window from 0 to 2.5 s after odor
onset (retrieval window), this was considered a ‘go’-response. The interval between
trials was randomly set at 10 ± 2 s in all stages. Stage 2 (‘discrimination’) consisted
of two odors in pseudo-random succession (no more than three consecutive trials
with the same stimulus). One odor (1.5 s duration) was rewarded as in stage 1
(retrieval window: 0.5–2.5 s), while a ‘go’-response for the second odor was
registered as a false alarm. No punishment was used. Stage 3 (‘reversal learning’)
used the same parameters as stage 2, but upon reaching the performance criterion
(in the ‘original phase’), the reward contingency of the odors was switched
(‘reversal phase’). The dataset used in this study comprises recordings from
completed sessions (original and reversal phase) for different paradigm settings.
We varied the settings between sessions for the onset of the retrieval window (‘Rw’:
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0.75 and 1.5 s) and in the length of stimulus presentation (‘Sp’: 1, 1.5, and 3 s). Only
sessions in which the animal reached criterion in the original phase were included
in the analysis. Seventy-eight sessions in 11 animals were included in the assembly
analysis comprising 1012 single units, of which 413 were classified as SPN and 116
as DAN. Forty-three sessions were performed with Rw= 0.75 s, Sp= 1.5 s;
25 sessions with Rw= 1.5 s, Sp= 1 s; and 10 sessions with Rw= 1.5 s, Sp= 3 s.

Data pre-processing: spike detection. To reduce noise and movement artifacts
affecting all recording sites, we subtracted the median voltage trace of all channels
from each recorded trace. The resulting signal was band pass filtered between 300
and 5000 Hz (4th order Butterworth filter, built-in MATLAB function). A
threshold value for spikes was computed as a multiple (7.5×) of the median
absolute deviation of the filtered signal59. Temporally proximal detected peaks over
threshold were pruned by height to a minimum distance of 1 ms to avoid multiple
detections of the same multiphasic spike. When an event was detected on multiple
channels of a tetrode, the timestamp of the highest detected peak was used. Spike
waveforms were extracted around −10 to +21 sampling points around the peak.

Data pre-processing: spike sorting. Spike sorting was done with a custom-built
graphical user interface in MATLAB, originally developed by A. Koulakov (CSHL).
Metrics used for clustering included detected peak height or amplitude (and the
respective principal components over channels), and the first three principal
components of the waveforms for each respective channel in case spikes were
predominantly recorded on one channel. The quality of single-unit clusters was
assessed using the mlib toolbox by Maik Stüttgen (Vs. 6, https://de.mathworks.
com/matlabcentral/fileexchange/37339-mlib-toolbox-for-analyzing-spike-data)
with particular attention to peak height distribution (fraction of lost spikes due to
detection threshold), contamination (fraction of spikes during the refractory period
<5 ms) and waveform variance.

Selection criteria for putative SPN. SPN are strongly modulated in their activity
patterns by the state of the animal60. To account for the state dependent activity of
SPN and facilitate comparison with existing literature, we used separate classifi-
cation criteria previously established for recordings of SPN in passive
paradigms46,61 and from active animals performing a task62,63. In the awake,
passive experiments with evoked pDA, units with <5 Hz baseline firing rate were
classified as SPN (Supplementary Fig. 2b) based on features of optogenetically
identified SPN46. To perform the plasticity experiments, SPN had to comply with a
set of criteria: Throughout the analyzed part of the recording session units were
allowed to only have a maximum change in baseline firing rate from beginning to
the end of the session of <10% and intermittent maximum fluctuations of 20%.
After exclusion of the first ten trials of odor application where we frequently
observed an initial response habituation, we selected units with stable odor
responses for the two odors throughout the ‘pre’ phase. Few units that were
responding with short latency to laser pulses in DATChR2 mice and had features
previously described for striatal cholinergic interneurons63 were excluded from the
analyses (not shown) in agreement with previous molecular tagging experiments64.
Due to the low expression of ChR2 in the transgenic mice used for the reversal
learning, this latter exclusion of cholinergic interneurons was not possible. For this
reason and to account for the different activity states of SPN in mice engaged in
task performance, we classified VS units according to baseline firing features
according to criteria previously used for striatal units recorded during behavior63.
All units with a firing rate <2 Hz were classified as SPN. All units with a firing rate
>12 Hz were excluded as putative fast spiking neurons from the OTu or from the
directly neighboring ventral pallidum. Units in the ambiguous range from 2 to 12
Hz were designated as putative regular-firing cholinergic interneurons if the
coefficient of variation of their inter-spike interval (ISI) distribution was <1.2 and
ISIs of <60 ms contributed no more than 20% of all ISIs63,65. The remaining units
were assigned as SPN if they ever paused firing for more than 2 s (with a fraction of
ISIs bigger than 2 s > 1/10−4)63. Neurons that did not fulfill this latter criterion
were considered fast spiking neurons. The fraction of cholinergic interneurons was
in the expected range for ventral striato-pallidal regions (~3%). With this classi-
fication, units recorded during reinforcement learning had a baseline firing rate
(median ± interquartile range) of SPN: 0.81 ± 1.65 Hz, fast spiking neurons: 35.41
± 34.67 Hz, cholinergic interneurons: 3.21 ± 1.82 Hz. For the population analysis in
Fig. 3, both classification approaches for passive and active states identified the
same set of putative SPN.

Optogenetic identification of DAN. To maximize the yield in optogenetic tagging
for cell-type identification, we used heterozygous transgenic mouse lines to express
ChR2 in all DAN. This approach allowed for efficient tagging, but was insufficient
to trigger efficient DA release (not shown). We identified optogenetically modu-
lated units by cross-correlating spike trains and laser pulses, and comparing the
results with a distribution of constructed control cross-correlograms. After each
session, trains of 5 ms laser pulses (8–12 Hz, 5 mW) were delivered via implanted
optical fibers. For each recorded single unit, a test cross-correlogram was computed
with the timestamps of spikes and laser pulses (bin width: 1 ms, lag: 0–20 ms). To
test for significant modulation, control cross-correlograms (n= 10,000) were
constructed by randomly jittering each laser pulse in the interval ±30 ms around its

original time, thus eliminating temporal relation on that time scale while preser-
ving the properties of the spike train. Modulation was considered significant if two
consecutive bins of the test cross-correlogram were above 95% of the global dis-
tribution of the combined control cross-correlograms.

Classification of VTA units. Single units in the VTA were classified into three
types via their task-related activity using a clustering approach adapted from
Cohen et al.5. Type 1 corresponds in this classification to DAN. First, responses
were characterized for the relevant time spans (from −0.5 to 1 s around CS+ and
US) in all applicable experimental paradigms: We constructed spike count dis-
tributions (over trials) for 200 ms bins shifted by a 50 ms increment in the CS+ and
US windows. The control distributions were computed by tiling the 2 s before trial
onset with 200 ms bins and merging the resulting distributions. Significant acti-
vation or inhibition was assessed with the Friedman test. Only units with a sig-
nificant response (p < 0.05) were included in the clustering for classification. For
the clustering of US-responsive units, the spike count distributions were used to
construct one trace per neuron by computing auROC-values analogously to the
aforementioned significance test, yielding a trace of values between 0 and 1, and
with 0.5 meaning no distinguishability between test and control distribution (i.e.,
response and baseline activity). Hierarchical clustering was done on the basis of
these traces, using the built-in linkage function of Matlab (cityblock distance metric
using average distance). The activation pattern of the resulting three clusters (see
Fig. 4a and Supplementary Fig. 8) mirrors the one shown by Cohen et al.5, sug-
gesting biologically meaningful labels for the clustered single units (type I: DAN,
type II: GABAergic neurons, type III: glutamatergic neurons). The optogenetic
tagging of DAT+ neurons supported the classification of cell types: 46 of 50 tagged
neurons included in the clustering were type I and roughly 40% of the 116 type I
neurons were tagged (see black dots in Fig. 4a).

Analysis of single-unit activity. To analyze whether odor response plasticity can
also be detected at the single-unit level, we divided SPN in three groups: neurons
with an increase, decrease, or no change in firing rate during the 1 s following odor
onset. Due to the low baseline firing rate, z-scoring or comparable normalizations
were not suitable for SPN. We therefore considered neurons to have an excitatory
response if their mean firing rate in the 1 s response window was at least of 1 Hz
and increased at least by 20% from the baseline firing rate (time window of 1 s
before odor onset), either in the ‘pre’ or ‘post’ phase. In reverse, we counted units to
have an inhibitory response if their baseline firing rate was at least 0.5 Hz and the
mean firing rate during the 1 s response window decreased by at least 20% com-
pared with baseline, either in the ‘pre’ or ‘post’ phase. To compare ‘pre’ to ‘post’
odor responses (mean rate in the 1 s following odor onset) we used a paired two-
tailed Wilcoxon signed-rank test (Fig. 1h and S3e-f).

Population analysis: the population vector. Considering the relatively small cell
count per session due to the numerous selection criteria (see main manuscript), we
built spike count population vectors by pooling units from different sessions12,66,67.
This approach is sensitive to small changes in rate, if coherent throughout the
population, and sums the contribution of both excitatory and inhibitory responses.
Since we were interested in either paired or non-paired odor responses, we first
divided the trials of each session in paired and non-paired trials. Within these two
groups, we combined the population vectors of different sessions
vst ¼ ½cs;1t ; ¼ ; cs;nt �, with cs;nt indicating the spike count of unit n at time bin t in
session s, in an across-session population vector Vt. The vector Vt was obtained by
concatenating vst matching the trials according to their trial order,
Vt ¼ v1t ; v

2
t ; ¼ ; vSt

� �
. For example, V1 was obtained by concatenating the first trial

of all sessions in which the paired odor was presented to the animal, V2 by con-
catenating the second trial of all sessions with paired odor, etc. Figures 1c–f, 2a, 3c,
d, f, and Supplementary Figs. 2d-f, 4a were produced using population vectors built
with such progressive-trial alignment. This trial matching criterion aims to reflect
in Vt the temporal progression of the experiment; however, since the units com-
posing Vt were not (all) recorded simultaneously, we wondered whether a different
order in trial-pairing across sessions could lead to different results in our analyses.
To exclude this possibility we repeated the analyses for 300 different realizations of
population vectors Vrand

t obtained by randomly permuting the trial order in which
the session specific population vectors were aligned (Vrand

t ¼ ½v1i ; v2j ; ¼ ; vSl �).
Supplementary Figs. 3a-d and 4b,c were produced using the randomized popula-
tion vectors. For these latter analyses, the fraction of the 300 performed tests that
had a p-value <0.05 is reported in the respective figure legend. Finally, since some
sessions had different numbers of trials per phase, we built the population vectors
with the minimum number of trials available among sessions. This was done by
omitting the last trials of the ‘pairing’ and ‘post’ phases and the initial trials of the
‘pre’ phase.

Population analysis: temporal evolution of the odor response. Figures 1c, d, 3c,
d and Supplementary Figs. 2d,f, 7d,h-i show the average deviation of the popula-
tion vector from baseline following odor onset. Trials were binned as indicated
below. To reduce trial-by-trial variability in neuronal response, we divided the trials
in groups of 3 and computed the average population vector of each trial-cluster. In
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this way, we reduced the number of samples available but we obtained more stable
population responses. For each trial group, we built a baseline population vector by
averaging the spike counts of nbl consecutive baseline bins. We then computed the
distance between the baseline vector and the population vector for each bin during
the trial. Absolute distance values are affected by the specific sample of recorded
units and therefore can only be compared within the same set of units (e.g.,
DATYFP sample). In order to account for changes of the population vector both in
direction and in rate, we computed distances with the cosine similarity metric,
dcosinex;y ¼ 1� x � y= xk k yk k, and the Euclidean metric, dEucx;y ¼ x � yk k=l (the
Euclidean distance was normalized by the vector length l). Finally, we tested the
first ntest bins after odor onset for differences in deviation from baseline of the
odor responses in the ‘pre’ phase and in the ‘post’ phase with a two-tailed t-test.
The test was corrected for multiple comparisons (on the multiple bins tested)
with the Benjamini–Hochberg correction. Parameters: Behavioral paradigm:
binsize= 0.4 s; nbl= 3 (between −1.8 and −0.6 s from odor onset); ntest= 12.
Passive paradigm: binsize= 0.25 s; nbl= 4 (between −1.75 and −1 s from odor
onset); ntest= 7.

Population analysis: change in odor encoding after pDA pairing. As for the
previous analysis, trials were binned in time and averaged in groups of 3. To
investigate the effect of pDA on odor responses, we built an odor response
population vector by averaging spike counts across the response bins (from 0.6 to
1.8 s from odor onset in the behavioral paradigm and from 0.5 to 1.25 s in the
passive paradigm). We then computed the distance (both cosine and Euclidean)
between all population vectors of each trial-cluster of the ‘post’ phase and ‘pre’
phase and between all population vectors of the ‘pre’ phase within each other. In
this way, we could test if the distance between the odor responses in the two
phases was larger than the original trial-by-trial variability. We finally tested
for interaction between cohorts (DATChR2, DATYFP), odor type (paired, non-
paired), and phase (‘pre’,’post’) through a three-way ANOVA. Post hoc
comparisons were performed with Tukey’s test correction for multiple
comparisons (factors: mice group (levels: DATChR2, DATYFP), phase (levels:
‘pre’,’post’), and odor (levels: paired, non-paired)) in Fig. 1e, f, Supplementary
Figs. 2e and 3a-d.

Population analysis: change in distance between odor encodings after pDA
pairing. To test whether the distance between the neural representations of the two
odors increased after DA pairing, we computed the distance between the response
population vectors (as described above) to the two odors both during the ‘pre’
phase and ‘post’ phase. Distances were computed with both cosine and Euclidean
metrics. Significance was tested with a two-tailed t-test in the behavioral paradigm
(where no control group was present, Fig. 3f, Supplementary Fig. 7E-G) and with a
two-way ANOVA with post hoc Tukey’s test correction in the passive paradigm
(factors: mice group (levels: DATChR2, DATYFP) and phase (levels: ‘pre’,’post’)) in
Fig. 2a and Supplementary Fig. 4.

Population analysis: odor response classifier. We tested if pDA improved odor
discriminability by measuring the accuracy of a classifier in discriminating the odor
responses of the paired and non-paired odors in the ‘pre’ phase and in the ‘post’
phase (Fig. 1a). Trials were divided into four groups based on the odor (paired vs.
non-paired) and of the session phase (‘pre’ vs. ‘post’). Both in the ‘pre’ and ‘post’
phase we performed a quadratic discriminant analysis (QDA) to classify paired and
non-paired responses. The first step of QDA is to estimate the parameters of, in
this case, two multivariate Gaussians representing the data of the training set. The
number of parameters dfc per Gaussian component scales quadratically with the
dimension D of the vector space (specifically dfc ¼ DðD� 1Þ=2þ 2Dþ 1, yielding
in our case dftotal ¼ 2*dfc � 1). Hence, to avoid overfitting, we first reduced the
population vector space dimensionality through principal component analysis
performed on the four odor response groups simultaneously (making sure that
odor representations in the ‘pre’ and ‘post’ phases shared the same space). The
classifier was tested with a leave-one-out cross-validation procedure, with total
accuracy given as a ¼ #correct=#tested. To make sure that the results obtained
did not depend on the specific dimensionality of the population space, we repeated
this analysis for all dimensions from 3 to 6 (for dim>6, the number of the model
free parameters started to exceed the number of data points). Finally, we used
Fisher’s exact test to assess whether the number of odor responses correctly
assigned by the classifier in the ‘pre’ and ‘post’ phases differed. Significance was
corrected for multiple comparisons (Benjamini–Hochberg correction) across the
four tested dimensions.

Population analysis: visualization of population trajectories. Trials were divi-
ded according to the paired and non-paired odor, and according to the phase of the
session: ‘pre’ and ‘post’. Within each of these four groups we averaged the popu-
lation activity across all trials obtaining four multivariate time series spanning the
trial duration. To better unfold neural dynamics68,69, we then applied delay
embedding and expanded the state space of the neural trajectories adding, for each
unit, m delayed coordinates (m= 3; delay= 1 bin). Finally, to visualize the tra-
jectories, we applied factor analysis (FA) and reduced the dimensionality of the
space to 3 (Fig. 2c). FA allows describing the observed variables in terms of a

reduced number of independent latent factors. To improve visualization, the tra-
jectories were rotated within the axes.

Population analysis: visualization of odor responses. Odor response population
vectors were defined as explained in ‘Change in odor encoding after pDA pairing’
and divided in four groups according to odor type and session phase. For visua-
lization purposes we reduce the vector space dimensionality to 3 (Fig. 2d). To
better appreciate within and between group variability we used multidimensional
scaling (MDS) as dimensionality reduction method. MDS is a non-linear dimen-
sionality reduction method designed to preserve in the reduced space the pairwise
distances between points of the original space. To improve visualization, we rotated
jointly the position of the points within the axes.

Assembly detection and pruning. Assemblies were detected through CADopti, an
unsupervised statistical machine learning framework for non-stationarity-corrected
detection of cell assembly at their optimal time scale. CADopti extends from the
cell assembly detection algorithm (CAD)48. CAD processes the multivariate neu-
ronal time series at a set of user defined time scales D ¼ Δmin; :::;Δmax½ � and,
thanks to the non-stationarity corrections, detects, at each time scale, only those
assemblies whose temporal coordination matches the targeted resolution. Despite
such strong filtering, if the range of temporal resolutions to test fΔmin; :::;Δmaxg is
densely sampled, it is possible that assemblies with internal temporal coordination
Δ* are detected, albeit sub-optimally, also for a set of temporal resolutions Δ* ± ε
neighbouring Δ*. To avoid this redundancy and select the most representative time
scale, in CADopti we pruned the detected assemblies and kept, for each unit pair,
the time scale correspondent to the lowest p-value of detection (algorithm available
at https://github.com/DurstewitzLab/CADopti). Since we were interested in the
directionality of interregional assemblies we set the algorithm to detect assemblies
up to unit pairs. This was done to later classify assemblies according to the type of
their composing units (specifically targeting assemblies composed by a SPN and a
DAN) and study the distribution of the time lag between the activation of the two
cell types. Tested time scales:
Δ 2 0:01; 0:015; 0:03; 0:5; 0:8; 0:12; 0:25; 0:35; 0:5; 0:6f gs; maximal lag tested per
time scale, respectively: l 2 f20; 20; 20; 20; 20; 10; 7; 5; 5; 5g bins. With the chosen
Δ, the smallest detectable lag is 10 ms (=1 bin of highest temporal precision). Lags
<10 ms would fall into l= 0. Reference lag48 used: l* ¼ �2.

Assembly detection was performed on the whole recorded time series, so that
assemblies could be detected irrespective of their time of activation in the task. The
distribution of SPN–DAN assembly resolutions revealed two characteristic time scales
(Δ< 250ms and Δ> 250ms). As for further analyses we focused on the sharper of
those time scales, we re-ran CADopti and the pruning algorithm only for
Δ 2 f0:01; 0:015; 0:03; 0:5; 0:8; 0:12; 0:25g. This was done to avoid the loss of those
assemblies present at both sharp and broad time scale and assigned by the pruning
algorithm to the latter one. In the rest of the paper we focused only on this assembly
subset.

Reinforcement learning model selection. In go/no-go tasks, lick responses can be
divided into two components70: Initially, upon CS onset, animals display an
impulsive Pavlovian lick response that then quickly evolves into an instrumental
lick response to CS. We modeled this instrumental lick response as action of a Q-
learning model33. We considered here three models of action selection generalized
from a hybrid Q-learning model with Rescorla–Wagner rule71 and Pearce–Hall
update mechanism (Q-PH)36. In Q-PH models, the value of choosing an action a
at state s is parametrized by the variable Qs,a. The Pearce–Hall update mechanism
generalizes the classic Rescorla–Wagner rule by introducing an associability vari-
able a, which tracks the uncertainty of the animal on the trial outcome and is
proportional to its attention to CS34,36,72,73. The associability affects the action
value Qs,a as a feedback-dependent dynamical learning rate. At each trial t, Qs,a is
updated according to the following rule:

Qs;a t þ 1ð Þ ¼ Qs;a tð Þ þ καðtÞδðtÞ ð1Þ
where κ is a fixed learning parameter and δ tð Þ ¼ r tð Þ � Qs;a tð Þ is the prediction
error, defined as the mismatch between the obtained reward r tð Þ and the
expected reward Qs;a tð Þ. The associability update rule depends on the parameter η
and is

α t þ 1ð Þ ¼ 1� ηð Þα tð Þ þ η δðtÞj jη 2 ½0; 1�: ð2Þ
In our reinforcement paradigm, mice were presented with one of two odors,

states s 2 fgeranium; ylang-ylangg, and could perform two possible actions
a 2 flick 3 times; restrain lickingg. To better capture our reinforcement learning
protocol we compared here three generalizations of the Q-PH model. We
considered a: (1) Q-PH model with separate learning rates κi for the two
actions ai; (2) a Q-PH model with separate parameter ηi for the associability
update rule when performed different actions ai; (3) a Q-PH model with
forgetting rate aF.

Q-PH with two learning rates κ (Q-PHκ). As shown in by the performance
curve of hits and correct rejections (Fig. 3b), mice learned to lick faster than
they learn to refrain from licking. To capture this aspect of learning, we
generalized the Q-PH model by introducing two distinct learning rates, κ1 and κ2,
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for the two actions a1 and a2. Thereby, two update rules were used for the
different actions:

Qs;a1
t þ 1ð Þ ¼ Qs;a1

tð Þ þ κ1αðtÞδðtÞ when mice performed a1 ð3Þ

Qs;a2
t þ 1ð Þ ¼ Qs;a2

tð Þ þ κ2αðtÞδðtÞ when mice performed a2: ð4Þ
Q-PH with two η (Q-PHη). An alternative way to capture the diverse

contribution of a1 and a2 to learning is to estimate two separate parameters η1 and
η2 for the associability update rule. This resulted in

α t þ 1ð Þ ¼ 1� η1
� �

α tð Þ þ η1 δðtÞj jη1 2 ½0; 1� when mice performed a1 ð5Þ
and

α t þ 1ð Þ ¼ 1� η2
� �

α tð Þ þ η2 δðtÞj jη2 2 ½0; 1� when mice performed a2: ð6Þ
Q-PH with forgetting (Q-PHf). While in the two models considered above, only

Qs,a(t) relative to the performed action is updated, in the Q-PHf model we included
a forgetting rate αF to update, at each trial, also the value assigned to the unchosen
action a′37. Thereby, the update rule of Qs,a(t) for the chosen action a results in

Qs;a t þ 1ð Þ ¼ Qs;a tð Þ þ κLαLðtÞδðtÞ ð7Þ

αL t þ 1ð Þ ¼ 1� ηð ÞαL tð Þ þ η δðtÞj jη 2 0; 1½ �; ð8Þ
and that of Qs,a′(t) for the unchosen action a′:

Qs;a0 t þ 1ð Þ ¼ Qs;a0 tð Þ � κFαFðtÞ Qs;a0 tð Þ ð9Þ

αF t þ 1ð Þ ¼ 1� ηð ÞαF tð Þ þ η Qs;a0 tð Þη 2 ½0; 1�: ð10Þ
For all models, the probability to perform an action a at state s depends on the

action value Qs,a(t) according to the equation p ajsð Þ ¼ eβQs;aðtÞ=
P

l e
βQs;lðtÞ, where the

inverse temperature parameter β reflects the exploitation/exploration trade-
off. Finally, the model parameters θ were estimated from the behavioral data
(time series of performed actions in both original and reversal phase) by log-
likelihood maximization (using MATLAB’s function fmincon, with optimality
tolerance= 10−6 and 21,296 random initial conditions to avoid local minima). The
estimated parameters for the three models were, respectively: θQPHκ ¼ κ1; κ2; η; βf g;
θQPHη ¼ κ; η1; η2; β

� �
; θfQPH ¼ κL; κF ; η; βf g and all shared the boundary

conditions η 2 ½0; 1� and β 2 ½0; 500�. Finally, we used for initialization: αð1Þ ¼ 0
(also for αL and αF) and Qs;að1Þ ¼ 0:5 (also for a1, a2, and a′).

Reinforcement learning model comparison. Model comparison was performed
computing the Bayesian information criterion (BIC). BIC estimates indicated that Q-
PHf and Q-PHκ outperformed Q-PHη in describing behavioral data (Friedman test,
main effect: p= 7.4 × 10−20. Post hoc: Q-PHf vs Q-PHη: p= 1.0 × 10−9, Q-PHκ vs
Q-PHη: p= 1.0 × 10−9). No significant difference was found between the BIC values
of Q-PHf and Q-PHκ (post hoc: Q-PHf vs Q-PHκ: p= 0.2). Since Q-PHf had the
smallest BIC value and the evidence against the higher BIC was positive according to
the Raftery criterion74, the model was chosen for further analyses.

Note that the Q-PHf becomes the hybrid Rescorla–Wagner model when we set
κF= 0. The utility of adding an extra parameter was tested with the likelihood ratio
test for each animal used for the assembly analysis, and resulted to be significantly
in favor of the Q-PHf in the 95% of the cases.

Assembly activity regression on VCS+. Since the sum of the assembly activity in
the 0.7 s after CS+ followed a Poisson distribution, we evaluated the correlation
between the subjective value assigned to CS+ at each trial and SPN–DAN assembly
activity using a Poisson regression model. The Poisson regression was defined by
the equation log μt

� � ¼ β0 þ β � VCSþ tð Þ, where μt is the expected value of the
summed assembly activity, β is the regression coefficient, and VCS+(t) is the value
assigned to a specific state s. At each trial, VCS+ is extracted from the action values

Q of the Q-PHf model according to Vcsþ tð Þ � max
a

Qcsþ;a tð Þ
� 	

. To pool and

compare different assemblies and different sessions, the regression coefficients were
standardized as �β ¼ β � σðVÞ=σðμÞ and further transformed as β* ¼ exp �β

� �� 1, to
improve interpretability. In this way, positive β* indicated positive correlations
between assembly activity and VCS+, and vice versa. In Fig. 5d, we reported only
those β* significantly different from 0 (t-statistics).

To exclude that the obtained result could depend on drifts in assembly baseline
activity, we subtracted the baseline activity from the CS+ triggered activity of each
assembly and repeated the analysis75. Assembly activity continued to be
significantly correlated with VCS+. All significant β* were positive.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data reported in this study are available from the corresponding authors upon
request. The source data underlying Figs. 1c, d, h, 2e, 3c, d, 4b, d, 5c, d and
Supplementary Figs. 2d, f, 3e, f, 5a, b, 7d, h, I, 8c, 9d–f and 10a, e, f–h are provided as a

Source data file. A reporting summary for this Article is available as a Supplementary
Information file. Source data are provided with this paper.

Code availability
Code for cell assembly detection at multiple time scales (CADopti) available at https://
github.com/DurstewitzLab/CADopti. Source data are provided with this paper.
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