
1 

The genomics of childhood eating behaviors 1 

Moritz Herle1,2, Mohamed Abdulkadir3, Christopher Hübel4,5,6, Diana Santos Ferreira7,8, 2 

Rachel Bryant-Waugh9, Ruth Loos10, Cynthia M. Bulik6,11,12, Bianca De Stavola1 & Nadia 3 

Micali1,3,13* 4 

5 

1 Great Ormond Street Institute of Child Health, University College London, London, UK 6 

2 Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & 7 

Neuroscience, King’s College London, UK 8 

3 Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland. 9 

4 Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & 10 

Neuroscience, King’s College London, UK 11 

5 UK National Institute for Health Research (NIHR) Biomedical Research Centre, South 12 

London and Maudsley Hospital, London, UK 13 

6 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 14 

Sweden 15 

7 Medical Research Council Integrative Epidemiology, University of Bristol, Bristol, UK 16 

8 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK 17 

9 Maudsley Centre for Child and Adolescent Eating Disorders, Michael Rutter Centre for 18 

Children and Young People, Maudsley Hospital London UK 19 

10 The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and 20 

Development Institute, Icahn Mount Sinai School of Medicine, New York, NY, USA  21 

11 Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 22 

USA 23 

12 Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 24 

13 Child and Adolescent Psychiatry Division, Department of Child and Adolescent Health, 25 

Geneva University Hospital, Geneva, Switzerland 26 

Corresponding author: 27 
Dr Nadia Micali MD, MRCPsych, PhD, FAED 28 
Senior Lecturer and Honorary Consultant Psychiatrist 29 
Child and Adolescent Mental Health, Palliative Care and Pediatrics Section 30 
Population, Policy and Practice Research Theme 31 
UCL Institute of Child Health 32 



2 

30 Guilford Street 1 
London WC1N 1EH 2 
Tel: 020 7905 2163 3 
e-mail: n.micali@ucl.ac.uk4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 



3 

Abstract 1 

Eating behaviors may be expressions of genetic risk for obesity and are potential 2 

antecedents of later eating disorders. However, childhood eating behaviors are 3 

heterogeneous and transient. Here we show associations between polygenic scores for 4 

body mass index (BMI-PGS) and anorexia nervosa (AN-PGS) with eating behavior 5 

trajectories during the first ten years of life using data from the Avon Longitudinal Study of 6 

Parents and Children (ALSPAC), N=7,825. Results indicated that one standard deviation 7 

(SD) increase in the BMI-PGS was associated with a 30-37% increased risk for early- and 8 

mid-childhood overeating. In contrast, one SD increase in BMI-PGS was associated with a 9 

20% decrease in risk of persistent high levels of undereating and a 15% decrease in risk of 10 

persistent fussy eating. There was no evidence for a significant association between AN-11 

PGS and eating behavior trajectories. Our results support the notion that child eating 12 

behavior share common genetic variants associated with BMI.  13 

Introduction 14 

The rise of obesity is well documented, with ~23% of children and ~37% of adults classified 15 

as having overweight or obesity 1. Higher weight has been associated with health 16 

consequences such as increased risk of diabetes and mental health problems found across 17 

populations 1. The importance of genetic risk for obesity has been supported by large-scale 18 

genome-wide studies, detecting more than 100 associated genetic loci 2. Despite this 19 

evidence, genetic differences cannot account for the rapid rise of obesity over the past 20 

decades, and changes in the food environment such as increased portion sizes, availability 21 

of energy dense foods, and sedentary work and leisure activities have been suggested as 22 

driving this increase 3. However, despite this obesogenic environment, considerable 23 

variability in body size still exists in the population. The behavioral susceptibility theory of 24 

obesity attributes the joint contribution of genetic and environmental factors by proposing 25 

that eating behaviors, which regulate our food intake, such as overeating, are the behavioral 26 

expressions of genetic risk for obesity 4. Evidence from previous research indicates that 27 

eating behaviors in childhood are associated with later higher BMI 5, increased food intake 6, 28 

and are heritable in childhood 7 and adulthood 8. Furthermore, twin analyses revealed a 29 

shared genetic etiology between eating behaviors and BMI 9. In addition, pathway analyses 30 

have indicated that genetic loci associated with BMI are primarily expressed in the brain, 31 

emphasizing the behavioral component of obesity 10.  We have recently derived longitudinal 32 

trajectories of childhood eating behaviors during the first ten years of life. These trajectories 33 

highlight the heterogeneity of eating behaviors and emphasize that only a small proportion of 34 

children show persistent and elevated levels of overeating, undereating and fussy eating 1135 
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(for an illustration including number of classes, class description, and class size per parent-1 

reported eating behavior see Figure 1 and Supplement Table 1). 2 

Readily available polygenic scores (PGS) afford testing of the hypothesis that genetic 3 

variants associated with BMI are also associated with eating behaviors. PGS are derived 4 

from aggregating effect sizes of associated common variants across the genome into a 5 

single variable that measures genetic liability to a disorder or a trait 12. In children, one study 6 

showed that increased genetic risk for obesity was associated with decreased sensitivity to 7 

internal satiety cues 13. This finding that was not replicated in a smaller subsequent study 14. 8 

In adults, genetic variants associated with BMI were also associated with eating behaviors, 9 

such as uncontrolled eating, emotional eating, and responsiveness to external food cues 15-10 

17. In addition, fussy eating has been identified as another key eating behavior. Childhood 11 

fussy eating captures the tendency of children to only eat specific foods, based on flavor, 12 

texture, or other reasons as well as an aversion to trying new foods 18. Fussy eating during 13 

childhood and in prospective analyses has been associated with childhood underweight 1914 

and lower vegetable and fruit intake 20. Fussy eating in childhood has been found to be 15 

moderately heritable (46%) 21, but whether fussy eating and BMI share genetic risk is 16 

unknown.  17 

In addition to childhood weight and obesity, eating behaviors are of great interest due to their 18 

potential role in the development of adolescent eating disorders and their modifiability. 19 

Eating disorders are debilitating and complex illnesses that commonly emerge in 20 

adolescence and importantly affect individuals across the entire weight spectrum 22. Eating 21 

disorders are characterized by disordered eating behaviors, such as prolonged caloric 22 

restriction or binge eating episodes. Hence, the hypothesis has been proposed that 23 

childhood eating behaviors, as well as premorbid BMI might be antecedents of adolescent 24 

eating disorders 23,24. We have previously found that sustained fussy eating and undereating 25 

in childhood are associated with increased risk of later anorexia nervosa 25. These data are 26 

in accordance with previous findings from smaller studies 26,27. So far, eight genome-wide 27 

significant common genetic variants for anorexia nervosa have been identified 28. The 28 

authors of this GWAS reported a shared genetic etiology of anorexia nervosa and metabolic 29 

phenotypes, including glycemic traits, supporting the notion that childhood risk factors 30 

affecting the former may also affect the latter 29 . In addition, a polygenic score based on the 31 

anorexia nervosa GWAS, has been successfully used to predict symptoms of obsessive-32 

compulsive disorder 30. 33 

For all eating behaviors, the majority of previous research relies on single time point 34 

measures of eating behaviors, failing to capture the considerable heterogeneity across 35 
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developmental stages31. Here, we present an exploration of the association between PGS 1 

for BMI and anorexia nervosa and longitudinal patterns of eating behaviors in childhood 2 

using data from a prospective population-based cohort, ALSPAC. We hypothesize that BMI-3 

PGS will be positively associated with persistent overeating trajectories and negatively 4 

associated with trajectories marked by persistent undereating and fussy eating. Conversely, 5 

we hypothesize that AN-PGS will be positively associated with undereating and fussy eating, 6 

but negatively associated with overeating.  7 

Results 8 

Overall, BMI-PGS was significantly positively associated with overeating (R2 = 0.014, p 9 

<0.001) and negatively associated with  undereating (R2 = 0.004, p<0.001) and fussy eating 10 

(R2 = 0.007, p<0.001), when treated as continuous outcomes (see Supplement Table 2a). 11 

The distribution of the standardized BMI-PGS and AN-PGS in each eating behavior group is 12 

shown in Figure 2. As hypothesized, higher mean BMI-PGS values were found for children 13 

characterized by higher rates of overeating, and lower means for trajectories with high levels 14 

of under and fussy eating. The trajectories are illustrated in Figure 1a-c, and the following 15 

associations are expressed as relative risk ratios in comparison to a reference trajectory 16 

(gray lines). These reference categories were chosen as they represent the most normative 17 

behavior, with children rated never to engage in the target behavior. Specifically, one 18 

standard deviation increase in BMI-PGS was associated with a 16% (relative risk ratio 19 

(RRR) = 1.16, 95%CI 1.08-1.24, p<0.001) increase in the probability of belonging to the low 20 

transient overeating trajectory (light blue-colored line Figure 1a, Supplement Table 3). 21 

Further, one standard deviation increase in BMI-PGS was associated with a 37% 22 

(RRR=1.37, 95%CI; 1.27-1.47, p<0.001) increase in the probability of belonging to the late 23 

increasing group as well as a 30% (RRR=1.30, 95%CI:1.19-1.43, p<0.001) increase in 24 

belonging to  the early increasing overeating group (green and pink lines in Figure 1a). 25 

These two trajectories are characterized by progressively increasing rates of overeating 26 

during childhood. This also fits with previous research suggesting a potential feedback loop 27 

between child eating behaviors and child weight, whereby children rated to be highly 28 

susceptible to food cues in early life have higher weight, which in turn may predict higher 29 

food cue susceptibility later 32. 30 

In line with our hypotheses, the BMI-PGS was negatively associated with undereating. A one 31 

standard deviation change in BMI-PGS was associated with a 16% (RRR=0.84, 95%CI: 32 

0.78-0.91, p<0.001) decreased risk of belonging to the high transient group (light blue line in 33 

Figure 1b, Supplement Table 3) relative to the low stable group (gray line). Additionally, a 34 

higher BMI-PGS was associated with 20% (RRR=0.80, 95%CI: 0.68-0.95, p=0.012) lower 35 
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risk of persistently high levels of undereating (pink line in Figure 1b). The two groups, high 1 

decreasing and high stable undereating, stand out as they include the highest probabilities 2 

of undereating overall, especially during the first three years of life. These results are in line 3 

with our previous findings suggesting that children in these two trajectories had a lower BMI 4 

at age 11 years 11. Furthermore, satiety responsiveness has been shown to be linked to 5 

smaller meals sizes in childhood 6, which is a predictor of childhood weight gain 33. In 6 

contrast to overeating, low appetite and strong satiety sensitivity, might be a protective 7 

factor, shielding children from the obesogenic environment.   8 

Similarly, BMI-PGS was negatively associated with fussy eating (see Figure 1c). A one 9 

standard deviation increase in BMI-PGS was associated with a 14% decrease in risk 10 

(RRR=0.86, 95%CI: 0.80-0.93, p<0.001) of belonging to the high decreasing fussy eating 11 

trajectory as well as a 15% decrease (RRR=0.85, 95%CI: 0.78-0.93, p<0.001) in risk of 12 

belonging to the persistently high fussy eating, relative to the low stable class (Figure 1c, 13 

light blue and pink lines; Supplement Table 3). These two trajectories differ from the others, 14 

as they are characterized by high levels of fussy eating in early life. In contrast, fussy eating 15 

behavior later in childhood might be associated with other genetic variants or a response to 16 

exposures to new flavors and textures as part of an expanding diet. We have previously 17 

shown that fussy eating during the first 3 years of life is associated with lower BMI at age 11 18 

years 11. However, the association between fussy eating and measures of body size in 19 

childhood has been debated, as fussy children might have limited variety, but could still 20 

overconsume their favored foods. A recent review concluded no strong evidence for the 21 

impact of child fussy eating on growth or body weight in either direction 34.  22 

The AN-PGS was not statistically significantly associated with eating behavior trajectories 23 

(see Supplement Table 2b). However, inspecting Figure 2, the pattern of mean scores of 24 

AN-PGS differed across the eating behavior trajectories, with differences being as expected 25 

in opposite directions for overeating and fussy eating. A one standard deviation change in 26 

AN-PGS was associated with a 8% decrease in likelihood of being assigned to the low 27 

transient group of overeating (RRR=0.92, 95% CI: 0.86- 0.98, p=0.011), marked by 28 

overeating in early life (light blue line, Figure 1a). In contrast, one standard deviation 29 

increase in AN-PGS was suggestive of an 8% increase (RRR=1.08, 95%CI: 0.99-1.18, 30 

p=0.097) in belonging to the persistent high stable fussy eaters (Figure 1c, pink line). These 31 

results are in line with our previous study highlighting the association between persistent 32 

fussy eating in childhood and increased risk for AN in adolescence 25. We also examined the 33 

joint associations of BMI-PGS and AN-PGS with the eating behavior trajectories 34 

(Supplement Table 4). Results did not differ from the primary analyses that treated them 35 

separately. The explanatory power of PGS is dependent on the sample size of the discovery 36 
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GWAS 35.  For BMI, due to its straightforward and routine collection, GWAS sample sizes 1 

have exceeded 700,000 individuals 2, whereas for AN the most recent GWAS included 2 

~17,000 cases and 55,000 controls 28. This difference in sample size might explain the 3 

largely null associations between the AN-PGS and the eating behavior trajectories in these 4 

analyses. As discovery GWAS sample sizes continue to grow, future analyses will have 5 

increased power to detect the underlying associations between genetic liability for AN and 6 

associated eating behaviors. 7 

Discussion 8 

In addition to genetics, environmental factors, such as parental feeding behaviors and 9 

parental eating behaviors, are proposed to be involved in the etiology of childhood eating 10 

behaviors. Parents engage in specific feeding strategies to regulate their child’s eating and 11 

weight, as well as model eating styles. However, the direction of effect between parental 12 

feeding and child eating is not straightforward. Parental feeding strategies have been posited 13 

to be a consequence of the child’s eating behavior 36, causal to later child eating 37, and 14 

reciprocally related 38. An exploration of the origins of parental feeding using genetically 15 

informative methods, suggested that parental feeding in childhood was moderately heritable, 16 

and that the child’s BMI-PGS was positively longitudinally associated with parental restrictive 17 

feeding. 39. These results are consistent with an evocative gene-environment correlation, 18 

whereby the genetic liability for higher BMI in the child elicits parental restrictive feeding. In 19 

addition, it is important to note that parental feeding strategies have been found to vary 20 

across cultural backgrounds, potentially contributing to differences in obesity risk across 21 

cultures 40,41. Recent evidence has suggested that children from poorer families showed 22 

greater increases of emotional eating and food responsiveness between 16 months and five 23 

years 42. In context with our findings, it becomes apparent that child eating behaviors are 24 

influenced by genetic and environmental factors, and future research should aim to 25 

investigate should aim to investigate the manner in which they act and co-act. Additionally, 26 

future research is needed to elucidate the specific mechanisms, by which genetic liability 27 

influences child eating behavior. One potential mediating factor could be birthweight, which 28 

could lie on the causal pathway from genetic liability and early life eating behaviors.  29 

Our study is subject to limitations. First, childhood eating behaviors were parent-reported, 30 

raising the potential of reporter bias. This bias could be particularly evident in older children, 31 

who eat a substantial number of meals away from parental oversight. However, young 32 

children are not able to report their own eating behaviors reliably and behavioral 33 

observations are not feasible in large-scale data collections, like this study, whose sample 34 

size exceeds many other investigations using PGS. Therefore, for large population cohorts 35 
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like ALSPAC, parent-reported questionnaires of child eating behaviors remain the most 1 

efficient and pragmatic solution. Second, it is important to acknowledge that derived 2 

trajectories using latent class growth analysis, or any similar method, are descriptive and 3 

population specific. The latent class growth models used to identify the trajectories only 4 

included measures of eating behavior. It is possible to fit more complex specifications, 5 

including other factors and time-varying confounders such as school performance. However, 6 

this is out of scope for the analyses presented here. In addition, future research should aim 7 

to replicate this work using independent samples for, respectively, the calculation of the PGS 8 

and the derivation of the eating behavior trajectories. Apart from BMI and AN-PGS, other 9 

psychiatric and metabolic traits might be implicated in the development of eating behaviors. 10 

However, we chose a theoretical and hypothesis driven approach, focusing only on genetic 11 

liability for BMI and AN for the present study. Future work might broaden the scope by 12 

including polygenic scores for other phenotypes, likely to be relevant to eating behaviors 13 

such as anxiety or schizophrenia. Due to limitations of the polygenic scoring software, we 14 

needed to fit linear models, treating the trajectories as continuous variables in the first 15 

instance, with values corresponding to the intercept of the trajectories. Of course, this is not 16 

an ideal solution, as the trajectories cross over time, and just focusing on their starting point 17 

does not represent severity. However, we respected their unordered nature in the second 18 

step, treating them as distinct categories in the main analyses. This two-step approach was 19 

taken, as it was the most pragmatic and feasible solution; however, a potential 20 

misspecification of the models might have resulted in some bias. Finally, the power of 21 

polygenic scores is dependent on the sample size of their underlying discovery GWAS. In 22 

this case, the sample size of the BMI and AN GWAS differed substantially, and the 23 

comparatively smaller sample size for AN is likely to have led to underpowered AN-PGS. In 24 

order to quantify the difference in power between the AN-PGS and BMI-PGS we have 25 

estimated their statistical power using the AVENGEME package 43 at different expected 26 

levels of genetic covariance between the discovery and target sample, see Supplement 27 

Table 5 and Supplement Figure 1.  28 

In summary, this study provides evidence that common genetic variants associated with BMI 29 

are also associated with eating behaviors trajectories in childhood, supporting the behavioral 30 

susceptibility theory of obesity 4. Our study improves on previous work, due to its large 31 

sample size and its use of longitudinal trajectories, capturing the transitional nature of eating 32 

behaviors across development in childhood. The findings highlight that individuals 33 

characterized with a genomic propensity for higher BMI may be more vulnerable to an 34 

obesogenic environment, as they are more likely to overeat persistently and increasingly 35 

during the first 10 years of life. This link between genetic risk and overeating in childhood 36 
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might be specifically powerful, given the current obesogenic environment that is defined by 1 

substantially larger portion sizes and increased availability of low-cost highly palatable food 2 

creating an environment for children to overeat 3. This overconsumption allows a child's 3 

underlying genetic propensity for a higher BMI to be fully expressed and contributes to the 4 

development of an obese phenotype 3. The link between genetic liability for AN and eating 5 

behavior trajectories is less clear, but our results are indicative of a potential shared genetic 6 

etiology of AN and persistent fussy eating in childhood.  7 

Methods 8 

Participants 9 

Data were from ALSPAC, a population based, longitudinal cohort of mothers and their 10 

children born in the southwest of England 44. All pregnant women expected to give birth 11 

between the 1st April 1991 and 31st December 1992 were invited to enroll in the study. 12 

From all pregnancies (n = 14,676), 14,451 pregnant women decided to take part, and 13,988 13 

of their children were alive at 1 year. In order to guarantee for independence of data, only 14 

one child per multiple birth per family were included (N=203 sets). Please note that the study 15 

website contains details of all the data that is available through a fully searchable data 16 

dictionary and variable search tool. (www.bristol.ac.uk/alspac/researchers/our-data). Ethical 17 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 18 

Local Research Ethics Committees. Consent for biological samples has been collected in 19 

accordance with the Human Tissue Act (2004). 20 

Measures 21 

The following characteristics of the sample are presented in Supplement Table 1, alongside 22 

the distribution of eating behavior groups, (i) socioeconomic position of the family, 23 

approximated by maternal education status (A-Levels or higher, lower than A-Levels; A-24 

Levels are needed to enroll in university in the UK); (ii) maternal age at birth; (iii) size at birth 25 

(gestational age and birthweight). 26 

Eating behaviors 27 

Parents rated their children’s eating behavior when their children were 1.3 yrs, 2 yrs, 3.2 yrs, 28 

4.6 yrs, 5.5 yrs, 6.9 yrs, 8.7 yrs and 9.6 yrs old. Parents answered five questions at each 29 

wave indicating how worried they were about their child’s overeating, undereating, and three 30 

questions on fussy eating (being choosy, refusing food, and general feeding difficulties). 31 

Response options for all questions were: “did not happen”, ”happened, but not worried”, “a 32 

bit/greatly worried”. Latent class growth analyses were used to derive longitudinal 33 

trajectories of child eating behavior 11. Briefly, trajectories were derived using latent class 34 
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growth analyses using full information maximum likelihood. Data were parent-reported child 1 

eating behaviors measured at 8 time points between 1.3 and 9 years. Latent class growth 2 

analyses included covariates indexing the social class of the families (maternal age at birth, 3 

maternal education, and manual or non-manual labor of the highest earner of the family). 4 

Model fit of increasing number of assumed classes were compared against each other using 5 

following indicators: Akaike’s Information Criterion, Bayesian Information Criterion, adjusted 6 

for sample size Bayesian Information Criterion. Entropy, class size and interpretability were 7 

also taken into consideration when selecting the best fitting model. This process identified 4 8 

classes of overeating and 6 classes for undereating and fussy eating, which were then 9 

carried over for the analyses presented here (Figure 1a-c). The trajectories were named to 10 

reflect their shape, e.g. “low stable” indicating that parents consistently rated that the 11 

behavior was not present, whereas “high stable” indicated that parents consistently rated 12 

that they were worried about their children’s’ eating behavior across time. Trajectories that 13 

were characterized by changes in parental report across time were summarized by 14 

describing their start point at first measurement followed by their shape, e.g. “high 15 

decreasing” describes a trajectory in which parents initially reported the presence of the 16 

eating behavior, as well as being very worried about their child’s eating behavior but this  17 

decreased over time. In contrast, “low increasing” describes a trajectory a low starting point 18 

and an increase over time. This study included participants who had data on eating behavior 19 

trajectories and were genotyped (N=7,825). 20 

Genotyping  21 

Genotype data were available for 9,915 children out of the 15,247 ALSPAC participants. 22 

Participants were genotyped on the Illumina HumanHap550 quad chip. Individuals with >3% 23 

individual missingness, insufficient sample replication (identity by descent < 0.1), where sex 24 

was mismatched, and non-European ancestry defined by multi-dimensional scaling using the 25 

HapMap Phase II release 22 reference populations were excluded. SNPs with a minor allele 26 

frequency (MAF) <1%, call rate < 95%, or a departure from the Hardy–Weinberg equilibrium 27 

(P value < 5 x 10-7) were removed. Imputation was carried out with Impute3 using the 28 

Haplotpye Reference Consortium 1.0 reference panel with prior phasing using ShapeIT 29 

(v2.r644). Post-imputation SNPs with MAF <1%, INFO score <0.8, and not confirming to 30 

Hardy-Weinberg equilibrium (P < 5 × 10-7) were removed. After data cleaning, 8,654 31 

individuals (4,225 females and 4,429 males) and 4,054,653 SNPs remained for analyses. 32 

Polygenic score (PGS) calculations and multinomial regression models  33 

The BMI-PGS was calculated based on summary statistics from the GIANT consortium 34 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium). We used 35 
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the updated Meta-analysis Locke et al + UKBiobank 2018. We used the corrected sumstats, 1 

which were published on the website after June 25, 2018. The AN-PGS was based on the 2 

summary statistics of the second PGC-ED GWAS of AN 29. The calculation, application, and 3 

evaluation of the PGS was carried out with PRSice (2.1.3 beta; 4 

github.com/choishingwan/PGSice/) 45. PRSice relies on PLINK to carry out necessary 5 

cleaning steps prior to PGS calculation 45,46. Strand-ambiguous SNPs were removed prior to 6 

the risk scoring. A total of 1,488,001 SNPs were present in both the discovery and in the 7 

target cohort. Clumping was applied to extract independent SNPs according to linkage 8 

disequilibrium and P-value: the SNP with the smallest P-value in each 250 kilobase window 9 

was retained and all those in linkage disequilibrium (r2 > 0.1) with this SNP were removed. 10 

Furthermore, individuals that are closely related to each other defined as a phi hat > 0.2 11 

(calculated using PLINK v1.90b3y 64-bit, 4 Nov 2015) were removed; this meant removal of 12 

any duplicates or monozygotic twins, first-degree relatives (i.e. parent-offspring and full 13 

siblings), and second-degree relatives (i.e., half-siblings, uncles, aunts, grandparents, and 14 

double cousins). Only one individual of each pair of related individuals was removed at 15 

random. This resulted in the removal of 75 individuals. The following analyses were 16 

conducted in two stages: (1) PGS were calculated using the high-resolution scoring (e.g., 17 

across a large number of P-value thresholds) option in PRSice, treating the eating behavior 18 

trajectories as continuous outcomes to identify the p-value threshold at which the PGS is 19 

optimally associated with the outcome.  (2) Then the derived PGS were used as 20 

independent variables in the multinomial regression models. The models were fitted to 21 

estimate the association between BMI-PGS, AN-PGS, and membership of eating behavior 22 

trajectory. Estimates are reported as relative risk ratios (RRR), which indicate the risk of 23 

being assigned to one trajectory in comparison to the normative reference trajectory (gray 24 

lines in Figure 1a-c). Multinomial regression models are the most appropriate, as the 25 

trajectories of eating behavior are distinct categories, and cannot be assumed to be ordinal 26 

or continuous variables. Trajectories with no reported overeating, undereating, or fussy 27 

eating were used as the reference categories for the regression analyses. This way we were 28 

able to identify the extent to which a change in polygenic score was associated with the 29 

relative risk of being assigned to one of the other overeating, undereating, and fussy eating 30 

trajectories in reference to the normative trajectory. Regarding covariates, by definition 31 

polygenic scores are randomly distributed in the population at birth, and all commonly used 32 

covariates (birthweight, gestational age etc.) would conceptually lie on the causal pathway 33 

between exposure (polygenic score) and outcome (eating behavior trajectory), and hence 34 

were not included in these analyses. One possibility is that polygenic scores are not evenly 35 

distributed across different strata of socio-economic position, as the discovery GWASs were 36 

not adjusted for socio-economic status. Therefore, we conducted sensitivity analyses 37 
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including maternal education as a covariate. Maternal education was a binary variable 1 

indicating if mothers had completed their A-Levels (UK requirement to attend university). 2 

Results of these sensitivity analyses are listed in Supplement Table 6. In order to, account 3 

for multiple testing (26 tests), a stringent p-value threshold of 0.002 was set, using 4 

Bonferroni correction; 0.05 / 26 = 0.002. Tests were two-tailed.  5 

Data availability 6 

The data that support the findings of this study are available from the corresponding author 7 

upon reasonable request.  8 

Code availability 9 

All code associated with the analyses is available upon request. 10 

11 
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Figure Legends 

Figure 1a-c Eating behavior trajectories during the first ten years of life, total N=7,825. 
(A) Childhood overeating trajectories. Low stable (N=5374), Reference trajectory; 
Low transient (N=1091), BMI-PGS relative risk ratio (RRR) = 1.16 (95% CI: 1.08 – 1.23, p 
<0.001) and AN-PGS RRR = 0.92 (95% CI: 0.86 – 0.98, p = 0.011);  
Late increasing (N=883), BMI-PGS RRR=1.37 (95%CI: 1.27-1.47, p<0.001) and AN-PGS 
RRR=0.94 (95%CI:0.87-1.01, p=0.072); 
Increasing (N=477), BMI-PGS RRR=1.30 (95%CI: 1.19-1.43, p<0.001) and AN-PGS 
RRR=0.96 (95%CI: 0.87-1.05, p=0.353) 
(B) Childhood undereating trajectories. Low stable (N= 1913), Reference trajectory; 
Low transient (N=2906), BMI-PGS RRR = 0.91 (95%CI: 0.87- 0.97, p=0.002) and AN-PGS 
RRR = 1.01 (95%CI: 0.96- 1.07, p=0.630);   
Low decreasing (N=1613); BMI-PGS RRR = 0.93 (95%CI: 0.87- 0.99, p=0.027) and AN-
PGS RRR = 0.96 (95%CI: 0.90-1.02, p=0.202); 
High transient (N=989); BMI-PGS RRR = 0.84 (95%CI: 0.78- 0.91, p<0.001) and AN-PGS 
RRR = 0.95 (95%CI: 0.88- 1.02, p=0.166); 
High stable (N=141); BMI-PGS RRR = 0.80 (95%CI: 0.68- 0.95, p=0.012) and AN-PGS RRR 
= 0.93 (95%CI: 0.79- 1.11, p=0.441) 
(C) Childhood fussy eating trajectories. Low stable (N=1969), Reference trajectory  
Low decreasing (N=1142); BMI-PGS RRR= 1.00 (95%CI: 0.93-1.01, p=0.993) and AN-PGS 
RRR = 0.99 (95%CI: 0.91- 1.06, p=0.706); 
Low transient (N=2136); BMI-PGS RRR = 0.99 (95%CI: 0.93-1.06, p=0.796) and AN-PGS 
RRR = 0.99 (95%CI: 0.93- 1.06, p=0.826); 
High decreasing (N=1112); BMI-PGS RRR = 0.86 (95%CI: 0.80- 0.93, p<0.001) and AN-
PGS RRR = 1.05 (95%CI: 0.97- 1.13, p=0.218); 
Low increasing (N=1040); BMI-PGS RRR = 0.93 (95%CI: 0.86- 1.00, p=0.060) and AN-PGS 
RRR = 0.97 (95%CI: 0.90-1.05, p=0.486); 
High stable (N=699), BMI-PGS RRR = 0.85 (95%CI: 0.78- 0.93, p<0.001) and AN-PGS RRR 
= 1.08 (95%CI: 0.99-1.18, p=0.097) 

Figure 2 Mean of standardized BMI-PGS (in blue), AN-PGS (in red), and standard error per 
child eating behavior group (N= 7,825)
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SUPPLEMENTARY INFORMATION  

Supplementary Table 1. Descriptive table of the baseline (N=12,002) and final analyses 

sample (N=7,825) 

Participants with at 
least one eating 
behavior observation 
(N = 12,002) 

Participants with at least one 
eating behavior observation 
and genome-wide data, 
analyses sample (N = 7,825) 

Mean (SD) or N (%) Mean (SD) or N (%)

Sex Boys 6,208 (52%) 3,998 (51%) 

Girls 5,840 (48%) 3,827 (49%) 

Maternal education  Less than A-
level

7,271 (60%) 4,544 (58%) 

A-Levels or 
higher

4,831 (40%) 3,281 (42%) 

Maternal age (years) 28.3 (4.5) 28.7 (4.6) 

Gestational age 
(weeks) 

39.5 (1.9) 39.5 (1.8) 

Eating behavior groups 

Overeating  low stable  8,240 (69%) 5,374 (69%) 

low transient  1,756 (15%) 1,091 (14%) 

late increasing  
1,276 (11%) 883 (11%) 

increasing 730 (6%) 477 (6%) 

Undereating low stable 2,940 (24%) 1,913 (24%) 

low transient  4,413 (37%) 2,906 (37%) 

low decreasing  2,454 (20%) 1,613 (21%) 

high transient  1,548 (13%) 989 (13%) 

high decreasing  437 (4%) 260 (3%) 

high stable  214 (2%) 141 (2%) 

Fussy eating low stable  2,713 (23%) 1,696 (22%) 

low decreasing 1,718 (14%) 1,142 (15%) 

low transient 3,272 (27%) 2,136 (27%) 

high decreasing 1,710 (14%) 1,112 (14%) 

low increasing  1,590 (13%) 1,040 (13%) 

high stable  1,045 (9%) 699 (9%) 



Supplementary Table 2a Number of SNPs and p-values derived from PRSice for each associated 

eating behavior group – BMI-PGS (N=7,825). Eating behaviors trajectories were considered as 

continuous outcomes in these analyses.  

Outcome Number of 

SNPs

P-value 

threshold 

Empirical p-

value 

Coefficient R2

Overeating 7464 0.0011 9.1 x 10-5 966.406 0.014 

Undereating 11712 0.0052 9.9 x 10-4 -721.393 0.004 

Fussy eating  5204 0.0003 1.8 x 10-4 -629.645 0.007 

Supplementary Table 2b Number of SNPs and p-values derived from PRSice for each associated 

eating behavior group – AN-PGS (N=7,825). Eating behaviors trajectories were considered as 

continuous outcomes in these analyses. 

Outcome Number of 

SNPs

P-value 

threshold 

Empirical p-

value 

Coefficient R2

Overeating 4764 0.00865 0.215 -85.6249 0.001 

Undereating 48885 0.2851 0.197 -532.706 0.001 

Fussy eating  8027 0.00013 0.933 93.8222 0.001 



Supplementary Table 3. Association between BMI-PGS and AN-PGS with class membership of child eating behavior groups, expressed as relative risk ratios 

(RRR) - analyzed separately, N=7,825.   

Polygenic score BMI (BMI-PGS) Polygenic score AN (AN-PGS) 

Childhood overeating groups Childhood overeating groups 

N RRR 95% CI p-value N RRR 95% CI p-value 

low stable  5,374 Reference  low stable 5,374 Reference 

low transient  1,091 1.16 1.08, 1.24 <0.001 low transient 1,091 0.92 0.86, 0.98 0.011 

late increasing  883  1.37 1.27, 1.47 <0.001 late increasing 883  0.94 0.87, 1.01 0.072 

increasing 477 1.30 1.19, 1.43 <0.001 increasing 477 0.96 0.87, 1.05 0.353 

Childhood undereating groups Childhood undereating groups 

N RRR 95% CI p-value N RRR 95% CI p-value 

low stable 1,913 Reference  low stable 1,913 Reference 

low transient  2,906 0.91 0.86, 0.97 0.002 low transient 2,906 1.01 0.96, 1.07 0.630 

low decreasing  1,613 0.93 0.87, 0.99 0.027 low decreasing 1,613 0.96 0.90, 1.02 0.202 

high transient  989 0.84 0.78, 0.91 <0.001 high transient 989 0.95 0.88, 1.02 0.166 

high decreasing  260 0.92 0.81, 1.04 0.189 high decreasing  260 0.96 0.85, 1.10 0.583 

high stable  141 0.80 0.68, 0.95 0.012  high stable 141 0.93 0.79, 1.11 0.441 

Childhood fussy eating groups Childhood fussy eating groups 

N RRR 95% CI p-value N RRR 95% CI p-value 

low stable  1,696 Reference  low stable 1,696 Reference 

low decreasing 1,142 0.99 0.93, 1.08 0.993 low decreasing 1,142 0.99 0.91, 1.06 0.706 

low transient 2,136 0.99 0.93, 1.06 0.796 low transient 2,136 0.99 0.93, 1.06 0.826 

high decreasing 1,112 0.86 0.80, 0.93 <0.001 high decreasing 1,112 1.05 0.97. 1.13 0.218 

low increasing  1,040 0.93 0.86, 1.00 0.060 low increasing 1,040 0.97 0.90, 1.05 0.486 

high stable  699 0.85 0.78, 0.93 <0.001 high stable 699 1.08 0.99, 1.18 0.097 



Supplementary Table 4. Combined effect of BMI-polygenic score and AN-polygenic score on child 

eating behavior, expressed as relative risk ratios (RRR), N=7,825. 

Polygenic score BMI (BMI-PGS) and polygenic score AN (AN-PGS) 

Childhood overeating groups 

N RRR 95% CI p-value 

low stable  5,374 Reference 

low transient  1,091 

BMI-PGS 1.15 1.07, 1.23 <0.001 

AN-PGS 0.93 0.87, 1.00 0.037 

late increasing  883 

BMI-PGS 1.37 1.27, 1.47 <0.001 

AN-PGS 0.97 0.90, 1.04 0.375 

increasing 477 

BMI-PGS 1.30 1.18, 1.43 <0.001 

AN-PGS 0.98 0.89, 1.08 0.731 

Childhood undereating groups 

N RRR 95% CI p-value 

low stable 1,913 Reference 

low transient  2,906 

BMI-PGS 0.91 0.86, 0.97 0.002 

AN-PGS 1.00 0.95, 1.06 0.894 

low decreasing  1,613 

BMI-PGS 0.92 0.86, 0.99 0.018 

AN-PGS 0.95 0.89, 1.01 0.125 

high transient  989 

BMI-PGS 0.83 0.77, 0.90 <0.001 

AN-PGS 0.93 0.86, 1.00 0.059 

high decreasing  260 

BMI-PGS 0.91 0.80, 1.04 0.166 

AN-PGS 0.95 0.86, 1.09 0.484 

high stable  141 

BMI-PGS 0.79 0.67, 0.94 0.009 

AN-PGS 0.91 0.77, 1.08 0.290 



Supplementary Table 4 – continued. 

Childhood fussy eating groups 

N RRR 95% CI p-value 

low stable  1,696 Reference 

low decreasing 1,142 

BMI-PGS 1.00 0.93. 1.08 0.964 

AN-PGS 0.99 0.91, 1.06 0.704 

low transient 2,136 

BMI-PGS 0.99 0.93, 1.06 0.778 

AN-PGS 0.99 0.93, 1.06 0.806 

high decreasing 1,112 

BMI-PGS 0.86 0.80, 0.93 <0.001 

AN-PGS 1.03 0.96, 1.12 0.393 

low increasing  1,040 

BMI-PGS 0.93 0.86, 1.00 0.051 

AN-PGS 0.97 0.89, 1.04 0.378 

high stable  699 

BMI-PGS 0.86 0.78, 0.94 0.001 

AN-PGS 1.06 0.97, 1.16 0.188 



Supplementary Table 5: Power calculations at different levels of covariance between discovery datasets (BMI and anorexia nervosa) and target dataset 
(eating behavior trajectories in ALSPAC).   

Phenotype PGS Sample size 
discovery 

dataset 

Sample size 
target 

dataset 
(ALSPAC)

N 
SNPs 

VG1 Prevalence of trait 
in discovery 

dataset 

Weighted Shrinkage π0 Cov12 Power 

Overeating AN 72,517 7,285 4,764 0.17 0.03 TRUE FALSE 0.95 0.01 0.42 

Overeating AN 72,517 7,285 4,764 0.17 0.03 TRUE FALSE 0.95 0.02 0.94 

Overeating AN 72,517 7,285 4,764 0.17 0.03 TRUE FALSE 0.95 0.03 0.94 

Undereating AN 72,517 7,285 48,885 0.17 0.03 TRUE FALSE 0.95 0.01 0.16 

Undereating AN 72,517 7,285 48,885 0.17 0.03 TRUE FALSE 0.95 0.02 0.48 

Undereating AN 72,517 7,285 48,885 0.17 0.03 TRUE FALSE 0.95 0.03 0.82 

Fussy eating AN 72,517 7,285 8,027 0.17 0.03 TRUE FALSE 0.95 0.01 0.41 

Fussy eating AN 72,517 7,285 8,027 0.17 0.03 TRUE FALSE 0.95 0.02 0.93 

Fussy eating AN 72,517 7,285 8,027 0.17 0.03 TRUE FALSE 0.95 0.03 1.00 

Overeating BMI 700,000 7,285 7,464 0.14 - TRUE FALSE 0.95 0.01 0.60 

Overeating BMI 700,000 7,285 7,464 0.14 - TRUE FALSE 0.95 0.02 0.99 

Overeating BMI 700,000 7,285 7,464 0.14 - TRUE FALSE 0.95 0.03 1.00 

Undereating BMI 700,000 7,285 11,712 0.14 - TRUE FALSE 0.95 0.01 0.59 

Undereating BMI 700,000 7,285 11,712 0.14 - TRUE FALSE 0.95 0.02 0.99 

Undereating BMI 700,000 7,285 11,712 0.14 - TRUE FALSE 0.95 0.03 1.00 

Fussy eating BMI 700,000 7,285 5,204 0.14 - TRUE FALSE 0.95 0.01 0.61 

Fussy eating BMI 700,000 7,285 5,204 0.14 - TRUE FALSE 0.95 0.02 0.99 

Fussy eating BMI 700,000 7,285 5,204 0.14 - TRUE FALSE 0.95 0.03 1.00 

Abbreviations: PGS: Polygenic score; N SNPs: Number of independent SNPs used in the calculation of the PGS; VG1: Proportion of trait variance 
explained by the entire set of SNPs in the discovery sample; Weighted: PGS is constructed with weight log(OR); Shrinkage: Effect sizes are shrunk to best 
linear unbiased predictions (BLUPs); π0: Proportion of markers with no effect on the discovery trait; Cov12: Covariance between genetic effect sizes in the 
two samples. Plausible values between 0.01 and 0.03 were used in the estimation of power. 



Supplementary Table 6. Association between BMI-PGS and AN-PGS with class membership of child eating behavior groups, expressed as relative risk ratios 

(RRR) - analyzed separately, and adjusted for maternal education at birth, N=7,825.   

Polygenic score BMI (BMI-PGS) Polygenic score AN (AN-PGS) 

Childhood overeating groups Childhood overeating groups 

N RRR 95% CI p-value N RRR 95% CI p-value 

low stable  5,374 Reference  low stable 5,374 Reference 

low transient  1,091 1.15 1.08, 1.28 <0.001 low transient 1,091 0.92 0.86, 0.98 0.012 

late increasing  883  1.37 1.27, 1.47 <0.001 late increasing 883  0.94 0.87, 1.01 0.074 

increasing 477 1.29 1.18, 1.43 <0.001 increasing 477 0.96 0.87, 1.05 0.365 

Childhood undereating groups Childhood undereating groups 

N RRR 95% CI p-value N RRR 95% CI p-value 

low stable 1,913 Reference  low stable 1,913 Reference 

low transient  2,906 0.92 0.86, 0.97 0.003 low transient 2,906 1.01 0.96, 1.07 0.672 

low decreasing  1,613 0.92 0.86, 0.98 0.013 low decreasing 1,613 0.96 0.90, 1.03 0.234 

high transient  989 0.84 0.78, 0.91 <0.001 high transient 989 0.95 0.66, 1.02 0.156 

high decreasing  260 0.90 0.79, 1.03 0.121 high decreasing  260 0.97 0.85, 1.10 0.638 

high stable  141 0.80 0.67, 0.95 0.01 high stable 141 0.94 0.78, 1.11 0.448 

Childhood fussy eating groups Childhood fussy eating groups 

N RRR 95% CI p-value N RRR 95% CI p-value 

low stable  1,696 Reference  low stable 1,696 Reference 

low decreasing 1,142 1.00 0.93, 1.08 0.917 low decreasing 1,142 0.98 0.92, 1.06 0.676 

low transient 2,136 1.00 0.94, 1.07 0.926 low transient 2,136 0.99 0.93, 1.05 0.728 

high decreasing 1,112 0.87 0.81, 0.94 <0.001 high decreasing 1,112 1.04 0.97, 1.13 0.267 

low increasing  1,040 0.94  0.87, 1.01 0.137 low increasing 1,040 0.97 0.89, 1.05 0.402 

high stable  699 0.86 0.79, 0.04 0.001  high stable 699 1.07 0.98, 1.17 0.122 



Supplementary Figure 1: Expected power to detect associations between polygenic scores (discovery 
samples: anorexia nervosa and BMI) with eating behavior trajectories (overeating, undereating and 

fussy eating in Avon Longitudinal Study of Parents and Children [ALSPAC]) and different levels of 
covariance of genetic effect size (Cov12) between the two samples. Sample size: Anorexia nervosa 
discovery sample: 72,517; BMI discovery sample: 700,000; ALSPAC target sample: 7,285.


