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ABSTRACT 

The social environment presents the human brain with the most complex of information 

processing demands. The computations that the brain must perform occur in parallel, 

combine social and nonsocial cues, produce verbal and non-verbal signals, and involve 

multiple cognitive systems; including memory, attention, emotion, learning. This occurs 

dynamically and at timescales ranging from milliseconds to years. Here, we propose that 

during social interactions, seven core operations interact to underwrite coherent social 

functioning; these operations accumulate evidence efficiently – from multiple modalities – 

when inferring what to do next. We deconstruct the social brain and outline the key 

components entailed for successful human social interaction. These include (1) social 

perception; (2) social inferences, such as mentalizing; (3) social learning; (4) social 

signaling through verbal and non-verbal cues; (5) social drives (e.g., how to increase one’s 

status); (6) determining the social identity of agents, including oneself; and (7) minimizing 

uncertainty within the current social context by integrating sensory signals and inferences. 

We argue that while it is important to examine these distinct aspects of social inference, to 

understand the true nature of the human social brain, we must also explain how the brain 

integrates information from the social world.  
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INTRODUCTION 

At approximately 300,000 years of age, the human brain is relatively young. Yet, its mid-Paleolithic 

introduction was preceded by millions of years of evolution. Through this process, over phylogenetic 

timescales, the brain has slowly acquired models of an increasingly complex social world, the accumulation 

of which has resulted in the human brain we possess today. The evolution of the human brain evolves the 

exploitation of group-living strategies, which benefit both the individual and the group (Silston et al., 

2018). In short, humans have evolved a set of behavioral and neural systems that facilitate group living and 

successful social interaction. These systems must be sufficiently flexible to navigate the fleeting social 

environment (Lehmann et al., 2007), to track the behaviors, interactions, and intentions of others, and to 

accumulate this information over time to inform and make appropriate social decisions. To understand the 

recruitment of specific neural systems and predict the behaviors of others, we must also account for 

contextual factors and socio-cultural dynamics. To enable adaptive forms of social interaction, the human 

brain must be dynamic, efficient, and attentive to – and capable of – the deployment of appropriate social 

behaviors in a variety of social contexts. 

Like all nervous systems, the human brain has evolved primarily for survival; i.e., its main function is the 

guidance of situationally appropriate forms of action, which maintain it in the neighborhood of states that 

characterize the human phenotype (Badcock, Friston, & Ramstead, 2019; Cisek, 1999; Mobbs, Hagan, 

Dalgleish, Silston, & Prévost, 2015). However, the relative size, ability, and metabolic demand of the brain – 

and its unique capacity for language and mentalizing – suggest that the selection pressures, to which 

humans are subject, relate primarily to the constraints on group living. Indeed, a large portion of the 

human brain is dedicated to social cognition. For example, brain imaging and neuropsychological studies of 

individuals with brain damage suggest that the extrastriate cortices – including the visual fusiform cortex – 

comprise regions that specialize in the processing of faces and bodies (Kanwisher & Yovel, 2006). Social 

attention and the dynamic features of the human face (e.g., expression and emotion) are key elements of 

social interaction and encompass the superior temporal sulcus (STS; Hagan et al., 2009, 2013; Haxby et al., 

2002). 

As one ascends cortical hierarchies, computational processes become more distributed and complex. 

Inferences concerning the mental state and intentions of others appear to engage the temporoparietal 

junction (TPJ), the temporal pole, as well as the medial prefrontal cortex. The emotional states of others 

map onto one’s own affective and interoceptive circuitry (Singer et al., 2004). The perception of threat to 

another engages the amygdala (Adolphs et al., 1995), while the perception of another’s joy engages the 
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reward circuitry (Mobbs et al., 2009). Social motivation is an important driver of social actions; however, 

information processing pathways have been found to differ between individuals from different cultures, 

underscoring the complexity, socio-cultural variability, and plasticity of the organ enabling human social 

cognition (Han & Northoff, 2008). This brief introduction to the social brain suggests that social behavior 

involves a diverse yet interconnected network (i.e., a heteroarchy) in the human brain and involves several 

specialized hubs, each with its own specialization, and each working in concert to accomplish global 

computations (Anderson, 2014).  

In this paper, we outline seven key computations with which the social brain contends in social interaction. 

These include: (1) social perception, (2) social inferences, (3) social learning, (4) social signaling, (5) social 

drives, (6) social identity and group membership, and finally (7) integrating interoceptive, exteroceptive, 

and proprioceptive signals within the social context. These challenges suggest that social behavior is a 

cognitively complex and metabolically demanding process, which involves highly interconnected systems 

that pass messages over both short- and long-range connections (i.e., intrinsic and extrinsic connectivity, 

respectively). We argue that while it is important to examine these different computations, in order to 

better understand the true nature of the human social brain, we must first understand how the brain 

integrates multimodal information, and in turn, how this integration underwrites the enormous variety of 

social behaviors.  

(1) SOCIAL PERCEPTUAL SYSTEMS 

The human sensory system, as all other sensory systems, views the external world through the lens of 

evolved adaptions (Haselton et al., 2015) . Some have argued that identity is crucial to social interaction, 

and that therefore, it is not surprising that a specialized system has evolved to perceive social signals, such 

as facial expression, body stance, language, tone of voice, and chemosensory signals (Haselton et al., 2015). 

Research from cognitive neuropsychology – as well as human brain imaging – has demonstrated that the 

brain has specialized systems that process information about faces, bodies, odors, and biological sounds 

and movements; and that the human body has coevolved along with these cognitive adaptations (de Gelder 

et al., 2010; Kanwisher & Yovel, 2006). This is borne out by a host of adaptations (both morphological and 

cognitive) that, in humans, are hard wired. For instance, it has been shown that newborns have the 

propensity to attend to faces and determine the chemosensory signals of the mother (Johnson et al., 1991). 

Even as infants, humans have a propensity to track the gaze of their conspecifics (Batki et al., 2000); this is 

a cognitive adaptation that coevolved in humans with a complementary phenotypic trait, namely, our 

highly visible white sclera (Henrich, 2015). Neuroimaging studies have shown that we engage distinct 

neural circuits when distinguishing between those who are similar and dissimilar to ourselves (Lockwood et 
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al., 2018; Mitchell et al., 2006; Mobbs et al., 2009; Sui et al., 2013), determine social status, infer who to 

cooperate with, and even whom to dehumanize (Harris & Fiske, 2006). To survive, people need an accurate 

perceptual system to infer states of affairs in a social and cultural econiche (Table 1). 

Insert Table 1 here 

While the existence of functionally specialized systems that allow us to account for these remarkable 

perceptual abilities remains contentious, it is clear that there is overlap in the neural circuits involved in 

inferring information from faces. The face processing system is often portrayed as a hierarchically 

organized system. In this system, the STS, the Occipital Face Area (OFA), and the Fusiform Face Area 

(FFA), have been found to be a part of the so-called ‘core’ network for face perception (Fox et al., 2009; 

Haxby et al., 2000; Kadosh et al., 2011). The link between the OFA-FFA has been associated with the 

processing of facial identity, whereas the OFA-STS link has been associated with processing the dynamic 

aspects of that contribute to recognition (Gobbini & Haxby, 2007; Olivares et al., 2015). The STS has been 

proposed as a hub, comparator, and integration center for a host of functions, which situates it as a major 

contributor to social processing and behaviors (Hagan et al., 2009, 2013). More fine-grained investigation 

by Deen, Koldewyn, Kanwisher, & Saxe (2015) and Lahnakoski et al., (2012) suggests that anterior and 

posterior parts of the STS are nodes in different circuits subserving specific components of social 

information processing, with some subareas participating in multiple circuits corresponding to different 

categories of social input. These authors characterize the anterior region of the STS as part of a circuit 

involved in processing communicative signals, and the posterior region as a social processing control node 

that is connected with areas implicated in attentional control. This structure is important for action 

understanding but is not necessarily activated in non-action-oriented mentalizing (i.e., false belief tasks) 

(Gobbini et al., 2007). In addition to these ‘core’ areas, the extended systems (limbic areas, auditory 

regions, and regions involved when processing theory of mind) work together with the ‘core’ system to 

provide more complete face-driven processing, which includes the processing of social information (Haxby 

et al., 2000). Growing evidence suggests an important role for the anterior inferior temporal lobe (aIT) in 

face-processing, which appears to support facial recognition (Kriegeskorte et al., 2007; Nestor et al., 2011; 

Pyles et al., 2013; Rajimehr et al., 2009). The crucial role of the aIT in face recognition has been further 

supported by a study involving individuals with congenital prosopagnosia. This study showed a significant 

reduction in the volume of white/gray matter in the anterior IT cortex, which was correlated with deficits in 

face recognition (Behrmann et al., 2007).  

 

(2) SOCIAL INFERENTIAL SYSTEMS  
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Individuals use social perceptual systems to form general impressions of others; however, 

people can use mentalizing skills to make social inferences. A key process in successful 

social interactions is integrating body language cues, verbal information, and context to 

furnish insight into another’s mind. Tamir and Thornton’s 3D model which suggests a 

three-layer structure in which the first layer describes others’ observable actions, the 

second- and third-layer concern their mental states and traits, respectively (Tamir & 

Mitchell, 2012). They propose that the probabilistic trajectories within, and between, these 

layers offer an explanation for how people might use their social knowledge to predict 

others’ futures. 

 

Adjacent to the 3D is the interactive mentalizing theory (IMT), which proposes that  during dynamic social 

interaction, four key processes are in play: 1) meta-cognition: confidence about one’s mentalizing ability 

(e.g., how confident Agent A is about their inference of another’s thoughts and intentions; 2) first-order 

mentalizing: mentalizing of another’s mental states (e.g., what Agent A thinks Agent B’s thoughts and 

intentions are), 3) personal second-order mentalizing: mentalizing of self-generated mental states from 

the perspective of others (e.g., how much insight Agent A thinks Agent B has into his/her own thoughts 

and intentions), and 4) collective mentalizing, where we conform to what we believe another agent thinks 

about Agent B (e.g., Agent A infers that Agent C thinks that agent B has bad intentions) (Wu, Liu, Hagan, 

& Mobbs, 2019). The latter aspect has been developed under the rubric of ‘thinking through other minds’ 

(Veissière et al., 2019). The IMT model proposes that people are prone to this type of bias; especially when 

their confidence (metacognition) is low (Qi et al., 2018). During real-time social interactions, these four 

mentalizing components interact to update beliefs about another's intentions (Wu, Liu, Hagan, & Mobbs, 

2019). The IMT, therefore suggests that multiple computations are involved in social inferences (i.e., 

integration of social information).  

 

These theories support a network that encodes social knowledge, which includes  thinking about mental 

states, making inferences about others’ beliefs, thinking about the context including  groups of people 

(Ames et al., 2008; Mitchell et al., 2006; Saxe & Kanwisher, 2013). This network includes dorsomedial 

prefrontal cortex (dMPFC), ventromedial prefrontal cortex (vMPFC), medial parietal cortex (MPC), 

temporoparietal junction (TPJ), and the anterior temporal lobes (ATL). The medial PFC is a brain area 

involved in mentalizing, but has also been implicated in person perception, action monitoring, 

expectations, and metacognition (Amodio & Frith, 2006). The temporal poles and temporoparietal junction 

(TPJ) are also components of the mentalizing circuit. Activity in the TPJ has been associated with inferring 

the mental states of others (from one’s own perspective) but is also associated with cues indicat ing agency 
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more generally (Wurm & Schubotz, 2018). For example, Saxe & Kanwisher (2013) found that descriptions 

of mental states recruited the TPJ, but physical descriptions of people did not – and Castelli et al., (2000) 

found TPJ activation in a task in which moving shapes appeared to possess intentionality, but not for 

simple goal-directed actions or randomly moving shapes. While the involvement of STS and TPJ are 

supported by neuroimaging and brain lesion work (Samson et al., 2004; Saxe et al., 2004), the exact role of 

these brain regions is still unclear. It is possible that STS is involved in action observation and 

understanding, and TPJ is involved in inferring different mental states (e.g., effort during action 

observation). Other brain regions thought to comprise the theory of mind (ToM) network include the 

precuneus and posterior cingulate, which are associated with self-referential thoughts and cognitions, such 

as feelings of causation or attribution to oneself (Cabanis et al., 2013). Much like STS, the anterior and 

posterior parts of the precuneus appear to underwrite different processes in social inference. For example, 

in an attributional bias task, the posterior precuneus is associated with self-reference in general, while self-

attributed positive versus negative sentences elicited activation of the anterior part of the precuneus 

(Cabanis et al., 2013). The precuneus is also involved in updating state self-esteem by transforming others’ 

evaluation of oneself into state self-esteem, thereby relating to the mentalizing system for subjective 

evaluation regarding others (Kawamichi et al., 2018).  

 

(3) SOCIAL LEARNING SYSTEMS 

The philosopher Gilbert Ryle proposed that a boy can learn chess by simply “watching the moves made by 

others” (The Mind: p41). Social learning is a major benefit when living in groups, accelerating overall 

learning and leading to adaptive solutions that can be passed on to offspring and other conspecifics over 

developmental timescales. Animals that cannot imitate others are confined to the rules of individual 

learning (Richerson & Henrich, 2012). Whiten (2005) suggests that social learning provides a “secondary 

inheritance system”, where our capacity to learn from others lowers the cost of acquiring information 

firsthand; including learning about dangers, cheaters, and the best locations to forage (a complementary 

account from the perspective of human evolutionary biology is provided by (Henrich, 2015)). Therefore, 

specialized brain systems seem to exist that support the computations involved in social learning. Below we 

will outline selected findings on how the brain signals self- and other-referenced social learning.  
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The Anterior Cingulate Cortex (ACC) 

The ACC has been proposed to be an integrative area relating to social learning systems (Lockwood et al., 

2020). Specifically, the ACC seem to be involved during social decision-making, reflecting information 

processing about self, other, or both (Apps et al., 2016; Apps & Ramnani, 2014; Hill et al., 2016; Lockwood 

et al., 2015). In one recent study, the whole ACC was lesioned in rhesus monkeys where they found specific 

disruption of learning which stimuli rewarded others, but not the self, while previously learned stimuli were 

still intact (Basile et al., 2020). These findings indicate the importance of the ACC when acquiring prosocial 

preferences from vicarious reinforcement. Moreover, neuroimaging studies in humans suggest an 

important division between social and non-social subregions within the ACC, namely the sulcus (ACCs) and 

gyrus (ACCg)(Apps et al., 2016; Chang et al., 2013; Joiner et al., 2017; Kendal et al., 2018). Several studies 

have found that the ACCg plays an important role in evaluating the behaviors of others, estimating other’s 

level of motivation and error processing, whereas the ACCs responds to self-relevant reward signals and 

prediction errors (Apps et al., 2016; L. J. Chang & Sanfey, 2013; Hill et al., 2016; Lockwood et al., 2016). 

Learning about reward probability from vicarious and personal experiences does seemingly recruit other 

neural systems where the information gets combined when making decisions.  

The Ventromedial Prefrontal Cortex (vmPFC) 

The vmPFC is also implicated in vicarious reward learning (Mobbs et al., 2009), vicarious prediction errors 

(Burke et al., 2010), and vicarious fear learning (Olsson et al., 2007; Olsson & Phelps, 2007). These studies 

point to the prefrontal cortex (PFC) as another crucial player in social learning. Although the exact 

processes are unknown, Price & Boutilier (2003) have put forward a Bayesian imitation model of the PFC, 

stating that humans (and possibly other animals) combine the information learned through the observation 

of others with existing knowledge afforded by personal experiences (also see Dunne & O’Doherty, 2013) 

and behave accordingly. The development of vicarious learning systems has roots in representational 

processes that recruit motor, affective, sensory, and cognitive systems associated with first person 

experiences while observing others performing actions, perceiving sensations, or under distress. The so-

called ‘mirror neuron’ system purports to provide a vicarious experience to observers, though the 

interpretation of exactly what this system does is still under debate (Cook et al., 2014) . While it is clear that 

these observations are represented in some regards in areas that are active when we perform similar 

actions, how this information is integrated into action understanding is not well understood. Nonetheless, 

the recognition of various actions of others, together with an explicit representation of their goals and our 

own knowledge, seems sufficient to generate a framework for vicarious learning (for an extensive review, 

see Charpentier & O’Doherty, 2018 and Konovalov et al., 2018).  
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(4) SOCIAL SIGNALING SYSTEMS 

Thorndike (1920) proposed that social intelligence rests on two central properties; the ability to understand 

others, and the behavioral effectiveness of social actions. Social signals are driven by the importance of 

conveying information and are observed with varying complexity across the animal kingdom (Dawkins & 

Krebs, 1978). Social signals are conveyed via multi-modal cues such as intonation, posture, intensity, gaze 

direction, etc., and reduce the asymmetry of information between the signaler and receiver. However, they 

can also be used by the signaler strategically to promote a desired image for personal status-seeking. 

Signaling theory has been used to explain behavior in several fields including economics (Spence, 1973) as 

part of game theory, anthropology – with respect to selecting costly behaviors that otherwise appear 

irrational – and biology, as an evolutionarily adaptive strategy to gain or communicate social status, and 

mitigate potential harm (Grafen, 1990; Zahavi, 1975, 1977). Subconscious signals are expressed through 

body language, facial expressions, touch, or tone of voice. These signals include brain areas involved in 

language, motor, and control systems.  

Inner Self: Self-Monitoring, Metacognition, and Control. Lieberman (2007) suggests that one 

central question for social neuroscientists is: “how do we control ourselves”. Baumeister and Vohs (2004) 

propose that humans have an innate capacity to regulate and alter their social behavior in reference to 

external guidelines. These guidelines include social norms, religion, morals, contextual rules, and the law. 

Some have even gone so far as to propose that humans always are thinking in terms of expectations, and 

especially what others expect of us and what are our personal expectations (Veissière et al., 2019). One 

important part of this internal process is Metacognition, or the knowledge that we have about our internal 

cognitive processes, which  plays a key role in the control and monitoring of the internal-self (see Metcalfe 

& Shimamura (1994) for detailed review).  Successful self-monitoring and control require coordinated 

activity in prefrontal circuits to override the connection between the value signal and motivation systems 

that lead to action selection. 

The inability to control and monitor one’s behavior is typically impaired in patients with prefrontal damage 

(Damasio, 1995), and susceptible to failure upon depletion of self-regulatory resources. Regulatory failure 

has also been associated with reduced dlPFC activity, and with functional connectivity between the inferior 

frontal gyrus (a region implicated in certain elements of response inhibition) and the vmPFC and 

orbitofrontal areas (regions thought to encode the value of reward) (Dambacher et al., 2015; Stramaccia et 

al., 2015). Retrieval of meta-goals -- or those associated with personal longer-term outlooks, and 

unaccomplished by any single decision or action -- may be central in influencing self-regulatory behaviors. 

Lateral frontopolar regions are implicated in high-level cognitive monitoring and representation in the 
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tracking of meta-goals, with medial subdivisions involved in memory processes that are likely required to 

retrieve particular goal information (Baird et al., 2013). Together, these internal processes will determine 

the behavioral output or the external presentation of the self. 

External Presentation of Self: Speech and Non-Verbal Signals: Inferences about the internal self, 

set the foundation for social interaction. The use of language in social interaction is beyond the scope of this 

review; however, several core features deserve a special mention. Bolinger (1965) spoke of speech 

metaphorically as an ocean, where forces acting on it create surface movements, resembling the ups and 

downs of the human voice. Like the ocean, speech conveys voluminous undercurrents, including 

assertiveness and confidence through rising pitch; it transmits emotion through prosodic tone, status 

through grammatical accuracy and dialect, and intelligence through vocabulary and pronunciation. 

Therefore, what we say and how we say it are rich sources of social information.  This weaving of transient 

social information is augmented by visual information that includes the infinitesimal movements that 

characterize the complex facial muscles, movement and directionality of the eyes, gait, hand gestures, speed 

of movement, proxemics, and so forth. Humans are acutely aware of how we are viewed by others, and in 

many cultures, individuals accumulate and display fine material belongings to signal wealth, which is a 

proxy for high social status. Bourdieu famously argued that material signaling consisting of one’s “symbolic 

capital” could be used interchangeably with economic capital to acquire social status, including 

advantageous positions vis-à-vis access to high quality mates, ability to forge advantageous and stable 

alliances, and enhanced opportunity to acquire additional status (Bourdieu, 1977). 

While we elicit all these signals, the human brain is encoding others’ social signals, inferring allowable 

subsequent behaviors based on these signals and prior knowledge, and is making social judgments 

concerning the target individual’s intentions. For example, Keltner and colleagues (2014) have shown that 

humans exhibit nonverbal signs of a prosocial character.  These signals include smiles, head nods, head 

tilts, blushing, and laughter, that collectively may indicate social engagement, warmth, and concern for 

others (Keltner et al., 2014). Another social cue is proximity, which provides information about the 

connectedness of people, where close others (or those we selectively bond with) place themselves (and are 

allowed to place themselves) within our personal or intimate space (Hall, 1966). 

Consistency in Representations of the Inner and External Self. Festinger and Carlsmith (1959) 

defined internalization as the process of matching one’s private self-concept with one’s external behavior. 

Several theories have been advanced to account for the relationship between internal and external selves.  

Self-verification suggests that people act in ways that are consistent with how they self-identify (Swann et 

al., 1987). This is closely allied with Self-Discrepancy Theory (SDT; Higgins, 1987). SDT proposes that 
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individuals have an internal self-model, to which they compare their behavior. Self-guides include the 

actual-self, ideal-self and ought-self. SDT further predicts that when self-guides are incongruent, emotional 

discomfort will emerge. Therefore, one goal during social interaction is to minimize the discrepancy 

between internal and external states. This is evident when one feels a mismatch between goals and their 

attainment (e.g., rejection). The systems underlying this feeling may share common neural substrates with 

dissonance, more generally, which is assumed to provide an uncomfortable feeling that motivates our 

actions and desire to return to a coherent state. Cognitive dissonance, according to (Festinger, 1962), 

recruits areas involved in error conflict monitoring, notably the ACC, but also regions associated with affect 

and memory processing, including the insula and precuneus (de Vries et al., 2015; Kitayama et al., 2013). 

Shared Reality:  Rapport Forming and Social Tuning. Shared Reality Theory posits that when we 

take another person’s perspective, we become socially attuned and possess a mutual understanding 

(Hardin & Higgins, 1996). Rapport is critical to cooperation and conflict resolution and can be considered a 

form of social bonding (see above). Forming a stable rapport typically increases the overlap of beliefs and 

emotional responses between individuals – leading to an intrinsically rewarding interaction, providing an 

incentive to expend significant energy to maintain a positive shared experience. This shared reality results 

in affiliative behaviors, social bonding, and shared epistemic needs (Hardin & Higgins, 1996), and is crucial 

for healthy social and psychological functioning (Echterhoff et al., 2009). A salient feature of the Promotion 

system is affiliative motivation (Sinclair et al., 2005). Socially tuned interactions should produce 

characteristic social behaviors, including behavioral mirroring. However, social anti-tuning, as engaged by 

the Prevention system, should be evidenced when people aim to distance themselves from others, as occurs 

with out-group or individuals who perceive themselves to be of lower status than others (Sinclair et al., 

2005).  

 

(5) SOCIAL MOTIVATION SYSTEM 

From amoeba to humans, rewarding states are approached, and pain is avoided (Higgins, 1997). Extending 

this dichotomy social behavior, regulatory focus theory (RFT) suggests an individual’s motivation interacts 

with goal pursuit (Higgins, 1987). RFT parses motivation into either a Promotion focus, where one focuses 

on nurturance needs and gain vs. non-gain situations, or a Prevention focus, which emphasizes security 

needs and non-loss vs. loss situations. Therefore, the Promotion-Prevention system would be engaged 

when one attempts to optimize social drives, through bonding, social tuning and biasing, and social 

network formation. For example, when status-seeking is in progress, promotion would presumably result in 

socializing with high status individuals and prevention through avoiding or limiting interactions with low 
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status individuals. Assimilation and allegiance are also important promotion motivators. These drives 

would presumably be enabled by the well-known circuitry involved in motivation, including the 

dopaminergic and opioid circuitry in the basal ganglia and ventral tegmental area (Berridge & Robinson, 

1998). Further, some theorists have suggested that the left hemisphere is associated with affiliative and 

promotion-type behaviors and parasympathetic activation, while the right hemisphere produces aggressive, 

defensive, and prevention-type behaviors and sympathetic activation (Craig, 2005). Craig’s model derives 

from two premises: the fact that autonomic projections to the heart are asymmetric; and the idea that the 

brain, given its high metabolic consumption rate, requires optimization of energy consumption to perform 

at its observed level. This model highlights a key role for the insula, given its position as a hub and 

connections with areas subserving opposing components of the autonomic nervous system. 

Social Promotion and Reward. In humans, social rewards tap into the same dopaminergic systems 

involved in primary rewards such as food and sex (Izuma et al., 2008). Indeed, the drive to broadcast 

information about themselves, (Tamir & Mitchell, 2012), to be liked (Davey et al., 2010) and to have a 

positive reputation (Izuma et al., 2008) increase activity in the dopamine enriched ventral striatum (VS). In 

addition to the VS, the ventromedial prefrontal cortex (VMPFC) has also been widely implicated in social 

reward and play an important role in value-based learning and decision making in general (Bartra et al., 

2013). Advice-giving may be one way in which individuals can gain the most basic of social rewards: 

acceptance and respect (Baumeister & Leary, 1995). This was investigated by examining advice-acceptance 

and reflected glory (Mobbs, Hagan, et al., 2015). In this study, it was shown that activity increased in 

ventral striatum when one’s advice was accepted in a 3-player Advisor-Advisee Game. Furthermore, if this 

advice led to the advisee winning money, activity in the ventral striatum also increased; suggesting that it is 

rewarding to see others win if it reflects positively on our advice (Mobbs et al., 2015). Therefore, the human 

propensity to provide others with advice may act as a positive, status-enhancing behavior. Another study 

directly investigating reward-related neural activity in monetary and social rewards found common 

activation in ventral striatum during reward anticipation, but divergent results during reward presentation, 

with monetary and social rewards associated with greater thalamic and amygdala activity, respectively 

(Rademacher et al., 2010).  

Social Prevention and Punishment. The most commonly studied form of social punishment is that of 

ostracism. Social pain and rejection motivate people to avoid exclusions and conform with others (Lin et 

al., 2018), which involves the same neural networks (e.g., VS and vmPFC) as when tracking reward signals, 

updating value information and motivating people to act (Klucharev et al., 2009; Nook & Zaki, 2015; Zaki 

et al., 2011). In a set of classic studies, Eisenberger, Lieberman, and Williams have shown that when 

subjects are ignored by other players in a three-player Cyberball catch game, they report feeling social pain 
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(Eisenberger et al., 2003). This feeling of social rejection correlates with increased neural activity in brain 

regions known to be involved in physical pain (Eisenberger et al., 2003). Other studies investigating social 

exclusion have identified the lateral and mPFC, several subregions of the ACC, and insula (Gunther Moor et 

al., 2012). Similar regions have been found to activate when people feel envy (Takahashi et al., 2009) and 

guilt (L. J. Chang et al., 2011). Social punishment and forgiveness of excluders has been shown to activate 

regions implicated in mentalizing and ToM, (Will et al., 2015) including the TPJ, STS and several areas of 

the PFC, and the pre-supplementary motor area. This is likely because it entails taking the perspective of 

and making inferences about others’ mental states, both of which are critical for empathy and cooperation 

(Heatherton, 2011). In third-party determination of appropriate punishments for crimes committed, some 

have found activity in the amygdala, mPFC and PCC when subjects assessed magnitude, and activity in the 

right dlPFC when determining culpability (Sebastian et al., 2011).  The social pain network may work to 

drive the reward network via retaliation or revenge.  

Affiliation and Social Bonding Systems. In humans, significant mother-infant interaction is 

associated with synchrony in various biological rhythms such as heartbeat (Feldman et al., 2011) and other 

autonomic coupling that reflects a shared affective state (Ebisch et al., 2012), although these may be 

influenced by attachment security (Waters & Mendes, 2016). More recently, Preston (2013) has pointed out 

that mammals are attuned to, and motivated to help, neonates when they produce signals of distress. As 

mentioned above, this drive may be higher in females, as stress increases tending behaviors (Taylor et al., 

2000). The biological mechanisms that underlie the tend-befriend systems are grounded in the 

attachment-caregiving system, which is involved in maternal bonding and rearing. Oxytocin is believed to 

be the core biological chemical that facilitates mother-infant attachment (Drago, Pedersen, Caldwell, & 

Prange, 1986; Preston, 2013). In human mothers, viewing their own infant’s faces during fMRI scanning 

resulted in activation of oxytocin-enriched regions of hypothalamus and pituitary gland (Strathearn et al., 

2009). Others have shown that images of increasingly cute baby faces result in increased activity in 

dopaminergic rewards areas, suggesting that these images provide an innate primary reward (Glocker et al., 

2009). Consistent with this model, the insula is modulated by oxytocin signaling (Riem et al., 2011), such 

that increased signaling up regulates insular activity and down regulates amygdala activity. Most bonding 

research involves mother-infant dyads; however, some studies point to gender differences or lack thereof in 

the affective and motivational systems that drive parental bonding behaviors (Rajhans et al., 2019).  

 

(6) GROUP IDENTITY AND BIAS 
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People quickly evaluate and use social categories (e.g., race, gender, status, and age) – not always based on 

perceptual features as discussed in the section Social Perceptual Systems above – as a guide on how to 

interact with others (Ramstead et al., 2016). Social groups give individuals a sense of social identity, which 

is based on the group to which they belong – and is a strong determinant of how one reacts to the observed 

outcomes of others. Others perceived as similar to oneself, and therefore as belonging to the same social 

category, generate both behavioral and neural increases in vicarious reward processing, even when others 

are not genetically related (Mobbs et al., 2009). Perception of self-similar others activates neural regions 

including the ventral mPFC, which is also recruited during self-referential thought; while more dorsal areas 

of the mPFC is associated with perception of dissimilar others (Mitchell et al., 2006; Piva et al., 2019; Sul et 

al., 2015; Wittmann et al., 2018). Social orientation towards others and ensuing behaviors may be 

determined in part by the location of mPFC activation during perception of others. Specific mPFC location 

may bifurcate the simulation processing to proceed under the assumption the other is ‘like me’ or ‘not like 

me’ (assuming no other inputs). However, activation location can be shifted towards self-referential 

representation as a result of perspective taking of others that may have initially been perceived as dissimilar 

to oneself (Ames et al., 2008; Nicolle et al., 2012). This and other evidence suggest that social group 

categorizations can be quite flexible in general. This has also been demonstrated with minimal group 

paradigms, where individuals are randomly assigned to previously unfamiliar social groups based on 

arbitrary cues (e.g., a color) associated with a group. The surprising results indicate how easily biases in 

favor of arbitrary in-groups occur (Otten, 2016). However, it should be noted that evaluative preferences 

with respect to real groups tend to be stronger than those observed with minimal groups (Dunham, 2018). 

Individual responses to socially relevant information can be biased depending on from whom the 

information is coming (i.e., ingroup vs. outgroup). For example, participants who identified as strong 

supporters of a political party rated identical statements as more inspirational if they believed the 

statements originated from their ingroup (vs. outgroup) leaders (Molenberghs & Louis, 2018), while 

another study found statements presented from the participant’s ingroup leader (vs. from the outgroup) 

were perceived as less contradictory (Westen et al., 2006). Perceived group membership and attitudes 

toward the ingroup or outgroup member also contribute to empathy-related behaviors towards the ingroup 

members (Hein et al., 2010). This ingroup empathy bias is modulated in the anterior insula cortex, a region 

related to the impact of group membership on neural correlates of fear (Haaker et al., 2016; Olsson et al., 

2005) and face processing (Golby et al., 2001; Hein et al., 2010; Van Bavel et al., 2008). In contrast to 

empathy-related in-group bias, while watching a negatively evaluated outgroup member suffering pain, the 

activity of the anterior insula cortex (associated with empathy) has been found to be decreased, and activity 

in NAcc (associated with reward processing) was increased, suggesting that watching a negatively evaluated 

outgroup member receiving pain was processed in a reward-related manner (Hein et al., 2010). 
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One perceptual and non-perceptual based dimension in group perception that has been extensively 

investigated is social status (Cloutier et al., 2008; Karafin et al., 2004; Magee & Galinsky, 2008; Zaki et al., 

2011). Inference of status can be determined through observed demonstrations of skill, knowledge, 

generosity, or prestige-related social competencies (e.g., affiliative tendency, morality (Mattan et al., 2017) 

(see section Social Perceptual System regarding perceptual social status). Unlike for perceptual-based 

evaluations, status-based evaluations frequently engage regions known to support person evaluation (e.g. 

vmPFC) and reward/reinforcement learning (e.g. ventral striatum). Other regions involved in affective 

responses (e.g., amygdala, insula) and mentalizing (e.g., DMPFC, TPJ, STS/STG, ATL) has also been 

associated with status conveyed through person-knowledge. 

Other non-perceptual based cues, such as personality traits, the knowledge of a person’s influence over 

others, their political opinions, or their financial status also influence how group evaluations are formed. It 

has been suggested that the brain tracks discrepancies between a person’s behavior and the behavior that is 

expected based on their trait impressions (e.g. competence, trustworthiness, and generosity: Boorman, 

O’Doherty, Adolphs, & Rangel, 2013; Hackel & Amodio, 2018; Morelli, Leong, Carlson, Kullar, & Zaki, 

2018). Several studies have revealed distinct ways in which the brain tracks the traits of others – one is 

associated with the conceptual representation of others and one tracks the value associated with 

individual’s traits. For example, one study found that – based on the positive or negative feedback received 

from another person in different contexts – the value of the person as well as higher level trait inferences 

are encoded in the ventral striatum (Mende-siedlecki et al., 2013). However, the trait inferences 

additionally involve a broader network, including rTPJ, precuneus, inferior parietal lobule, and 

ventrolateral PFC, regions previously identified as involved in more explicit forms of trait updating 

(Mende-siedlecki et al., 2013). Overall, several networks seem to be involved in group perception involving 

perceptual, affective, cognitive systems, and ToM  (Amodio, 2014; Eres & Molenberghs, 2013).  

 

(7) INTEGRATION OF SOCIAL COMPUTATIONS  

In reviewing the six computational aspects entailed by social interactions, we have seen some key themes 

emerge. First, processing depends upon distributed brain systems; particularly those involved in 

perspective-taking, social signals, and emotional and goal-directed behavior. These systems are exemplified 

by an engagement of face processing in fusiform areas, action observation in the extended mirror neuron 

system, subjective value signals in the medial prefrontal cortex and the striatum, interoceptive inference in 
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the anterior insular, and the extended reward system including subcortical systems, such as the amygdala. 

So, what principles could account for this plurality of brain systems – and what principles could be brought 

to bear on their functional integration?  The goal of this section, therefore, is to explain the underling 

processes, as well as the integration, of perception and inferential system during social interaction (See Fig. 

1).   

 

Active inference. The account on offer here is based upon the notion of active inference; namely the view 

that all action and perception is in the service of minimizing uncertainty or maximizing model evidence 

(Friston et al., 2011, 2017). These complementary but equivalent perspectives inherit from a number of 

theories; in particular, the Bayesian brain hypothesis (Knill & Pouget, 2004) and the principle of maximum 

efficiency in information processing (Barlow, 1974; Optican & Richmond, 1987). The basic idea is that the 

brain actively constructs explanations for its sensory inputs, using a hierarchical generative model – that 

generates predictions of what would be sensed if the brain had correctly inferred states of affairs in the 

external world (Gregory, 1980; Helmholtz, 1878 ((1971)). There is a large literature on various neuronal 

process theories that underwrite this sort of inference; including predictive coding and belief propagation 

in cortical and subcortical hierarchies (Bastos et al., 2012; KFriston et al., 2017; Shipp, 2016). From our 

perspective, there are two key themes. First, the architecture of the brain recapitulates the architecture of 

the generative models used to predict sensory outcomes in all conceivable modalities over which it has 

control (Conant & Ashby, 1970; Mansell, 2011). Second, if the social brain is associated with this kind of 

architecture, it must have some special properties. In other words, if the brain can predict all the 

consequences of social interactions, it means that the requisite generative model must be capable of 

generating predictions in the exteroceptive domain (for social inference based, for example, on facial 

expressions and non-verbal cues); it must be able to predict outcomes in the interoceptive domain 

(appropriate for inferences based upon affiliative touch and autonomic responses during prosocial 

engagements (Fotopoulou & Tsakiris, 2017; Seth & Friston, 2016). Finally, it clearly has to make 

predictions in the proprioceptive domain to enable motor acts; particularly, of communication, such as 

speech and non-verbal forms of exchange. 

Active inference and the self. In short, the special aspect of the social brain is that it has to 

accommodate every consequence of being a ‘self’. Indeed, the whole notion of minimal selfhood can be cast 

as a hypothesis used by the brain to explain for the myriad of sensory signals encountered during social 

exchange (Limanowski & Blankenburg, 2013; Seth & Critchley, 2013). Heuristically, what this means is that 
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the brain infers that the self is the most probable cause of the exteroceptive, interoceptive, proprioceptive 

sensory signals to which it is privy. The picture that emerges here is of a deep hierarchical generative model 

that generates all modalities. A generative model is, technically, a probabilistic specification of how causes 

in the outside world generate sensory consequences (Hinton, 2007). Conversely, perceptual inference and 

synthesis corresponds to Bayesian model inversion; namely, inferring the causes from sensory 

consequences. Technically, this involves the maximization of the evidence for our models of the sensorium 

– that can be articulated as a minimization of variational free energy (i.e., a mathematical bound on model 

evidence) (Dayan et al., 1995; K. Friston et al., 2006). This can be thought of more simply as the 

minimization of surprise or prediction errors through neuronal message passing among different levels of 

cortical and subcortical hierarchies.  

This view suggests that a generative model that starts with ‘me’ as the cause of my sensations will, when 

inverted, look as if I am assimilating and integrating multiple sensory modalities in the exteroceptive and 

interoceptive domains. If one also adds proprioception to this inference, I am effectively generating 

predictions about my own action; either in the autonomic or motor domain (Baker et al., 2009; K. Friston 

et al., 2011; A. Seth, 2014). This is referred to as active inference. When the perceptual synthesis implied by 

belief updating under such generative models includes interoceptive signals – as in affiliative and nurturing 

social interactions – we come to the notion of interoceptive inference (Allen et al., 2019; Barrett & 

Simmons, 2015; Fotopoulou & Tsakiris, 2017). The term coined above – social inference – is meant to 

imply that the sort of active inference required for social exchange is of the broadest, multimodal nature 

conceivable; subsuming interoceptive inference and all other forms of inference in the service of modeling 

me and my interactions with you. On this view, the brain systems reviewed above starts to make perfect 

sense – as heteroarchical subgraphs of a hierarchical graphical generative model, ultimately integrated 

under a supraordinate level of self-modelling. So, what does this say about how all the subsystems involved 

coordinate social perception, inference, communication and learning? 

In brief, social perception rests upon exactly the same systems involved in non-social perception, but with a 

special emphasis on inferring the sensory cues supplied by ‘creatures like me’. Social influences, such as 

mentalizing, can – as the active inference story goes – be explained by re-purposing generative models of 

my own behavior to explain yours; much in the sense of simulation theories and mirror neuron theories 

reviewed above. Put another way, communication and theory of mind (ToM) become much easier if we 

have a shared narrative, such that models of my behavior become models of your behavior – enabling ‘me’ 

to efficiently and accurately infer ‘our’ behavior (K. Friston & Frith, 2015). Clearly, to select the appropriate 

model of shared narratives means that I have to first infer that you are like me. This places the social 

perception, identity of agents, and group membership center stage, in facilitating this particular aspect of 
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social inference. That is, I first have to infer that you are like me before I can use my models of how I would 

behave to infer your intentions and state of mind. This high-level form of active inference comes along with 

some special considerations that we now consider in terms of social attention, joint attention and sensory 

attenuation. 

Self-modeling and mental action. Above, we considered the social brain as making inferences about 

states of affairs in a social econiche by maximizing the evidence for (or minimizing the variational free 

energy of) a hierarchical model of a world populated by ‘creatures like me’. Mathematically, this can be 

described as message passing on a graphical description of the generative model (i.e., a neural network), 

where this message passing corresponds to neuronal communication over extrinsic (between cortical area) 

connections and the intrinsic connectivity of canonical microcircuits (Bastos et al., 2012; Friston, Parr, & de 

Vries, 2017; Shipp, 2016). In predictive coding formulations of this message passing, it is generally assumed 

that inference proceeds via reciprocal message passing between the levels of the hierarchical model. In 

particular, predictions are sent down from one level to the next that try to predict representations on the 

lower level. The resulting mismatch or prediction error is then returned to the higher level to induce belief 

updating or revisions of Bayesian beliefs encoded by neuronal activity (Shipp, 2016). This recurrent 

message passing/ mediated by ascending streams of prediction errors and descending counter streams of 

predictions – looks a lot like recurrent connectivity in cortical hierarchies in the brain (Hilgetag et al., 

2000).  

So how is this message passing coordinated? In other words, how do we select those ascending signals that 

will update Bayesian belief representations in the right kind of way? Under active inference, the right kind 

of way corresponds to Bayes optimal inference, where the various sources of prediction errors and implicit 

information are weighted according to their reliability or precision (Feldman & Friston, 2010; Knill & 

Pouget, 2004; Parr & Friston, 2017). Physiologically, this corresponds to a delicate and fundamentally 

important control of postsynaptic gain or excitability of the neuronal populations broadcasting messages 

from one level to the next. Psychologically, this has been associated with attentional selection or attentional 

gain – and indeed, the complement; namely attenuation (such as in sensory attenuation) (Brown et al., 

2013; Kok et al., 2012; Wiese, 2017). In short, the coordination of message passing in a hierarchical 

generative model rests upon context-sensitive predictions of the precision of various sources of 

information. In turn, this means that there must be a generative model of the precision or confidence 

afforded under different sorts of information.  

This may sound obvious, but it has some profound implications for the nature of social inference. In brief, it 

means that we have the capacity to act upon our own hierarchical inference by selectively gating different 
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sorts of information in a context-sensitive fashion. Many people consider this a form of mental action 

(Limanowski & Friston, 2018); much like the premotor theory of attention (Rizzolatti et al., 1987). In short, 

mental action can be regarded as a covert action that samples the right kind of hierarchical information to 

make the best inferences about the (social) world based upon multisensory cues that are deconstructed in 

increasingly abstract and amodal levels. There are three reasons why this particular aspect of social 

inference has a special relevance for social cognition. First, forming representations about the precision or 

confidence ascribed to the contents of my representations is, effectively, a belief about beliefs and a formal 

sort of metacognition (Fleming et al., 2012; Shea et al., 2014). As such, it brings is close to a (possibly 

subpersonal) form of self-modeling that has an enactive – if covert – aspect. In fact, one could argue, that 

any (minimal) sense of self would be redundant unless it entailed a deployment of mental action and 

precision control over hierarchical processing (Limanowski & Blankenburg, 2013; Limanowski & Friston, 

2018). 

The second reason that this form of covert action is particularly important for the social brain is in 

communication and turn-taking (Ghazanfar & Takahashi, 2014; Wilson & Wilson, 2005). In brief, the 

ability to engage in verbal exchange, under a shared narrative, depends upon the alternating augmentation 

and attenuation of our sensory signals. This follows from the need to attenuate the sensed consequences of 

our own action – that would otherwise confound the fluent expression of motor reflexes (and indeed 

autonomic reflexes). Put simply, if I want to listen, I have to attenuate my proprioceptive predictions 

otherwise I would find myself speaking (c.f., echolalia). Conversely, if I want to speak, I have to suspend 

that attenuation, while you are listening: see (Friston & Frith, 2015) for a simulation of this ‘turn-taking’. 

Furthermore, to use models of my own body to infer your intentions based upon what I see you doing, I 

have to attenuate the prediction errors that would ensue from proprioceptive predictions; otherwise I 

would overtly mirror your movements (i.e., echopraxia): see (Friston et al., 2011) for a simulation of ‘action 

understanding’. 

 

                                             

 

Active inference allows for a parsimonious explanation of many human behavioral tendencies noted above, 

especially prosocial behavior and motivation.  For example, humans tend to be motivated to cooperate with 

conspecifics, and especially with members of their ingroup, and to dislike those from outgroups. In human 

social groups, an especially important prior belief is that other human agents in our ingroup will align their 

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/advance-article/doi/10.1093/scan/nsab024/6149314 by U

niversity C
ollege London user on 12 M

arch 2021



 

 
 

 

 

 
  

 

 20 

mental states with our own, and vice versa. This has been proposed as one of the prior beliefs that define 

the human cooperative phenotype and that make communication possible (Vasil et al., 2019). Human 

cooperation and distinctly human forms of cooperative communication, then, are underwritten by the 

shared belief – formalized in active inference and harnessed in the generative models that are species-

typical of humans – that ‘we are the same kind of creature, inhabiting the same cultural niche’ and that 

therefore ‘we should align with one another’.  

There are many other fascinating issues that attend the augmentation and attenuation of precision (i.e., 

attention) in this setting, specifically, the notion of joint attention in higher-order forms of social inference 

(Moll & Meltzoff, 2011). However, we will conclude this subsection by noting a particularly important 

aspect of precision control; namely, its intimate relationship to emotional inference and interoception.  

In brief, much of social interaction has a substantial interoceptive component; hence the frequent reference 

to the anterior insular (Craig, 2013; Fotopoulou & Tsakiris, 2017; Gu, Hof, Friston, & Fan, 2013; Paulus & 

Stein, 2006; Seth & Friston, 2016). It may be that our sense of self and feelings (induced by another) are 

inferences that provide the best explanation for the myriad of autonomic signals inherent in any prosocial 

exchange (Barrett & Simmons, 2015; Fotopoulou & Tsakiris, 2017). These feeling states both inform and 

are informed by various levels of confidence or uncertainty about what will happen next or, indeed, what I 

should do next. This takes us in the direction of emotional inference and the psychopathology of stress (and 

avoidance) – all of which are especially relevant for social inference and learning (Peters et al., 2017). 

However, we will now close with a slightly broader perspective that takes us beyond the brain (and body) 

but still pursues the overall goal of inference and the minimization of uncertainty. 

The social brain and cultural niche construction: In recent years, there has been a move towards 

generalizing the principles of active inference beyond the brain, to cover things like variational ethology, 

niche construction, and deontic value (Badcock et al., 2019; Bruineberg & Rietveld, 2014; Constant et al., 

2018, 2019; Veissière et al., 2019). This extension nicely subsumes some of the more encultured aspects of 

social learning and inference reviewed above. The basic idea here is that if one reduces (social) cognition to 

the minimization of uncertainty (or the maximization of expected model evidence), a simple explanation 

for much of ethology and the nongenetic inheritance described above starts to emerge. 

In brief, if we associate model evidence with adaptive fitness, then natural selection just becomes Bayesian 

model selection (Frank, 2012). On this view, natural selection is driven by the imperative for self-

evidencing (Hohwy, 2016); namely, making the world as predictable and as learnable as possible. We have 

seen beautiful examples of this above, in terms of mimicry and other forms of socially mediated econiche 

construction. There is a formal treatment of this form of cultural niche construction under active inference 
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that unfolds at two levels. The first is in a reciprocal exchange between a phenotype and her environment; 

such that as an agent learns about her world, the world ‘learns’ about the phenotype to which it plays host, 

in the sense that it comes to mirror the statistical structure of the actions of its denizens by accumulating 

traces of those actions. A compelling example of this is the phenomena of desire paths or elephant paths: 

these correspond to paths (e.g. across a field or park) that are worn down by frequent use. The emergence 

of desire paths could be seen in terms of niche construction; in the sense that they reflect the enacted 

desires and predicted (locomotive) behavior of phenotypes. On the other hand, they also provide ‘deontic’ 

cues that encourage walking and the very emergence and maintenance of these paths in and of themselves 

(Constant et al., 2018); where ‘deontic’ cues are cues endowed with shared value for a given community, 

and which have an obligatory or deontic character. For example, humans learn to stop at red traffic lights, 

which function as a deontic cue that conveys the value of a given policy (in this case, stopping at a red light) 

for all enculturated members of the community. In short, the environment is effectively remembering the 

sort of behavior adaptive phenotypes exhibit. The implicit circular causality can now be extended to 

interpersonal exchange and a similar ‘offloading’ of the sorts of phenotypes found in this niche – that can 

be lifted to the level of semiotics (e.g., traffic lights and signs in our lived environments) (Constant et al., 

2019) and, ultimately, social exchange (Shea et al., 2014; Veissière et al., 2019). The underlying message 

here is that the social brain may be a product of hierarchical inference – not just within the skull – but in 

the context of co-evolution with conspecifics and a shared environmental niche. At its heart, all of the 

processes entailed by cultural niche construction and ‘group living’ are quintessentially social. 

CONCLUDING REMARKS 

A clear goal of neuroscience and artificial intelligence is to understand how the brain functions during 

social interactions.  By dissecting the social brain into it core components and rebuilding it to examine how 

these components work together, we can begin to understand how the human brain computes input and 

output signals to form coherent social behaviors. A future goal of social neuroscience is to provide better 

psychological, computational and anatomical models of the social brain in action, a goal that will involve 

innovations in paradigm and technical development. A great start is to build paradigms that reflect real 

social interaction or more immersive social environments and use techniques that provide better temporal 

and spatial resolution. 
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Legends: 

Table 1. Examples of how the human perceptual system has evolved to decipher perceptual cues 

across diverse social landscapes. We highlight the spectrum of these below 

Table 1. Examples of how the human perceptual system has evolved to decipher perceptual cues across 
diverse social landscapes. We highlight the spectrum of these below.  

Detecting social danger. Humans are particularly attentive to social expressions of threat, whether by 
direct expression of anger or indirectly via the observation of fear in others (Calder et al., 2011). Although 
humans are only minimally affected by predatory attacks from other animals, our predatory defense 
systems have evolved to cope with social threats arising from members of our own species. In our social 
environment, an angry face – or antagonistic tone of voice – presents robust cues that others are aggressive 
and possibly dangerous (Ceravolo et al., 2016).   

Detecting kin and group members. The detection of kinship and of conspecifics is crucial for survival 
in humans. Evolutionary models show that people favor behaviors that benefit others who share genes. Kin 
detection is certainly observed in more basal species and increases exponentially in complexity as one 
moves to more socially complex creatures. Dawkins (1976) proposed the ‘green beard effect’ suggesting that 
animals, and potentially humans, possess recognition alleles that aid in the visual detection of genetically 
similar individuals. 

Detecting disease and health. Especially before the invention of modern antibiotics, it was critical to 
avoid highly infectious disease; such as ebola, smallpox, and influenza (i.e., contamination fears). 
According to the disease-avoidance model, disgust functions to protect us from contiguous diseases (Oaten 
et al., 2009). Studies indicate that people can detect disease from both physical cues (e.g., others’ 
appearances and behaviors) and psychological cues (e.g., “depressed” vs. “not depressed”). Both facial (e.g., 
facial masculinity and maturity), vocal (e.g., pitch and tone of voice), and body (e.g., motion and 
movement, speed) features can signal physical strength/weakness (Fink et al., 2007; Sundelin et al., 2015; 
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Von Kriegstein et al., 2006). 

Fitness and beauty. Most females and males want to copulate with those that exude beauty and health, 
which is a proxy for ‘good genes’ (Buss, 1994). Facial attractiveness is a facial attribute that conveys 
significant biological advantages (Shen et al., 2016) (e.g., as expressed in mating success (Pashos & 
Niemitz, 2003), earning potential (Frieze et al., 1991), and longevity (Henderson & Anglin, 2003). There 
is a long line of research showing that waist-hip ratio is a predictive measure of female attractiveness 
(Singh, 1993) while height, body shape, and penis size in males predicts female attraction (Mautz et al., 
2013). 

Trust and cheaters. The ability to spot cheats, free-riders, and the complementary capacity to trust 
others and evaluate the grounds for such trust is crucial for mutualism. Several studies have shown that 
some faces are perceived as more trustworthy than others (Winston, Strange, O’Doherty, & Dolan, 2003). 
Stirrat and Perrett (2010) showed that men with greater facial width were more likely to exploit the trust of 
others. This suggests that facial phenotypes provide good indicators of another’s trustworthiness. Rhodes 
et al. (Rhodes et al., 2013) found that women are better at predicting unfaithfulness than men and that 
perceived masculinity was the most dominant cue in detecting cheaters. Furthermore, Cosmides and Tooby 
(1992, 2004) have proposed the existence of a cheater-detection module, and this has been supported by 
research showing that people have enhanced memory for cheaters (Bell & Buchner, 2009); similar 
proposals include a module for evaluating the trustworthiness of others, a so-called ‘suspicion system’ 
(Gold & Gold, 2015). 

Protection and competence. Todorov et. al., (2005) showed that ratings of a political candidates’ face 
predicted electoral success. Others have shown that ratings of leadership ability from CEO faces predicted 
company profits (Rule & Ambady, 2008). It has been demonstrated that ratings of perceived competence of 
others; i.e., their ability to protect us under conditions of potential harm is a crucial component of threat 
assessment, influencing levels of anxiety and defensive actions. For example, functional MRI studies show 
that under threat of pain, neural systems involved in pain anticipation show reduced activity when subjects 
rate others as higher in competence (Tedeschi, Weber, Prévost, Mischel, & Mobbs, 2015). This suggests that 
inferences of competence act as predictors of protection and reduce the expectation of physical harm. 

Status and dominance. Alan Fiske has proposed that during social interactions, individuals rank 
authority by “attending to their linear order”. Non-human primates will pay to view social images of high-
status individuals (Deaner et al., 2005). Our own work has indicated that people show more conformity to 
individuals with higher reputations – manipulated by reputation ratings in uncertainty decisions (Qi et al., 
2018). 
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Fig. 1. Multiple processes involved in social interaction. Perceptual signals and inferential 

processes are influenced by social drives and biases. These draw on learning systems that 

update and modify social behavior. Together, these processes are integrated to produce an 

output or social signal (e.g., facial expression, speech etc.). These output systems are also 

modulated by control systems that filter social signals.  
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