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Abstract—In this paper, directional modulation (DM) is inves-
tigated to enhance physical layer security. Practical transmitter
designs are exploited under imperfect channel state information
(CSI) and hardware limitations, such as finite-resolution phase
shifters (PSs) at transmitter. Considering the most common
scenario where eavesdroppers (Eves)’ information is completely
unknown, we exploit the DM design to optimize legitimate
users (LUs)’ receiving performance while randomizing the Eves’
received signal. Explicitly, tailored for the practical hardware
limitations and imperfect CSI in realizing DM, we design optimal
precoders in closed-form with Lagrangian and Karush-Kuhn-
Tucker conditions, enhancing the practicality of the symbol-level
based DM. Simulation demonstrates that the algorithm achieves
lower symbol error rate (SER) at the LUs while deteriorating
the Eves’ SER, leading to an improved secrecy rate over the
benchmarks.

Index Terms—Directional modulation, Physical layer security,
Hardware impairments, Imperfect channel estimation, Interfer-
ence exploitation, Closed-form design.

I. INTRODUCTION

In the past decades, beamforming and jamming have been ex-
tensively investigated in terms of physical layer (PHY) security,
which acts as a complement to secure wireless communications
[1]. Conventionally, confidential signal is transmitted via the
channels where the legitimate users (LUs) have better trans-
mission condition over the eavesdroppers (Eves). For example,
beamforming is designed such that the received power at the
LUs is maximized with low power-level of leakage towards
potential Eves, or the received signal at Eves is zero-forced
with reduced received power at the LUs [2]. Also, isotropic [1]
or spatial [3] artificial noise (AN) can be generated together
with confidential signal to jam Eves. By the conventional beam-
forming and jamming designs, Eves’ received signal-to-noise
ratio (SNR) is indeed degraded, whereas the same information
is conveyed towards undesired directions by sidelobe. Hence,
assuming Eves are equipped with high sensitivity receivers,
the confidential messages intended for LUs can somehow be
decoded by Eves [1].

Recently, directional modulation (DM) has attracted attention
as a new technique to secure wireless communications [4]
from the perspective of signal processing. Differently from
conventional beamforming and jamming that provide direc-
tional power scaling to address PHY security, DM designs
the received symbols at the LU directly, while relying on
the spatial diversity of the channel to simultaneously distort

the constellation of the same signals in all directions other
than the desired ones. Moreover, in DM systems, the rate
of change of the complex weights of the antenna arrays at
transmitter is exactly equivalent to the symbol rate, while
that of conventional beamforming is based on the rate of
change of the communication channel [5]. Hence, it is more
difficult for potential Eves to estimate transmitter’s behavior. In
addition, the advantages of DM also lie in high cost- and power-
efficiency. By DM systems, power amplifiers (PA)s and phase
shifters (PS)s are used to replace the expensive and power-
consuming radio frequency (RF) chains and digital-to-analogue
converters (DAC)s that are required in conventional digital or
hybrid beamforming designs.

As a transmitter-side technique, symbols’ modulation of DM
systems happens at antenna level instead of at the baseband by
conventional beamforming design, and hence received beam-
pattern at LUs’ receivers is treated as a spatial complex
constellation point. As a pioneer, the authors in [4] and [5]
implemented parasitic antennas or actively driven antenna array
with configurable phase shifters (PSs) to construct DM. Later
on, bit error rate and secrecy rate were suggested for evaluating
the performance of DM system in [6]. Recently, the authors
generalized the concept of DM systems into millimeter wave
[7], multiple-input and multiple-output (MIMO) [8], spread
spectrum systems [9]. In [10], the pseudo-inverse based least-
norm method was utilized for multiuser DM systems. In [11],
the barrier-method was used to derive the phase-array weights
of DM systems, where the phase of the received signal is
relaxed based on the concept of constructive interference (CI).

Some fundamental challenges, however, need to be addressed
in DM systems. The first challenge is that, regardless of various
DM structures and optimization objectives, system performance
is essentially affected by the hardware impairments and im-
perfect CSI acquisition. Whereas, all the aforementioned DM
schemes assumed perfect channel acquisition and hardware
realization, such as infinite resolution PSs and noise excluded
receivers [4]- [11]. In practice, the components required for
realizing infinite resolution PSs are expensive, and finite res-
olution PSs are more cost-effective. Also, receiving noise at
LUs’ receivers also inevitably distorts the desired beam pattern,
which further leads to an increased symbol error rate (SER).
Unfortunately, all of these practical issues have been ignored
by the aforementioned researches. The second challenge is



that, since DM is required to operate at symbol-level rate,
the closed-form optimal design is essential for DM realization.
Towards that end, the closed-form design proposed in [11]
is based on barrier-method, which is only optimal given the
penalty factor approaching infinity. The closed-form result
proposed in [10] is simply a ZF-based transmission and does
not consider quality of service (QoS) of LUs, which may lead to
a poor receiving performance at LUs end. More importantly,
the closed-form designs in [10] and [11] do not capture any
hardware impairments and are based on perfect CSI.

To address the aforementioned outstanding issues, in this
paper, we exploit closed-form DM designs with practical issues,
and our contributions are summarized as:

1) To the best of our knowledge, it is the first work explicitly
addressing the fundamental issues of DM systems for
enhancing physical layer security. To be more specific,
imperfect CSI acquisition, finite-resolution PSs, per-
antenna power budget and receiving noise are considered
in formulating the practical transmitter design.

2) We consider the most common scenario, where the LUs’
CSI is imperfectly obtained but the potential Eves’ CSI
is completely unknown at the transmitter. Under the
imperfect CSI and hardware impairments, we maximize
the Euclidean distance in the signal constellation between
the LUs’ received signals and the decision thresholds
and hence minimize the LUs’ SER, while concurrently
randomizing the Eves’ received signal benefiting from
the channel disparity among the LUs and Eves.

3) For the considered scenario, we propose a robust algo-
rithm that is tailored for imperfect CSI and hardware
limitations. The optimal results are given in closed-
forms with Lagrangian and Karush-Kuhn-Tucker (KKT)
conditions, enhancing the practicality of the symbol-level
enabled DM systems.

4) Based on the concept of CI, the LUs’ received symbols
are designed to fall into the constructive regions while
the Eves’ received symbols are confined into destructive
regions. Hence, higher degrees of freedom (DoFs) are
endorsed for system design over the fixed phase DM
design in [4]- [10].

Notations: Matrices and vectors are represented by boldface
capital and lower case letters, respectively. || · || denotes the
Euclidean vector norm. AH and Tr(A) denote the Hermitian
transpose and trace of matrix A. diag (A) returns a diagonal
matrix with diagonal elements from matrix A and diag (a)
stacks the elements of vector a into a diagonal matrix. A � 0
denotes A a positive semi-definite matrix. Superscript < and
= denote the real and imaginary parts, respectively. In means
a n-by-n identity matrix. CN×M and HN×M denote sets of
N ×M matrices and Hermitian matrices with complex entries.

II. SYSTEM MODEL AND RELAXED PHASE DM

In this section, system model is demonstrated in II-A. The
strict and relaxed phase based DM designs are briefly intro-
duced II-B.
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Fig. 1. Simplified system models for DM, where signal is generated by
applying finite-resolution PSs and budget constrained PAs.

A. System Model

We consider DM systems with actively driven elements
[11]. Assume that the transmitter is equipped with N antennas
and hence the same number of PSs. There are Ku LUs and
Ke non-colluded Eves, and each of them is equipped with
single antenna for simplicity. The system model is depicted
by Fig. 1. LUs’ CSI is obtained by channel estimation in the
training phase, based on channel reciprocity as in [11]. Define
hk = h̃k + ek as the channel from the transmitter side to
LU k, ∀k ∈ Ku, where h̃k ∈ C1×N and ek ∈ C1×N denote
the estimated CSI and estimation error, respectively. By classic
channel estimation approaches, such as minimum mean square
error (MMSE), the element of the error vector can be modeled
by a Gaussian distributed variable as [ek]n ∼ CN{0, σ2

e},
∀n ∈ N , with variance σ2

e . Eves’ CSI is assumed to be
completely unknown [11]. Define φ ∈ CN×1 as the PS design
while p ∈ CN×1 as transmission power at the transmitter side.
We consider a practical finite resolution PSs and per-antenna
power budget. Let F = {1, φ, φ2, ..., φnps−1} denote the set of
available phase and φ = ej2π/nps . nps = 2b is the number
of realizable phase angles and b is the number of bits in the
resolution of PSs. Hence, the received signal at LU k can be
written as

yk = hk(φ ◦ p) + nk, ∀k ∈ Ku, (1)

where operator ◦ denotes the pair-wise Hadamard product.
nk denotes the receiving noise at LU k, following Gaussian
distribution such that nk ∼ CN(0, σ2

n), ∀k ∈ Ku. Evidently,
by considering finite-resolution PSs, we need to ensure that
φ(n) ∈ F, ∀n ∈ N .

B. Strict and Relaxed Phase based DM

1) Strict Phase based DM Design: By the strict-phase
based DM systems in Fig. 2(a), the received signal should
have exactly same phase and amplitude of the desired symbol
of LUs, such as [h̃1(φ ◦ p), h̃2(φ ◦ p), ..., h̃Ku(φ ◦ p)] =
[
√
γs1,
√
γs2, ...,

√
γsKu ], where sk denotes the desired sym-

bol for LU k and
√
γ denotes the desired amplitude that relates

to LUs’ SNR requirement. Since the phase needs to be alighted
with that of the desired symbols, the strict phase decreases the
DoFs and consequently the LUs’ receiving performance.

2) Relaxed Phase based DM Design: Based on concept of
CI, the received signal is not necessary to be aligned with
the intended symbols, but is pushed away from the detection



Fig. 2. QPSK for illustration. (a) Conventional fixed phase DM design. (b)
Relaxed phase DM design, where the received signal yk falls into constructive
region (dark blue area). (c) After rotation by ∠s∗k , <{yks∗k} and ={yks∗k}
are mapped on real and imaginary axis, according to the trigonometry.

thresholds of the signal constellation. Furthermore, the LUs
can still correctly detect the received signal with the increased
DoFs at the transmitter [12]. The CI concept has been thor-
oughly discussed in the recent literature, and to avoid extensive
repetition we refer the readers to [3] for details. According to
the geometrical interpretation in Fig. 2(b), a constructive region
(dark blue area) for the received signal on each LU is given,
for the example of QPSK modulation. The constructive area of
the constellation is defined as the area where the distances from
the decision thresholds are increased. By rotating the received
signal yk and mapping it into real and imaginary parts, as
shown in Fig. 2(c), the received signal of LU k falling into
constructive regions is equivalent to satisfying the CI constraint
|={(hk(φ◦p) +nk)s∗k}| ≤ (<{(hk(φ◦p) +nk)s∗k}− t)tanθ,
where sk is the desired symbol of LU k and superscript
∗ denotes its conjugate. θ = π

M , where M denotes the
constellation size. Physically, a larger value of t pushes the
constructive region away from the detection threshold. Hence,
lower SER at the LUs and higher robustness against hardware
impairments are presented. However, due to the uncertainty
of estimation error and receiving noise, the inequality above
may not be always satisfied with the finite resolution of PSs,
imperfect CSI and per-antenna power budget. Hence, we write
it in a probabilistic manner as

Pr{|={(hk(φ ◦ p) + nk)s∗k}| ≤
(<{(hk(φ ◦ p) + nk)s∗k} − t)tanθ} ≥ Γ,

(2)

where Γ is the probability threshold of satisfying the CI
constraint. Evidently, Γ can be set to a high value, indicating
the CI constraint is satisfied with high probability.

III. CLOSED-FORM DM DESIGN UNDER IMPERFECT CSI
AND HARDWARE LIMITATIONS

In a number of practical scenarios, Eves’ CSI is unknown,
since passive Eves only intercept confidential messages but do
not actively launch attack. Hence, in this section, we investigate
DM design without knowledge of the Eves’ CSI.

A. Problem Formulation

We target to maximize the value of t, subject to multiple
constraints. As discussed, t physically represents the Euclidean
distance in the signal constellation between the LUs’ received

signals and the decision thresholds. Hence, maximizing t
can optimize receiving performance at the LUs and improve
robustness against hardware impairments and imperfect CSI.
Hence, the optimization is given as

P1 : argmax
φ,p

t,

s.t (C1) : Pr{|={(hk(φ ◦ p) + nk)s∗k}| ≤
(<{(hk(φ ◦ p) + nk)s∗k} − t)tanθ} ≥ Γ, ∀k ∈ Ku,

(C2) : pHAnp ≤ pmax,∀n ∈ N, (C3) : φ(n) ∈ F, n ∈ N,
(3)

where pmax denotes the per-antenna transmission power bud-
get. An = diag {0, ..., 0︸ ︷︷ ︸

n−1

, 1, 0, ..., 0︸ ︷︷ ︸
N−n

}, ∀n ∈ N , is an auxiliary

matrix. Evidently, constraint (C1) probabilistically guarantees
that the received signal at each LU falls into the desired de-
tectable constellation region, considering the effect of imperfect
CSI and hardware constraints. Constraint (C2) constrains the
maximum transmission power at each antenna lower than the
constraint pmax, while constraint (C3) denotes that the phase
of all the PSs is only from the finite set F. Note that no
explicit secrecy constraint is considered in P1. It is because
desired symbols are only dedicatedly designed for the LUs,
and the received signal of potential Eves is randomized across
the constellation panel due to channel disparity, which is the
design principle of DM systems.

B. Optimization Solution

In this subsection, we propose a closed-form result to
enhance the practicality of DM systems. The optimization
problem P1 involves infinite possibilities of receiving noise and
CSI estimation error, as well as finite choice of phase design.
To access the optimization problem, we first handle constraint
(C1). Decomposing constraint (C1) yields

Pr{|={(h̃k + ek)(φ ◦ p)s∗k}+ ={nks∗k}| ≤
(<{(h̃k + ek)(φ ◦ p)s∗k}+ <{nks∗k} − t)tanθ} ≥ Γ,

(4)

for ∀k ∈ Ku. It is observed that the linear combination of
={nks∗k}, <{nks∗k}, ={e(φ ◦ p)s∗k}, and <{e(φ ◦ p)s∗k} still
follow Gaussian distribution with a modified variance. Hence,
we collect all the above uncertainty related terms in to a
variable n̄k, and (4) is given as

{
Pr{={h̃k(φ ◦ p)s∗k} ≤ (<{h̃k(φ ◦ p)s∗k} − t)tanθ + n̄k} ≥ Γ,

Pr{−={h̃k(φ ◦ p)s∗k} ≤ (<{h̃k(φ ◦ p)s∗k} − t)tanθ + n̄k} ≥ Γ,
(5)

∀k ∈ Ku. n̄k ∼ CN(0, (1 + tan2θ)(
Nσ2

e |(φ◦p)|
2
2

2 +
σ2
n

2 )).
Intuitively, in P1 we try to maximize the value of t, and hence
the transmitters need to dissipate all the transmission power
pmax. As a result, the distribution of n̄k can be approximately
written as CN(0, (

N2σ2
epmax+σ2

n

2cos2θ ), and the two inequalities in
(5) can be seen as cumulative distribution function (cdf) of a
Gaussian distributed variable. Normalizing the variance of n̄k
and defining Φ−1(·) as the inverse cdf of a standard Gaussian
variable, we have



{
={h̃k(φ ◦ p)s∗k} ≤ (<{h̃k(φ ◦ p)s∗k} − t)tanθ −Θ,

−={h̃k(φ ◦ p)s∗k} ≤ (<{h̃k(φ ◦ p)s∗k} − t)tanθ −Θ,
(6)

where Θ =
Φ−1(Γ)

√
N2σ2

2pmax+σ2
n√

2cosθ
. Now the probabilistic

constant (C1) has been transformed into robust constraints in
(6).

Evidently, the pair-wise Hadamard product of φ and p
serves as an equivalent transmission vector. Hence, define an
equivalent transmission vector x = φ ◦ p. We then introduce
auxiliary variables λk = h̃kxs

∗
k, ∀k ∈ Ku. λk physically

represents the rotated received signal yks∗k, as depicted in Fig.
2(c). Then the optimization P1 can be equivalently written as

P2 : argmax
x

t,

s.t (C̃1) : |={λk}| ≤ (<{λk} − t)tanθ −Θ, ∀k ∈ Ku,

(C2) : xHAnx ≤ pmax, ∀n ∈ N,
(C3) : φ(n) ∈ F, n ∈ N, (C4) : λk = h̃kxs

∗
k, ∀k ∈ Ku,

(7)

Note that the term h̃kxs
∗
k has been replaced by λk, ∀k ∈ Ku.

The next difficulty lies in the combination constraint (C3) due
to the finite-resolution of PSs and (C2) due to per-antenna
power constraint. To obtain a closed-form result, we can replace
the per-antenna constraint in (C2) by a total power constraint
such that xHx ≤ Npmax. After obtaining the closed-from
result, the power on each antenna violating the individual power
constraint will be reduced to its maximal power pmax to satisfy
the original power constraint in (C2). For the finite-resolution
constraint of PSs, we can first solve the optimization problem
P2 without constraint (C3), and then quantize the obtained
result to the closest point in the feasible set F to address the
finite-resolution constraint. Now, we can write the Lagrangian
of transformed version of P2 as

L = −t+

Ku∑
k=1

µk[={λk} − (<{λk} − t)tanθ + Θ]+

Ku∑
k=1

vk[−={λk} − (<{λk} − t)tanθ + Θ]+

µ0(xHx−Npmax) + δk

Ku∑
k=1

(h̃kxs
∗
k − λk),

(8)

where µk, vk, µ0 and δk are Lagrangian multipliers. Taking
derivative L with respect x, we have

∂L

∂x
=

Ku∑
k=1

(δkh̃ks
∗
k) + µ0x

H = 0, (9)

which further yields x =
∑Ku
k=1(skh̃

H
k γk) with γk =

− δk
µ0

, ∀k ∈ Ku. Now, we write x in a compact form as
x = H̃H(Υ ◦ s), where H̃H = [h̃H1 , h̃

H
2 , ..., h̃

H
Ku

] and
Υ = [γ1, γ2, ..., γKu ]T . Also, constraint (C4) can be writ-
ten in a compact form as H̃(x ◦ s∗) = Λ, where Λ =
[λ1, λ2, ..., λKu ]T . Based on the two compact forms, we finally
obtain the closed-form of optimal x∗ as

x∗ = H̃H(H̃H̃H)−1Λ ◦ s, (10)

which indicates the vector x is related to the LUs’ intended
symbols s and channel H̃ , which is completely different from
conventional precoding design that the precoding vector is only
related to channel but independent from the desired symbols.

Since the estimated LUs’ channel H̃ and the intended
symbols s are known by the transmitter, the closed-form of
optimal x∗ is directly obtained with known value of Λ, which
can be simply calculated by solving the dual problem of P2.
As suggested in Eq. (10), we now present how to find the
optimal value of Λ to yield x∗. Based on the fact that µ0 > 0,
substituting (10) into constraint (C2) yields ΛHTΛ = Npmax,
where T = diag(sH)(H̃H̃H)−1diag(s). Since the elements
of Λ and T are complex variables, we separate and stack their
real and imaginary parts into new variables Λ̂ and T̂ , such that
Λ̂ = [<{ΛT },={ΛT }]T and T̂ =

[
<{T} −={T}
={T} <{T}

]
. It is easy

to prove the validation of Λ̂T T̂ Λ̂ = Npmax. Since the effect
of constraint (C4) has been captured in (10), constraint (C4)
can be omitted from the equivalent problem of P2 as

P3 : argmax
x

t, s.t (C̃1), (C5) : Λ̂T T̂ Λ̂ = Npmax, (11)

whose Lagrangian can be written as

L = −t+ â0(Λ̂T T̂ Λ̂−Npmax)+
K∑
k=1

µ̂k[={λk} − (<{λk} − t)tanθ + Θ]+

K∑
k=1

v̂k[−={λk} − (<{λk} − t)tanθ + Θ].

(12)

For simplicity, we introduce a vector η to stack the La-
grangian multipliers such as η = [µ̂1, ..., ˆµKu , v̂1, ..., ˆvKu ]T

and introduce an auxiliary matrix S =
[
I, − I

tanθ

I, I
tanθ ]

]
with the

identify matrix IKu×Ku . Taking derivative L with respect to
Λ̂, we have

∂L

∂Λ̂
= 2â0T̂ Λ̂− STη = 0. (13)

Substituting it into (C5) yields â0 =

√
ηTV −1η

4Npmax
, where

V −1 = ST̂−1ST . Since P3 is a convex optimization problem
and its strong duality holds, its dual problem is given as

P4 : max
η

â0(Λ̂T T̂ Λ̂−Npmax) + 1ηΘ− ηTSΛ̂,

= −
√
NpmaxηT V̂ −1η −Θ,

s.t. 1η = 1,η ≥ 0,

(14)

where 1 is a row vector and all elements equal to 1. Since the
square root operation in the objective function is monotonic
and the second term is a constant. The optimization problem
has the same optimal result as follows



P5 : min
η

ηT V̂ −1η, s.t. 1η = 1,η ≥ 0, (15)

which is a simple quadratic optimization problem over a
simplex. It has already been shown in the existing literature
that quadratic optimization can be efficiently solved and its
convergence can be easily guaranteed with existing solvers [13].
When obtaining the optimal value of η by solving P5, the value
of Λ is naturally obtained, and also the value of vector x∗ is
confirmed.

Now, we are able to devise the whole algorithm, namely
robust closed-form DM (Robust-cf-DM). The optimal transmis-
sion vector x∗ is obtained by solving the simple quadratic opti-
mization problem in P5. Afterwards, the power of each antenna
violating the individual power constraint will be reduced to its
maximal power pmax. Finally, we map it to the closest point
in the feasible set F for the consideration of finite-resolution
PSs. Hence, the final phase design is given as

φ̂(n) = Q(
x∗(n)

|x∗(n)|2
), ∀n ∈ N, (16)

where the operator Q(·) maps a complex unit-norm variable to
the nearest point in the set F.

IV. SECURITY PERFORMANCE AND COMPLEXITY

In this section, we first discuss the PHY security per-
formance, and then present the analytical complexity of the
proposed algorithm.

A. Receiving Performance at Potential Eves

Since potential Eves’ CSI is unknown at the transmitter, PHY
security may not be explicitly guaranteed, which is a common
scenario for the PHY security designs in DM systems [4]- [11]
and conventional DBF/HBF systems [1] [14]. That is, PHY
security is addressed benefiting from the channel’s disparity
among the LUs and Eves, where the received symbols of the
Eves are naturally randomized.

For clarification, let us write the e-th Eve’s channel ge in
the form of ge =

√
ρhk +

√
1− ρε. The parameter ρ ∈ [0, 1]

measures the strength of the channel correlation between the
k-th LU and e-th Eve’s channels and ε ∈ CN(0, IN ) is a
random vector independent of hk. In particular, ρ = 0 means
the k-th LU and e-th Eve’s channels are independent. Hence,
the received signal at the e-th Eve can be calculated as ye =√
ρhTk x+

√
(1− ρ)εTx+ne, where x denotes the equivalent

transmitting vector and ne denotes the receive of noise at the
e-th Eve. In fact, the first term represents the symbol of interest
that tailored for the k-th LU while the second term is a random
vector varying at the symbol level. Hence, the random term√

(1− ρ)εTx can be used to randomize the Eve’s received
signal and thus deteriorate the Eve’s signal detection. To this
end, the power of

√
(1− ρ)εTx needs to be large enough to

guarantee sufficient randomization to the phase of the Eve’s
received signal. With unknown ε, the average power of εTx can
be approximated as E{|εTx|2} ≈ Tr(xHE{εεH}x) = ||x||2.
Since we intend to maximize the Euclidean distance t in the

TABLE I
COMPLEXITY ANALYSIS WITH ACCURACY FACTOR τ , WHERE n1 = O(N)

AND n2 = O(2Ku).

Closed-from DM ln[ 1
τ
)
√
2[2n2 + 2n2

2 + n3
2] +O(N)

Barrier method DM [11] ln( 1
τ
)
√
2Kun1[2Ku+

2n1Ku + n2
1] +O(N)

Least-norm DM [10] 24K3
u + 16K2

uN +Ku + 2KuN + 8K2
uN

signal constellation between the LUs’ received signals and the
decision thresholds, a high power ||x||2 will be utilized at
transmitter side in the optimizations. That is to say, the beam
leakage εTx is maximized under the available power budget
and acts as the null-space AN to jam the Eve in a statistical
manner.

B. Complexity Analysis

In this section, the computational complexities of the pro-
posed algorithms are compared with the mostly related works
in [10] and [11]. For the proposed algorithm, its complexity is
closely related to solving the optimization problem P5, which
is subject to 2 linear constraint only. For the least-norm DM
[10], its complexity is dominated by generating the pseudo-
inverse matrix of equivalent multiuser MISO channel H . The
pseudo-inverse matrix can be obtained by the conventional
SVD approach or Cholesky decomposition [15]. The overall
complexities of the algorithms are summarized in TABLE I. It
is observed that the complexity of the proposed algorithm goes
as low as that of SVD or Cholesky decomposition, which have
been extensively used in practical ZF/MMSE precoding due to
its low computational complexity.

V. SIMULATION RESULTS

We present the simulated performance in this section. The
central frequency is set to 2 GHz with 1 MHz bandwidth.
Per-antenna transmission power budget is pmax = 10 dBm.
The numbers of antennas and PSs are set to N = 5 at
the transmitter. Without loss of generality, we adopt QPSK
modulation and assume that there are Ku = 4 LUs and
Ke = 1 Eves. The intended symbols for the LUs are randomly
generated. LDPC coding chain in the 5G new radio and CRC
are employed with 3/4 coding rate. The variance of noise is set
to σ2

n = 10−3. LUs’ probabilistic threshold for guaranteeing
SINR requirement is set to Γ = 0.99. CSI estimation error is
set to σ2

e = 10−4. Besides, the most related DM designs, least-
norm based [10] and barrier-method based [11], are selected
as benchmarks. For fair comparison, the optimal PS and power
designs of [10] and [11] are subsequently mapped by Eq. (16)
considering the infinite-resolution of PSs.

In Fig. 3, it can be observed that the proposed algorithm
achieves the lowest SER performance and the LUs’ SER is
always maintained at a low level with different resolutions of
PSs, demonstrating a strong robustness against hardware limita-
tions and imperfect CSI. As comparisons, the two benchmarks
show much higher SER compared to our proposed algorithm.
In particular, the barrier method DM [11] shows the worst SER
performance, since it aims to allocate the received signals of
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Fig. 3. SER performance comparisons with different resolutions of PSs.
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Fig. 4. Secrecy rate comparisons with different values of channel correlation
factor ρ, where the number of bits in the resolution of PS is b = 4 bits.

the LUs into the wanted regions with minimal transmission
power, and the LUs’ SER performance may be deteriorated
significantly in the presence of hardware impairments and
imperfect CSI. The least-norm DM [10] also obtains inferior
SER over our proposed algorithm, since the fixed phase DM
design in [10] limits the DoFs for transmitter design. Also, it
is observed all the algorithms achieve a superior SER given a
high resolution of PSs.

Fig. 4 shows the impact of correlation among the LUs
and Eves’ channels on the secrecy rate [16]. Since the Eves’
received signal is randomized benefiting from the channel
disparity in DM designs, the Eves’ rate is much lower than that
of the LUs. Hence, positive secrecy rate is always maintained
by DM designs. Nevertheless, it is observed that the secrecy
rate is reduced when channel correlation increases. It is because
with higher correlation, the Eves’ received signal becomes
similar to that of LUs, and hence Eves’ SER is refined. As

a result, the achievable secrecy rate decreases with a higher
value of ρ. Also, since the proposed algorithm endorses a low
SER and hence a high throughput for the LUs, the secrecy
rate achieved by the proposed algorithm always outperforms
the two benchmarks.

VI. CONCLUSIONS
In this paper, we have investigated practical transmitter

design under imperfect channel estimation and critical hardware
limitations for realizing DA systems. Phase and power have
been jointly designed to optimize receiving performance at the
LUs while simultaneously randomizing the Eves’ received sig-
nals. A closed-from algorithm is proposed to push the received
signals of the LUs away from the decision threshold based on
the concept of relaxed-phase DM design, while simultaneously
randomizing the Eves’ receiving performance. Our simulation
results have showed that the proposed algorithm endorses much
lower SER at the LUs. Also, the secrecy rate of the proposed
algorithm is significantly improved over the benchmarks in
[10] and [11], guaranteeing a reasonable security performance
even with a high correlation factor among the LUs and Eves’
channels.
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