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Abstract We characterize the tempered part of the automorphic Langlands
category D(BunG) using the geometry of the big cell in the affine Grass-
mannian. We deduce that, for G non-abelian, tempered D-modules have no
de Rham cohomology with compact support. The latter fact boils down to a
concrete statement, which we prove using the Ran space and some explicit
t-structure estimates: for G non-abelian and � a smooth affine curve, the
Borel–Moore homology of the indscheme Maps(�,G) vanishes.

Mathematics Subject Classification 14D24 · 14F05 · 18F99 · 22E57

1 Introduction

1.1 Overview

The present paper is devoted to the study of the tempered condition appear-
ing on the automorphic side of the geometric Langlands conjecture. In this
overview, we recall the statement of the geometric Langlands conjecture,
review how the tempered condition comes about and explain why this condi-
tion is important. We will then state the goals of the paper.

1.1.1. Let G be a connected reductive group and X a smooth complete curve,
both defined over an algebraically closed field k of characteristic zero. Denote
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by BunG := BunG(X) the stack of G-bundles on X and by D(BunG) the
differential graded (DG, from now on) category of D-modules on it. This is
theDGcategory appearing on the automorphic side of the geometricLanglands
correspondence.

For details on the geometry of BunG and on the DG category of D-modules
on a stack, we recommend the papers [16,17] and [21].

1.1.2. The geometric Langlands conjecture calls for an equivalence between
D(BunG) and a different-looking DG category whose definition explicitly
involves Ǧ, the Langlands dual group of G. At first approximation, the candi-
date is QCoh(LSǦ), the DG category of quasi-coherent sheaves on the stack

LSǦ := LSǦ(X) of de Rham Ǧ-local systems on X . This is the so-called
spectral side of the conjecture. For details on the definition of LSǦ , and in
particular for its derived nature, we refer to [6, Section 2.11] and [1, Section
10].

1.1.3. As in [1, Section 1], the “best hope" form of the geometric Langlands
conjecture is the statement that these two DG categories are equivalent:

D(BunG)
?� QCoh(LSǦ). (1.1)

While this is known to be true for G abelian (see [1, Remark 11.2.7], as
well as [33,34,39,40]), it is false for more general groups: two reasons for
this failure are explained in [1, Section 1.1.2] and [23, Section 0.2.1]. Both
reasons point at the fact that the spectral side of (1.1) is too small to match the
automorphic side. To fix this discrepancy, one either enlarges the spectral side
or shrinks the automorphic one.

1.1.4.Aviable candidate for the enlarged spectral DG categorywas introduced
in [1]; to define it, one needs the theory of ind-coherent sheaves (developed
in [22]) and the theory of singular support for coherent sheaves on quasi-
smooth stacks (see [1, Sections 2–9]). We will briefly discuss this material in
Sect. 2.3.8; for now, we just need to know that:

• IndCoh(LSǦ), the DG category of ind-coherent sheaves on LSǦ , contains
QCoh(LSǦ) as a full subcategory;

• ind-coherent sheaves on LSǦ can be classified according to their singular
support, with possible singular supports being closed subsets of the space
of geometric Arthur parameters

ArthǦ := {(σ, A)|σ ∈ LSǦ, A ∈ H0(XdR, ǧσ )}. (1.2)

1.1.5. Among such closed subsets, consider the global nilpotent cone

Ňglob := {(σ, A) ∈ ArthǦ | A is nilpotent}
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and let IndCoh
Ňglob(LSǦ) be the full subcategory of IndCoh(LSǦ) spanned by

objects with singular support contained in Ňglob. This is a DG category that
sits between QCoh(LSǦ) and IndCoh(LSǦ).

1.1.6. The corrected version of the geometric Langlands conjecture states that

D(BunG)
?� IndCoh

Ňglob(LSǦ). (1.3)

After [1], the above is the official form of the conjecture. It should come
with a series of compatibilities (with the Hecke action, with the Whittaker
normalization, with Eisenstein series) that we do not discuss here.

1.1.7. The alternative way to correct (1.1) is to shrink the automorphic side.
This form of the conjecture, to be called the tempered geometric Langlands
conjecture, was also introduced in [1]. It calls for an equivalence

tempD(BunG)
?� QCoh(LSǦ), (1.4)

where tempD(BunG) is the full-subcategory of D(BunG) consisting of tem-
pered D-modules. We will recall the definition of the tempered condition in
Sect. 1.3; meanwhile, let us explain why the latter form of the conjecture is
more fundamental than the official one. This has to do with the gluing state-
ments appearing on the two sides of the conjecture.

1.1.8. In [2] and [12], it is proven that IndCoh
Ňglob(LSǦ) can be reconstructed

usingQCoh(LSǦ) as well as similar DG categories for smaller Levi subgroups

of Ǧ. The details of those two papers are rather technical, but luckily we do
not need them here; very informally, 1 we have

IndCoh
Ňglob(LSǦ) � Glue

M̌⊆Ǧ

(
QCoh(LSM̌)

)
, (1.5)

where M̌ runs through the poset of standard Levi subgroups of Ǧ, while the
symbol Glue means “glue the DG categories QCoh(LSM̌) in a certain precise
and explicit way that we do not explain in this paper". This is the content of
the spectral gluing theorem.

1.1.9. The official version of the geometric Langlands conjecture then predicts
that a similar decomposition must occur on the automorphic side; in other
words, we expect the following automorphic gluing statement:

D(BunG) � Glue
M⊆G

(
tempD(BunM)

)
. (1.6)

1 Warning: the usage of the symbol Glue here does not match with the one adopted in [2].
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For more details on the latter, we refer to [11, Section 1.11] and [12, Section
1.4]. While (1.5) is settled, the equivalence (1.6) is still in progress. Namely, it
is possible to properly define the gluedDGcategory and it is easy towrite down
a functor fromD(BunG) to that gluedDGcategory. The delicate part is proving
that such a functor is an equivalence: this requires a good understanding of the
tempered condition. The present paper (in particular, Theorem C below) is the
first step towards our ongoing proof of (1.6).

1.1.10. These two gluing results are crucial for the current developments of
the geometric Langlands program. Indeed, at the time of writing, the only
publicly known strategy2 to prove the official equivalence (outlined in [23])
consists roughly of two parts: first, prove tempered geometric Langlands for all
Levi subgroups of G, including G itself; second, assemble these equivalences
to match the right-hand-sides of (1.5) and (1.6). In particular, both parts of
this strategy require working with tempered objects. One obstacle with this
approach is that the definition of the tempered condition, to be reviewed in
Sect. 1.3, is complicated and hard to deal with: it uses the derived Satake
equivalence, and in particular the geometry of the spectral side, in an essential
way.

1.1.11.The first goal of the present work is to remove this obstacle: we provide
a novel characterization of the tempered condition that is purely automorphic
(in other words, a characterization that only involves the geometry of BunG ,
not the one of LSǦ). This is the content of Theorem C.

The second goal is to illustrate that this new characterization is useful in
practice: we use it to settle a conjecture of D. Gaitsgory and V. Lafforgue
concerning the anti-temperedness of the dualizing sheaf ωBunG . This is the
content of Theorem A, which in turn hinges on the Borel–Moore homology
computation of Theorem B. However, we could not prove the latter directly
(except when G = GLn or SLn).

The third goal of the paper is the proof of Theorem D, a t-structure estimate
that quickly yields Theorem B for all groups G. We also prove Theorem E,
which is another (easier) t-structure estimate of similar type.

1.2 The first two main results

Let us proceed to a more precise account of our results. As mentioned, the
following statement was a conjecture of D. Gaitsgory, also hinted at by V.
Lafforgue in [32, Section 5 and Page 1].

2 More precisely, the strategy outlined here is a slight modification, proposed by the author,
of Gaitsgory’s one. In our version, we highlight the role played by tempered categories, while
keeping Whittaker categories hidden as much as possible. For instance, the automorphic glued
DG category is a substitute for the extended Whittaker category.
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Theorem A For G a reductive group with semisimple rank ≥ 1, the dual-
izing sheaf ωBunG ∈ D(BunG) is anti-tempered, that is, right orthogonal to
tempD(BunG).

Explicitly, the theorem states that HomD(BunG)(F, ωBunG ) � 0 whenever
F is tempered. Recall from [21, Corollary 5.3.2] that the !-pushforward along
the structure projection pBunG : BunG → pt := Spec(k) is well-defined on
the entireD(BunG). Thus, by adjunction, Theorem A is equivalent to:

Theorem A′. If F ∈ D(BunG) is tempered, then (pBunG )!(F) � 0.

Remark 1.2.1 We immediately deduce that, for G as above and any G-bundle
iE : Spec(k) → BunG , the object (iE )!(k) is not tempered. On the other
hand, we conjecture that the D-modules (iE )∗(k) are all tempered. The latter
statement does not follow easily from the results of this paper and it will be
treated elsewhere.

Remark 1.2.2 The implication of Theorem A′ is not reversible in general:
(pBunG )!(F) � 0 does not imply that F is tempered. However, we expect that
F ∈ tempD(BunG) ⇐⇒ (pBunG )!(F) � 0 for G of semisimple rank equal to
one. If this is true, then TheoremA’ provides a very pleasant characterization of
tempered D-modules in semisimple rank 1, and thus a very pleasant correction
of the best hope conjecture (1.1) in that case.

1.2.3. We will prove Theorem A by establishing two other main results, The-
orems B and C, which are possibly more interesting than Theorem A itself.
The first of these results is the following concrete statement.

Theorem B Let � be a smooth affine curve. For G a reductive group with
semisimple rank≥ 1, the Borel–Moore homology HBM(G[�]) of the mapping
indscheme G[�] := Maps(�,G) vanishes.

Remark 1.2.4 (Related results) The ordinary homology of G[�] was com-
puted by C. Teleman in [41]. The homology of G[�]gen, the space of rational
(alias: generic) maps from � to G, was computed by D. Gaitsgory in [21].

1.2.5. Let us look at G[�] and at its Borel–Moore homology more closely.
First off, note thatAN [�] is an indscheme isomorphic toA

∞ := colimm≥0 A
m .

Indeed,

A
N [�] � colim

d≥0
A

N [�]≤d ,

where A
N [�]≤d is the finite dimensional vector space of maps whose poles

at the points at infinity of � have order bounded by d; by Riemann-Roch, the
dimension of A

N [�]≤d increases to ∞ with d.
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Next, recall that any affine scheme Y of finite type (and in particular G) can
be realized as a closed subscheme of A

N . Since the induced map Y [�] ↪→
A

N [�] � A
∞ is a closed embedding, it follows that Y [�] is an ind-affine

indscheme of ind-finite type.

1.2.6. The Borel–Moore homology of a scheme Y of finite type can be defined
using D-modules: we set

HBM(Y ) := (pY )∗,dR(ωY ),

where ωY ∈ D(Y ) is the dualizing D-module and (pY )∗,dR the functor of de
Rham cohomology. It follows formally that HBM is covariant with respect to
proper maps, hence it is well-defined on indschemes (of ind-finite type). For
example, for A

∞ we have

HBM(A∞) � colim
n≥0

HBM(An) � colim
n≥0

k[2n] � 0.

1.2.7. The proof of Theorem B will be discussed in Sect. 1.5. Meanwhile, let
us explain how to deduce Theorem A from Theorem B. For this, we must first
digress and recall the definition of the tempered condition.

1.3 Tempered objects

The phenomenon of temperedness (and non-temperedness) was first observed
in [1, Sections 1.1.10 and 12.1]. It arises as a consequence of three facts:
the Hecke action on D(BunG), the derived Satake theorem, the discrepancy
between ind-coherent sheaves and quasi-coherent sheaves on a quasi-smooth
stack. Let us review these facts in order.

1.3.1. Let G(K) := G((t)) and G(O) := G[[t]] be the loop group and the arc
group of G, see for instance [18, Definition 1]. The Hecke action is a certain
natural (once a point x ∈ X and a local coordinate at x have been chosen)
action of the spherical monoidal DG category

SphG := D(G(O)\G(K)/G(O))

onD(BunG). The actual definition of the Hecke action is recalled and used in
Sect. 5.2.

To fix the conventions, we regardD(BunG) as acted upon by SphG from the
left. Similarly, for GrG := G(O)\G(K) the affine Grassmannian, we regard
D(GrG) as acted on by SphG from the left (and compatibly by G(K) from
the right). We denote by 1SphG the unit object of SphG , described explicitly in
Sect. 1.4.1 below.
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1.3.2. The next ingredient is the derived Satake theorem (see [14] and [1,
Section 12]), that is, the description of SphG in Langlands dual terms. To
appreciate this theorem, a certain familiarity with ind-coherent sheaves on
quasi-smooth stacks and with the theory of singular support is desirable: we
refer to Sect. 2.3.8 for the main tenets of these theories and to [1, Section 12]
for the full treatment.

Theorem 1.3.3 (Derived Satake). There exists a canonical monoidal3 equiv-
alence

SatG : IndCoh
Ň
(�ǧ/Ǧ)

�−→ SphG . (1.7)

Remark 1.3.4 We should stress the fact that the core of the proof of the geo-
metric Satake is the second equivalence of [14, Theorem 5]. As explained
in [1, Section 12.5], this equivalence is related to (1.7) by renormalization and
Koszul duality.

1.3.5. In the above formula, �ǧ denotes the self-intersection of the origin of
the vector space ǧ, that is, the derived scheme pt ×ǧ pt � Spec Sym(ǧ∗[1]).
It is equipped with a Ǧ-action induced by the usual (co)adjoint action. The
quotient stack�ǧ/Ǧ is quasi-smoothwith space of singularities equal to ǧ∗/Ǧ.
Hence, we can consider ind-coherent sheaves on �ǧ/Ǧ with singular support
contained in any chosen closed conical G-invariant subset of ǧ∗. In particular,
the choice of the nilpotent cone Ň ⊆ ǧ∗ yields the DG category appearing on
the LHS of Theorem 1.3.3. On the other hand, the choice of 0 ∈ ǧ∗ yields the
DG category QCoh(�ǧ/Ǧ). These two DG categories are related by a natural
colocalization (that is, an adjunction with fully faithful left adjoint)

QCoh(�ǧ/Ǧ) IndCoh
Ň
(�ǧ/Ǧ).

�
0→Ň

�
0→Ň

1.3.6. Define temp SphG to be the full subcategory of SphG corresponding to
QCoh(�ǧ/Ǧ) under derived Satake. By construction, there is a colocalization

temp SphG SphG ,
�
0→Ň

�
0→Ň

where abusing notation, we have denoted the two adjoint functors with the
same symbols as above.

3 The monoidal structure on IndCoh
Ň

(�ǧ/Ǧ) is described in [1, Section 12.5] and reviewed
in Sect. 2.3.10.
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1.3.7. For C a DG category with a left action of SphG , we set

tempC := temp SphG ⊗
SphG

C.

As above, and abusing notation again, there is a colocalization

tempC C.
�
0→Ň

�
0→Ň (1.8)

We always regard tempC as a full subcategory of C via the functor �0→Ň
.

Definition 1.3.8 We say that an object of C is tempered if it belongs to tempC.
We say that an object ofC is anti-tempered iff it is annihilated by the projection
�0→Ň

: C � tempC. Equivalently, by adjunction, c ∈ C is anti-tempered iff
HomC(t, c) � 0 for all t ∈ tempC.

Remark 1.3.9 The endofunctor �0→Ň
◦ �0→Ň

: C → C will be often called
the temperization functor: it is the projector onto the tempered subcategory.

1.3.10. The above construction, applied to the Hecke action of SphG on
D(BunG) at a chosen point x ∈ X , yields the DG category tempD(BunG)

we are interested in.
In principle, a different choice of x ∈ X might yield a different DG category.

Thus, to be precise, we should write x -tempD(BunG) in place of tempD(BunG).
However, [1, Conjecture 12.8.5] states that x -tempD(BunG) ought to be inde-
pendent of the choice of the point x ∈ X . See [11, Section 1.4.2] for a sketch
of the proof of this statement. Regardless of this conjecture and of its solu-
tion, our proof of Theorem A will show that ωBunG is right-orthogonal to
x -tempD(BunG) for any x .

1.3.11.Denote by 1temp
SphG

the temperization of the unit 1SphG , that is, the object

1
temp
SphG

:= �0→Ň
◦ �0→Ň

(1SphG ).

We emphasize that this object is not very explicit, since the functors �0→Ň
and �0→Ň

are defined using the derived Satake equivalence. (Our theorem
below will make it explicit.)

For C a DG category endowed with a SphG-action, indicate by the symbol 	
the action of SphG on C. By construction, the temperization functor coincides
with the functor 1temp

SphG
	 − : C → C. Hence, we immediately deduce that:

• an object c ∈ C is tempered iff it is isomorphic to 1
temp
SphG

	 c;
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• an object d ∈ C is anti-tempered iff 1temp
SphG

	 d � 0.

1.3.12. In view of the second item above, the idea of the proof of TheoremA is
clear: as a first step, we should describe 1temp

SphG
explicitly (that is, only in terms

of SphG , without appealing to geometric Satake at all) and then, as a second
step, we should prove that

1
temp
SphG

	 ωBunG � 0.

The first step is exactly the content of Theorem C below, while the second one
will turn out to be a quick consequence of Theorem B in the special case of
� = A

1.

1.4 The tempered unit of the spherical category

The explicit description of 1temp
SphG

is the subject of our next main result.

1.4.1. Let us first describe the monoidal unit 1SphG ∈ SphG . It is given by the
de Rham pushforward of ωpt/G(O) along the closed embedding

pt/G(O) � G(O)\G(O)/G(O) ↪→ G(O)\G(K)/G(O).

Note that G(O) � G � H , where H the first congruence subgroup of
G(O). Since H is pro-unipotent, the pullback along pt/G(O) → pt/G
induces an equivalence D(pt/G(O)) � D(pt/G) that sends ωpt/G(O) to
ωpt/G ∈ D(pt/G).

1.4.2. Now let G(R) ⊆ G(K) denote the negative part of the loop group
G(K) := G((t)), that is, the group indscheme G(R) := G[t−1]. Consider the
tautological map

f : G\G(R)/G −→ G(O)\G(K)/G(O),

and the associated pullback at the level of D-modules:

f ! : SphG −→ D(G\G(R)/G).

Theorem C There is a canonical isomorphism

1
temp
SphG

� ( f !)R
(
ωG\G(R)/G

)

in SphG, where ( f !)R is the right adjoint to f !.
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1.4.3. It turns out that ( f !)R agrees with the renormalized pushforward f∗,ren
along f . The latter notionwill be discussed in Sect. 5.1; in any case, the functor
( f !)R can be described really explicitly as follows. Recall, [18], that the map

Gr◦G := G\G(R) � G(O)\G(O)G(R) −→ G(O)\G(K) =: GrG

is an open embedding, the inclusion of the “big cell" of the affine Grassman-
nian. Hence f is the composition of an open embedding with a quotient by a
pro-unipotent group (the first congruence subgroup of G(O)):

Gr◦G/G = G\G(R)/G
j

↪−→ GrG/G � GrG/G(O) = G(O)\G(K)/G(O).

Thus, f ! � j ! ◦ oblvG→G(O) and its right adjoint is the composition ( f !)R �
AvG→G(O)∗ ◦ j∗,dR. Here we have used the notation of [8] for group actions on
DG categories. This notation is reviewed in Sect. 2.5: in short, oblvG→G(O)

is the functor that forgets the G(O)-invariance while retaining only the resid-
ual G-invariance; AvG→G(O)∗ (the ∗-averaging functor) is its continuous right
adjoint.

Example 1.4.4 Suppose for a moment that G = T is a torus. In this case,
the nilpotent cone equals the origin: this implies that every object of SphT is
tempered. In particular, 1temp

SphT
must agree with 1SphT . Let us verify this fact

using the formula of Theorem C. The key observation is that, at the reduced
level, T (R) � T . It follows that D(T \T (R)/T ) � D(pt/T ) and that j
coincides with the closed embedding i induced by the unit point of GrT . We
obtain that

1
temp
SphT

� ( f !)R(ωpt/T ) � i∗,dR(AvT→T (O)∗ (ωpt/T )) � i∗,dR(ωpt/T (O)),

which is indeed the unit 1SphT .

1.4.5. Even though the statement of Theorem C involves only the automor-
phic version of the spherical category, most of the work takes place on the
spectral side: it amounts to computing the Serre functor of the DG category
IndCoh

Ň
(�ǧ/Ǧ). This computation will be then transferred to SphG using

derived Satake and its relation with geometric Langlands for X = P
1. A

detailed outline of the proof of Theorem C appears in Sect. 3.2.

1.4.6. In Sect. 5, we will use Theorem C to see that Theorem A is a
quick corollary of the following Borel–Moore homology vanishing result:
HBM(G(R)) � 0, as soon as G is not a torus. Since G(R) � G[A1], such a
statement is the simplest instance of Theorem B.
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1.5 Borel–Moore homology vanishing

Let us now comment on the proof of Theorem B.

1.5.1. The DG category of D-modules on an indscheme of ind-finite type Y

admits a natural t-structure, reviewed in Sect. 2.4.2. We say that an object of
D(Y) is infinitely connective if it belongs to the full subcategory

D(Y)≤−∞ :=
⋂
m�0

D(Y)≤−m .

When Y is a scheme of finite type, one easily proves that D(Y )≤−∞ � 0.
On the other hand, the theorems below will exhibit several indschemes Y for
whichD(Y)≤−∞ is nontrivial.

1.5.2.We will deduce the vanishing of HBM(G[�]) from the ind-affineness of
G[�] and the following t-structure estimate.

Theorem D For G a reductive group of semisimple rank ≥ 1, the dualizing
sheaf ωG[�] ∈ D(G[�]) is infinitely connective.

Theorem D has the following immediate consequence:

Corollary 1.5.3 For G as above, the dualizing sheaves of GrG and of Gr◦G
are infinitely connective.

Proof Since the t-structure ofD(GrG) is Zariski local (see [24, Lemma7.8.7]),
it suffices to prove the claim for Gr◦G � G(R)/G. The latter is clear from
Theorem D for � = A

1. ��
Remark 1.5.4 The statement of the corollary was proved in [24] modulo one
mistake in the proof: precisely, contrarily to the claim of [24, page 547], it is
not true that Gr◦G � A

∞. Indeed, as pointed out by D. Gaitsgory, this would
contradict [19, Theorem 5.4].

1.5.5. Given an affine scheme Y , one might ask what conditions on Y ensure
thatωY [�] is infinitely connective. The following result, whose proof uses only
Riemann-Roch and an elementary t-structure estimate, gives a sufficient (but
certainly not necessary) condition.

Theorem E Let Y ⊆ A
N be a closed subscheme defined as the zero locus of

k polynomials of degrees n1, . . . , nk. If
∑

i ni < N, then ωY [�] is infinitely
connective.

1.5.6. Obviously, Theorem E settles Theorem D in the cases G = GLn and
G = SLn . For more general groups, we take a completely different route,
which uses the Ran space and a bit of representation theory. The proof is
outlined in Sect. 7.1.
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1.6 The structure of the paper

1.6.1. In Sect. 2, we collect some basic notions that we will need throughout.

1.6.2. In Sect. 3, we discuss geometric Langlands for X = P
1, outline the proof

ofTheoremCandcompute theSerre functor of theDGcategoryD(BunG(P1)).

1.6.3. In Sect. 4, we complete the proof of Theorem C by computing the
Serre functor of three DG categories related to the nilpotent cone. This section
and the previous one are the only ones that require some derived algebraic
geometry.

1.6.4. In Sect. 5, we use Theorem C to characterize tempered D-modules on
BunG .We also show that TheoremA follows from the vanishing of HBM(Gr◦G).

1.6.5. In Sect. 6, we show that Theorem B is a simple corollary of Theorem D.
We then prove Theorem E, which settles Theorem D for GLn and SLn .

1.6.6. Finally, in Sect. 7, we prove Theorem D for all reductive groups.

1.7 The main techniques and ideas

For the reader’s convenience, let us highlight the eight most important notions
and ideas employed in this paper. The first four are rather technical, while the
second four form the geometric core of the paper. We refer to Sect. 2 for any
undefined notation and terminology, as well as for the appropriate references.

1.7.1 Singular support

The notion of singular support for ind-coherent sheaves is unavoidable, as it is
at the heart of the notion of temperedness. In Sect. 4, we will perform several
singular support computations usingKoszul duality and the shearing operation.
These two devices allow to transform singular support for ind-coherent sheaves
on a space into ordinary set-theoretic support for quasi-coherent sheaves on a
different space.

1.7.2 Ind-coherent sheaves and formal geometry

In turn, quasi-coherent sheaves on a space Y with support on a closed sub-
set Z ⊆ Y can be understood as quasi-coherent sheaves on Y∧

Z , the formal
completion of Y along Z . Contrarily to the case of ind-coherent sheaves, the
functoriality of quasi-coherent sheaves is not well-adapted to working with
formal completions. For this reason, a number of passages between quasi-
coherent sheaves and ind-coherent sheaves will occur.
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1.7.3 Group actions on DG categories

The categories appearing in the geometric Langlands program are often DG
categories of D-modules on (double) quotients: for instance, consider SphG ,
D(BunG(P1)), D(GrG). In particular, we often take quotients by infinite
dimensional groups like G(O). The theory of loop group actions on DG cate-
gories is very convenient when dealing with such situations, and in particular
when dealing with the Hecke action. It will be used in Sect. 5.

1.7.4 Serre functors

The notion of Serre functor of a (proper) DG category is a very useful piece of
abstract nonsense. It is clear that, given an equivalence F : C → D of proper
DG categories, we have SerreD � F ◦ SerreC ◦ F−1. This intertwining
property is essential for our proof of Theorem C, to be explained in Sect. 3.2.

1.7.5 Serre functor calculations

While the definition of the Serre functor is abstract nonsense, the computation
of the Serre functor in a given geometric situation is very much not abstract.

In Sect. 3.3, we use Drinfeld’s miraculous duality to compute the Serre
functor on the DG category D(BunG(P1)). In Sect. 4, we compute the Serre
functor of the DG category QCoh(N/G) and of some related DG categories.
The calculations hinge on the fact that H∗(N−{0},O) is nonzero only in two
degrees.

We believe that a systematic study of the behaviour of Serre functors of
DG categories of quasi-coherent sheaves on quotient stacks could be really
fruitful.

1.7.6 SphG and D(BunG(P1))

In Sect. 3, we crucially use the equivalence (due to V. Lafforgue) between
the spherical DG category SphG and the automorphic Langlands DG category
D(BunG(P1)). This equivalence is the reason for the appearance of G(R) in
our Theorem C.

As in the previous point, we believe that a deeper study of this relation will
yield interesting results.
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1.7.7 Indschemes and t-structures

As mentioned at the beginning, when G is not of semisimple type A, we do
not have a direct proof of the vanishing of HBM(G[�]). Instead, we will show
that ωG[�] ∈ D(G[�])≤−∞ and then easily deduce that HBM(G[�]) � 0.

In general, it would be worthwhile to find several examples of indschemes
(beyond the ones of Theorems D and E) whose dualizing sheaf is infinitely
connective.

1.7.8 Ran space and the big cell

The main idea to prove that ωG[�] ∈ D(G[�])≤−∞ is to approximate G[�]
withG◦[�], whereG◦ ⊆ G is the big open cell. Indeed, the fact that ωG◦[�] ∈
D(G◦[�])≤−∞ is immediate since G◦[�] admits A

∞ as a direct factor (when
G is not abelian).

However, the map G◦[�] → G[�] is not an open embedding, so we can-
not invoke the Zariski-local nature of the t-structure on D(G[�]). Rather,
we consider the open embedding G[�]G◦ -gen ⊆ G[�] of maps � → G
that generically land in G◦. Then, roughly speaking, it remains to compare
G[�]G◦ -gen with G◦[�′], where �′ ⊆ � is a nonempty open subcurve. We
do this in Sect. 7 using the Ran space and some basic facts on the affine
Grassmannian GrG .

2 Preliminaries and basic notations

In this section, we collect the notations, the basic notions, and the basic results
that we use. We advise the reader to skip this material and return here only
when it is necessary.

2.1 Representation theory and algebraic geometry

We follow the conventions of [1] and [2]. Let us recall the most relevant ones.

2.1.1. By the term “space", we mean a space of algebraic geometry: for
instance, a (derived) scheme, an indscheme, a stack or a prestack. We fix
a ground field k, algebraically closed and of characteristic zero, and set
pt := Spec(k). Every space Y appearing in this paper is defined over k and
the structure map Y → pt will be denoted by pY.

2.1.2. As mentioned before, G always denotes a connected reductive group
over k. We choose a Borel subgroup B ⊆ G and a maximal torus T ⊆ B once
and for all. Let N ⊂ B the maximal unipotent subgroup and N− the opposite
unipotent subgroup. Let g, b, n, t be the Lie algebras of G, B, N , T .
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The Langlands dual group of G, defined using the duality of root data, is
denoted by Ǧ. It comes with a maximal torus Ť and a Borel subgroup B̌.

2.1.3. Let cG := g∗//G := Spec((Sym g)G). By Chevalley’s restriction
theorem and the theory of exponents, (Sym g)G � Sym(zG ⊕ aG), where
zG = Lie(ZG), and aG is a k-vector space generated by r -polynomials of
degrees d1, . . . , dr (with di equal one plus the i th exponent of G).

2.1.4.We let N be the nilpotent cone of G (accordingly, Ň the nilpotent cone
of Ǧ). By definition, N is the closed subscheme of g∗ defined by

N := g∗ ×
cG

pt.

Since the map g∗ → cG is known to be flat, the fiber product defining N

can be understood either in classical or in derived algebraic geometry. We
usually wish to regard N as a closed subscheme of g: we do this by choosing
a G-equivariant identification g � g∗.
2.1.5. We denote by 
 the lattice of (co)weights of G. Precisely, 
 means
“coweights" in Sects. 3 and 7,while itmeans “weights" in Sect. 4. Accordingly,
the cone of dominant (co)weights is denoted by 
dom. This changing notation
is the price to pay to avoid using λ̌ in formulas. For two (co)weights μ and λ,
the notation μ ≤ λ means that λ − μ is a sum of positive (co)roots.

2.1.6. Given an affine scheme Y and a smooth curve �, we denote by Y [�]
the indscheme parametrizing maps from � to Y . As a functor of points, Y [�]
sends a test affine scheme S to the set Y (S×�). We will often use the shortcut
�S := S × �.

The complement of � inside its compactification is a finite set of “points at
infinity", which we will denote by D∞. Let h be the cardinality of D∞: this is
the number of “holes" that � has.

2.1.7. In Sects. 3 and 4, we will need some formal and derived algebraic
geometry.4 The conventions for derived algebraic geometry follow [26]. In
particular, fiber products of schemes in those Sects. are always derived. So,
for example, the self-intersection of the origin in a finite dimensional vector
space V is the derived affine scheme

�V := pt ×V pt � Spec(Sym(V ∗[1])). (2.1)

This derived scheme has appeared before with V = ǧ, and it will appear later
with V = cG .

4 The guiding principle is that derived algebraic geometry is required anytime we are dealing
with quasi-coherent sheaves or ind-coherent sheaves. On the other hand, Sects. 5–7 only deal
with D-modules, so derived algebraic geometry is not needed there.
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2.1.8.Aderived scheme is said to be a (derived) globally complete intersection
if it can be written as the derived zero locus U ×V pt of a map U → V
from a smooth scheme to a finite dimensional vector space. For instance, the
scheme �V above and the nilpotent cone N are derived globally complete
intersections.

2.1.9. Our conventions on derived stacks follow those of [1,17]. A derived
scheme is quasi-smooth if it is Zariski locally a global complete intersection.
A derived stack is said to be quasi-smooth if it admits a quasi-smooth atlas.
It follows that the adjoint quotients �g/G andN/G are quasi-smooth. By [1,
Section 10], the derived stackLSG is quasi-smooth (it is even a global complete
intersection in the natural stacky sense).

2.1.10. We denote by YdR the de Rham prestack of a prestack Y, see [27].
For a map φ : Y → Z, we denote by Z∧

Y its formal completion, which is by
definition the (derived) fiber product Z ×ZdR YdR. For a quick review of the
conventions regarding formal completions and the de Rham construction, the
reader might consult [10, Section 2].

2.2 DG categories

The conventions regarding higher category theory and differential graded (DG)
categories follow [26, Volume 1, Chapter 1]. Let us recall the most important
ones.

2.2.1. Denote by DGCat the ∞-category whose objects are (k-linear)
cocomplete DG categories and whose 1-arrows are continuous (i.e., colimit
preserving) functors. By default, when we say that C is a DG category, we
mean that C ∈ DGCat, that is, we assume that C is cocomplete. When C is not
cocomplete, we say so explicitly. Similarly, a functor between DG categories
is assume to be continuous unless otherwise stated.

2.2.2. If C is a DG category (cocomplete or not) with two objects c, c′, we
denote by HomC(c, c′) the DG vector space of morphisms c → c′.

2.2.3. For C ∈ DGCat, we let Ccpt be its non-cocomplete full subcategory
of compact objects. We assume familiarity with the notions of dualizability,
compact generation and ind-completion. When a DG category C is dualizable,
we denote by C∨ its dual.

2.2.4. By Vect, we denote the DG category of complexes of k-vector spaces.
We use cohomological indexing conventions throughout. Note that Vectcpt

consists of those complexes with finite dimensional total cohomology. We
usually say that V ∈ Vect is finite dimensional if it belongs to Vectcpt.
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2.2.5. Let C be a compactly generated DG category. Following [28], we say
that C is proper if

c, c′ ∈ Ccpt �⇒ HomC(c, c
′) ∈ Vectcpt .

When C is (compactly generated and) proper, we consider its Serre functor
SerreC : C → C. This is the continuous functor uniquely characterized by:

HomC(c
′,SerreC(c)) � HomC(c, c

′)∗, for every c, c′ ∈ Ccpt. (2.2)

Here, (−)∗ denotes the dual of a complex of vector spaces. If C is clear from
the context, we sometimes write Serre instead of the more precise SerreC.

Remark 2.2.6 Observe that, in the defining formula for SerreC, the objects
c, c′ are required to be compact. A simple colimit computation shows that
in (2.2) we might just as well require c compact and c′ arbitrary.
2.2.7. Our DG categories are sometimes equipped with t-structures. We use
cohomological indexing, which means that, at the level of the underlying tri-
angulated category, C≤0 is left orthogonal to C≥1. A (continuous) functor
F : C → D between DG categories with t-structures is said to be right t-exact
if it sends C≤0 toD≤0. Likewise, F is said to be left t-exact if it sends C≥0 to
D≥0. Finally, F is t-exact if it is both left and right t-exact.

2.2.8. A continuous functor β : C → D of DG categories is said to be con-
servative if β(d) � 0 implies d � 0. If β admits a left adjoint α, then β is
conservative if and only if the essential image of α generatesD under colimits.
This is a consequence of the Barr-Beck-Lurie theorem.

2.3 Ind-coherent sheaves and singular support

2.3.1. We denote by QCoh(Y) and IndCoh(Y) the DG categories of quasi-
coherent and ind-coherent sheaves on a derived prestack Y. While QCoh(Y) is
defined for arbitrary Y, some conditions are required for IndCoh(Y) to make
sense. We will only consider ind-coherent sheaves on algebraic stacks (such
asN/G, �g/G, LSǦ) and of formal completions of maps of algebraic stacks.
Pushforwards, pullbacks and tensor products of sheaves are understood in the
derived sense, unless otherwise stated. There is a natural action of QCoh(Y),
equipped with its natural symmetric monoidal structure, on IndCoh(Y).

2.3.2. Formation of IndCoh is contravariant: we denote by f ! the structure
pullback. We let ωY := (pY)!(k) denote the ind-coherent dualizing sheaf.5

5 Warning: the D-module pullback and the D-module dualizing sheaf are denoted in the same
way. We hope that the context will make it clear which one we are referring to.

123



D. Beraldo

The action of QCoh(Y) on ωY yields a functor ϒY : QCoh(Y) → IndCoh(Y).
AsY varies, we obtain a natural transformationϒ− : QCoh(−) → IndCoh(−)

that intertwines quasi-coherent pullbacks with ind-coherent pullbacks.

2.3.3. When f is nice (for instance: inf-schematic), there is a well-defined
pushforward f IndCoh∗ for ind-coherent shaves. When f is furthermore inf-
proper, f IndCoh∗ is left adjoint to f !.

The meaning of the terms “inf-schematic" and “inf-proper" appears in [26,
Vol. 2, Chapter 2, Section 4]. However, we will use these notions only in the
following situation. Let

X Z

W Y

be a commutative diagram of algebraic stacks. Then the obvious map ξ :
X∧
W → Z∧

Y is inf-schematic (respectively: inf-proper, and inf-closed embed-
ding) as soon as W → Y is schematic (respectively: proper, a closed
embedding). If WdR � YdR, we say that ξ is a nil-isomorphism; in this case
ξ ! is conservative.

2.3.4. When Y is an algebraic stack, we have a canonical functor �Y :
IndCoh(Y) → QCoh(Y), which is t-exact for the natural t-structures on both
sides.When Y is quasi-smooth (andmuchmore generally whenY is eventually
coconnective), we have that:

• �Y admits a fully faithful left adjoint, denoted by �Y;
• ϒY is fully faithful.

When Y is smooth, ϒY, �Y, �Y are equivalences and

�Y(ωY) � det(LY)[dim(Y)]. (2.3)

2.3.5. The object �X(ωX) is a shifted line bundle more generally when X

is quasi-smooth (and even more generally when X is Gorenstein), see [22,
Section 7.3]. The following two computations will be useful.

Lemma 2.3.6 Let N ⊂ g be the nilpotent cone, as introduced above, and
N/G the quotient stack given by the coajoint action. Then �N/G(ωN/G) �
ON/G[dim(N/G)].
Proof Using (2.3) applied to Y = BG, we quickly obtain that �BG(ωBG) �
OBG[dim(BG)]. Next we claim that �g/G(ωg/G) � Og/G : this can be proven
directly, or by using [26, Vol. 2, Chapter 9, Proposition 7.3.4], which is a
relative version of (2.3).
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Now, recalling the notation of Sect. 2.1.4, we see thatN/G � g/G×cG 0. In
particular, the inclusionN/G ↪→ g/G is a regular embedding of relative codi-
mension equal to dim(cG). Then the assertion follows from Grothendieck’s
formula, see [26, Vol. 2, Chapter 9, Section 7]. ��
Lemma 2.3.7 Recall the derived scheme �V = Spec Sym(V ∗[1]) that
appeared in (2.1). We have:

(p�V )IndCoh∗ (ω�V ) � Sym(V [−1]).
In particular (but we will not need this), Sym(V [−1]) is the vector space
underlying ��V (ω�V ) ∈ Sym(V ∗[1])-mod.

Proof The derived scheme �V is proper (indeed, by definition, properness is
checked at the level of classical truncations, and the classical truncation of�V
is pt). Hence, by adjunction and by the fully faithfulness of ϒ�V , we obtain:

(
(p�V )IndCoh∗ (ω�V )

)∗ � HomIndCoh(�V )(ω�V , ω�V )

� HomQCoh(�V )(O�V ,O�V ) � Sym(V ∗[1]).
The assertion follows. ��
2.3.8. Let Y be a quasi-smooth derived stack. We regard IndCoh(Y) as an
enlargement of QCoh(Y) by means of the functor �Y. Let us recall the main
tenets of the theory of singular support of ind-coherent sheaves on Y.

• The (classical) stack of singularities of Y is defined as

Sing(Y) := H−1(T ∗Y) � {(y, ξ) | y ∈ Y, ξ ∈ H−1(T ∗
y Y)}.

It admits a Gm-action defined by λ · (y, ξ) = (y, λξ).
• Ind-coherent sheaves on Y can be classified according to their singular
support, where possible singular supports are closed conical subsets of
Sing(Y). Given one such closed conical subset M , denote by IndCohM(Y)

the full subcategory of IndCoh(Y) spanned by objects with singular support
contained in M .

• Given M ⊆ M ′ ⊆ Sing(Y), the canonical inclusion �M→M ′ :
IndCohM(Y) ↪→ IndCohM ′(Y) admits a continuous right adjoint that we
denote by �M→M ′ .

• The natural action of QCoh(Y) on IndCoh(Y) preserves any IndCohM(Y)

and it commutes with any �M→M ′ and �M→M ′ .
• When M = OY is the zero section of Sing(Y) corresponding to the condi-
tion that ξ = 0, then IndCohM(Y) � QCoh(Y). Moreover, the adjunction
(�OY→Sing(Y), �OY→Sing(Y)) corresponds to the adjunction (�Y, �Y)men-
tioned before.
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• One computes that Sing(�V ) � V ∗ and that Sing(�ǧ/Ǧ) � ǧ∗/Ǧ. Upon
fixing aG-equivariant isomorphism ǧ∗ � ǧ, it is clear that Sing(LSǦ) is iso-
morphic to the stack ArthǦ of geometric Arthur parameters that appeared
in (1.2).

2.3.9. For f : X → Y a map of algebraic stacks, denote by Y∧
X its formal

completion and let

X
′ f−→ Y∧

X

f̂−→ Y

be the canonical factorization of f . Since ′ f is a nil-isomorphism, we have an
adjunction

IndCoh(X) IndCoh(Y∧
X)

(′ f )IndCoh∗

(′ f )!

with conservative right adjoint. The monad (′ f )! ◦ (′ f )IndCoh∗ is isomorphic to
U(TX/Y), the universal envelope of the tangent Lie algebroid TX/Y → TX.

2.3.10. Let us describe the monoidal structure on the spectral side of derived
Satake, see Theorem 1.3.3. First, consider IndCoh(�ǧ/Ǧ). This DG cate-
gory is monoidal under the convolution product 	 induced by the presentation
�ǧ/Ǧ � pt/Ǧ ×ǧ/Ǧ pt/Ǧ. Let i : pt/Ǧ ↪→ �ǧ/Ǧ be the diagonal closed
embedding and

i IndCoh∗ : Rep(Ǧ) −→ IndCoh(�ǧ/Ǧ)

the associated functor, which is easily seen to be monoidal. Since i is a nil-
isomorphism, it follows that i IndCoh∗ generates the target under colimits.

Now, let us turn to IndCoh
Ň
(�ǧ/Ǧ). Its monoidal structure is the unique

one making �
Ň→ǧ∗ monoidal. To make sense of this, we need the following

observation:

Lemma 2.3.11 Let F,G ∈ IndCoh(�ǧ/Ǧ). If F is killed by �
Ň→ǧ∗ , then the

same is true for F 	 G.

Proof Since IndCoh(�ǧ/Ǧ) is generated under colimits by the essential image
of i IndCoh∗ , it suffices to check the statement for G = i IndCoh∗ (V ), with V
arbitrary. By base-change, we have that

F 	 i IndCoh∗ (V ) � π∗(V )
act⊗ F.
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where π : �ǧ/Ǧ → pt/Ǧ is the projection and
act⊗ denotes the action of QCoh

on IndCoh. The assertion follows from the fact that such action commutes
with � functors in general. ��

In particular, the unit object of IndCoh
Ň
(�ǧ/Ǧ) is given by �

Ň→ǧ∗

(i IndCoh∗ (k0)), where k0 ∈ Rep(Ǧ) is the trivial representation.

2.4 D-modules

With the exception of Sect. 5 and Sect. 2.5, we will only encounter D-modules
on indschemes and algebraic stacks of ind-finite type. Let us recall our main
conventions in this case. Our main references are [27] and [17].

2.4.1. ForY as above, we letD(Y) be its DG category ofD-modules.We denote
by f ! the D-module pullback and by ωY := (pY)!(k) the D-module diualizing
sheaf. We denote by f∗,dR (or simply by f∗ when the context its clear) the
de Rham pushforward of D-modules. We let indY : IndCoh(Y) → D(Y) be
the induction functor and oblvY : D(Y) → IndCoh(Y) its (continuous) right
adjoint.Note thatoblvY sends theD-module dualizing sheaf to the ind-coherent
dualizing sheaf.

2.4.2. The DG categories of D-modules on (ind)schemes are equipped with
their right t-structure, see [27, Section 4.3]. Let us recall the definition. For
Y an (ind)scheme of (ind-)finite type, the t-structure on D(Y) is defined by
declaring that F ∈ D(Y)≥0 iff, for any closed subscheme i : Y ↪→ Y, the
resulting object oblvY (i !(F)) belongs to IndCoh(Y )≥0.

As mentioned earlier in Corollary 1.5.3, this t-structure is Zariski local: this
means that the (co)connectivity of objects can be tested on Zariski open covers.
A proof is given in [24, Lemma 7.8.7]). We will use this result several times.

If i : Y → Z is a closed embedding of schemes (of finite type), then i∗,dR
is t-exact. If Y is a smooth scheme, then oblvY is t-exact.

2.4.3. Let Y → Z be a map of schemes of finite type. As explained in [12,
Section 2.3.2], we can write QCoh(Z∧

Y ) and IndCoh(Z∧
Y ) as tensor products

of DG categories, using the action of D-modules on quasi-coherent and ind-
coherent sheaves:

QCoh(Z∧
Y ) � QCoh(Z) ⊗

D(Z)
D(Y ),

IndCoh(Z∧
Y ) � IndCoh(Z) ⊗

D(Z)
D(Y ),
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If Z is smooth, then the functors �Z , �Z : QCoh(Z) → IndCoh(Z) are
equivalences, hence the same holds true for the functors

�Z ⊗
D(Z)

idD(Y ) : QCoh(Z∧
Y ) −→ IndCoh(Z∧

Y ),

ϒZ ⊗
D(Z)

idD(Y ) � ϒZ∧
Y

: QCoh(Z∧
Y ) −→ IndCoh(Z∧

Y ).

2.4.4.When L is a connected affine algebraic group,D(pt/L) � H∗(L)-mod,
where H∗(L) is the singular homology of L equipped with the convolution
product (see [17, Section 7.2]). This equivalence is obtained by applying the
Barr-Beck-Lurie theorem to the adjunction (q!, q !), with q : pt → pt/L the
quotient map. Under this equivalence, ωpt/L goes over to the augmentation
module of H∗(L): it follows that ωpt/L is a (possibly not compact) generator
of D(pt/L).

Lemma 2.4.5 For M → L amorphism of connected algebraic groups, denote
by f : pt/M → pt/L the induced map. Then f!(ωpt/M) is a generator of
D(pt/L).

Proof Since the quotient q : pt→pt/L factors through f , it follows that f !
is conservative. Hence, the essential image of f! generates the target under
colimits. To conclude, it remains to use the fact thatωpt/M generatesD(pt/M).

��

2.5 Strong group actions on DG categories

Following [8], let us recall some notions from the theory of strong loop group
actions on DG categories.

2.5.1. Let H be a group (ind)scheme. We say that H acts strongly6 on a DG
categoryC if the convolutionmonoidal DG-categoryD(H) acts onC.We often
use this notion when H is of infinite type (e.g. H = G(O) or H = G(K)).
For that, we need the theory of D-modules on indschemes of pro-finite type;
this complication will not bother us in practice, except for Sect. 5.2 where we
will (marginally) need D!.
2.5.2. We denote by CH (or HC, if we want to emphasize that H acts on
C from the left) the invariant DG category. If H ′ ↪→ H is a subgroup, let
oblvH

′→H : CH → CH ′
denote the conservative forgetful functor. We denote

byAvH
′→H

! its (possibly only partially defined) left adjoint, and byAvH
′→H∗ its

(possibly discontinuous) right adjoint. When H is a scheme (even of pro-finite
type), AvH

′→H∗ is continuous.

6 we usually omit the word “strongly" and simply say that H acts on C.
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Remark 2.5.3 If a pro-unipotent group H acts trivially on C, then oblv1→H :
CH � C. This is not the case for groups that are not pro-unipotent. For instance,
when L is a connected affine algebraic group, we obtain that VectL(O) �
VectL � D(pt/L) � H∗(L)-mod.

2.5.4. If H acts on a space Y (say from the right), then H acts on the DG
category of D(Y) (again from the right) and D(Y)H � D(Y/H). Under this
isomorphism and the similar one for H ′, the forgetful functor oblvH ′→H goes
over to the D-module pullback along Y/H ′ → Y/H .

2.6 Shearing

The shearing (alias: shift of grading) operation was introduced in [1, Appendix
A]. It will be needed in Sects. 4.2–4.3.

2.6.1.LetGm -repweak := (QCoh(Gm), 	)-mod denote the∞-category ofDG
categories with a weak action of Gm and Gm-equivariant functors. The shear-
ing operation is an explicit automorphism of the ∞-category Gm -repweak ,
which we denote by C � C⇒. We use the same notation for morphisms in
Gm -repweak : namely, whenever φ : C → D is a Gm-equivariant functor, we
denote by φ⇒ : C⇒ → D⇒ the associated one. We refer to [12, Section 2.1],
which is a section dedicated to this topic.

2.6.2. If A is a graded DG algebra, then A-mod acquires a natural Gm-action
and (A-mod)⇒ � A⇒-mod. Here A⇒ is defined as follows. Let us view
objects of Rep(Gm) as graded complexes (Mi,k, d) of vector spaces, where i
refers to the cohomological grading, j (called weight) refers to the grading
given by the Gm-action, and d is a horizontal differential. Then A⇒ is the
algebra whose underlying graded complex is (Ai+2k,k, d). Here is the main
example to keep in mind: for V a finite dimensional vector space, regard A =
Sym(V ) a graded DG algebra with V in weight 1; then A⇒ � Sym(V [−2]).

The following fact will be used in the sequel.

Lemma 2.6.3 Let C,D ∈ Gm -repweak and let φ : C → D be a weakly
Gm-equivariant functor. Then φ is conservative if and only if so is φ⇒.

Proof The key is to show that φ is conservative if and only if so is the induced
functor φGm : CGm → DGm of (weak) invariant DG categories. One direction
is obvious: forgetting Gm-invariance CGm → C is conservative, so the con-
servativity of φ implies that of φGm . The opposite implication follows from
Gaitsgory’s 1-affineness theorem, [25], which states that C can be recovered as
C � CGm ⊗

Rep(Gm)
Vect. Now, to conclude the proof of the lemma, it suffices to
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observe that, by construction, there is a natural isomorphism7 (φ⇒)Gm � φGm

of DG functors. ��

3 The tempered unit of the spherical category

In this section, we start the proof of Theorem C. Our strategy is explained in

Sect. 3.2: it relies on a certain explicit equivalence SphG
�−→ D(BunG(P1)),

reviewed in Sect. 3.1, and on the computation of two Serre functors. The latter
computations will be performed partly in Sect. 3.3 and partly in Sect. 4.

3.1 Geometric Langlands for P
1

Recall that BunG(X) denotes the stack of G-bundles on the curve X . In this
section, we focus solely on the case X = P

1. Let us fix a point x ∈ X and
choose a local coordinate t at x . The data of X , x and t are regarded as fixed
until the end of Sect. 3.2. Our goal is to construct an equivalence

γ : SphG �−−→ D(BunG(P1)).

The present section does not contain any new mathematics: the functor γ is
closely related to the same named functor introduced by V. Lafforgue in [32]
and we limit ourselves to fill in some details. In passing, we will review,
again following [32], the role of γ in the proof of the geometric Langlands
equivalence for X = P

1.

3.1.1. We denote by G(K) = G((t)) and G(O) = G[[t]] the loop group and
the arc group ofG at the point x . For any λ ∈ 
, we let tλ be the corresponding
k-point of T (K ) ⊆ G(K ). The Birkhoff decomposition yields a stratification

G(K) �
⊔

λ∈
dom

G(O)tλG(R),

with the stratum G(O)G(R) ⊆ G(K) being open.

3.1.2.LetGrG � G(O)\G(K) be the affine Grassmannian at x , equipped with
the obvious right action of G(K). By [3], we have:

BunG(P1) � GrG/G(R) � G(O)\G(K)/G(R). (3.1)

7 We emphasize that this isomorphism does not preserve that Rep(Gm)-module structure.
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In particular, the open embedding G(O)G(R) ⊆ G(K) descends to an open
embedding

j : BG � G(O)\G(O)G(R)/G(R) ↪→ G(O)\G(K)/G(R) � BunG(P1),

which is the inclusion of the locus of trivializable G-bundles. Consider the
object j!(ωBG) ∈ D(BunG(P1)).

3.1.3. The above expression of BunG(P1) as a quotient equips D(BunG(P1))

with a left action8 of SphG .
We denote this action by 	 and set

γ := − 	 j!(ωBG) : SphG −→ D(BunG(P1)).

Our current goal is to prove that γ is an equivalence and to provide a formula
for its inverse. To get there, we need some preliminary results.

3.1.4. We will use a few notions from the theory of strong group actions on
DG categories, see [8] and Sect. 2.5. Since G(K) acts on GrG from the right,
it also acts on the DG category D(GrG), again from the right. Our two DG
categories of interest are invariant categories for the action of G(O) and G(R)

on D(GrG):

D(GrG)G(O) � SphG, D(GrG)G(R) � D(BunG(P1)).

By forgetting invariance along G ↪→ G(O) and G ↪→ G(R), we obtain the
two functors:

D(GrG)G(O) oblvG→G(O)

−−−−−−−→ D(GrG)G
oblvG→G(R)

←−−−−−−− D(GrG)G(R). (3.2)

3.1.5. Consider the partially defined left adjoint to oblvG→G(R), to be denoted
byAvG→G(R)

! . Concretely, under the general equivalenceD(Y)H � D(Y/H),

the functor AvG→G(R)
! corresponds to the !-pushforward along the map

GrG/G � GrG/G(R). Such pushforward is well-defined on holonomic D-
modules,9 but potentially not on all D-modules. Nevertheless, we have:

8 This is nothing but the action of SphG by Hecke functors at x , see Sect. 5 and in particular
Sect. 5.2.1.
9 more precisely, by “holonomic D-module on Y" we mean a an object ofD(Y) that is smooth-
locally represented as a complex of D-modules with holonomic cohomology sheaves.
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Lemma 3.1.6 The composition

SphG = D(GrG)G(O) oblvG→G(O)

−−−−−−−→ D(GrG)G
AvG→G(R)

!−−−−−−→ D(GrG)G(R)

� D(BunG(P1))

is well-defined.

Proof Clearly, the functor in question is well-defined on any holonomic object
of SphG . So, it suffices to prove that SphG = D(GrG)G(O) is generated under
colimits by holonomic D-modules. Recall that the G(O)-orbits on GrG are in
bijection with 
dom as follows: GrλG is the G(O)-orbit containing the point
[tλ] := G(O)tλ ∈ GrG(k). Using this, we can construct an indscheme pre-
sentation GrG � colimn≥0 Zn , where each Zn is a finite dimensional scheme
such that:

• G(O) acts on Zn with finitely many orbits and via a finite-dimensional
quotient group Hn;

• the kernel of the quotient G(O) � Hn is pro-unipotent.

Since D(GrG)G(O) � colimn≥0D(Zn)
G(O), it remains to prove that each

D(Zn)
G(O) � D(Zn)

Hn is generated under colimits by holonomicD-modules.
Since Hn acts on Zn with finitely many orbits, the assertion easily follows by
devissage along the Hn-orbit stratification. ��
Lemma 3.1.7 The composition AvG→G(R)

! ◦ oblvG→G(O) : SphG →
D(BunG(P1)), well-defined by the above lemma, is canonically isomorphic
to γ .

Proof By its very construction, γ is SphG-linear for the natural SphG-actions
on both sides. Let us first show that AvG→G(R)

! ◦ oblvG→G(O) is SphG-linear,
too. Tautologically, the left SphG-action on D(GrG) is compatible with the
G(K)-action on the right, hence the forgetful functors appearing in (3.2) are
both SphG-linear.

It follows that AvG→G(R)
! , being the left adjoint of a SphG-linear functor, is

colax linear. This means that, for any S ∈ SphG and any F ∈ D(GrG)G , there
are natural arrows10

AvG→G(R)
! (S 	 F) −→ S 	 AvG→G(R)

! (F)

that are possibly not isomorphisms. We will now use derived Satake, and its
relation with the usual (underived) geometric Satake, to show that this colax

10 together with the usual higher coherences present anytime one is dealing with higher cate-
gories; we will not dwell on them here.
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module structure is actually a genuine SphG-module structure. Referring to
the discussion of Sect. 2.3.10, observe that the natural functor

Rep(Ǧ) � IndCoh(pt/Ǧ)
i IndCoh∗−−−→ IndCoh(�ǧ/Ǧ)

�
Ň→ǧ−−−−→ IndCoh

Ň
(�ǧ/Ǧ)

is monoidal and generates the target under colimits (indeed, the right functor is
essentially surjective,while the left one is left adjoint to a conservative functor).
Combined with derived Satake, we obtain a monoidal functor Rep(Ǧ) →
SphG that generates the target under colimits. Thus, to prove the strictness
of the colax Sph-linear structure of AvG→G(R)

! , it suffices to prove that the

induced colax Rep(Ǧ)-linear structure is strict. The latter is clear: Rep(Ǧ) is
a rigid monoidal DG category, so we can apply [26, Vol. 1, Chapter 1, Lemma
9.3.6].

We have established that γ and AvG→G(R)
! ◦ oblvG→G(O) are both SphG-

linear. To see they are isomorphic, it suffices to show that they agree when
evaluated on the unit 1SphG . A straightforward base-change yields

AvG→G(R)
! ◦ oblvG→G(O)(1SphG ) � j!(ωBG)

as desired. ��
Corollary 3.1.8 The functor γ sends compact objects to compact objects.

Proof Since G(O) is a group scheme, the forgetful functor oblvG→G(O)

admits a continuous right adjoint: this is the ∗-averaging functor, denoted
by AvG→G(O)∗ . Then the right adjoint to γ can be expressed as the continuous
functor

AvG→G(O)∗ ◦ oblvG→G(R).

By abstract nonsense, any functor with a continuous right adjoint preserves
compact objects. ��
Theorem 3.1.9 The functor γ : SphG → D(BunG(P1)) is an equivalence.

Proof In the first three steps, we show that γ is fully faithful; in the remaining
ones, we show that it is essentially surjective.

Step 1

Denote by φ : Rep(Ǧ) → SphG the monoidal functor introduced in the proof
above. As we know, φ generates the target under colimits. Hence, to show that
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γ is fully faithful, it suffices to prove that

HomSphG (φ(V ),F)
�−−→ HomD(BunG(P1))(γ (φ(V )), γ (F))

for allF ∈ SphG and all V ∈ Rep(G)cpt. Note that φ(V ) is dualizable (indeed,
compact objects of Rep(G) are dualizable and φ is monoidal); thus, up to
replacing F with φ(V ∗) 	F, we may restrict to the case where V is the trivial
G-representation. In other words, it suffices to prove that

HomSphG (1SphG ,F)
�−−→ HomD(BunG(P1))(γ (1SphG ), γ (F)) (3.3)

for arbitrary F ∈ SphG .

Step 2

We would like to make sure that it is enough to verify the above claim in the
special case where F ∈ SphG is compact. This is not immediate, as 1SphG is
not compact.11 To get around this issue, recall from Sect. 2.4.4 thatD(pt/G)

is generated by a single compact object q!(k). SettingM := ι(q!(k)) ∈ SphG ,
we see thatM is compact and that 1SphG can be written as a colimit of copies
of M. Hence, it suffices to prove that

HomSphG (M,F)
�−−→ HomD(BunG(P1))(γ (M), γ (F)) (3.4)

for arbitraryF ∈ SphG . Since γ preserves compact objects andM is compact,
it is enough to prove (3.4) under the assumption that F is compact.

Next, to return to 1SphG , we use the fact that ωpt/G is a (non-compact)
generator of D(pt/G), so that M can be expressed as a colimit of copies of
1SphG . Consequently, it is enough to prove that

HomSphG (1SphG ,F)
�−−→ HomD(BunG(P1))(γ (1SphG ), γ (F)) (3.5)

for compact F ∈ SphG .

11 To see that 1SphG is indeed non-compact, notice that it is the image of the non-compact
object ωpt/G ∈ D(pt/G) under the (compact preserving) fully faithful functor

ι : D(pt/G) � D(pt)G(O) ↪→ D(GrG)G(O).
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Step 3

The latter isomorphism for F compact is proven in [32, Pages 7-9], by means
of the contraction principle. Actually, V. Lafforgue proves that isomorphism
for all F locally compact, see [1, Section 12.2.3] for the definition. It is easy
to see that compact objects are in particular locally compact. This concludes
the proof that γ is fully faithful.

Step 4

Let us now proceed to the essential the surjectivity of γ . In view of the already
established fully faithfulness, it suffices to show that γ generates the target
under colimits.

Step 5

Let us use again the fact that, when L is a connected algebraic group,D(pt/L)

is generated under colimits by a single object. This observation, together with
the Birkhoff decomposition, implies that D(BunG(P1)) is generated under
colimits by the collection

Mλ := ( jλ)!(Gλ), λ ∈ 
dom,

where:

• Eλ is the G-bundle on P
1 corresponding to tλ;

• Aut(Eλ) := G(O) ∩ Adtλ(G(R)) is its automorphism group;
• jλ is the locally closed embedding

pt/Aut(Eλ) � G(O)\G(O)tλG(R)/G(R) ↪→ G(O)\G(K)/G(R);

• Gλ is a generator of D(pt/Aut(Eλ)).

We will prove, by induction on the height |λ|, that for each λ ∈ 
dom the
cocompletion of the essential image of γ contains oneMλ as above. The base
case is obvious:M0 � j!(ωBG) = γ (1SphG ).

Step 6

Now recall that each λ ∈ 
dom yields a quasi-compact open substack
Bun(≤λ)

G ⊆ BunG(P1): this is the stack parametrizing G-bundles of Harder-
Narasimhan coweight ≤ λ, see e.g. [16, Section 0.2.4]. The Birkhoff
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stratification restricts to the following stratification of Bun(≤λ)
G :

⊔

{μ∈
dom|μ≤λ}
G(O)\G(O)tμG(R)/G(R) �

⊔

{μ∈
dom|μ≤λ}
pt/Aut(Eμ).

Consider the point [tλ] := G(O)tλ ∈ GrG(k) and its G(O)-orbit GrλG .
We denote by jGrλG

: GrλG ↪→ GrG the locally closed embedding and by

( jGrλG/G(O)
)! the induced functorD(GrλG)G(O) ↪→ SphG .

Step 7

We first prove that

γ
(
( jGrλG/G(O)

)!(ωGrλG/G(O)
)
)

is an object !-extended from the open substack Bun(≤λ)
G . Using the expression

AvG→G(R)
! oblvG→G(O) for γ , we obtain that

γ
(
( jGrλG/G(O)

)!(ωGrλG/G(O)
)
) � (mλ)!

(
ωGrλG/G

)
,

where mλ : GrλG/G � GrλG ×G G(R)/G(R) → GrG/G(R) is the natural
action map. We need to show that mλ factors through Bun

(≤λ)
G . This is evident

in view of the following relation between G(O)-orbits and G(R)-orbits on
GrG , see [42, Proposition 2.3.3]:

GrλG ⊆
⊔

{μ∈
dom|μ≤λ}
[tμ] · G(R).

Step 8

Next, let iλ : pt/Aut(Eλ) � Bun(λ)
G ↪→ Bun(≤λ)

G be the closed embedding

of the top stratum. By devissage along the stratification of Bun(≤λ)
G and the

induction hypothesis, it suffices to prove that

Gλ := (iλ)
∗,dR

(
γ
(
( jGrλG/G(O)

)!(ωGrλG/G(O)
)
)) � (iλ)

∗,dR((mλ)!(ωGrλG/G))

is a generator ofD(pt/Aut(Eλ)). Let Pλ ⊆ G be the stabilizer of theG-action
on [tλ]. Using the isomorphism (cf. [37, Formula 2.6] and [42, Proposition
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2.3.3])

GrλG ∩ [tλ] · G(R) � [tλ] · G � Pλ\G,

we see that the square

([tλ] · G(O))/G � GrλG/G GrG/G(R) � BunG(P1)

pt/Pλ � ([tλ] · G)/G ([tλ] · G(R))/G(R) � Bun(λ)
G

mλ

fλ

is cartesian. We deduce that Gλ � ( fλ)!(ωpt/Pλ) up to a cohomological shift.
Then the assertion follows from Lemma 2.4.5. ��
Corollary 3.1.10 The functor γ −1 : D(BunG(P1)) → SphG is given by the
formula

AvG→G(O)∗ ◦ oblvG→G(R).

Proof Wehave proven that γ is an equivalence,written explicitly as the functor
AvG→G(R)

! ◦ oblvG→G(O). Hence, γ −1 equals the right adjoint functor, which
is AvG→G(O)∗ ◦ oblvG→G(R) by definition. ��
Remark 3.1.11 The equivalence γ helps prove that the two Langlands DG
categories are equivalent in the case X = P

1. Indeed, it is well-known that

LSǦ(P1) � (pt ×ǧ pt)/Ǧ =: �ǧ/Ǧ.

For a proof, see [32, beginning of Section 1]. Under this isomorphism, the
global nilpotent cone Ňglob goes over tautologically to the nilpotent cone of
Ǧ, so that

IndCoh
Ňglob(LSǦ(P1)) � IndCoh

Ň
(�ǧ/Ǧ).

Combining this equivalence with derived Satake and γ , we obtain the chain

IndCoh
Ňglob(LSǦ(P1)) � IndCoh

Ň
(�ǧ/Ǧ) � SphG � D(BunG(P1)).

(3.6)
In the sequel, we will only need the second and the third equivalences (that is,
SatG and γ ), not the first one.

123



D. Beraldo

3.2 Overview of the proof of Theorem C

Let us explain our strategy of the proof of Theorem C.

3.2.1 Step 1: the setup

The construction of the previous section and derived Satake show that the two
functors

IndCoh
Ň
(�ǧ/Ǧ)

SatG−−→ SphG
γ−→ D(BunG(P1)) (3.7)

are equivalences.

3.2.2 Step 2: the tempered unit

Let i : pt/Ǧ ↪→ �ǧ/Ǧ denote the obvious closed embedding and k0 ∈
QCoh(pt/Ǧ) � Rep(Ǧ) the trivial G-representation. In view of Sect. 2.3.10,
the unit 1SphG corresponds to �

Ň→ǧ
(i IndCoh∗ (k0)) under SatG . It follows that

1
temp
SphG

corresponds to �0→Ň
(i∗(k0)) under SatG . Indeed,

Sat−1
G (1

temp
SphG

) := Sat−1
G ◦�0→Ň

◦ �0→Ň
(1SphG )

� �0→Ň
◦ �0→Ň

(Sat−1
G (1SphG ))

� �0→Ň
◦ �0→Ň

◦ �
Ň→ǧ

(i IndCoh∗ (k0))

� �0→Ň
◦ �0→ǧ(i

IndCoh∗ (k0))

� �0→Ň
(i∗(k0)),

where the last stepuses the compatibility betweenpushforwards and�, see [17,
Section 3.2.12].

3.2.3 Step 3: properness

Recall the notion of properness for DG categories, see Sect. 2.2.5. We claim
that the DG categories appearing in (3.7) are proper. We will give two dif-
ferent proofs of this fact. The quickest proof, explained in Sect. 3.3, shows
thatD(BunG(P1)) is proper. Another proof, discussed in Sect. 4.3, shows the
properness of IndCoh

Ň
(�ǧ/Ǧ).
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3.2.4 Step 4: the Serre functor on the spectral side

Thanks to properness, it makes sense to consider the Serre functors of the three
DG categories of (3.7). On the Ǧ-side, we will prove that

SerreIndCoh
Ň

(�ǧ/Ǧ)
(�

Ň→ǧ
(i IndCoh∗ (k0))) � �0→Ň

(i∗(k0))[− dim Ǧ].

Serre functors are obviously intertwined by equivalences of DG categories: in
our case, derived Satake implies that

SerreSphG (1SphG ) � 1
temp
SphG

[− dim Ǧ]. (3.8)

3.2.5 Step 5: the Serre functor on the automorphic side

On the automorphic side, we will show that

SerreD(BunG(P1))( j!(ωBG)) � j∗(ωBG)[− dimG], (3.9)

where j : BG ↪→ BunG(P1) is the open embedding induced by the trivial G-
bundle. More generally, we wil check that a certain explicit functor TBunG(P1)

(see below for the definition) equals the Serre functor onD(BunG(P1)).

3.2.6 Step 6: the conclusion

By construction, γ (1SphG ) � j!(ωBG). Now, comparing (3.8) with (3.9) and

using the fact that dim(G) = dim(Ǧ), we obtain that

γ (1
temp
SphG

) � j∗(ωBG).

Equivalently,

1
temp
SphG

� γ −1( j∗(ωBG)).

Using the explicit formula for γ −1 from Corollary 3.1.10, a straightforward
diagram chase along

BG = G(O)\G(O)G(R)/G(R) ↪→ G(O)\G(K)/G(R) ← G(O)\G(K)/G

→ G(O)\G(K)/G(O)

yields the claimed isomorphism 1
temp
SphG

� ( f !)R(ωG\G(R)/G).

3.2.7. Only Steps 3, 4 and 5 need further details. Steps 3 and 5 are treated
immediately below, while Step 4 is the content of Sect. 4.
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3.3 The Serre functor on the automorphic side

In this short section, we prove the Serre functor formula that appeared in (3.9).
For this, we need to review a few facts on the pseudo-identity functor Ps-IdY,!,
also calledDrinfeld’s miraculous duality. We return to the general case of X of
arbitrary genus and we let, as is standard, BunG := BunG(X). Note, however,
that the Lemma 3.3.7 and Corollary 3.3.8 are specific to X = P

1.

3.3.1.LetY be an algebraic stackY such thatD(Y) is dualizable. In view of [17,
Theorem 0.2.2], this condition is often satisfied in practice. Note also that
D(BunG) is compactly generated, and therefore dualizable, by [16, Theorem
0.1.2]. Moreover, BunG is exhausted by quasi-compact open substacks with
compactly generated DG categories of D-modules.

The dualizability ofD(Y) implies that functors from the dual DG category
D(Y)∨ toD(Y) correspond precisely to objects ofD(Y×Y). We will consider
two particularly interesting functors, called “pseudo-identities":

Ps-IdY,∗ : D(Y)∨ −→ D(Y), Ps-IdY,! : D(Y)∨ −→ D(Y).

The first one is defined by the kernel (�Y)∗(ωY) ∈ D(Y× Y), the second one
by the kernel (�Y)!(kY) ∈ D(Y × Y).

3.3.2. These functors were introduced and discussed in detail in [16, Section
4] and [24, Sections 6–7]. Here are some relevant facts that we need:

• If Y is quasi-compact, then Ps-IdY,∗ is an equivalence;
• if Ps-IdY,! is an equivalence, Y is said to be miraculous;
• BunG is miraculous, see [20] for the proof;
• BunG can be exhausted by a sequence of miraculous quasi-compact opens,
see [16, Lemma 4.5.7].

3.3.3.When Y is miraculous, we can consider the functor

TY := Ps-IdY,∗ ◦Ps-Id−1
Y,! .

If Y is quasi-compact and miraculous, then TY is an equivalence. On the other
hand, TBunG is not at all an equivalence: the argument of [24, Theorem 7.7.2],
coupled with the correction given by Corollary 1.5.3 shows that

TBunG (ωBunG ) � 0.

3.3.4. By [16, Section 4], every compact object of D(BunG) can be written
as ( jU )!(FU ) for some quasi-compact miraculous open substack jU : U ↪→
BunG and some FU ∈ D(U )cpt. The next observation explains how TBunG
interacts with TU .
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Lemma 3.3.5 In the above notation, we have a canonical isomorphism

( jU )∗ ◦ TU � TBunG ◦ ( jU )!. (3.10)

Proof By [16, Lemma 4.4.12], we know that

( j !)∨ ◦ (Ps-IdU,!)−1 � (Ps-IdBunG ,!)−1 ◦ j!.

Hence, it remains to show that

Ps-IdBunG ,∗ ◦( j !)∨ � j∗ ◦ Ps-IdU,∗,

as functors D(U )∨ → D(BunG). Each of these two functors is given by a
kernel in D(U × BunG). Tautologically, these two kernels are respectively

( j × idBunG )!(�BunG )∗(ωBunG ), (idU × j)∗(�U )∗(ωU ).

To conclude, observe that these two objects match by base-change. ��
3.3.6. Now assume again that X = P

1. In this case, TBunG(P1) is quite special.
Indeed:

Lemma 3.3.7 The DG category D(BunG(P1)) is proper and TBunG(P1) is its
Serre functor.

Proof We already know that D(BunG(P1)) is compactly generated, and
Sect. 3.3.4 describes howcompact objects look like. In viewof that description,
the properness of D(BunG(P1)) is an immediate consequence of the follow-
ing claim: for any quasi-compact open U ⊂ D(BunG(P1)), the DG category
D(U ) is proper. The Birkhoff decomposition guarantees that U has finitely
many isomorphism classes of k-points. Then the claim follows from the first
part of [28, Theorem 2.1.5].

Next, let us show that SerreD(BunG(P1)) � TBunG(P1). We need to provide,
for any F ∈ D(BunG(P1)) and any G ∈ D(BunG(P1))cpt, a natural isomor-
phism

HomD(BunG(P1))(F,TBunG (G)) � HomD(BunG(P1))(G,F)∗.

Thanks to Sect. 3.3.4 again, it suffices to do so for G of the form ( jU )!(FU ),
where jU : U ↪→ BunG(P1) is a miraculous quasi-compact open substack
and FU ∈ D(U )cpt. In view of the second part of [28, Theorem 2.1.5], we
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know that SerreD(U ) � TU . Using this, we compute:

HomD(BunG(P1))

(
F, ( jU )∗(FU )

)
� HomD(U )

(
( jU )!(F),FU

)

� HomD(U )

(
( jU )!(F),SerreD(U ) ◦ (TU )−1(FU )

)

� HomD(U )

(
(TU )−1(FU ), ( jU )!(F)

)∗

� HomD(BunG(P1))

(
( jU )!(TU )−1(FU ),F

)∗
.

From this, we obtain that

SerreD(BunG(P1))

(
( jU )! ◦ (TU )−1(FU )

) � ( jU )∗(FU ),

or, equivalently,

SerreD(BunG(P1)) ◦ ( jU )! � ( jU )∗ ◦ TU .

It remains to invoke (3.10). ��
Corollary 3.3.8 Let j : BG ↪→ BunG(P1) be the open embedding induced
by the trivial G-bundle. The Serre functor of D(BunG(P1)) sends j!(ωBG) to
j∗(ωBG)[− dim(G)].
Proof It suffices to notice that TBG = idD(BG)[dim(G)], a fact that readily
follows from the definitions and from the equivalenceD(BG) � H∗(G)-mod
of Sect. 2.4.4. ��

4 The Serre functor of the spectral spherical category

In this section,we compute the Serre functor of IndCoh
Ň
(�ǧ/Ǧ) and complete

the proof of the fourth step of Sect. 3.2. SinceLanglands duality does not appear
here, we will formulate our results for G, keeping in mind that they have been
applied to Ǧ in Sect. 3.2.

Our main result is that the Serre functor of IndCohN(�g/G) equals the
temperization functor up to a cohomological shift. The proof hinges on a
preliminary result, which might be of independent interest: the computation
of the Serre functor of the DG category QCoh(N/G).

4.1 The nilpotent cone

Let N be the nilpotent cone associated to the group G. We show that the DG
category QCoh(N/G) is proper and compute its Serre functor explicitly.
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Lemma 4.1.1 The DG category QCoh(N/G) is proper.

Proof For λ ∈ 
dom a dominant weight, let Vλ be the irreducible G-
representation of highest weight λ. Denote by π : N/G → pt/G the obvious
projection. Since π is affine, π∗ is conservative and consequently the essen-
tial image of π∗ : Rep(G) � QCoh(pt/G) → QCoh(N/G) generates
QCoh(N/G) under colimits. More precisely, the perfect objects

Aλ := π∗Vλ ∈ QCoh(N/G), λ ∈ 
dom,

form a collection of compact generators of QCoh(N/G).
Thus, it suffices to show that HomQCoh(N/G)(Aλ, Aμ) is finite dimen-

sional12 for all λ, μ ∈ 
dom. By adjunction and the projection formula, we
have:

HomQCoh(N/G)(Aλ, Aμ) � HomRep(G)(Vλ, R ⊗ Vμ)

� HomRep(G)(Vλ ⊗ V ∗
μ, R),

where R := H0(N,ON), viewed as a G-representation in the natural way.
Since Vλ ⊗ V ∗

μ is a direct sum of finitely many irreducible G-representations,
it suffices to show that HomRep(G)(Vν, R) is finite dimensional for any ν ∈

dom.

By a theoremofB.Kostant (the original source is [31], see also [15, Theorem
6.7.4]), there is an isomorphism R � H0(G/T,OG/T ) of G-representations.
This implies that

R � �(G,OG)T �
⊕

ν∈
dom

(V−w0(ν))
T ⊗ Vν, (4.1)

where w0 is the longest element of the Weyl group, so that V−w0(ν) � V ∗
ν . It

follows that HomRep(G)(Vν, R) � (V−w0(ν))
T , which is indeed finite dimen-

sional. ��
Proposition 4.1.2 The Serre functor on QCoh(N/G) is the functor of tensor-
ing with the object

S0 := ker(ON/G → j∗ON×/G)[2 dim n],
where N× := N − 0 is the punctured nilpotent cone and j : N×/G ↪→ N/G
the obvious open embedding.

Proof Let us retain the notation of the previous lemma.

12 the locution “being finite dimensional" applied to a complex of vector spaces is a shortcut
for “having finite dimensional total cohomology".
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Step 1

By the defining property of the Serre functor, see Sect. 2.2.5, we just need to
exhibit natural isomorphisms

HomQCoh(N/G)

(
Aν, Aλ ⊗ S0

) � HomQCoh(N/G)

(
Aλ, Aν

)∗

for all λ, ν ∈ 
dom. Since Aλ is dualizable with dual A−w0(λ), it is easy to
see that we may assume λ = 0. Reasoning as in the previous lemma (using
adjunction and the projection formula), it suffices to establish a functorial
isomorphism

HomRep(G)

(
Vν, ker(R → R×)

)[2 dim n] � HomRep(G)

(
V−w0(ν), R

)∗
,

(4.2)
where we have set R := H0(N,O) and R× := H∗(N×,O), both regarded as
G-representations in the natural way.

Step 2

Consider now the Springer resolution μ : T ∗(G/B) → N. In view of [30,
Theorem A], the canonical arrow

ON −→ μ∗(OT ∗(G/B))

is an isomorphism.13 In other words, the nilpotent cone has rational singulari-
ties. Pulling back μ along j , we obtain a map μ× : T ∗(G/B)× → N×, where
T ∗(G/B)× is the complement of the zero section. Thus, by base-change, the
canonical map

ON× −→ (μ×)∗(OT ∗(G/B)×)

is an isomorphism, too. Upon taking global sections, we get:

R � H0(T ∗(G/B),O), R× � H∗(T ∗(G/B)×,O).

Step 3

SinceN is normal of dimension dim(N) = 2 dim(n) ≥ 2, we have H0(R×) �
R and consequently ker(R → R×) � τ≥1(R×)[−1], where τ≥m is the usual

13 Under our conventions, μ∗ denotes the derived pushforward: thus, the isomorphism ON �
μ∗(OT ∗(G/B)) means that R0μ∗(OT ∗(G/B)) � ON and that Riμ∗(OT ∗(G/B)) � 0 for all
i ≥ 1.
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truncation functor associated to the standard t-structure on complexes of vector
spaces. Then (4.2) simplifies as

HomRep(G)

(
Vν, τ

≥1(R×)
)[2 dim n−1] � HomRep(G)

(
V−w0(ν), R

)∗
. (4.3)

To prove our result, it suffices to show that R× has higher cohomology only
in degree (2 dim n − 1), and that such higher cohomology decomposes (as a
G-representation) as

H2 dim n−1(R×) �
⊕

ν∈
dom

HomRep(G)

(
V−w0(ν), R

)∗ ⊗ Vν. (4.4)

Step 4

Now observe that T ∗(G/B)× � G ×B (n − 0). In view of the B-equivariant
isomorphism

H∗(n − 0,O) � Sym n∗ ⊕ (Sym n ⊗ 
dim nn)[1 − dim n],

we obtain that

R � H0(R×) � (
�(G,O) ⊗ H0(n,O)

)B

�
⊕

λ

HomRep(B)(Vλ,Sym n∗) ⊗ Vλ, (4.5)

H>0(R×) � (
�(G,O) ⊗ H>0(n − 0,O)

)B

�
⊕

λ

HomRep(B)(Vλ,Sym n ⊗ 
dim nn) ⊗ Vλ[1 − dim n].(4.6)

In the above formulas, we have used H>0(−) as a shortcut for τ≥1(H∗(−)).

Step 5

Comparing (4.5) with the formula (4.1) obtained from Kostant’s theorem, we
deduce that

HomRep(G)(Vλ, R) � HomRep(B)(Vλ,Sym n∗) � (V−w0(λ))
T . (4.7)

Thus, (4.4) simplifies as

H2 dim n−1(R×) �
⊕

ν∈
dom

(V−w0(ν))
T ⊗ Vν. (4.8)
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To conclude our proof, we need to prove the above formula, as well as the fact
that the only higher cohomology of R× occurs in degree 2 dim(n) − 1. By
looking at (4.6), it is clear that both claims boil down to proving that

HomRep(B)(Vν,Sym n ⊗ 
dim nn) � (V−w0(ν))
T [− dim(n)].

We prove this in the next two steps.

Step 6

By [28, Section 1.3.3], the Serre functor for Rep(B) equals the functor − ⊗

dim nn[dim n]. Recall also that the defining property of SerreC requires the
second argument to be compact, see Remark 2.2.6. In our case, we proceed as
follows:

HomRep(B)(Vν,Sym n ⊗ 
dim nn)

�
⊕
m≥0

HomRep(B)(Vν,Sym
m n ⊗ 
dim nn)

�
⊕
m≥0

HomRep(B)(Sym
m n, Vν)

∗[− dim n]

�
⊕
m≥0

HomRep(B)(V−w0(ν),Sym
m n∗)∗[− dim n].

Step 7

Thanks to (4.7), we know that HomRep(B)(V−w0(ν),Sym n∗) is finite dimen-
sional: in particular, we can replace the direct sum above with a direct product.
Hence,

HomRep(B)(Vν,Sym n ⊗ 
dim nn)

�
∏
m≥0

HomRepB(V−w0(ν),Sym
m n∗)∗[− dim n]

�
( ⊕
m≥0

HomRepB(V−w0(ν),Sym
m n∗)

)∗[− dim n]

� HomRepB(V−w0(ν),Sym n∗)∗[− dim n]
� (V−w0(ν))

T [− dim n],
where the last step used (4.7) again. This concludes the proof. ��

123



Tempered D-modules and Borel–Moore homology vanishing

4.2 Shearing

Since the stack N/G is endowed with a natural Gm-action, we can con-
sider the sheared version QCoh(N/G)⇒ of QCoh(N/G). It turns out that
QCoh(N/G)⇒ is still proper, and the goal of this section is to compute its
Serre functor.14

Compared to the result of Proposition 4.1.2, this computation is not sur-
prising, but it provides the necessary link between that proposition and
Theorem 4.3.11 below.

4.2.1. To be explicit, the Gm-action on N/G we are using is induced by the
Gm-action on (T ∗(G/B))/G � n/B by homotheties on n. Put another way:
in the expression for R appearing in (4.5), elements of Symm n∗ are given
weight m.

Corollary 4.2.2 TheDG categoryQCoh(N/G)⇒ is compactly generated and
proper.

Proof Lemma2.6.3 ensures that (π∗)⇒ : QCoh(N/G)⇒→QCoh(pt/G)⇒ �
QCoh(pt/G) is conservative. Hence, its left adjoint (π∗)⇒ generates the target
under colimits, so that QCoh(N/G)⇒ is compactly generated by the objects
(π∗)⇒(Vλ) for λ ∈ 
dom. Properness then follows as in the previous section.

��
Corollary 4.2.3 The Serre functor on the DG category QCoh(N/G)⇒ is the
functor

ker
(
id → ( j∗)⇒( j∗)⇒

)
.

Proof Denote by R⇒ and R×,⇒ the sheared versions of R and R×. Arguing
as before, it suffices to construct, for each ν ∈ 
dom, an isomorphism

HomRep(G)

(
Vν, ker(R

⇒ → R×,⇒)
)

� HomRep(G)

(
V−w0(ν), R

⇒)∗
.

(4.9)
To determine both sides explicitly, we need to decompose both R and R× as
(G × Gm)-representation. In view of (4.5), the (G × Gm)-decomposition of
R is the tautological one coming from the grading of Sym n∗:

R �
⊕
λ,m

HomRep(B)(Vλ,Sym
m n∗) ⊗ Vλ.

14 For similar computations with the shearing operation, see [12] and [13].
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It follows that

R⇒ �
⊕
λ,m

HomRep(B)(Vλ,Sym
m n∗) ⊗ Vλ[−2m],

so that the RHS of (4.9) can be rewritten as

HomRep(G)

(
V−w0(ν), R

⇒)∗

�
(⊕
m∈N

HomRep(B)(V−w0ν,Sym
m n∗)[−2m]

)∗
. (4.10)

Similarly, in view of (4.6), the (G × Gm)-decomposition of ker(R → R×) is

ker(R → R×) �
⊕
λ,m

(
HomRep(B)(Vλ,Sym

m n ⊗ 
dim nn)
)

⊗ Vλ[− dim n],

with the expression in parentheses of weight (−m − dim n). Hence,

ker(R⇒ → R×,⇒) � ker(R → R×)⇒

�
⊕
λ,m

HomRep(B)(Vλ,Sym
m n ⊗ 
dim nn) ⊗ Vλ[2m + dim n].

From this, we see that the LHS of (4.9) equals

HomRep(G)

(
Vν, ker(R

⇒ → R×,⇒)
)

�
⊕
m

HomRep(B)(Vν,Sym
m n ⊗ 
dim nn)[2m + dim n].

Comparing this equation with (4.10), it remains to exhibit, for each ν and m,
an isomorphism

HomRep(B)(Vν,Sym
m n ⊗ 
dim nn)[dim n]

� HomRep(B)(V−w0(ν),Sym
m n∗)∗.

Such isomorphism is the one induced by the Serre functor of Rep(B). ��

4.3 The main Serre computation

In this section, we finally show that the Serre functor on IndCohN(�g/G)

equals the temperization functor up to a cohomological shift: this is the content
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ofTheorem4.3.11.Akey ingredientwill be the followingpair ofKoszul duality
equivalences.

Lemma 4.3.1 There are natural “Koszul duality" equivalences

IndCohN(�g/G) � IndCoh((g∗/G)∧N/G)⇒. (4.11)

QCoh(�g/G) � IndCoh((g∗/G)∧pt/G)⇒, (4.12)

where N is regarded as a subscheme of g∗.

Remark 4.3.2 As the proof below shows, on the RHS of (4.11) and (4.12) we
could replace IndCoh by QCoh. However, the functoriality of ind-coherent
sheaves is more convenient when dealing with formal completions: the usage
of Lemma 4.3.1 in the proof of Theorem 4.3.11 will make this clear (see also
Sect. 2.3).

Proof We will only prove the first assertion; for the second one, follow the
exact same steps using the inclusion pt ↪→ g∗ of the origin instead of the
inclusion of the nilpotent cone.

Recall thatwehavebeen abusingnotation: theDGcategory IndCohN(�g/G)

should be more properly denoted by IndCohN/G(�g/G), since possible sin-
gular supports of ind-coherent sheaves live inside g∗/G, and in the case at
hands we are looking at the subset N/G ⊂ g∗/G. For clarity, in this proof,
we will use the more precise notation. Since singular support can be computed
smooth-locally ([1, Section 8]), we have:

IndCohN/G(�g/G) � IndCoh(�g/G) ×
IndCoh(�g)

IndCohN(�g),

where the two maps in the fiber product are the natural pullback and the
inclusion �N↪→g∗ , respectively. Now, we use the Koszul duality equivalences
of [1, Proposition 12.4.2]:

IndCoh(�g) � Sym(g[−2])-mod � QCoh(g∗)⇒;
IndCoh(�g/G) � (Sym(g[−2])-mod)G � QCoh(g∗/G)⇒.

The first of these two equivalences transforms singular support on the LHS into
set-theoretic support on the RHS. This is proven in [1, Section 9.1, especially
9.1.6 and Corollary 9.1.7]; see also [12, Section 2.2] for a slightly different
point of view. In particular,

IndCohN(�g) � QCoh((g∗)∧N)⇒,
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where(g∗)∧N denotes the formal completion of the closed embeddingN ↪→ g∗.
Since g∗ and g∗/G are smooth, we can identify quasi-cohererent sheaves with
ind-coherent sheaves on them, so that

IndCoh(�g) � IndCoh(g∗)⇒;
IndCoh(�g/G) � IndCoh(g∗/G)⇒;
IndCohN(�g) � IndCoh((g∗)∧N)⇒.

All in all, Koszul duality yields

IndCohN/G(�g/G) � IndCoh(g∗/G)⇒ ×
IndCoh(g∗)⇒

IndCoh((g∗)∧N)⇒,

which is in turn equivalent to

(
IndCoh(g∗/G) ×

IndCoh(g∗)
IndCoh((g∗)∧N)

)⇒
.

Let q : g∗ → g∗/G be the quotient and j : g∗ −N ↪→ g∗ the open embedding
complementary to the nilpotent cone. To conclude the proof, it remains to show
that the Gm-equivariant functor

IndCoh((g∗/G)∧N/G) −→ IndCoh(g∗/G) ×
IndCoh(g∗)

IndCoh((g∗)∧N) (4.13)

induced by the inclusion IndCoh((g∗/G)∧N/G) ↪→ IndCoh(g∗/G) is an equiv-
alence. This is clear: both sides of (4.13) identify with the full subcategory of
IndCoh(g∗/G) spanned by those objects F such that j !q !F � 0. ��
4.3.3. In the above discussion, N was naturally viewed as a subscheme of g∗.
However, to use the Serre computations of the previous sections, we prefer
to realize N as a closed subscheme of g. Thus, we fix once and for all a G-
equivariant identification g � g∗. Incorporating this into the above Koszul
dualities, we obtain equivalences

IndCohN(�g/G) � IndCoh((g/G)∧N/G)⇒,

QCoh(�g/G) � IndCoh((g/G)∧pt/G)⇒, (4.14)

where now the shearing is such that (Sym g∗)⇒ � Sym(g∗[−2]). To guide
the reader through the shearings that will follow, it suffices to remember that
dual Lie algebras (g∗ and n∗) have weight 1. In particular, this is in agreement
with the shearing of Sect. 4.2.
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4.3.4. Let ι0 : (g/G)∧pt/G → (g/G)∧N/G be the map induced by the inclusion
of the origin 0 ∈ N. This map is an inf-closed embedding (see Section 2.3.3),
and thus it yields the adjunction

IndCoh((g/G)∧pt/G) IndCoh((g/G)∧N/G).
(ι0)

IndCoh∗

(ι0)
!

These two adjoint functors are both Gm-equivariant with respect to the two
natural Gm-actions on both sides, hence they can be sheared.

4.3.5. We have seen above that Koszul duality interchanges singular support
and the usual set-theoretic support. Consequently, under the above equiva-
lences, the comonad

�0→N ◦ �0→N : IndCohN(�g/G) � QCoh(�g/G) ↪→ IndCohN(�g/G)

goes over to the comonad

(
(ι0)

IndCoh∗
)⇒ ◦ (

ι!0
)⇒ : IndCoh((g/G)∧N/G)⇒ � IndCoh((g/G)∧pt/G)⇒

↪→ IndCoh((g/G)∧N/G)⇒. (4.15)

4.3.6. Now recall that IndCohN(�g/G) is proper: in Sect. 3 we showed that
IndCohN(�g/G) is equivalent toD(BunǦ(P1)), and in Sect. 3.2.3 we proved
that the latter DG category is proper. We will nevertheless give a more direct
proof: this will help us progress with the computation of the Serre functor
of IndCohN(�g/G). Using Koszul duality to identify IndCohN(�g/G) �
IndCoh((g/G)∧N/G)⇒, our planwill be to prove the properness of the latter DG
category. The starting point is Lemma 4.3.8, in which we exhibit a convenient
collection of compact generators.

Remark 4.3.7 In the sequel, we will denote by

QCoh(N/G) IndCoh(N/G)
�N/G

�N/G

the natural adjunction. Observe that both functors are Gm-equivariant and
therefore they can be sheared.

Lemma 4.3.8 Let π : N/G → BG and f : N/G → (g/G)∧N/G be the
obvious maps. As above, their associated pullback and pushforward functors
can be sheared. We claim that the objects

Fλ := ( f IndCoh∗ )⇒(�N/G)⇒(π∗)⇒(Vλ), for all λ ∈ 
dom, (4.16)
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form a collection of compact generators of IndCoh((g/G)∧N/G)⇒.

Proof As mentioned earlier, the objects (π∗)⇒(Vλ) compactly generate
QCoh(N/G)⇒. Hence, it suffices to prove that the functor

( f IndCoh∗ )⇒(�N/G)⇒ : QCoh(N/G)⇒ −→ IndCoh((g/G)∧N/G)⇒

has a continuous and conservative right adjoint. In view of Lemma 2.6.3,
we can remove the shifts and instead prove that f IndCoh∗ ◦ �N/G admits a
continuous and conservative right adjoint. Since f is a nil-isomorphism, the
continuous functor f ! is conservative and right adjoint to f IndCoh∗ , see [26,
Volume II, Chapter 3.3, especially Proposition 3.1.2]. Hence,

(
f IndCoh∗ ◦ �N/G

)R � �N/G ◦ f !,

which is evidently continuous. Let us show conservativity. Observe first that
the functor

ϒ(g/G)∧N/G
: QCoh((g/G)∧N/G) −→ IndCoh((g/G)∧N/G)

is an equivalence: this follows from Sect. 2.4.3 and descent (to take care of the
stackyness). Thus, it suffices to prove that �N/G ◦ f ! ◦ ϒ(g/G)∧N/G

is conser-
vative. In general, ϒ intertwines ∗-pullbacks of quasi-coherent sheaves with
!-pullbacks of ind-coherent sheaves; in our case, this implies that

�N/G ◦ f ! ◦ ϒ(g/G)∧N/G
� �N/G ◦ ϒN/G ◦ f ∗.

The quasi-smoothness ofN/G guarantees that�N/G◦ϒN/G is an equivalence:
it is the functor of tensoring with a shifted line bundle, see [22, Section 7] or
Lemma 2.3.6. It remains then to prove that

f ∗ : QCoh((g/G)∧N/G) −→ QCoh(N/G)

is conservative. This can be seen in various ways. For instance, using the
equivalence ϒ(g/G)∧N/G

again, the assertion is equivalent to the conservativity
of

f ∗ ◦ ϒ(g/G)∧N/G
� ϒN/G ◦ f !.

The latter is clear: f ! is conservative as mentioned earlier, whileϒN/G is even
fully faithful. ��
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Remark 4.3.9 For later usage, let us compare the object Fλ := ( f IndCoh∗ )⇒
(�N/G)⇒(π∗)⇒(Vλ) of (4.16) with the following similar object:

F′
λ := ( f IndCoh∗ )⇒(π !)⇒(ϒpt/G)⇒(Vλ).

We claim that these two objects differ by a cohomological shift: precisely,
F′

λ � Fλ[dim(N/G)]. To see this, observe that

π ! ◦ ϒpt/G � ϒN/G ◦ π∗ � �N/G ◦ �N/G ◦ ϒN/G ◦ π∗

� �N/G
(
�N/G(ωN/G) ⊗ π∗) � �N/G ◦ π∗[dim(N/G)],

the last step being an application of Lemma 2.3.6.

Lemma 4.3.10 The DG category IndCoh((g/G)∧N/G)⇒ is proper.

Proof Since the Fλ above form a collection of compact generators, it suffices
to prove that

HomIndCoh((g/G)∧N/G)⇒(Fλ,Fμ)

is finite dimensional for any pair λ, μ ∈ 
dom. Thanks to the fact that f is a
nil-isomorphism, we obtain by adjunction that

HomIndCoh((g/G)∧N/G)⇒(Fλ,Fμ)

� HomIndCoh(N/G)⇒
(
(�N/G ◦ π∗)⇒(Vλ),U(T(N/G)/(g/G))

⇒

◦(�N/G ◦ π∗)⇒(Vμ)
)
,

where U(T(N/G)/(g/G)) is the universal envelope of the Lie algebroid
T(N/G)/(g/G) → TN/G . See [26, Volume II, Chapter 8] for these notions: in
particular, U(T(N/G)/(g/G)) is a monad acting on IndCoh(N/G), and relative
tangent complexes are regarded as ind-coherent sheaves.15

To proceed, let us compute the relative tangent complex T(N/G)/(g/G) and
then its universal envelope. We will use the isomorphism

N/G � g/G ×cG 0,

where cG � Spec(Sym(g∗)G) is isomorphic, after our G-equivariant identifi-
cation g � g∗, to the Chevalley space of Sect. 2.1.3. Since the fiber product

15 In the present case, and in general when the relative cotangent complex LY/Z of a map
Y → Z is perfect, TY/Z is obtained by applying ϒY to the quasi-coherent dual of LY/Z .
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on the RHS is derived (as well as classical, in view of the flatness of g → cG),
we can compute the relative tangent complex algorithmically:

T(N/G)/(g∗/G) � (pN/G)!(T0/cG ) � ωN/G ⊗ T0/cG � ωN/G ⊗ TcG ,0[−1].

Consequently, the functor underlying the monad U(T(N/G)/(g∗/G)) is just the
functor of tensoring with the graded vector space Sym(TcG ,0[−1]). Using the
fully faithfulness of �N/G and turning on the shearing, we conclude that

HomIndCoh((g∗/G)∧N/G)⇒(Fλ,Fμ)

� HomQCoh(N/G)⇒
(
(π∗)⇒(Vλ), (π

∗)⇒(Vμ)
) ⊗ Sym(TcG ,0[−1])⇒.

(4.17)

Thanks to the already established properness of QCoh(N/G)⇒, it remains to
check that Sym(TcG ,0[−1])⇒ is finite dimensional. For this, we need to recall
the weight decomposition of TcG ,0 (or, which is the same, of cG , since the
latter is a vector space). We have

TcG ,0 � zG ⊕
rG⊕
i=1

ldi ,

where zG = Lie(ZG) is in weight −1, each ldi is a line in weight −di (the
negative of the i th fundamental invariant of the group), and rG is the semisimple
rank. It follows that

(Sym(TcG ,0[−1]))⇒ � Sym(zG[1]) ⊗
rG⊗
i=1

Sym(ldi [2di − 1]). (4.18)

This is an exterior algebra with finitely many generators, hence in particular
finite dimensional. ��
Theorem 4.3.11 The Serre functor on IndCohN(�g/G) equals the functor
�0→N ◦ �0→N[− dim(G)].
Proof Consider again the natural map ι0 : (g/G)∧pt/G → (g/G)∧N/G . By
Koszul duality, the statement of the theorem is equivalent to the fact that
the Serre functor of the DG category IndCoh((g/G)∧N/G)⇒ is the functor(
(ι0)

IndCoh∗
)⇒ ◦(

ι!0
)⇒[− dim(G)]. This is what we will prove below, in several

steps.
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Step 1

For any pair (λ, μ) of dominant weights, we need to provide an isomorphism

HomIndCoh((g/G)∧N/G)⇒
(
Fμ, (ιIndCoh0,∗ )⇒ ◦ (ι!0)⇒(Fλ)[− dim(G)])

?� HomIndCoh((g/G)∧N/G)⇒(Fλ,Fμ)∗.

Using Remark 4.3.9, this is equivalent to providing an isomorphism

HomIndCoh((g/G)∧N/G)⇒
(
F′

μ, (ιIndCoh0,∗ )⇒ ◦ (ι!0)⇒(F′
λ)[− dim(G)])

?� HomIndCoh((g/G)∧N/G)⇒(F′
λ,F

′
μ)∗.

The reason for replacing Fν with F′
ν is that the primed expressions are more

amenable to the base-change manipulations of Step 2 below.
We have already computed the RHS in the lemma above. Taking that cal-

culation into account and setting

W := Sym(TcG ,0[−1])⇒,

it remains to prove that

HomIndCoh((g/G)∧N/G)⇒
(
F′

μ, (ιIndCoh0,∗ )⇒ ◦ (ι!0)⇒(F′
λ)[− dim(G)])

?� HomQCoh(N/G)⇒
(
(π∗)⇒Vλ, (π

∗)⇒Vμ

)∗ ⊗ W ∗. (4.19)

Step 2

Let us manipulate the LHS of (4.19). Base-change gives

ιIndCoh0,∗ ◦ ι!0(F′
λ) � βIndCoh∗ α!(Vλ),

where

BG
α←− (N/G)∧BG

β−→ (g/G)∧N/G

are the natural maps. Then

HomIndCoh((g/G)∧N/G)⇒
(
F′

μ, (ιIndCoh0,∗ ◦ ι!0)⇒(F′
λ)

)

� HomIndCoh(N/G)⇒
(
(π !)⇒(Vμ), ( f !βIndCoh∗ α!)⇒(Vλ)

)
,
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where abusing notation we are considering Vλ and Vμ as objects of
IndCoh(BG) bymeans on the equivlaenceϒBG . Consider now the fiber square

(N/G)∧BG (g/G)∧N/G .

(
N/G ×g/G N/G

)∧
BG

N/G(N/G)∧BG

β

q2 ιN

q1 f

A further base-change yields f !βIndCoh∗ � (ιN)IndCoh∗ (q2)IndCoh∗ (q1)!.

Step 3

The convolution right action of �(cG) := pt ×cG pt on N/G = g/G ×cG pt
induces the isomorphism

(N/G)∧BG × �(cG)
(n,x)�→(n·x,n)−−−−−−−−→ (

N/G ×g/G N/G
)∧
BG .

From this point of view, the functor (q2)IndCoh∗ (q1)! is the functor of acting
with ω�cG on objects of IndCoh((N/G)∧BG). Next, notice that the action and
the projection (N/G)∧BG × �(cG) (N/G)∧BG are coequalized by α :
(N/G)∧BG → BG. In other words, the group �(cG) acts trivially on objects
in the essential image of α!. Hence,

f !βIndCoh∗ α!(Vλ) � (ιN)IndCoh∗ α!(Vλ) ⊗ (p�cG )IndCoh∗ (ω�cG ).

Step 4

The above formula needs to be applied in its sheared version: this amounts to
apply ⇒ to the functors and to the graded vector space (p�cG )IndCoh∗ (ω�cG ).
By Lemma 2.3.7, we have:

(
(p�cG )IndCoh∗ (ω�cG )

)⇒ � (Sym(TcG ,0[−1]))⇒,

which is vector space W defined earlier. We obtain that

HomIndCoh((g/G)∧N/G)⇒
(
Fμ, (ιIndCoh0,∗ ◦ ι!0)⇒(Fλ)

)

� HomIndCoh(N/G)⇒
(
(π !)⇒(Vμ), ((ιN)IndCoh∗ α!)⇒(Vλ)

) ⊗ W.
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Step 5

It is clear that

(ιN)IndCoh∗ α!(Vλ) � ker
(
π !(Vλ) −→ j IndCoh∗ j !π !(Vλ)

)
,

where j : N×/G ↪→ N/G is the inclusion of the punctured nilpotent cone.
Let R := H0(N,ON) and R× := H∗(N×,ON×), both viewed as (G × Gm)-
representations as discussed in the previous sections. We have:

HomIndCoh((g/G)∧N/G )⇒
(
Fμ, (ιIndCoh0,∗ ◦ ι!0)⇒(Fλ)

)

� ker
(
HomQCoh(N/G)⇒((π∗)⇒Vμ, (π∗)⇒Vλ)

→ HomQCoh(N/G)⇒(( j∗π∗)⇒Vμ, ( j∗π∗)⇒Vλ)
)

⊗ W

� ker
(
HomRep(G)(Vμ, R⇒ ⊗ Vλ) → HomRep(G)(Vμ, (R×)⇒ ⊗ Vλ)

)
⊗ W

� HomRep(G)(Vμ, ker(R → R×)⇒ ⊗ Vλ)

⊗W

� HomQCoh(N/G)⇒
(
(π∗)⇒Vμ,Serre((π∗)⇒Vλ)

)
⊗ W,

where the last step used Corollary 4.2.3. Hence, the LHS of (4.19) equals

HomQCoh(N/G)⇒
(
(π∗)⇒Vμ,Serre((π∗)⇒Vλ)

)
⊗ W [− dimG].

Step 6

On the other hand, the RHS of (4.19) equals

HomQCoh(N/G)⇒
(
(π∗)⇒Vλ, (π

∗)⇒Vμ

)∗ ⊗ W ∗

� HomQCoh(N/G)⇒
(
(π∗)⇒Vμ,Serre((π∗)⇒Vλ)

) ⊗ W ∗.

Hence, it remains to show that W ∗ � W [− dimG]. For this, recall that

W := (Sym(TcG ,0[−1]))⇒ � Sym(zG[1]) ⊗
rG⊗
i=1

Sym(ldi [2di − 1]),

with each ldi a line. Now, the classical formula

dimG = dim(ZG) +
∑
i

(2di − 1)
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immediately yields the claim. ��
Corollary 4.3.12 The Serre functor on IndCohN(�g/G) sends the monoidal
unit �N→g(i IndCoh∗ (k0)) to �0→N(i∗(k0))[− dim(G)].

5 Proof of Theorem A

In this section, we deduce TheoremA from the combination of TheoremB and
TheoremC. Inmore detail: using the expression of1temp

SphG
given by TheoremC,

we obtain an explicit formula, see (5.6), for the Hecke action of 1temp
SphG

on

D(BunG). In particular, we obtain an explicit formula for the object 1temp
SphG

	

ωBunG . We then show that the simplest case of Theorem B implies that 1temp
SphG

	

ωBunG � 0.

5.1 Renormalized functors

Before describing the action of the tempered unit on objects of D(BunG),
we need some information on 1

temp
SphG

itself and on the DG category
D(G\G(R)/G).

5.1.1. We claim that the DG category D(G\G(R)/G) is naturally monoidal
under convolution. Naively, the convolution product is defined as the pull-push
along the natural correspondence

G\G(R)/G × G\G(R)/G
p←− G\G(R) ×G G(R)/G

m−→ G\G(R)/G,

(5.1)
where p is the obvious projection and m is the arrow induced by the multipli-
cation of G(R). However, since m is not schematic (but only ind-schematic),
specifying the pushforward to be used requires some care.

5.1.2. To address this complication, we first observe that D(G\G(R)/G) is
tautologically comonoidal: this structure is induced by the very same corre-
spondence as above, just read from right to left. In this case, the above issue
about the pushforward does not arise: the functor p∗,dR is well-defined since
p is schematic (it is even smooth).
To turn this comonoidal structure into a monoidal one, we need:

Lemma 5.1.3 The DG categoryD(G\G(R)/G) is self-dual.

Proof Letting G(R)1 := ker(G(R) → G) be the kernel of the evaluation
map at t = ∞, we have G(R) � G � G(R)1. It follows that G\G(R)/G �
G(R)1/G, where the quotient on the RHS is by the adjoint action. Consider
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now the indscheme structure on G(R)1 � colimd≥0 Yd , obtained by embed-
ding G into some GLn and then by setting Yd := G(R)1 ∩ GLn(R)≤d . Here,
GLn(R)≤d ⊂ GLn(R) is the scheme parametrizing invertible matrices whose
entries are polynomials in t−1 of degrees ≤ d. It is easy to see that the adjoint
action of G on G(R)1 preserves each Yd , so that

G\G(R)/G � colim
d≥0

Yd/G,

along the structure closed embeddings id→d ′ : Yd/G ↪→ Yd ′/G, for d ≤ d ′.
It follows that

D(G\G(R)/G) � colim
d≥0,i∗

D(Yd/G). (5.2)

By [17, Theorem 0.2.2], the DG categories D(Yd/G) are all compactly gen-
erated. Since the transition functors obviously preserve compactness, formal
nonsense shows that their colimit D(G\G(R)/G) is also compactly gener-
ated, and thus dualizable. Moreover, each D(Yd/G) is self-dual: this is [17,
Corollary 8.4.3]. Under these self-dualities, the dual of D(G\G(R)/G) is
expressed as

D(G\G(R)/G)∨ � lim
d≥0,i !

D(Yd/G). (5.3)

The latter limit can be turned into a colimit by replacing the transition functors
with their left adjoints, see [35, Chapter 5] or [26, Vol. 1, Chapter 1, Corollary
5.3.4] This shows that (5.2) and (5.3) match. ��
Remark 5.1.4 In a similar way, one proves that SphG is self-dual: it suf-
fices to apply the same method to the colimit presentation D(GrG)G(O) �
colimn≥0D(Zn/Hn) that appeared in the proof of Lemma 3.1.6.

5.1.5. The above self-duality allows us to dualize the comonoidal structure to
obtain themonoidal structure wewere looking for. Concretely, the convolution
product is defined as the pull-push along (5.1), but the pushforward to be used
is m∗,ren, the renormalized de Rham pushforward along m (see [17, Section
9.3]), which is by definition the dual of m!.
5.1.6. In general, the renormalized de Rham pushforward along a map h :
X = colimi∈I Xi → Y of indschemes (of ind-finite type) admits an explicit
description. Indeed, unraveling the self-dualities as in the proof above, one
easily checks that h∗,ren : D(X) → D(Y) sends {Fi }i∈I ∈ limi∈Iop D(Xi ) �
D(X) to the object

colim
i∈I

(hi )∗(Fi ) ∈ D(Y),

where hi : Xi ↪→ X → Y is the natural (schematic) map. This functor is
different from h! in general; indeed, the latter is only partially defined and,
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when defined, it is given by the formula

h!
(
{Fi }i∈I

)
� colim

i∈I
(hi )!(Fi ).

However, the two functors agree when all the hi are proper, that is, when the
map h : X → Y is ind-proper.

Remark 5.1.7 As a particularly simple example, consider the map pX : X →
pt, where X � colimi∈I Xi is as above. Then

(pX)∗,ren

(
{Fi }i∈I

)
� colim

i∈I
(pXi )∗,dR(Fi ).

Thus, (pX)∗,ren yields a quick definition of the Borel–Moore homology of X
via the formula

HBM(X) � (pX)∗,ren(ωX). (5.4)

5.1.8. Consider now the map

f : G\G(R)/G −→ G(O)\G(K)/G(O)

and its pullback functor f ! : SphG → D(G\G(R)/G). According to Theo-
rem C,

1
temp
SphG

� ( f !)R(ωG\G(R)/G).

Using the self-duality ofD(G\G(R)/G) and that of SphG (see Remark 5.1.4),
we can express 1temp

SphG
slightly differently as

1
temp
SphG

� f∗,ren(ωG\G(R)/G). (5.5)

Indeed, we have:

Lemma 5.1.9 With the above notation, f∗,ren : D(G\G(R)/G) → SphG is
right adjoint to f !.

Proof We know that f ! � j ! ◦ oblvG→G(O). In [8, Sections 2-3], we proved
that oblvG→G(O) is dual to its right adjoint AvG→G(O)∗ , while j ! is easily seen
to be dual to j∗,dR. ��
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5.2 The Hecke action of the tempered unit

Let us fix x ∈ X throughout and consider the Hecke action of SphG on
D(BunG) at x . We remind the reader that here X is a smooth projective curve
of arbitrary genus and that BunG = BunG(X). In this section, we provide an
explicit formula for the Hecke action of 1temp

SphG
on D(BunG).

5.2.1. Let us first recall the Hecke action of SphG on D(BunG). Denote by
B̃unG → BunG the G(O)-torsor of G-bundles equipped with a trivialization
on the formal disc around x . We regard B̃unG as being acted by G(O) on
the left, so that BunG � G(O)\̃BunG . It is well-known that G(K) acts on
B̃unG by “regluing", extending the above G(O)-action (see, for instance, [6,
Section 2.3.4]). The Hecke action is, by definition, the pull-push along the
correspondence

G(O)\G(K)/G(O) × BunG ← G(O)\G(K) ×G(O) B̃unG
act−→ G(O)\̃BunG � BunG,

where the pushforward along act is the !-pushforward. As act is ind-proper,
act! agrees with the renormalized pushforward act∗,ren.

5.2.2 Now we claim that the DG category D(G\̃BunG) admits an action of
D(G\G(R)/G). This action is given by convolution, however we have the
same issue as in Sect. 5.1.1 together with a new issue: G\̃BunG is of infinite
type. To avoid these issue, and to place this action on the same footing as the
Hecke action above, let us proceed using the language of categorical group
actions.

5.2.3. Let C be a DG category equipped with a left action of G(K). By formal
nonsense, SphG coacts on G(O)C from the left; we denote by

coactG(O)→G(K) : G(O)C → SphG ⊗G(O)C

the coaction functor. Now, we exploit the self-duality of SphG to turn this
coaction into an action. Explicitly, given S ∈ SphG and c ∈ G(O)C, the formula
for this action is

S 	 c � 〈S, coactG(O)→G(K)(c)〉,
where 〈·, ·〉 is the evaluation functor

SphG ⊗(SphG ⊗G(O)C)

� (SphG ⊗SphG) ⊗ G(O)C
ev⊗id−−−→ G(O)C.
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5.2.4. Let us now repeat the same construction with the pair (G(R),G) in
place of (G(K),G(O)). We obtain that, given C acted upon by G(R), the
comonoidal DG categoryD(G\G(R)/G) coacts on GC and this coaction can
be turned into an action. We denote the coaction by coactG→G(R),C and the
action by ∗. In formulas, for F ∈ D(G\G(R)/G) and d ∈ GC, we have

F ∗ d � 〈F, coactG→G(R),C(d)〉,

where 〈·, ·〉 is the evaluation functor

D(G\G(R)/G) ⊗
(
D(G\G(R)/G) ⊗ GC

)

�
(
D(G\G(R)/G) ⊗ D(G\G(R)/G)

)
⊗ GC

ev⊗id−−−→ GC.

Lemma 5.2.5 Let C be a DG category equipped with a left G(K)-action, so
that (as seen above) SphG acts on G(O)C andD(G\G(R)/G) acts on GC. For
c ∈ G(O)C, we have

1
temp
SphG

	 c � AvG→G(O)∗
(
ωG\G(R)/G ∗ oblvG→G(O)(c)

)
. (5.6)

Proof We use (5.5) and the definition of the 	 action to write

1
temp
SphG

	 c � 〈
f∗,ren(ωG\G(R)/G), coactG(O)→G(K)(c)

〉
.

By duality,

1
temp
SphG

	 c � 〈
ωG\G(R)/G, ( f ! ⊗ id) ◦ coactG(O)→G(K)(c)

〉
,

where abusing notation, 〈·, ·〉 denotes the evaluation functor

D(G\G(R)/G) ⊗ D(G\G(R)/G) ⊗ G(O)C → G(O)C.

A straightforward diagram chase shows that

oblvG→G(O) ◦ ( f ! ⊗ id) ◦ coactG(O)→G(K) � coactG→G(R) ◦ oblvG→G(O).

Since oblvG→G(O) is fully faithful (as a consequence of the pro-unipotence of
ker(G(O) � G)), we obtain that

( f ! ⊗ id) ◦ coactG(O)→G(K) � AvG→G(O)∗ ◦ coactG→G(R) ◦ oblvG→G(O).
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It follows that

1
temp
SphG

	 c � AvG→G(O)∗
(
〈ωG\G(R)/G, coactG→G(R) ◦ oblvG→G(O)(c)〉

)
,

which is isomorphic to AvG→G(O)∗
(
ωG\G(R)/G ∗ oblvG→G(O)(c)

)
as desired.

��
5.2.6. Now let C = D!(̃BunG), where B̃unG is defined as in Sect. 5.2.1 and
D! as in [8,38]. The left G(K)-action on B̃unG yields a left G(K)-action on
C. Unraveling the definition, the resulting SphG-action on G(O)D!(̃BunG) �
D(BunG) is precisely the Hecke action at x . Hence, the above lemma yields a
formula for the Hecke action of the tempered unit.

5.3 Deducing Theorem A

5.3.1. After the discussion of Sect. 1.3.12, our strategy to prove Theorem A
amounts to showing that

1
temp
SphG

	 ωBunG � 0 ∈ D(BunG)

wheneverG has semisimple rank≥ 1. In viewof (5.6), this amounts to showing
that

AvG→G(O)∗
(
ωG\G(R)/G ∗ ωG\̃BunG

) � 0.

In fact, we will prove that

ωG\G(R)/G ∗ ωG\̃BunG ∈ D(G\̃BunG)

is already the zero object.

5.3.2. Consider the diagram

G\̃BunG α←−− G\G(R) ×G B̃unG
π−−→ G\̃BunG,

where α is the map induced by theG(R)-action on B̃unG , and π the projection
onto the second component. The functor

(pG\G(R))∗,ren ⊗ id : D(G\G(R)) ⊗ D!(̃BunG) −→ D!(̃BunG)

is equivariant for the obvious “balanced" G-action on the source and the left
G-action on the target. Abusing notation, we denote by π∗,ren the induced
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functor at the level of G-invariant categories. Unraveling the constructions,
we have

ωG\G(R)/G ∗ ωG\̃BunG � π∗,ren ◦ α!(ωG\̃BunG ) � π∗,ren
(
ωG\G(R)×G B̃unG

)
.

5.3.3.We need to show that the latter object is zero. It is enough to do so after
applying the conservative functor oblvG : D(G\̃BunG) → D(̃BunG). But
then we tautologically have

oblvG ◦ π∗,ren
(
ωG\G(R)×G B̃unG

) � (pG\G(R))∗,ren
(
ωG\G(R)

) ⊗ ωB̃unG
,

so it suffices to prove that the vector space

(pG\G(R))∗,ren
(
ωG\G(R)

)

vanishes.

5.3.4. First off, this vector space is exactly HBM(G\G(R)), by the formula for
Borel–Moore homology of Remark 5.1.7. Then the isomorphims

G\G(R) � G(R)1, G(R) � G � G(R)1

imply that

HBM(G\G(R)) ⊗ HBM(G) � HBM(G(R)).

Tensoring with a nonzero vector space, in our case
HBM(G) � H∗(G)[2 dim(G)], is conservative. So it remains to prove that
HBM(G(R)) � 0: this vanishing statement is exactly the content of Theo-
rem B for the affine curve A

1.

6 Proof of Theorem E

In the previous part of the paper, we have shown that Theorem A follows from
the simplest case of Theorem B. In this section, we deduce Theorem B from
Theorem D, and then prove the latter in some special cases.

6.1 From Theorem D to Theorem B

It suffices to apply the following general result to the case of Y = G[�].
Lemma 6.1.1 Let Y be an ind-affine indscheme of ind-finite type. If ωY ∈
D(Y)≤−∞, then HBM(Y) = 0.
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Proof Let C be a DG category equipped with a t-structure. The t-structure is
said to be left-complete if the functor

C −→ lim
n∈(Z,≤)op

C≥−n, c � {τ≥−n(c)}n∈Z

is an equivalence. When the t-structure on C is left-complete, it is obvious
that C≤−∞ � 0: in other words, there are no nontrivial infinitely connective
objects. It is easy to see that the usual t-structure on Vect is left-complete, so
that, in particular, Vect≤−∞ � 0. Hence, as

HBM(Y) := (pY)∗,ren(ωY)

by Remark 5.1.7, it suffices to show that (pY)∗,ren : D(Y) → Vect is right
t-exact.

Let Y � colimk∈K Yk be an indscheme presentation, with each Yk an affine
scheme. As discussed in Sects. 2.4.1 and 2.4.2, the natural t-structure onD(Y)

is defined by requiring thatD(Y)≤0 be generated under colimits by the objects
of the form (ik)∗,dR(indYk (C)), for all k and all C ∈ Coh(Yk)≤0.

Thus, it suffices to prove that

(pY)∗,ren

(
(ik)∗,dR(indYk (C))

)
∈ Vect≤0 (6.1)

for any such C . Let us simplify the composition

IndCoh(Yk)
indYk−−−→ D(Yk)

(ik)∗,dR−−−−→ D(Y)
(pY)∗,ren−−−−−→ Vect . (6.2)

Observe first that (pY)∗,ren ◦ (ik)∗,dR � (pYk )∗,dR: indeed, the dual to
(pY)∗,ren◦(ik)∗,dR is (ik)!◦(pY)! � (pYk )

! by the definition of the renormalized
pushforward. It follows that the functor (6.2) is the ind-coherent pushforward
along pYk ; furthermore, as C is coherent, we obtain that

(pY)∗,ren

(
(ik)∗,dR(indYk (C))

)
� (pYk )

IndCoh∗ (C) � �pt ◦ (pYk )
IndCoh∗ (C)

� (pYk )∗(�YkC) � (pYk )∗(C),

wherewehave used the fact that� intertwines quasi-coherent and ind-coherent
pushforwards. Then the claim of (6.1) is evident: thanks to the affineness of
Yk , the functor (pYk )∗ : Coh(Yk) → Vect is t-exact. ��
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6.2 Proof of Theorem E

Let G = SLn . In this case, G is a closed subscheme of A
n2 determined by

the vanishing of one equation of degree n. Thus, Theorem D for G = SLn is
a simple case of the following general result, which went under the name of
Theorem E in the introduction.

Theorem 6.2.1 Let Y ⊆ A
N be a closed subscheme defined as the zero locus

of r polynomials f1, . . . , fr of degrees n1, . . . , nr . If n := ∑
i ni < N, then

ωY [�] is infinitely connective.

Proof Let X be the smooth compactification of �, obtained by adding h ≥ 1
points at infinity. Denote by D∞ = X − � the union of such points and by g
the genus of X .

Step 1

Consider the following indscheme presentation

A
N [�] � colim

d�0
A

N [�]≤d ,

where we have set

A
N [�]≤d := H0(X,O(dD∞))⊕N .

The given closed embedding Y ⊆ A
N yields the indscheme presentation

Y [�] � colimd�0 Yd , where

Yd := Y [�] ∩ A
N [�]≤d .

Denoting by id : Yd → Y [�] the tautological closed embeddings, we deduce
that

ωY [�] � colim
d�0

(id)∗,dR(ωYd ).

Since each pushforward (id)∗,dR is right t-exact by construction, it suffices
to find a divergent sequence (Cd)d�0 of natural numbers satisfying ωYd ∈
D(Yd)≤−Cd .

Step 2

Assume from now on that d > max(0, (2g − 2)/h). In this case, the
scheme A

N [�]≤d is a vector space of dimension N (dh + 1 − g). Let us
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compute the number of equations needed to specify Yd inside A
N [�]≤d �

A
N (dh+1−g).An N -tuple (pi )of elements of H0(X,O(dD∞))belongs toYd iff

f j (p1, . . . , pN ) = 0 for each 1 ≤ j ≤ r . Since f j is of degree n j , the expres-
sion f j (p1, . . . , pN ) is an element of H0(X,O(dn j D∞)) � A

dhn j+1−g. It
follows that Yd is cut out by

r∑
j=1

(dhn j + 1 − g) = dhn + r(1 − g)

equations inside A
N (dh+1−g).

Step 3

Now let

Cd := N (dh + 1 − g) − (dhn + r(1 − g)) = (N − n)hd + (N − r)(1 − g).

Since N − n > 0 and h > 0 by assumption, Cd goes to infinity with d. On the
other hand, the general lemma below implies that ωYd ∈ D(Yd)≤−Cd . ��
Lemma 6.2.2 If Z is an affine scheme of the form A

m ×Ap pt, then ωZ ∈
D(Z)≤−m+p.

Proof We proceed by induction on p. In case p = 0, we have

ωAm ∈ D(Am)♥[m].

For the sake of completeness, let us give a proof of this well-known state-
ment. By [27, Proposition 4.2.11], the forgetful functor oblvAm : D(Am) →
IndCoh(Am) is t-exact. Since it is also conservative, it suffices to prove
that the ind-coherent dualizing sheaf ωIndCoh

Am belongs to IndCoh(Am)♥[m].
The equivalence �Am : IndCoh(Am) → QCoh(Am) is t-exact by construc-
tion, see [22, Section 1.2], and sends ωIndCoh

Am to the shifted canonical bundle
KAm [m]. To see the latter fact, use Grothendieck duality for P

n to prove that
(pPn )!,IndCoh(k) � KPn [n], and then further pullback along A

n ↪→ P
n .

Assume now that p > 0. We can write Z � Z ′ ×A1 pt, for an affine
scheme Z ′ of the form A

m ×Ap−1 pt. Hence, ωZ ′ ∈ D(Z ′)≤−m+p−1 by the
induction hypothesis. Denote by i : Z ↪→ Z ′ the obvious closed embedding,
with j : U := Z ′ − Z ↪→ Z ′ as complementary open. Since i∗,dR is t-exact
and fully faithful, it suffices to prove that

i∗,dR(ωZ ) ∈ D(Z ′)≤−m+p.

123



D. Beraldo

Observe that i∗,dR(ωZ ) sits in the fiber sequence

j∗,dR(ωU )[−1] −→ i∗,dR(ωZ ) −→ ωZ ′ .

Moreover, j ! and j∗,dR are both t-exact (the latter because j is affine), so that

j∗,dR(ωU )[−1] � j∗,dR ◦ j !(ωZ ′)[−1] ∈ D(Z ′)≤−m+p.

Combined with the bound for ωZ ′ , this yields the assertion. ��

7 Proof of Theorem D in general

In this section we prove Theorem D: given a non-abelian connected reductive
group G and a smooth affine curve �, the dualizing sheaf ωG[�] is infinitely
connective for the natural t-structure onD(G[�]).

7.1 Outline

Since the proof involves a number of technical reduction steps, let us give an
outline of the strategy.

7.1.1. Any closed embedding Z ↪→ Y of affine schemes induces a closed
embedding Z [�] ↪→ Y [�] of indschemes. The open complement is the ind-
scheme Y [�](Y−Z) -gen of maps � → Y that land generically in Y − Z .
Precisely, the functor of points of Y [�](Y−Z) -gen sends a test affine scheme
S to the set of maps φ : �S → Y for which the preimage φ−1(Y − Z) is
universally dense in �S .

Recall that an open subset of �S is said to be universally dense if, for every
geometric point s ∈ S, its pullback along�s → �S is dense in�s . See [4] for
several examples of prestacks defined using the notion of universal density.

7.1.2. Denote by

G◦ := N− × B � N− × T × N

the big Bruhat cell of G: this is a Zariski open subset of G. Since G can be
covered by translates of G◦, it is clear that G[�] admits an open cover whose
members are isomorphic toG[�]G◦ -gen. By [24, Lemma 7.8.7], the t-structure
on the DG category of D-modules on an indscheme is Zariski local: hence, to
show that ωG[�] is infinitely connective, it suffices to prove the following.

Theorem 7.1.3 Let G be a connected reductive group of semisimple rank≥ 1.
Then the dualizing sheaf of the indscheme G[�]G◦ -gen is infinitely connective.
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7.1.4.Before proceeding, it is convenient to introduce somemore notation. Let
fSet be the 1-category of nonempty finite sets and surjective maps between
them. Given I ∈ fSet and given � ∈ � I (S) an I -tuple of maps from S to �,
we denote by D� ⊂ �S the incidence divisor of �.

7.1.5. For the proof of Theorem 7.1.3, we need a variant of G[�]G◦ -gen that
keeps track of the locus where the rational map � ��� G◦ is not defined.
This is precisely what fSet and the above notation are useful for. Namely, let
G[�]G◦ -gen

� I,disj be the indscheme whose S-points are those pairs

(
� ∈ � I (S), φ : �S → G

)

with the following two properties:

• the members of the I -tuple � have pairwise disjoint graphs in �S;
• φ sends �S − D� to G◦.

In Sect. 7.4, we will show that the Theorem 7.1.3 is a consequence of the
statement below.

Proposition 7.1.6 For any I ∈ fSet, the dualizing sheaf of G[�]G◦ -gen
� I,disj is

infinitely connective.

7.1.7. It remains to prove this proposition. Consider the particular case where
I is a singleton. Then the indscheme in question is G[�]G◦ -gen

� : its S-points
are pairs (� ∈ �(S), φ : �S → G) such that the restriction of φ to �S − D�

factors through G◦. Even more particularly, fix x ∈ �(k) and consider the
indscheme

G[�]G◦ -gen
� ×� {x} � G◦[� − x] ×G[�−x] G[�].

This indscheme parametrizes those maps� → G that send � − x into the big
cell. We will approach Proposition 7.1.6 in two stages. In Sect. 7.2, we will
prove:

Proposition 7.1.8 For any x ∈ �(k), the dualizing sheaf of G◦[� −
x] ×G[�−x] G[�] is infinitely connective.

This is where the main geometric argument takes place. Then, in Sect. 7.3,
we will adapt this argument to prove Proposition 7.1.6 in its full generality.
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7.2 Proof of Proposition 7.1.8

Let x ∈ �(k) be fixed once and for all. Let t be a local coordinate at x and
denote by GrG = GrG,x the affine Grassmannian at x . We have

G◦[� − x] ×G[�−x] G[�] � G◦[� − x] ×G((t)) G[[t]]
� G◦[� − x] ×GrG pt,

where the map pt → GrG in the rightmost expression is the inclusion of the
unit point.

7.2.1. By definition, G◦ � N− × T × N , so that

G◦[� − x] � N−[� − x] × T [� − x] × N [� − x],
G◦((t)) � N−((t)) × T ((t)) × N ((t)).

Consider the maps T [� − x] → GrT,x and T ((t)) → GrT,x . Since, at the
reduced level, the T -Grassmannian GrT,x is discrete and isomorphic to 
,
elements of T [� − x] and T ((t)) have a well defined “type" in 
. For λ ∈ 
,
denote by

T [� − x]λ := T [� − x] ×
GrT

{tλ}, T ((t))λ := T ((t)) ×
GrT

{tλ},

the corresponding closed (as well as open) subschemes of T [�−x] and T ((t)),
respectively. We also set

G◦[� − x]λ := N−[� − x] × T [� − x]λ × N [� − x], (7.1)

G◦((t))λ := N−((t)) × T ((t))λ × N ((t)). (7.2)

Since G◦[� − x] � ⊔
λ G

◦[� − x]λ, the following implies (in fact, it is
equivalent to) Proposition 7.1.8.

Proposition 7.2.2 For any λ ∈ 
, the dualizing sheaf of G◦[� − x]λ ×GrG pt
is infinitely connective.

7.2.3. The remaining part of Sect. 7.2 is devoted to the proof of the above
proposition. We first observe that

G◦[� − x]λ ×
GrG

pt � G◦[� − x]λ ×
G◦((t))λ

(
G◦((t))λ ×

G((t))
G[[t]]

)
. (7.3)

Now, let us represent elements of G◦[� − x]λ as triples φ = (φ−, φT , φ+)

according to the isomorphism of (7.1). Obviously, φ± = (φ−, φ+) can be
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viewed as a map � − x → A
|R|, where |R| is the number of roots of G. We

say that φ± has poles at x bounded by n (with n ≥ 0) if each of the maps
� − x → A

1 comprising φ± is an element of H0(�,O�(nx)). We remark
that this condition is about the pole at x , it has nothing to do with the poles of
φ± at the points at infinity of �.

7.2.4.Wewill use a similar notation and terminology for elements of G◦((t))λ.
Namely, we represent them as triples φ = (φ−, φT , φ+) according to (7.2)
and say that φ has poles bounded by n if so do all the Laurent series comprising
φ±.

Lemma 7.2.5 For any λ ∈ 
, there exists a number e(λ) ∈ N with
the following property: if φ = (φ−, φT , φ+) ∈ G◦((t))λ is contained in
G◦((t))λ ×G((t)) G[[t]], then φ± has poles at x bounded by e(λ).

Proof For G = GL2, this lemma is obvious. Indeed, letting R be a test ring,
choose f, g ∈ R((t)) and m, n ∈ Z arbitrarily. If the element

[
1 0
f 1

]
·
[
tm 0
0 tn

]
·
[
1 g
0 1

]
=

[
tm gtm

f tm tn + f gtm

]

belongs to G(R[[t]]), then m ≥ 0 and the order of the poles of f and g must
be bounded by m.

A similar computation, left to the reader, proves the lemma for G = GLd ,
with d ≥ 3. Now let G be arbitrary; we will reduce to the case of GLd as
follows. Pick a faithful representation ρ : G ↪→ GL(V ). By choosing an
appropriate ordered basis of V consisting of weight vectors, we can assume
that ρ(N ) (respectively: ρ(N−), ρ(T )) is contained in the subgroup of upper
triangular (respectively: lower triangular, diagonal) matrices of GL(V ) �
GLdim(V ). In particular, ρ sends the big cell of G to the big cell of GLdim(V ).

Now pick φ = (φ−, φT , φ+) ∈ G◦((t))λ ×G((t)) G[[t]]. The case of GLd
implies that ρ(φ±) both have poles at x bounded by some e ∈ N. It follows
easily that the same is true, possibly with a different bound e′ ∈ N, for the φ±
themselves. ��
7.2.6.Denote byG◦((t))λ,≤n the closed subspace ofG◦((t))λ consisting of those
φ for which the poles of φ± are bounded by n. The subspace G◦[� − x]λ,≤n

of G◦[� − x]λ is defined in the same way. The above lemma implies that the
closed embedding

G◦((t))λ,≤e(λ) ×
G((t))

G[[t]] ↪→ G◦((t))λ ×
G((t))

G[[t]]

is an isomorphism.
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7.2.7. On the other hand, the bound on the pole orders makes it obvious that
the map

G◦((t))λ,≤e(λ) → G((t)) � GrG

factors through a closed subscheme Yλ ⊂ GrG . Then:

G◦((t))λ,≤e(λ) ×
G((t))

G[[t]] � G◦((t))λ,≤e(λ) ×
GrG

pt � G◦((t))λ,≤e(λ)

×
Yλ

(
Yλ ×

GrG
pt

) � G◦((t))λ,≤e(λ) ×
Yλ

pt.

7.2.8. Combining these two observations, we obtain a natural isomorphism

G◦((t))λ ×
G((t))

G[[t]] � G◦((t))λ,≤e(λ) ×
Yλ

pt,

and thus, in view of (7.3), a natural isomorphism

G◦[� − x]λ ×
GrG

pt � G◦[� − x]λ ×
G◦((t))λ

(
G◦((t))λ,≤e(λ) ×

Yλ

pt
)

� G◦[� − x]λ,≤e(λ) ×
Yλ

pt.

Hence, to conclude the proof of Proposition 7.2.2, it remains to prove that the
dualizing sheaf of the indscheme

G◦[� − x]λ,≤e(λ) ×
Yλ

pt

is infinitely connective.

7.2.9. Next, note that

G◦[� − x]λ,≤e(λ) � A
|R|[� − x]≤e(λ) × T [� − x]λ.

As usual, let X be the smooth compactification of � and D∞ the divisor at
infinity, of cardinality h ≥ 1. We have:

A
|R|[� − x]≤e(λ) � colim

m�0
H0(X, e(λ)x + mD∞)|R| � A

∞.

In the same way, T [� − x]λ is an indscheme of ind-finite type, again realized
as a colimit over the poset of natural numbers. It remains to apply the following
general result.
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Lemma 7.2.10 Let Y an indscheme of the form

Y = (A∞ × T) ×Y pt,

for some scheme Y of finite type and some indscheme T = colimm�0 Tm of
ind-finite type. Then the dualizing sheaf of Y is infinitely connective.

Proof We first show that ωA∞×T is infinitely connective. By assumption, each
Tm is a scheme of finite type. It follows that there exists some Nm ≥ 0 such that
ωTm ∈ D(Tm)≤Nm : to prove this, recall that the t-structure isZariski local, argue
as in Lemma 6.2.2 and then use the quasi-compactness of Tm . Up to replacing
each Nm with a larger number, let us assume that the sequence m �→ Nm is
increasing and divergent. Then we have the indscheme presentation

A
∞ × T � colim

m�0

(
A
2Nm × Tm

)
,

so that

ωA∞×T � colim
m�0

(im)∗,dR(ωA2Nm×Tm ),

where im : A
2Nm × Tm ↪→ A

∞ × T is the natural closed embedding. Now
recall the equivalence

D(A2Nm × Tm) � D(A2Nm ) ⊗ D(Tm)

induced by exterior tensor product, which is valid becauseD(A2Nm ) is dualiz-
able. The t-structure on the LHS corresponds to the tensor product t-structure
on the RHS (the latter is defined by declaring that connective objects of the
tensor product are generated under colimits by tensor products of connective
objects). Since the dualizing sheafωA2Nm×Tm corresponds toωA2Nm �ωTm and
ωA2Nm ∈ D(A2Nm )≤−2Nm , we obtain that

ωA2Nm×Tm ∈ D(A2Nm × Tm)≤−Nm .

Recall that each (im)∗,dR is right t-exact by construction; then, as Nm goes to
infinity with m, we have proven that ωA∞×T is infinitely connective.

Now let i : Y ↪→ A
∞ × T be the obvious closed embedding. In view of

ωY � i !(ωA∞×T), it suffices to show that i ! is right t-exact up to a finite shift.
This boils down to proving that, for any scheme Z of finite type mapping
to Y , the !-pullback along Z ×Y pt ↪→ Z is right t-exact up to a shift that
is independent of Z . This follows exactly as in Lemma 6.2.2: first by the
Zariski-local nature of the t-structure, we can replace Y with an affine open
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Y ′ containing pt; then we write pt ∈ Y ′ as the zero locus of finitely many
equations in Y ′. ��

7.3 Moving points

Now we adapt the argument of Sect. 7.2 to prove Proposition 7.1.6. The idea
is the same, but the notation heavier.

7.3.1. For Y a scheme among G,G◦, T, N , N−, denote by Y [�]rat
� I,disj the

indscheme with S-points given by the set of tuples

(� ∈ � I (S), φ : �S − D� → Y )

such that the elements of � have pairwise disjoint graphs in �S .

Remark 7.3.2 To see that Y [�]rat
� I,disj is indeed an indscheme, it suffices to treat

the case of Y � A
1. In this case, the discussion of [21, Section 2.7] applies;

in particular, we have

A
1[�]rat

� I,disj � colim
d≥0

A
1[�]rat,≤d

� I,disj ,

with each A
1[�]rat,≤d

� I,disj also the indscheme of rational maps � ��� A
1 with

poles bounded by d at points of � (and unbounded at points at infinity of �).

7.3.3.Denote by Y (A)� I,disj the space ofmeromorphic jets into Y parametrized
by |I | disjoint points of �. Precisely, the set of S-points of Y (A)�I,disj is given
by

(� ∈ � I (S), φ : D̂◦
� → Y ),

where D̂◦
� is the punctured tubular neighbourhood of Dx . Define Y (O)� I,disj

in the same way as above, but using the non-punctured tubular neighbourhood
of D� .

7.3.4. By construction, our indscheme of interest G[�]G◦ -gen
� I,disj is isomorphic

to

G◦[�]rat
� I,disj ×

G(A)
� I,disj

G(O)� I,disj .

We will use this expression as a fiber product to prove that the dualizing of
G[�]G◦ -gen

� I,disj is infinitely connective.
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7.3.5. As in the previous case, elements of T [�]rat
� I,disj have a “type", which

is now an I -tuple of elements of 
. For each such λ ∈ 
I , we denote by
T [�]rat,λ

� I,disj , G
◦[�]rat,λ

� I,disj and T (A)
λ

� I,disj the corresponding subspaces.
It suffices to prove that the dualizing sheaf of

G◦[�]rat,λ
� I,disj ×

G(A)
� I,disj

G(O)� I,disj � G◦[�]rat,λ
� I,disj

×
G◦(A)

λ

� I,disj

(
G◦(A)

λ

� I,disj ×
G(A)

� I,disj

G(O)� I,disj

)
(7.4)

is infinitely connective.

Lemma 7.3.6 For e ≥ 0, denote by G◦(A)
rat,λ,≤e
� I,disj the closed subspace of

G◦(O)
rat,λ
� I,disj whose components φ± have poles bounded by e at the points �.

There exists e = e(λ) such that the closed embedding

G◦(A)
λ,≤e
� I,disj ×

G(A)
� I,disj

G(O)� I,disj ↪→ G◦(A)
λ

� I,disj ×
G(A)

� I,disj

G(O)� I,disj

is an isomorphism.

Proof It is immediate to see that each of the spaces appearing in the lemma,
denoted generically by Y� I,disj → � I,disj, is factorizable in the sense that there
exists a canonical isomorphism

Y� I,disj � (Y� × · · · × Y�) ×
� I

� I,disj.

See [5] for much more on the notion of factorization. Moreover, these factor-
ization isomorphisms are naturally compatible with the maps

G◦(A)
λ,≤e
� I,disj ↪→ G◦(A)

λ

� I,disj → G(A)
λ

� I,disj ← G(O)
λ

� I,disj .

This shows it suffices to prove the lemma in the case I is a singleton: we need
to prove that the closed embedding

G◦(A)
λ,≤e
� ×

G(A)�

G(O)� ↪→ G◦(A)
λ

� ×
G(A)�

G(O)�

is an isomorphism. To check this, we canwork étale-locally on� and therefore
assume, for the remainder of the proof, that � � Spec(k[t]). The global
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coordinate on� allows to identify the graph of an S-point of� with the graph
of the constant map with value 0 ∈ Spec(k[t]). This yields isomorphisms

G◦(A)
λ,≤e
� � G◦((t))≤e × �, G◦(A)

λ

� � G◦((t)) × �,

G(O)
λ

� � G[[t]] × �, G(A)
λ

� � G((t)) × �,

which are compatible with one another in the natural way. Hence, the assertion
reduces to that of Lemma 7.2.5. ��
7.3.7. In view of the above lemma, we can rewrite (7.4) as

G◦[�]rat,λ,≤e
� I,disj ×

Gr
G,� I,disj

� I,disj, (7.5)

where

G◦[�]rat,λ,≤e
� I,disj := G◦[�]rat,λ

� I,disj ×
G◦(A)

λ

� I,disj

G◦(A)
λ,≤e
� I,disj .

By construction, the map G◦[�]rat,λ,≤e
� I,disj → GrG,� I,disj factors as

G◦[�]rat,λ,≤e
� I,disj → Y λ

� I,disj ↪→ GrG,� I,disj,

where Y λ

� I,disj is a closed subscheme of GrG,� I,disj . Indeed, any point

(�, φ±, φT ) of G◦[�]rat,λ,≤e
� I,disj has poles at � bounded by e.

7.3.8. To conclude, we proceed as in the proof of Lemma 7.2.10. So, we need
to make sure that the dualizing sheaf of G◦[�]rat,λ,≤e

� I,disj is infinitely connective.

This boils down to proving that the same is true forA1[�]rat,λ,≤e
� I,disj . ByRiemann-

Roch, the latter admits a presentation as a colimit of vector bundles over� I,disj

of rankgrowing to∞.Hence, its dualizing sheaf is indeed infinitely connective.

7.4 Ran spaces with marked points

In this section, we explain how Theorem 7.1.3 follows from Proposition 7.1.6.

7.4.1.Denote by X the smooth complete curve containing�. The complement
is a finite set of “points at infinity", which we denote by D∞. We regard D∞
as a k-point of XA, where A is a (finite nonempty) set that has been put in
bijection with D∞ once and for all.
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7.4.2. We also need the Ran space with marked points, for which we follow
the discussion of [21, Section 3.5]. Specifically, what we need is the prestack
RanX,D∞ that parametrizes the finite sets of X that contain D∞. To give a
formal definition, let fSetA be the category whose objects are arrows of finite
sets [A → I ], and whose morphisms are surjections I � J compatible with
the maps from A. The finite set D∞ gives rise to the following functor:

fSetopA −→ Sch, [A → I ] � X [A→I ] := X I ×XA {D∞}.

Then we have

RanX,D∞ � colim
[A→I ]∈fSetopA

X [A→I ].

7.4.3. Now we are ready to introduce the variant of G[�]G◦ -gen that accounts
for the points where the rational map � ��� G◦ is not defined. We will
perform the construction in general: in place of G◦ ⊂ G, we consider an
open embedding U ⊂ Y with Y an affine scheme. Alongside the indscheme
Y [�]U -gen, we have the prestack Y [�]U -gen

Ran defined as follows: its set of S-
points consists of those pairs

(� ∈ RanX,D∞(S), φ : �S → Y )

for which φ|�S−D�
→ Y factors through U ⊂ Y .

7.4.4. Thus, Y [�]U -gen
Ran fibers over RanX,D∞ and we tautologically have

Y [�]U -gen
Ran � colim

[A→I ]∈fSetopA
Y [�]U -gen

[A→I ],

where

Y [�]U -gen
[A→I ] := Y [�]U -gen

Ran ×
RanX,D∞

X [A→I ].

Lemma 7.4.5 Assume that U ⊂ Y is a basic open subset. Then, for each
[A → I ] ∈ fSetA, the forgetful map

ξ[A→I ] : Y [�]U -gen
[A→I ] → Y [�]U -gen

is ind-proper. Moreover, the resulting map ξ : Y [�]U -gen
Ran → Y [�]U -gen has

homologically contractible fibers.
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Remark 7.4.6 By definition, see [21, Section 2.1.5], a map f : X → Y of
prestacks is ind-proper (respectively: an ind-closed embedding) if it is ind-
schematic and, for each scheme S → Y, the pullback X ×Y S admits an
indscheme presentation X ×Y S � colimi∈I Zi with each Zi proper over
(respectively: a closed subscheme of) S.

Remark 7.4.7 The assumption thatU ⊂ Y be a basic open subset is important,
although its role is hidden in the proof of [21, Lemma4.5.6] (the result onwhich
the present lemma is based).

Proof Asmentioned, this is a special case of a [21, Lemma 4.5.6]; for the sake
of completeness, and to match the notations, let us give more details. Recall
from [21, Section 4.5] the definition of the prestack Maps(X, Y )rat

X J : it sends

a test affine scheme S to the set of pairs (� ∈ X J (S), φ : XS − D� → Y ).
This is a prestack (in fact, an indscheme) over X J . It is related to our Y [�] by
setting J = A and by observing that

Maps(X, Y )rat
XA ×

XA
{D∞} � Y [�].

Now recall the prestack Maps(X,U
gen⊂ Y )rat

X J : it is the open subspace of

Maps(X, Y )rat
X J cut out by the condition that φ land generically inside U :

precisely, we require that, for any geometric point s ∈ S, the map φs : Xs −
{�s} → Y land generically in U . As above, setting J = A, we have:

Maps(X,U
gen⊂ Y )rat

XA ×
XA

{D∞} � Y [�]U -gen.

Finally, let us introduce a different version of Maps(X,U
gen⊂ Y )rat

X J , where we
control the locuswhere themapφ does land inU . Namely, for an arbitrarymap

J → I of finite nonempty sets, let Maps(X,U
gen⊂ Y )rat

X J→I be the prestack

whose S-points are triples (� ∈ X J (S),y ∈ X I (S), φ : XS − D� → Y ) with
D� ⊆ Dy and such that φ restricts to a regular map XS − Dy → U .
Letting J = A, we see that

Maps(X,U
gen⊂ Y )rat

XA→I ×
XA

{D∞} � Y [�]U -gen
[A→I ].

Consider now the map

fsource(J → I ) : Maps(X,U
gen⊂ Y )ratX J→I −→ Maps(X,U

gen⊂ Y )ratX J
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that forgets the datum of y. In [21, Section 4.6.4], it is proven that such a map
is ind-proper for any map J → I of nonempty finite sets. Since our ξ[A→I ]
is obtained from fsource(J → I ) by setting J = A and base-changing, it is
ind-proper too. The contractibility of the fibers of ξ follows exactly as in [21,
Section 4.6]: it boils down to the contractibility of the Ran space of a smooth
affine curve, which in turn is due to [5]. ��
7.4.8. Since each map ξ[A→I ] is ind-proper and Y [�]U -gen is an indscheme,

it follows that each Y [�]U -gen
[A→I ] is an indscheme too (of ind-finite type). Alter-

natively, one can also give a direct proof.
In any case, let us endow D

(
Y [�]U -gen

[A→I ]
)
with the usual right t-structure

present on any indscheme of ind-finite type. The homological contractibility
of the fibers of ξ imples that

ωY [�]U -gen � ξ!
(
ω
Y [�]U -gen

Ran

)
,

and thus

ωY [�]U -gen � colim
I∈fSetop

(ξ[A→I ])!
(
ω
Y [�]U -gen

[A→I ]

)
.

Lemma 7.4.9 If in the above situation eachω
Y [�]U -gen

[A→I ]
is infinitely connective,

then so is ωY [�]U -gen .

Proof In view of the above formula, it suffices to verify that each functor
(ξ[A→I ])! is right t-exact up to a finite shift. We can write ξ[A→I ] as the com-
position of two obviously defined maps:

Y [�]U -gen
[A→I ] → Y [�]U -gen × X [A→I ] � Y [�]U -gen.

It is proven [21, Section 4.6.4] that the left map is an ind-closed embedding,
hence it follows from the definition of the t-structure that the associated !-
pushforward is right t-exact. On the other hand, the !-pushforward along the
second map is right t-exact up to a shift by |I | = dim(X I ). ��
7.4.10. Let us come back to our group case. The big cell G◦ is a basic open
subset of G: the explicit map realizing this is given in [29]. Thus, the above
general results apply and, in particular, the following statement implies The-
orem 7.1.3.

Proposition 7.4.11 For each [A → I ] ∈ fSetA, the dualizing sheaf of
G[�]G◦ -gen

[A→I ] is infinitely connective.
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7.4.12. Let us reduce this to Proposition 7.1.6. Considering the diagonal strat-
ification of X [A→I ], it is easy to see that it suffices to prove the assertion for
the dualizing sheaf of each stratum. The smallest stratum (that is, the one with
I � A) yields the space G◦[�], in which case the assertion is clear: indeed,

G◦[�] � N−[�] × T [�] × N [�] � A
∞ × T [�],

whose dualizing sheaf is infinitely connective in view of Lemma 7.2.10.

7.4.13. It remains to treat the other strata. Recalling that � I,disj ⊆ � I denotes
the open subscheme parametrizing I -tuples of distinct points in �, it is clear
that these strata are isomorphic to the spaces G[�]G◦ -gen

� I,disj with I ∈ fSet (in
particular, I �= ∅). These are exactly the spaces that we defined in Sect. 7.1.5.
Then Proposition 7.1.6 implies Proposition 7.4.11.
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