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A B S T R A C T

Most standard statistical inference procedures rely on model assumptions such as nor-

mality, independent and identically distributed and the like. Often in practice, such

assumptions are formally tested before applying the inference. Such a procedure does

not ensure that the model assumptions are really fulfilled because the standard theory

for popular inference tests does not take into account that the data has been selected

by a previous model check. Applying a misspecification test violates the very model

assumption it was meant to enforce. (“misspecification paradox”). In practice it is use-

ful to have an alternative test in the case that the misspecification test rejects the model

assumption. However, this does not completely address the misspecification paradox

because there is still a certain probability that the model assumption is rejected when it

is in fact true, and vice versa.

This thesis is about investigating, theoretically and by simulations, the performance of

such a combined procedure. A novel simulation process is proposed where samples can

be randomly chosen from a situation where the model assumption is fulfilled or violated.

A few combinations of distributions and statistical tests are considered and both level

and power are presented and discussed. Although the levels show no strong evidence of

choosing the combined procedure over the tests run without model checking, the power

plots show that in certain conditions, it can be more powerful.

A theory is presented where it is shown that in a particular situation and with reas-

onable assumptions, the combined procedure does have a higher power compared to

unconditional tests. The assumptions were relaxed a little and the same conclusions

could be made. Finally, a three stage testing procedure in two different scenarios, dis-

tributional shape and linear regression significance, are presented and discussed. The

same conclusions can be made from the levels and powers.





I M PA C T S TAT E M E N T

Hypothesis testing is an important part of many statistical analysis. It is useful to infer

the result of a hypothesis performed on a sample from a larger population. Although

there are differing opinions on how one goes about performing a statistical hypothesis

test, namely Fisher versus Neyman-Pearson and frequentism versus Bayesianism, it is

clear that testing a hypothesis on a sample to infer the population where the sample

comes from is a powerful tool in a statistician’s tool box. The proposed methods in this

project seek answers to fundamental questions in the field, namely the model assump-

tions of a test. The new methods will have impact in at least three ways:

Hypothesis tests, like many methods in statistical analysis, requires some assump-

tions for the test to be valid. Checking the assumptions is a subject of quite a number

of discussions. There is much confusion especially in the medical research field about

whether to check model assumptions. The first impact of this project is to have a re-

view of these discussions and present them in a comprehensive manner to help applied

researchers have a better understanding of the issues. We have found that there is

no agreement on whether model assumption checking should be done. The theory of

model-based method usually relies on the implicit assumption that there are no data-

dependent pre-selection or pre-processing. However in practice, researchers tend to use

model checking methods before carrying out the final hypothesis test.

Secondly, this project introduces a new method in the simulation by randomising the

samples that go into what we refer to as a combined procedure. This challenges the com-

bined procedure to distinguish between a model constrained test or an unconstrained

alternative test. This introduces a “Bayesian flavour” into a frequentist simulation study

where there is prior distribution on the random generation of samples to be entered into

the combined procedure. This could potentially open up a new area of simulation for

other frequentist methods.

Most importantly, we show a positive result in favour of the combined procedure.

It is shown that the combined procedure has a larger power than tests where the as-

sumptions were not tested when both situations of fulfilling and violating the model

assumptions can occur and with some realistic but strict supposition. This result is

useful for researchers particularly those not from a statistical background to carry out

hypothesis testing with model checking. It provides a better justification of what is



10

widely recommended in practice than what has been published up to now, which is

helpful against the confusion.

These three impacts outlined here aims to mainly help research practitioners sort

out the confusion surrounding the problem of model checking by first outlining the

discussions that have taken place in literature and then proposing a situation where

model checking can be helpful to help ease the confusion. This of course does help the

scientific community in general.
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I N T R O D U C T I O N

“I almost wish I hadn’t gone down that rabbit-hole – and yet –

and yet – it’s rather curious, you know, this sort of life!”

Alice (Alice in Wonderland)

When any statistical model is used, data are needed and statisticians continuously en-

deavour to model the link between data and how the world actually works. A model

is merely a tool used to understand the intricate structure of the real world represented

mathematically. This is, naturally, something that is created by the human mind and

therefore, is restrictive. What goes on in the world is a domain that is distinct from

what goes on in modelling, which is a human activity set up by humans (Hennig, 2010).

Despite this, it does not mean that models are not useful, as explained by Box (1979):

Now it would be very remarkable if any system existing in the real world could be

exactly represented by any simple model. However, cunningly chosen parsimonious

models often do provide remarkably useful approximations. For example, the law

PV = RT relating pressure P, volume V and temperature T of an “idea” gas via a

constant R is not exactly true for any real gas, but it frequently provides a useful

approximation and furthermore its structure is informative since it springs from a

physical view of the behaviour of gas molecules.

To perfectly represent the world in a model is impossible, however, statistical models

account for this with model assumptions. When a model is chosen, it is based on

the statistician’s perception on how the world works based on knowledge that he has,

namely his own personal reality, and he must always be mindful of this fact. The

purpose of modelling something is to make sense of or discover the world around and

there lies the constraint in the concept of statistical modelling, namely the pursuit to

understand and quantify something that is nontrivial. As Hand (2014) stated:

In general, when building statistical models, we must not forget that the aim is to

understand something about the real world. Or predict, choose an action, make a
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decision, summarize evidence, and so on, but always about the real world, not an

abstract mathematical world: our models are not the reality — a point well made by

George Box in his oft-cited remark that “all models are wrong, but some are useful”.

1.1 motivation

Following the statement by George Box, all mathematical and statistical models are

wrong because they will never be able to be reality, they are just models of reality.

However, not all hope is lost. Models usually have a set of assumptions for them to

be useful. From the literature reviewed, it seems that researchers sometimes overlook

this or maybe do not fully understand the meaning of these assumptions. They tend to

resort to just copying methods used by studies they have read.

Strasak et al. (2007a) conducted a bibliometric analysis of all original research articles

published during the first half of the year 2004 in Volume 30, Numbers 1-26 of the

New England Journal of Medicine (NJEM) and Volume 10, Numbers 1-6 of Nature

Medicine (NMed). They reviewed the use of statistical methods used in these medical

journals. At least one kind of inferential statistical method were used in 94.5% out

of 91 articles in the NJEM and 82.4% out of 34 papers in NMed. Among the most

frequently used methods were the t-test and non-parametric tests at 36.8% and 24.8%,

respectively, out of the total number of papers. A subgroup of 53 papers (31 from

NJEM and 22 from NMed) were further assessed. It was observed that 20.8% of these

articles contained the use of wrong or suboptimal statistical tests resulting from the

incompatibility of tests with examined data, inappropriate use of parametric methods, or

using wrong statistical tests for the hypothesis under investigation. It was also observed

that 63% of the papers that use the t-test fail to report whether the test assumptions were

checked and 10.9% carried out improper multiple pairwise comparisons without α-level

correction. Similarly, Strasak et al. (2007b) assessed 15 papers from Wiener Klinische

Wochenschrift and 7 papers from Wiener Medizinische Wochenschrift and found that the

practice of improper use of statistical methods and failure to validate model assumptions

were also found in these Austrian medical journals. It was observed in the papers

that reported usage of t-test, 41.2% failed to report whether the test assumptions were

checked.

A Chinese study carried out by S. Wu et al. (2011) reviewed articles from 10 Chinese

biomedical journals regarding the misuse of statistical methods in 1998 and 2008. All

the original articles published, 1, 335 in 1998 and 1, 578 in 2008, were reviewed. Out of

these, a total of 1, 334 or 45.8% were reported to have incorrectly used either one of the

most common statistical methods in these journals namelyt-tests, contingency tables,



1.1 motivation 27

analysis of variance (ANOVA) or rank based non-parametric tests. The authors men-

tion that the most common error committed was the inappropriate choice of statistical

methods. The most common misuses of t-tests (1062/2913, 36.45%) are the use of mul-

tiple t-tests to compare means of more than two groups (282/1062, 26.55%), use of t-test

under a non-parametric setting (149/1062, 14.03%) and the use of the t-test to conduct

repeated-measure data analysis (133/1062, 12.52%). The errors committed when using

rank transformation non-parametric tests (62/254, 24.41%) include the use of multiple

pair-wise comparison for multiple groups (34/62, 54.84%) and using the wrong type of

rank sum test for different study types (7/62, 11.29%). They offer the possibility that

researchers did not give enough attention to the distributional characteristics of the vari-

ables and the nature of the data. Hence, it was recommended to Chinese researchers

to increase the quality of writing, to raise the level of knowledge of statistical methods

among clinicians and to include a statistician as a consultant.

Sridharan and Gowri (2015) studied the statistical errors committed by medical re-

searchers in eight Indian medical and surgical journals over a period of 2 years. They

collected 195 articles from 2005 and 220 articles from 2006. They found that 33.7% of

these articles did not mention checking normality prior to parametric tests and 28% of

the articles used multiple statistical tests, ranging from 14 to 126 times, without adjust-

ing the p-value. One article even reported the p-value as 1.3, which is obviously wrong.

Hassan et al. (2015) compared errors in statistical methods made in articles from ten In-

dian medical journals in 2003 and 2013 to ascertain whether the statistical methodology

used in these journals has improved in one decade by analysis of the number of errors

committed. They reviewed 588 articles from 2003 and 774 articles from 2013. The most

used statistical methods is the t-test, contingency tables and ANOVA. They observed

that the proportion of erroneous statistical analyses had not decreased significantly, 25%

in 2003 compared to 22.6% in 2013. However, they noticed an increased use of rank

based nonparametric tests in 2013, which they assume indicates that more attention

were being paid to the assumptions of parametric tests.

More recently, a study was done in Egypt by Nour-Eldein (2016) that assessed statist-

ical methodology errors in family medicine articles by authors affiliated with the Suez

Canal University over 5 years. Out of the 60 papers reviewed, the author found that

a quarter (25%) “failed to report that test assumptions were not violated” as well as a few

more errors that were made by medical researchers. It should be noted that this does

not mean that the assumptions were violated and the researchers used the methods any-

way. These studies are limited to assessing the information reported in the publications.

There is simply no way of knowing the unpublished details unless the authors were con-

tacted and asked to show that the assumptions were not violated. It was also suggested
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that some authors merely copied methods from previous work without actually know-

ing what is needed before using a statistical test. This could result from the fact that

model checking was not reported and this practice was copied by subsequent studies.

Altman (2002) said “once incorrect procedures become common, it can be hard to stop them

from spreading through the medical literature like a genetic mutation”. This survey indicates

that in the medical community at least, there is still a lack of understanding about the

philosophy of hypothesis testing, either by checking model assumptions or at the very

least understanding the risks of using multiple tests. Since the medical field deals in

human life, a treatment plan or a new drug that is approved using an incorrect use or

interpretation of a statistical test can be quite costly.

Keselman, Huberty et al. (1998) reviewed articles from 17 journals of educational and

behavioural science research. The authors claimed to provide evidence that the vast

majority of educational researchers conducted statistical analyses without taking into

account the distributional assumptions of the procedure they were using. Out of the

411 articles reviewed, 61 had a between subjects univariate design. 13 out of the 61

did not report any cell of group standard deviations for any of the dependent variables

under investigation. When the authors looked at the remaining articles it was found

that the ratio of the largest to smallest standard deviation had a mean of 2.0, a median

of 1.5 and a maximum of 23.8. In the articles that carried out factorial studies, the ratios

has a mean of 2.8, a median of 1.7 and a maximum of 29.4. This shows that in the

majority of the studies, the samples do not show variance homogeneity. Yet, tests that

assumes variance homogeneity were used. Only in 12 articles were the violations of the

distributional assumptions mentioned as a source of concern by the author(s).

Choi (2005) mentioned that the most common statistical errors involve “failure to re-

cognize the correct distribution of the data”, leading to incorrect choice of descriptive and

inferential statistics. Of course, it is impossible to truly define the correct distribution of

any data and also one does not need assumptions of the distribution to do descriptive

statistics. According to Olsen (2003), a frequent error made in data analysis is the applic-

ation of statistical tests that assumes a normal distribution on data that actually follows

a skewed distribution.

Model assumptions needs to be checked before running any statistical inference test,

this is taught in elementary statistics courses. However, no agreement can be reached as

to how this must be done. This is presented in Rule number 8 of the Ten Simple Rules

for Effective Statistical Practice by Kass et al. (2016) aptly named ‘Check Your Assump-

tions’. The authors mention that “every statistical inference involves assumption ... even the

so-called “model-free” techniques require assumptions, albeit less restrictive assumptions”. The

availability of software that can perform analyses without any attention to the assump-
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tions can cause misleading results. At the very least, how well the model fits the data

should be checked with visual displays such as plots of the data or residuals or using

some basic techniques for assessing model fit. Linearity often works well as an indicator

or as a depiction of a general trend. Another example could be to check the assump-

tion of normality of a data set using a misspecification test. Other assumptions include,

but not limited to, the assumption of independence, assumption of equal variances and

assumption of normality of residuals.

However, there is no such thing as data or sample that follows a normal distribution.

We argue that the normality assumption is always violated. Any measurements taken by

an equipment is truncated to a range of values and has limited accuracy. As we know,

the normal distribution is continuous between (−∞, ∞). This fact alone invalidates

normality and subsequently, any tests for normality. Micceri (1989) and Wilcox, Charlin

and Thompson (1986) observed that the data collected by educational and psychological

researchers rarely, if ever, come from populations that are characterized by the normal

density function or by homogeneous variances.

The thesis sets out to review practices that use model assumption checking that sub-

sequently makes a decision about a hypothesis. We then discuss the already existing

studies done to investigate the validity of these practices. Authors such as Strasak et al.

(2007a), Strasak et al. (2007b), S. Wu et al. (2011), Keselman, Othman and Wilcox (2013)

and Kass et al. (2016) are for testing model assumptions either with a formal test or

graphical methods. Others like Bancroft (1964), Arnold (1970), C. V. Rao and Saxena

(1981), Saleh and Sen (1983), Moser, Stevens and Watts (1989), Moser and Stevens (1992),

Gupta and Srivastava (1993), Albers, Boon and Kallenberg (1998), Albers, Boon and Kal-

lenberg (2000a), Albers, Boon and Kallenberg (2000b), Zimmerman (2004) and Rochon

and Kieser (2011) are against model checking. However, the studies reviewed were done

in a restrictive context. We aim to study some unique situations and perhaps be able to

propose a general guideline to approach problems of model checking.

1.2 structure of thesis

Chapter 2 follows this introduction with a full literature review by first discussing some

historical background about statistical inference testing. This is followed by a discussion

about model assumptions and methods of dealing with them. The misspecification

paradox is introduced which forms the basis of the motivation of this study. Some

practices of misspecification testing is presented testing distributional shape (equality of

means), linear regression slope coefficient significance and post selection inference.
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Chapter 3 presents some theoretical framework of the simulation process proposed in

this thesis. Several definitions are made to help formulate the theory statement. Rigid

assumptions of independence between the misspecification test and the main test are

made to serve as a useful starting point to proof the theory. These assumptions are

then relaxed by adding some small measure of dependence. The theory shows that in a

certain situation, the combined procedure can actually be useful with more power.

Chapter 4 first presents a replication of the work done in Zimmerman (2004). This

is followed by the introduction of the suggested framework for our simulation where

two samples are generated randomly either from a distribution that violates the model

assumption or a distribution that does not violate the model assumption. We will call

this framework the combined procedure and proceed to define what it is. A few com-

binations of distributions and hypothesis tests are presented and discussed in terms of

their level and power.

Chapter 5 then continues the simulations by looking at a three stage procedure where

two model assumptions could be tested. First we look at a setup where the main null

hypothesis is that two samples have equal distributions. Two model assumptions are

checked namely the assumption of normality and the assumption of equal variance.

These two model assumption tests choose between three tests; one where both model

assumptions are violated, another when the assumption of normality is not violated but

the assumption of equal variance is violated and lastly one where both model assump-

tions are not violated. This procedure is then repeated in a linear regression problem

where we test the residuals for model assumptions and decide what the final model will

be.
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L I T E R AT U R E R E V I E W

“Remember that all models are wrong; the practical question is

how wrong do they have to be to not be useful.” George E. P. Box

2.1 statistical inference & hypothesis testing

Statistical inference is the process of drawing conclusions about populations or scientific

truths from data. R. A. Fisher (1922) describes the general goal of statistics as follows:

In order to arrive at a distinct formulation of statistical problems, it is necessary to

define the task which the statistician sets himself: briefly, and in its most concrete

form, the object of statistical methods is the reduction of data. A quantity of data,

which usually by its mere bulk is incapable of entering the mind, is to be replaced

by relatively few quantities which shall adequately represent the whole, or which,

in other words, shall contain as much as possible, ideally the whole, of the relevant

information contained in the original data.

This object is accomplished by constructing a hypothetical infinite population, of

which the actual data are regarded as constituting a random sample. The law of

distribution of this hypothetical population is specified by relatively few paramet-

ers, which are sufficient to describe it exhaustively in respect of all qualities under

discussion.

Fisher describes here the characteristics of a statistical inference that consists of infer-

ring using the data observed, a sample, an instance of an underlying model population.

The merit of this approach is that the characteristics of this population can be described

exhaustively by a small number of parameters. This obviously depends on the appro-

priateness of the model population selected.

Fisher then outlines the general task of statistics, specifically the reduction of data,

into three types of problems. First, the problem of specification consisting of forming a

model, which usually cannot be derived and requires deliberation and understanding of
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the way in which the data are supposed to originate to choose the mathematical form of

the distribution. Fisher attributes this step to the logic of inference, typical of his induct-

ive inference, that is, the transition from concrete data to mathematical models. Second,

the problem of estimation whose formulation requires some mathematical-statistical

model. This involves the choice of method to calculate a statistic from a sample, for

example the mean, to estimate the value of the parameter of the hypothesized distribu-

tion. The third problem, the problem of distribution that includes the deduction of the

exact nature of the distribution of the parameter estimates derived from samples. Fisher

continues:

As regards problems of specification, these are entirely a matter for the practical

statistician, for those cases where the qualitative nature of the hypothetical population

is known do not involve any problems of this type. In other cases we may know by

experience what forms are likely to be suitable, and the adequacy of our choice may

be tested a posteriori. We must confine ourselves to those forms which we know how

to handle, or for which any tables which may be necessary have been constructed.

For Fisher, a model is an entire class of hypotheses, and he terms the selection of

one hypothesis from this class as specification. In the significance testing approach

introduced by Fisher, a null hypothesis is potentially rejected on the basis of data that is

significant under its assumption, but the null hypothesis is never accepted or proved.

In 1933, Neyman and Pearson criticized the treatment of the null hypothesis put forth

by Fisher in his statistical testing. Fisher started with a null hypothesis of which a test

might reject the said null hypothesis. To test say another null hypothesis, another test

must be carried out accordingly. Neyman and Pearson insist that the situation must be

treated differently. In other words, a model should have two competing hypothesis, null

versus alternative, whereby a test on the data should be able to choose which hypothesis

is to be preferred. A Neyman-Pearson test, as Neyman interprets it, is a rule of inductive

behaviour as opposed to the then more accepted term inductive reasoning:

to decide whether a hypothesis H, of a given type to be rejected or not, calculate a

specific character x of the observed facts; if x > x0 reject H; if x ≤ x0 accept H

(Neyman and Pearson (1933), p. 291).

Casella and Berger (2002) discussed the distinction between using the term accepting

the null hypothesis and not rejecting the null hypothesis on a philosophical level. What

Neyman and Pearson mean by the term “accept” is not to believe that null hypothesis

is true, but rather to use the null hypothesis as a basis for further action. However,

this is often misunderstood. The term that would be used throughout this thesis is not
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rejecting the null hypothesis. This is simply interpreted as there is not enough evidence

to reject the null hypothesis. This is due to the fact that Fisher did not use an alternative

hypothesis; hence there was no concept of accepting an alternative in his construction of

significance tests. Therefore, rejecting or not rejecting a null hypothesis is identified with

making a specific decision, for example, to publish a result or to announce a new effect.

The set of outcomes related to rejecting the null hypothesis is known as the rejection

region as such;

it may often be proved that if we behave according to such rule, then in the long run

we shall reject H when it is true not more, say, than once in a hundred times, and

in addition we may have evidence that we shall reject H sufficiently often when it is

false (Neyman and Pearson (1933), p. 291).

Later in the same paper, different notations denote the null and alternative hypotheses

namely, H0 and H1 respectively. Subsequently, Neyman and Pearson also introduced

the idea of Type-II error. Errors happen when the wrong decision can be made when

choosing between two opposing hypothesis. One can commit a Type-I error where a true

null hypothesis is mistakenly rejected and a Type-II error where a false null hypothesis

is incorrectly accepted. The assessment of these two errors should be made an objective

of research. Neyman remarked in another paper, Neyman and Iwaszkiewicz (1935), that

“the fewer the errors of one kind, the more there are of the other”.

These two approaches from Fisher and Neyman & Pearson are a cause of many de-

bates and disputes. However up to the present, the way people use these testing pro-

cedures is plagued by at least one of two types of fallacies; the fallacy of acceptance

where no evidence against the null hypothesis is treated as evidence for it and the fal-

lacy of rejection where evidence against the null hypothesis is treated as evidence for

the alternative hypothesis. Several problems relating to hypothesis testing are still being

discussed to this day such as:

(1) how to narrow down an infinite set of all possible models that could have pro-

duced the data to one single model?

(2) how to test the adequacy of the chosen model a posteriori?

(3) how to address the fallacies of rejection and acceptance in practice?

2.1.1 Model Specification

Before Fisher, the notion of statistical modelling was to describe the properties of the

distribution of the data in hand using for example, histograms and the first few sample
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moments as was done by Karl Pearson. This practice is known as the application of

descriptive statistics. Some statisticians would claim generality beyond the data in hand

to make inferences, which is a crucial problem. Descriptive statistics can only be used

to describe data succinctly or describe certain features of a distribution, however, when

the results are extended to generalize the conclusions, “a new set of problems is faced”

Mills (1924). Mills also discussed the assumptions necessary for the validity of statistical

induction, first, there must exist a uniformity with respect to the characteristic measured

from the data, and second, the population is thoroughly represented by the sample from

which the characteristic was derived.

In the beginning of this chapter, Fisher’s 1922 definition of the problem of specifica-

tion, that is the problem of specifying the parametric model, was presented. However,

his discussion on the topic in that particular paper was quite succinct where he confined

the problem as “a matter for the practical statistician”. Specification entails identifying

a set of all models and then from that set of models, derive several plausible candidate

models to represent good approximations to the information provided by the data in

hand. In studies where the properties of the population of interest is known, this prob-

lem of model specification is not an issue. In other cases, Fisher suggests choosing a

suitable model based on experience and testing the choice a posteriori. Lehmann (1990)

states that “Fisher’s statement implies that in his view there can be no theory of model-

ing, no general modeling strategies, but that instead each problem must be considered

entirely on its own merits”. Following this rather strong statement, Fisher suggested

two modelling strategies, namely, confining to models of known form and to consider

more or less elaborate forms according to the volume of data.

According to Lehmann (1990), Neyman was concerned about the practice as well

as the theory of modelling and gave three comments regarding this. First, a complex

phenomena, for example something in reality, is modelled by a combination of “simple

building blocks” chosen through experience and some imagination. This practice makes

this complex phenomenon appear familiar and simple. This comments bears some re-

semblance to Fisher’s suggestion of using models of known form. Secondly, Neyman

made a distinction between two types of models, “interpolatory formulae” and “explan-

atory models”. Interpolatory formulae refer to a convenient and flexible family of distri-

bution that can be used that best fits the data. The latter tries to explain the mechanism

underlying the observed phenomena hence the term “mechanistic” or “theoretical” used

by George Box. Thirdly, Neyman commented about developing a “genuine explanatory

theory” that requires extensive knowledge of the background of the problem.

The problem of specification can be summarized as such. First, one has to acknow-

ledge the existence of a reservoir of models which are well understood and whose prop-
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erties are known or assumed. This is provided by probability and statistical theory

including, but not limited to, univariate and multivariate distributions, stochastic pro-

cesses, linear and generalized linear models. This list seems inexhaustible, however, the

following statement from Box (1979) helps in shortening the list.

... there is no need to ask the question “Is the model true?”. If “truth” is to be the

“whole truth” the answer must be “No”. The only question of interest is “Is the

model illuminating and useful?”.

and from Box and N. R. Draper (1987)

Remember that all models are wrong; the practical question is how wrong do they

have to be to not be useful.

To choose a model that is “useful” falls in the problem of specifying the class of models

from which the selection is to be made, which is the second step in model specification.

Henceforth, model specification will be partitioned into two components; formulation

of a set of candidate models, known as model specification, and choosing a model to be

used in making inference, known as model selection.

2.2 some issues about model assumptions and multiple testing

In this section, a few approaches to checking model assumptions will be discussed as

well as philosophical discussion about doing just that. Finally, an approach to correct

multiple testing will also be presented.

2.2.1 Graphical methods

Informal graphical assessments such as certain scatterplots for independence, others for

constant variance and normal quantile-quantile plots for the adequacy of the Gaussian

model are usually recommended to verify the assumptions of a particular main test, for

example, a Student’s t-test or testing the validity of a regression model by way of the

residuals.

Consider a general statistical modelling problem, specifically a linear regression model

on a set of data points. The linear regression model has a set of assumptions that needs

to be fulfilled in order to validate the inference made from the model. These assump-

tions include;



36 literature review

(1) the linearity between the independent and dependent variables where the expec-

ted value of the dependent variable is a straight-line function of each independent

variable,

(2) the independence of the residuals where residuals are defined as the difference

between an observed value of the dependent variable and the value of the depend-

ent variable predicted from the regression line.

(3) the homoscedaticity of the residuals,

(4) the normality of the residuals distribution.

Graphical methods can be used to check model assumptions. For instance, a scatter

plot of the independent variable against the dependent variable can be used to check

assumption (1) where a linear trend should be observed. An error plot can be used

to check assumptions (2) and (3) where a non-random pattern may suggest violations

of these two assumptions. Finally, assumption (4) can be checked using the quantile-

quantile plot of the residuals. Of course, there are other plots to check these assumptions,

only a subset of those are mentioned here.

2.2.2 Misspecification testing

Even though Fisher and Neyman had their differences, it seems they agreed that check-

ing the assumptions of a statistical model in order to ensure its adequacy is necessary.

R. A. Fisher (1922) stated:

For empirical as the specification of the hypothetical population may be, this empir-

icism is cleared of its dangers if we can apply a rigorous and objective test of the

adequacy with which the proposed population represents the whole of the available

facts. Once a statistic, suitable for applying such a test, has been chosen, the ex-

act form of its distribution in random samples must be investigated, in order that

we may evaluate the probability that a worse fit should be obtained from a random

sample of a population of the type considered.

Neyman (1952) outlined the construction of a mathematical model in which he emphas-

ized testing the assumptions of the model by observation and if the assumptions are

satisfied, then the model “may be used for deductions concerning phenomena to be observed

in the future”.

The idea of misspecification testing came about as early as the early 20
th century when

Pearson introduced the Pearson’s goodness of fit chi-square test. This is a misspecific-

ation test for the adequacy of a distributional assumption, however, the term test of
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goodness of fit was used. The term misspecification (MS) was only seen as early as F. M.

Fisher (1961) for explaining exogenous variables in economic models. This term was

further expanded by Spanos (1999) where he explained a methodology of MS testing

which would be informative in how to specify and validate statistical models, and how

to proceed when certain statistical assumptions are violated. This thesis will use the

terms goodness of fit tests and MS tests interchangeably.

Testing distribution assumptions: Spanos (1999) proceeds to mention a few misspe-

cification tests that are available in the Fisher type tests set of models. The first and

possibly most popular one is the Pearson’s chi-square test. There are also tests based

on the empirical cumulative distribution function such as the Kolmogorov’s test and the

Cramer-Von Mises statistic. These tests quantify the difference of the distances between

the observed data and the hypothesized distribution. Another family of tests are those

based on ordered samples. An example of tests of this kind include the Shapiro-Wilk

test for testing normality. One can also carry out an MS test based on the moments using

properties of the skewness and kurtosis coefficients, for instance the skewness-kurtosis

test given by R. A. Fisher (1930).

Testing dependence assumptions: Some non-parametric tests can be used to test the

dependence assumption including the runs test, Spearman’s rho (ρ) test and Kendall’s

tau (τ) test. Another approach is moment based test for example the Box and Pierce

(1970) and Ljung and Box (1978).

Testing homogeneity of variance assumptions: Some early non-parametric test for the

homogeneity assumption was based on the signs of the differences, two such test are

the Mann (1945) and Daniels (1950). Examples of parametric tests include the χ2-test,

the F-test and the Levene’s test Lehmann (1960).

2.2.3 Controversial views of model checking

The necessity of model checking has been stressed by many statisticians for a long time,

and this is what students of statistics are often taught. At first sight, model checking

seems essential for two reasons. Firstly, statistical methods that a practitioner may want

to use are often justified by theoretical results that require model assumptions, and

secondly it is easy to construct examples for the breakdown of methods in case that

model assumptions are violated in critical ways (e.g., inference based on the arithmetic

mean, optimal under the assumption of normality, applied to data generated from a

Cauchy distribution will not improve in performance for any number of observations

compared with only having a single observation, because the distribution of the mean

of n > 1 observations is still the same Cauchy distribution).
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Regarding the foundations of statistics, checking of the model assumptions plays a

crucial role in Mayo (2018) philosophy of “severe testing”, in which frequentist signific-

ance tests are portrayed as major tools for subjecting scientific hypotheses to tests that

they could be expected to fail in case they were wrong; and evidence in favor of such

hypotheses can only be claimed in case that they survive such severe probing. Mayo

acknowledges that significance tests can be misleading in case that the model assump-

tions are violated, but this does not undermine her philosophy in her view, because the

model assumptions themselves can be tested.

A problem with preliminary model checking is that the theory of the model-based

methods usually relies on the implicit assumption that there is no data-dependent pre-

selection or pre-processing. A check of the model assumptions is a form of pre-selection.

This is largely ignored but occasionally mentioned in the literature. Bancroft (1944)

was probably the first to show how this can bias a model-based method after model

checking. Chatfield (1995) gives a more comprehensive discussion of the issue. Hennig

(2007) coined the term “goodness-of-fit paradox” (from now on called “misspecification

paradox” here) to emphasize that in case that model assumptions hold, checking them in

fact actively invalidates them. Assume that the original distribution of the data fulfills a

certain model assumption. Given a probability α > 0 that the MS test rejects the model

assumption if it holds, the conditional probability for rejection under passing the MS

test is obviously 0 < α, and therefore the conditional distribution must be different from

the one originally assumed. It is this conditional distribution that eventually feeds the

model-based method that a user wants to apply.

How big a problem is the misspecification paradox? Spanos (2010) argues that it is

not a problem at all, because the MS test and the main test “pose very different questions

to data”. The MS test tests whether the data “constitute a truly typical realization of the

stochastic mechanism described by the model”. He argues that therefore model checking and

the model-based testing can be considered separately; model checking is about making

sure that the model is “valid for the data” (Spanos (2018)), and if it is, it is appropriate to

go on with the model-based analysis.

A view opposite to Spanos’ one, namely that model checking and inference given

a parametric model should not be separated, but rather that the problems of finding

an appropriate distributional “shape” and parameter values compatible with the data

should be treated in a fully integrated fashion, can also be found in the literature for ex-

ample Easterling (1976), D. Draper (1995) and Davies (2014)). Davies (2014) argues that

there is no essential difference between fitting a distributional shape, an (in)dependence

structure, and estimating a location (which is usually formalized as parameter of a para-

metric model, but could as well be defined as a nonparametric functional).
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Bayesian statistics allows for an integrated treatment by putting prior probabilities on

different candidate models, and averaging their contributions. Robust and nonparamet-

ric procedures may be seen as alternatives in case that model assumptions of model-

based procedures are violated, but they have also been recommended for unconditional

use by Hampel et al. (1986), making prior model checking supposedly superfluous. All

these approaches still make assumptions; the Bayesian approach assumes that prior

distribution and likelihood are correctly specified, robust and nonparametric methods

still assume data to be i.i.d., or make other structural assumptions. So the checking of

assumptions issue does not easily go away, unless it is claimed (as some subjectivist

Bayesians do) that such assumptions are subjective assessments and cannot be checked

against data.

Another potential objection to model assumption checking is that, again in the fam-

ous words of George Box, “all models are wrong but some are useful”. It may be argued

that model assumption checking is pointless, because we know anyway that model as-

sumptions will be violated in reality in one way or another (e.g., it makes some sense to

hold that in the real world no two events can ever be truly independent, and continuous

distributions are obviously not “true” as models for data that are discrete because of the

limited precision of all human measurement). This has been used as argument against

any form of model-based frequentist inference, particularly by subjectivist Bayesians

(e.g., de Finetti (1974) famous “probability does not exist”). Mayo (2018) however argues

that “all models are wrong” on its own is a triviality that does not preclude a successful

use of models, and that it is still important and meaningful to test whether models are

adequately capturing the aspect of reality of interest in the inquiry, or whether the data

are incompatible with the model in ways that will mislead the desired model-based in-

ference (the latter is our own wording). We broadly agree with this position, although

we note that the current practice of model checking is almost exclusively framed in

terms of whether model assumptions are fulfilled (or “approximately” fulfilled, which

implies that there is a true model that could be approximated) rather than whether data

indicate that the specific use made of the model may be corrupted by specific violations

of the model assumptions, which would seem more appropriate. A purely logical re-

buttal of the view that frequentist methods of inference such as tests can only be valid

if the model assumptions are fulfilled is as follows. The basis of that view is that the

theoretical characteristics of the methods are derived assuming the model, but this does

not imply that their characteristics are so bad as to render inferences invalid if the model

does not hold.

We here investigate model assumptions that concern data generating mechanisms,

and therefore they can be checked against the data. We keep an open mind regarding
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whether preliminary model checking should be recommended “good practice” and even

whether (frequentist) testing is advisable at all; we rather aim at “mapping” the debate

than solving it.

2.2.4 Bonferroni correction

The Bonferroni correction is a multiple comparison correction used when several de-

pendent or independent statistical tests are being performed simultaneously. A given

significance value or Type-I error, α, may be appropriate for each individual test, how-

ever when comparing a set of statistical tests, it can lead to inferences that have a smaller

power, especially if the some of the tests are correlated or dependent. In order to avoid

spurious positives, the alpha value needs to be lowered to account for the number of

tests being performed (Bonferroni (1935)).

Let tests T1, ..., Tn be a set of n test statistics with corresponding p-values p1, ..., pn for

testing hypotheses H1, ..., Hn. In the approach of the classical Bonferroni correction for

multiple tests, the alpha value for each of the n tests is equal to α/n. If any p-value

is less than α/n [pi ≤ α/n, (i = 1, ..., n)], then the corresponding Hi is rejected. The

Bonferroni (1936) inequality,

P
{ n⋃

i=1

(pi ≤ α/n)
}
≤ α , (0 ≤ α ≤ 1)

ensures that the probability of rejecting at least one hypothesis when all the null hypo-

theses are true is at most α.

2.3 testing statistical hypothesis with misspecification tests

Often, in a introductory statistical hypothesis testing course, students are told they can

use a statistical test after checking the assumptions of said test is not violated. Vardeman

and Morris (2003) advised young statisticians to acknowledge a critical fact that “statist-

ical analysis of data can only be performed within the context of selected assumptions, models,

and/or prior distributions”. The authors also advised young statisticians must fully under-

stand what the assumptions imply and should not claim the “usual assumptions” hold

because of the chosen technique’s robustness to violations of the model assumption. One

way to check the violation of an assumption is to use certain graphical methods as it can

give an indication of the conformity to an assumption. At the same time, the student is

taught some statistical tests which can seem as a way to formalise the information the
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student is looking for to make a decision when using graphical methods. Hence the idea

to use an MS test to check the assumptions. For example, using the quantile-quantile

plot one can tell the departure of the quantiles of a sample from the normal distribution

quantiles. This can provide an assessment of how “good” the data fits to the normal

distribution that is graphical, rather than reducing to a numerical summary. However,

this assessment requires more skill to interpret. This leads to the use of statistical tests

to quantify this assessment. Some examples are given in Section 2.3.1.

Suppose a hypothesis of substantial interest is to be tested by a certain test we shall

refer to as a “main test”. To see whether the use of a restricted and possibly incorrect

model or a more general and less precise model is needed, an MS test can be performed

on the adequacy of the restricted model. The MS test has the null hypothesis that a

certain model assumption holds. If this MS test fails to reject, then the restricted model

or “model-based constrained (MC) test” is chosen. Otherwise, an alternative main test

or “alternative unconstrained (AU) test” is used which can be more general which does

not rely on the rejected model assumption.

The idea of the above procedure is indeed appealing; if the restricted model is incor-

rect, the assumptions of the MC test is not valid and therefore MC test should not be

used. However, always using the general and typically less powerful test would be a

waste of power if the restricted model can be used instead. The MC test might also be

preferred because it is simpler to use or explain. As it is not known beforehand whether

the restricted model is applicable, it seems very natural to settle this simply through an

MS test. However, like any other test, the MS test, which should help to decide which

of the two main tests is most appropriate to test the main hypothesis, will make errors

of first and second kind. This may lead to application of the MC test when in fact the

restricted model is inadequate, or to application of the AU test when it is not necessary.

A “combined procedure (CP)” consists of the complete decision rule involving MS test,

MC test and AU test (if specified). We generally assume that the MS test is carried out

on the same data as the main test. Some of the issues discussed below can be avoided

by checking the model on independent data, however such data may not be available,

or this approach may not be preferred for reasons of potential waste of information and

lack of power (in case the “independent” data are obtained by splitting the available

dataset, see Chatfield (1995) for a discussion of this). In any case it would leave open the

question whether the data used for MS testing are really independent of the data used

for the main test, and whether they do really follow the same model.
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The general setup we are interested in here is as follows. Given is a statistical model

defined by some model assumptions Θ,

MΘ = {Pθ , θ ∈ Θ} ⊂ M,

where Pθ , θ ∈ Θ are distributions over a space of interest, indexed by a parameter θ. MΘ

is written here as a parametric model, but we are not restrictive about the nature of Θ.

MΘ may even be the set of all i.i.d. models for n observations, in which case Θ would

be very large. However, in the literature, MΘ is usually a standard parametric model

with Θ ⊆ Rm for some m. There is a bigger model M containing distributions that do

not require one or more assumptions made in MΘ, but for data from the same space.

Given some data z, we want to test a parametric null hypothesis θ ∈ Θ0, which

has some suitably chosen “extension” M∗ ⊂ M so that M∗ ∩ MΘ = MΘ0 , against the

alternative θ 6∈ Θ0 corresponding to M \M∗ in the bigger model.

In the simplest case, there are three tests involved, namely the MS test ΦMS, the MC

test ΦMC and the AU test ΦAU . Let αMS be the level of ΦMS, i.e., Q(ΦMS(z) = 1) ≤ αMS

for all Q ∈ MΘ. Let α be the level of the two main tests, i.e., Pθ(ΦMC(z) = 1) ≤ α for all

Pθ , θ ∈ Θ0 and Q(ΦAU(z) = 1) ≤ α for all Q ∈ M∗. To keep things general, for now we

do not assume that type I error probabilities are uniformly equal to αMS, α, respectively,

and neither do we assume tests to be unbiased (which may not be realistic considering

a big nonparametric M).

The combined procedure is defined as

ΦCP(z) =

 ΦMC(z) : ΦMS(z) = 0,

ΦAU(z) : ΦMS(z) = 1.

This allows the analysis of the characteristics of ΦCP, particularly its effective level

(which is not guaranteed to be ≤ α) and power under Pθ with θ ∈ Θ0 or not, or un-

der distributions from M∗ or M \M∗. General results are often hard to obtain without

making restrictive assumptions, although some exist which will be discussed in Chapter

3. At the very least, simulations are possible picking specific Pθ or Q ∈ M, and in many

cases results may generalize to some extent because of invariance properties of model

and test.

Also of potential interest are Pθ (ΦCP(z) = 1|ΦMS(z) = 0), i.e., the type I error prob-

ability (size) under MΘ0 or the power under MΘ in case the model was in fact passed

by the MS test, Q (ΦCP(z) = 1|ΦMS(z) = 0) for Q ∈ M \MΘ, i.e., the situation that the

model MΘ is in fact violated but was passed by the MS test, and whether ΦCP can com-
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pete with ΦAU in case that ΦMS(z) = 1 (MΘ rejected). These are investigated in some of

the literature, see below.

For example, many researchers have found that the use of an MS test influences the

size of the main test, meaning that Pθ (ΦCP(z) = 1|ΦMS(z) = 0) can be substantially

different from Pθ (ΦMC(z) = 1).

In Chapter 4 we look at the performance of ΦCP in case there is a “hyperprobability”

of having data generated from either Pθ ∈ MΘ or Q ∈ M \MΘ; such a situation in which

both satisfied and violated model assumptions can occur and ΦMS has some distinction

work to do has to our knowledge not yet been analyzed in the literature, which therefore

may give a too pessimistic picture of the performance of the combined procedure.

Many other researchers have found that the use of an MS test to test some model

assumption influences the size of the main test, for example Bancroft (1964), Arnold

(1970), C. V. Rao and Saxena (1981), Saleh and Sen (1983), Moser, Stevens and Watts

(1989), Moser and Stevens (1992), Gupta and Srivastava (1993), Albers, Boon and Kal-

lenberg (1998), Albers, Boon and Kallenberg (2000a) and Albers, Boon and Kallenberg

(2000b).

2.3.1 The problem of whether to pool variances

Historically the first problem for which preliminary MS testing and combined proced-

ures were investigated was whether to assume equal variances for comparing the means

of two samples. Until now this is the problem for which most work investigating com-

bined procedures exists. The Behrens-Fisher problem, named after statisticians Walter

Behrens and Ronald Fisher, generally presents a problem of assessing the equality of

location parameters of samples that come from two populations of the same location-

scale family of distributions where the scale parameter is unknown and not necessarily

equal. It has been demonstrated that the two sample t-test is robust against violations of

equality of variances when sample sizes are equal as shown by P. L. Hsu (1938), Scheffé

(1970), Posten, Yeh and Owen (1982) and Zimmerman (2006). When both variances

and sample size are unequal, the probability of the Type-I error exceeds the nominal

significance level if the larger variance is associated with the smaller sample size and

vice versa, see Zimmerman (2006), Wiedermann and Alexandrowicz (2007), and Moder

(2010). In this case, Welch’s t-test presented in Welch (1938), Satterthwaite (1946) and

Welch (1947) is recommended as a adequate alternative, see also Rasch, Kubinger and

Moder (2011). Scheffé (1970) discussed some other practical solutions to the Behrens-

Fisher problem like the d-solutions, Welch-Aspin solution, Behrens-Fisher solution and

Student solution.
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Bancroft (1944) investigated the bias when estimating the variance for an analysis of

variance test. By using an F test as an MS test to test the homogeneity of the variance, he

decides to use either a pooled estimate (n1s2
1 + n2s2

2)/(n1 + n2) as an estimate of σ2
1 or s2

1

as an estimate of σ2
1 depending on the decision made by the F test. Bancroft concluded

that the lowest bias can be had by always pooling the estimate and not use the MS test

to check the model assumption.

Starting from Bancroft’s work, from the end of the 1940s, a good amount of research

was done on the problem of pooling variances, much of which concerned the estima-

tion of means and the corresponding mean squared errors, but some work also dealt

with combined testing procedures. Bancroft and Han (1977) published a comprehens-

ive bibliography, also including other problems of preliminary assumption testing. One

reason for the popularity of the variance pooling problem in early work is that, as long

as normality is assumed, only the ratio of the variances needs to be varied to cover the

case of violated model assumptions, which makes it easier to achieve theoretical results

without computer-intensive simulations.

C. A. Markowski and E. P. Markowski (1990) evaluated the setup of having a MS test

of homogeneity, the F-test, before doing a t-test for various combinations of sample size

and significance level. The samples were drawn from normal distributions, a contam-

inated normal distribution with a higher frequency of outliers, the exponential distri-

bution and the chi-squared distribution. For data with non-normal distributions, the

results supports those of Box (1979) where Box strongly discourages the use of the F-

test as an MS test. For situation with data generated from the normal distribution, the

MS test was either unnecessary or ineffective as an MS test to alert the researcher that

a t-test may be inappropriate. For equal sample sizes, no MS test is needed as the t-test

is robust enough. However, for unequal sample sizes, the t-test is not so robust and the

authors note that a more effective MS test would be desirable.

Zimmerman (2004) investigated the rejection rates of a two-stage procedure consisting

of an MS test, specifically the Levene test on samples of different sizes with equal and

unequal variances followed by either a pooled-variance Student t-test or a separate-

variance Welch t-test. Two samples from the normal distribution were generated and

put through the unconditional Student t-test, Welch t-test and the two-stage procedure.

The simulation results strengthen his views against MS testing for equality of variances.

The final recommendation is to use the Welch t-test unconditionally, especially when the

sample sizes are unequal.

Also, there are considerable evidence that the separate-variance Welch t-test is super-

ior to a pooled-variance t-test when variances are unequal as discussed by Cohen (1974),

Zimmerman and Zumbo (1993), Overall, Atlas and Gibson (1995) and Ruxton (2006).
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Example of an MS test of variance homogeneity: The Levene’s test In the case where two

groups are involved, the Levene’s test tests the hypothesis that both groups have equal

variance, namely

H0 : σ1 = σ2 against H1 : σ1 6= σ2.

The version of Levene’s test considered to be the best in Brown and Forsythe (1974) and

Conover, M. E. Johnson and M. M. Johnson (1981) is the one-way analysis of variance

F-test based on zij = |yij − ỹi|, where ỹi is the median of {yij : i = 1, ..., k, j = 1, ..., ni}.
The test statistic is

F =
N − k
k− 1

∑k
i=1 ni(z̄i· − z̄··)2

∑k
i=1 ∑ni

j=1(zij − z̄i·)2

where

z̄i· =
ni

∑
j=1

zij

ni
and z̄·· =

k

∑
i=1

ni

∑
j=1

zij

N
.

This test statistic is not exactly distributed as the usual F-distribution with k − 1 and

N − k degrees of freedom. However Lehmann (1960) showed by simulation that the

usual F statistic provides a good approximation (Gastwirth, Gel and Miao (2009)).

2.3.2 Tests of normality in one-sample and two-sample problem

In any introductory statistical methods text, one of the most basic topics is statistical

hypothesis testing, especially concerning the inference of a population mean, µ. The

primary tool to test an hypothesis about a population mean is the Student t-test. Ever

since the work of Gosset (“Student”) (1908) and R. A. Fisher (1925) on statistical infer-

ence about differences in means, specifically the Student’s t-test, a good deal of research

focused on the properties of the t statistic. Some assumptions were needed to be made

in order for the two sample Student’s t-test to perform optimally for the comparison of

means from independent samples. The assumptions are of normality, homoscedasticity

and independence of the observations made. When these assumptions are met, the two

sample Student’s t-test was shown to perform optimally for the comparison of means

of two samples as shown in Hodges and Lehmann (1956) and Randles and Wolfe (1979).

However, in empirical data, violations of one or more assumptions always exists, and

the robustness properties of significance tests are of great interest.

Early theoretical findings suggest that the two sample t-test is fairly robust against vi-

olations of the normality assumption shown by Bartlett (1935). Bartlett (1935) concluded

that the theoretical results are “incomplete and not perhaps of much quantitative value”,

however the t-test may still be used for moderate departures from normality particularly

when the two samples have equal number of observations. Keselman, Othman and Wil-
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cox (2013) discussed different types of MS testing for normality and presented some

literature about how in the not too distant past, it was claimed that violations of normal-

ity would not jeopardise scientific findings. In the situation where the F-test is used in

an ANOVA procedure to test the similarity of means across groups, T. C. Hsu and Feldt

(1969) claim that some moderate skewness or kurtosis has little effect on the Type-I er-

ror of the F-test and Lunney (1970) even investigated how dichotomous variables affect

the ANOVA test that requires the normality assumption. However, the opinion seems

to have shifted to the opposite as shown in numerous simulation studies, for example,

Boneau (1960), Neave and Granger (1968), Posten (1978), Posten (1984) and Rasch and

Guiard (2004). Although the two sample t-test is able to protect the nominal signific-

ance level α under non-normality, considerable evidence exists that the non-parametric

Wilcoxon-Mann-Whitney U-test is robust and even more powerful compared to the t-test

under non-normal distributions as discussed by Hodges and Lehmann (1956), Neave

and Granger (1968), Randles and Wolfe (1979) and Sawilowsky and Blair (1992).

Most software packages provide optional test results for the Gaussian (normality)

assumption and homogeneity of variance. The Gaussian distribution is the most well-

known and widely used distribution in many fields such as engineering, statistics and

physics. One of the major reasons why the Gaussian distribution has become so prom-

inent is because of the Central Limit Theorem. Especially when there is no information

about the distribution of observations, the Gaussian assumption appears as the most

reasonable choice (S. Park, Serpedin and Qaraqe (2013)). This is true when the sample

size is sufficiently large.

As with informal assessments, the interpretation of the results is very much subject-

ive. Therefore, some formal tests are sometimes used in place of informal assessments.

Examples for tests of normality include, but not limited to, the Kolmogorov-Smirnov

test, the Shapiro-Wilk test, the Pearson chi-square test, the Lilliefors test, the Jarque-Bera

test and the Anderson-Darling test. Razali and Wah (2011) concluded that Shapiro-Wilk

has the best power for a given level, when comparing the Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefor and Anderson-Darling tests. This result concurs with Mendes and

Pala (1990), Farrell and Rogers-Stewart (2006) and Keskin (2006). The Anderson-Darling

test was a close second.

However, normality can never be proven. Observations obtained in any experiment

are limited in their precision. Most measurements taken are truncated numbers. It is a

fact that the normal distribution is symmetric about its mean and is non-zero over the

entire real line. Hence, no values measured or obtained from an experiment is ever truly

normal.
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Take for example a one-sample Student’s t-test that is used when an inference about

the population is made for a sample of n independent observations X1, X2, ..., Xn from a

distribution F . The t-test assumes that the underlying population distribution is normal.

This assumption is often checked by an MS test. The two-stage procedure is as follows:

if the MS test is not significant, the one sample t-test is applied; if the MS test rejects

the null hypothesis of normality, a non-parametric test is done. The idea behind this

procedure is clear: in all practical situations, the researcher does not know in advance

whether or not the assumption of normality is satisfied; this issue is usually decided

on after inspection of the sample data. Consequently, preliminary testing for normality

before proceeding with the final statistical test is very common for example, as discussed

in Wilcox (1998) and Schoder, Himmelmann and Wilhelm (2006).

Easterling and Anderson (1978) provides objective evidence in support of MS testing

for goodness of fit. They did this because they believed that the practice of this two-

stage procedure is not only conventional, but also good. To do this they considered

various distributions such as normal, uniform, exponential, two central and two non-

central t distributions. They only considered sample sizes 10 and 20. They drew a

random sample from the distribution that is being studied and tested for normality

at 10% significance. The samples that were not rejected by the MS test is categorised

under “normality significant at 10%” and the samples that were rejected were categor-

ised under “normality not significant at 10%” until 1000 samples are obtained in each

category. They used both the Anderson-Darling and the Shapiro-Wilk MS tests. After

obtaining those samples, the empirical distribution of the 1000 t values were compared

to the expected frequencies from the Student’s t distribution. As expected, there were no

issues when the samples were drawn from the normal distribution. However, for sym-

metrical non-normal distributions, the results were mixed and for situations where the

distributions were asymmetric, the results were not in the favour of the model checking

before the main test because the distribution of the t values do not resemble a Student’s

t distribution. They offer the following as possible reasons this is so:

There are various reasons why the distributions of the t ratio in the cases considered

might not follow a Student’s t distribution —the nonnormality of the numerator,

the nonzero expectation of the numerator, the nonchi-squareness of the square of

the denominator, and lack of independence of numerator and denominator. For the

asymmetric sampling distributions, the empirical distributions of t (not shown in

this paper) suggest that the preliminary goodness of fit test causes a shift in mean.

In order to obtain a sample from such a distribution which would pass a test for

normality (which includes symmetry as a property) that sample would have to have

fewer observations in the elongated tail than are expected.
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To investigate this, they adjusted the numerator by replacing the true mean with the

mean of the 1000 sample mean to adjust for a shift in mean. This did not improve

the results. They then continued to analyse the rejection rates of the empirical t values.

Again, the same results hold, the distribution of the t values does not resemble the em-

pirical t values based on the chi-square statistic. A discussion followed that MS testing

for normality is not the proper thing to do when estimating the normal theory interval

or difference of the means. A non-parametric estimation approach was proposed. If a

probability model is to be used as a reporting device to discover and describe patterns

of variability, then MS testing is recommended. Therefore, it was also proposed that

goodness of fit and estimation be done simultaneously by finding parameter regions for

which an MS test statistic for a completely specified distribution is smaller than some

percentage point on the null distribution of that statistic (Easterling (1976)).

Schucany and Ng (2006) investigated the Type I error rate of the one sample t-test

given that the sample has passed the MS test, the Shapiro-Wilk test for normality, named

the conditional Type I error rate. Data were sampled from normal, uniform, exponential

and Cauchy populations. The simulation study showed that, for the uniform distribu-

tion, screening of samples by an MS test for normality leads to a more conservative

conditional Type I error rate than application of the one-sample t-test without MS test-

ing. In contrast, for the exponential distribution, the conditional Type I error rate is

even more elevated than the Type I error rate of the t-test without MS testing (i.e. the

unconditional Type I error rate) which is already above the nominal level. Furthermore,

larger sample sizes and more liberal significance levels of the MS test shift the condi-

tional Type I error rate even further away from the unconditional Type I error rate of

the t-test and also from the nominal level, leading to either more conservative of more

liberal test decisions. This common feature of the uniform and exponential distributions

is especially interesting to note as, in both cases, the t-test without MS testing show an

acceptable Type I error rate at least for sample sizes of n = 50.

Rochon and Kieser (2011) investigated the reasons behind the characteristics of the

one sample t-test with MS testing for normality. Samples were drawn from the exponen-

tial, lognormal, uniform, Student’s t with 2 degrees of freedom and standard normal

distributions that had passed the pretest. The Shapiro-Wilk test and the Lilliefors modi-

fication of the Kolmogorov Smirnov test was used. However, it was found that the

results from the two MS tests were similar, therefore only results from the Shapiro-Wilk

test were presented. For the exponential and lognormal distributions, the Type I error

rate is elevated for samples tested without model checking and it is further increased by

the MS test for normality. The inspection of the densities of the samples that pass the

MS test shows that the closer the underlying population distribution is to the normal,
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the less important an MS test is. Consequently, the further away the population distri-

bution is from normal, the MS screening in fact selects samples that look like normal

and thus can no longer be considered representative of the true underlying population.

They concluded that formal MS testing for normality cannot be recommended. Alternat-

ives such as the unconditional t-test relying on the normal approximation of reasonably

large sample sizes by way of the Central Limit Theorem taking into account that the one

sample t-test is more sensitive to skewness than to heaviness or lightness of the tails (P. V.

Rao (1998)). If it is at least suspected or assumed that the underlying population distri-

bution is symmetric, a non-parametric application such as the Wilcoxon-Mann-Whitney

signed-rank test could be considered. In any case, it is recommended that checking the

model assumption must be derived from external data sources and not from the data

set at hand.

Rochon, Gondan and Kieser (2012) more recently examined the reasons behind the

characteristics of the one-sample t-test with MS testing for normality. Data were sampled

from the exponential, uniform and normal distributions. Two strategies were used. The

first strategy is the usual way of MS testing where both a two sample t-test is conducted

if both samples had passed the Shapiro-Wilk test for normality. Otherwise, the Mann-

Whitney U test is performed. In the second strategy, the MS test is done once on the

collapsed set of residuals from both samples. The conditional and unconditional Type

I error were calculated. They concluded from a formal perspective, that MS testing for

normality is incorrect and therefore should be avoided. They recommended that the

assumption of normality must come from extra-data sources such as results of earlier

trials or pilot studies (Lewis (1999)). From a practical perspective however, MS testing

does not seem to cause much harm in the cases they have considered. The worse that

can be said about MS testing is that it is unnecessary.

Keselman, Othman and Wilcox (2013) discussed different types of MS testing for nor-

mality. They used the Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling

MS tests, 26 different shape distribution (14 distributions with different skewness and

kurtosis values, 8 contaminated normal mixture models and 4 multinomial models), 3

sample sizes and 4 different level of significance. They concluded that the Anderson-

Darling test is the most effective at detecting non-normality and they suggested that

the MS test be carried out at significance level larger than 0.05, for example 0.15 or

0.20 to increase power. According to Razali and Wah (2011), where the authors made

power comparisons of the Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-

Darling tests, they concluded that the Shapiro-Wilk test has the largest power to reject

normality which is slightly better compared to the Anderson-Darling test.
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Example of an MS test of normality: The Shapiro-Wilk test The Shapiro-Wilk test tests the

null hypothesis that a given sample comes from a population that is normally distrib-

uted against the alternative that the sample does not come from a normally distributed

population. The original test was proposed in Shapiro and Wilk (1965) and was limited

for sample sizes between 3 and 50. They claimed that this test is sensitive to outliers

and Althouse, Ware and Ferron (1998) claims that the Shapiro-Wilk test was the first

test for normality that was able to detect departures due to either skewness or kurtosis,

or both. Then, J. P. Royston (1982) extended the range of sample sizes up to 2000 and

later extended the sample size restriction to 5000 in P. Royston (1992). P. Royston (1995)

provided an algorithm called AS R94 to provide approximate p-values for 3 ≤ n ≤ 5000

where the calculation of the p-value is exact for n = 3 and approximations are used

separately for 4 ≤ n ≤ 11 and n ≥ 12. The Shapiro-Wilk test statistic is given below

W =

(
∑n

i=1 aiyi
)2

∑n
i=1
(
yi − ȳ

)2

where y1 < y2 < ... < yn is an ordered sample of size n, ȳ is the sample mean and

a = (a1, a2, ..., aN)
T is such that (n− 1)−

1
2 ∑ aiyi is the best linear unbiased estimate of

the standard deviation of yi, assuming the null hypothesis of normality.

2.3.3 More than one misspecification test

Rasch, Kubinger and Moder (2011) assessed the statistical properties of a three-stage

procedure including testing for normality and for homogeneity of the variances. They

considered 5 distributions with different location, spread, skewness and kurtosis para-

meters. Various sample sizes, equal and unequal, and different ratios of the standard

deviation were considered. They considered three main statistical tests, the Student’s t-

test, the Welch’s t-test and the Wilcoxon-Mann-Whitney U-test. For the MS testing, they

used the Kolmogorov-Smirnov test for testing normality and the Levene’s test for testing

the homogeneity of the variances of the two samples that were generated. If normality

was rejected by the Kolmogorov-Smirnov test, the Wilcoxon-Mann-Whitney U-test was

used. If normality was not rejected, the Levene’s test was run and if homogeneity was

rejected, the Welch’s t-test was used and if homogeneity was not rejected, the standard

t-test was used. The authors presented the rejection rates and the power of the pro-

cedure and compared it with the tests when the model assumption were not checked.

The authors concluded that assumptions underlying the two sample t-test should not be
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pre-tested because “pre-testing leads to unknown final Type I and Type II risks if the respective

statistical tests are performed using the same set of observations”.

To our knowledge this is the only investigation of a combined procedure involving

more than one MS test. Spanos (2018) proposed a “probabilistic reduction” approach

in order to systematise the process of model building involving MS testing of various

assumptions, but he did not define a fully automatised procedure that could be invest-

igated by means of theory or simulation.

2.3.4 Regression

In standard linear regression,

yi = β0 + β1x1i + . . . + βpxpi + ei, i = 1, . . . , n,

with response Y = (y1, . . . , yn) and explanatory variables Xj = (xj1, . . . , xjn), j = 1, . . . , p.

e1, . . . , en are in the simplest case assumed i.i.d. normally distributed with mean 0 and

equal variances.

The regression model selection problem is the problem to select a subset of a given set

of explanatory variables {X1, . . . , Xp}. This can be framed as a model misspecification

test problem, because a standard regression assumes that all variables that systematically

influence the response variable are in the model. If it is of interest, as main test problem,

to test β j = 0 for a specific j, the MS test would be a test of null hypotheses βk = 0 for

one or more of the explanatory variables with k 6= j. The MC test would test β j = 0 in

a model with Xk removed, and the AU test would test β j = 0 in a model including Xk.

This problem was mentioned as a second example in Bancroft (1944) seminal paper on

preliminary assumption testing.

Traditional model selection approaches such as forward selection and backward elim-

ination are often based on such tests and have been analyzed (and criticized) in the

literature. We will not review this literature here. There is sophisticated and innov-

ative literature on post-selection inference in this problem. Berk et al. (2013) propose

a procedure in which main inference is adjusted for simultaneous testing taking into

account all possible submodels that could have been selected. Efron (2014) uses boot-

strap methods to do inference that takes the model selection process into account. Both

approaches could also involve other MS testing such as of normality, homoscedasticity,

or linearity assumptions, as long as combined procedures are fully specified. For spe-

cific model selection methods there now exists work allowing for exact post-selection

inference, see Lee et al. (2016). For a critical perspective on these issues see Leeb and
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Pötscher (2005) and Leeb and Pötscher (2015). In econometrics, David Hendry and

co-workers developed an automatic modeling system that involves MS testing and con-

ditional subsequent testing with adjustments for decisions in the modeling process, see

for example, Hendry and Doornik (2014). Earlier, some authors such as Saleh and Sen

(1983) analyzed the effect of preliminary testing on later conditional main testing.

Godfrey (1988) listed a plethora of MS tests to test the various assumptions of linear re-

gression. However, no systemic way to apply these tests was discussed. In fact, Godfrey

noted that the literature left more questions open rather than answered. Some of these

questions are: (i) the choice among different MS tests, (ii) whether to use nonparametric

or parametric tests, (iii) what to do when any of the model assumptions are invalid

as well as (iv) some potential problems with MS testing such as repeated use of data,

multiple testing and pre-test bias. Godfrey (1996) discussed destructive and construct-

ive value of MS tests. He concluded that efforts should be made to develop ‘attractive’,

useful and simple combined procedures, keeping in mind that the combination of tests

must be well-behaved. One suggestion was to use the Bonferroni correction for each test

as “the asymptotic dependence of test statistics is likely to be the rule, rather than the exception,

and this will reduce the constructive value of individual checks for misspecification”.

D. E. A. Giles and J. A. Giles (1993) reviewed the substantial amount of work done

in econometrics regarding preliminary testing in regression up to that time, a limited

amount of which is about MC and/or AU tests conditionally on MS tests. This involves

pre-testing of a known fixed variance value, homoscedasticity, and independence against

an autocorrelation alternatives. The cited results are mixed. King and D. E. A. Giles

(1984) comment positively on a combined procedure in which absence of autocorrelation

is tested first by a Durbin-Watson or t-test. Conditionally on the result of that MS test,

either a standard t-test of a regression parameter is run (MC test) or a test based on

an empirically generalized least squares estimator taking autocorrelation into account

(AU test). In simulations the combined procedure performs similar to the MC test and

better than the AU test in absence of autocorrelation, and similar to the AU test and

better than the MC test in presence of autocorrelation. Also here it is recommended

to run the MS test at a level higher than the usual 5%. Most related post-1993 work in

econometrics seems to be on estimation after pre-testing, and regression model selection.

Ohtani and Toyoda (1985) propose a combined procedure for testing linear hypotheses

in regression conditionally on testing for known variance. Toyoda and Ohtani (1986) test

the equality or different regressions conditionally on testing for equal variances. In both

papers power gains for the combined procedure are reported, which are sometimes but

not always accompanied with an increased type I error probability.
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2.3.5 MS testing in applied research

Kim (2015) and Kim and J. H. Park (2019) suggests using the Shapiro-Wilk (SW) or

Kolmogorov-Smirnov test to test the normality assumption of a t-test, if normality as-

sumption is rejected, the WMW test should be used. Kim (2015) then suggests to use

the Levene’s or Barlett’s test to check the equal variance assumption. If the assumption

of equal variance is rejected, the Welch’s t-test is performed.

Shan, Hwang and Wong (2017) took an empirical survey of 30 Singapore based con-

struction companies. After collecting the data, they carried out a SW test to test for

normality. The Kruskal-Wallis and WMW tests were used as SW rejected the normal-

ity assumption for the variables of interest. Hwang et al. (2017) conducted a survey

of residents of houses that have been green retrofitted. The SW test was used to test

normality and since all the variables of interest had the normality assumption rejected,

the Kruskal-Wallis test was used for further analysis.

Kokosińska et al. (2018) studied heart rate variability in six groups of patients where

one of the groups are healthy patients. The study used a SW test to test the normality

of each group of patients. If normality is rejected, they used a WMW test to test the

mean difference in heart rate variability between groups. If normality is not rejected,

they used a standard t-test.

W. Wu et al. (2019) aimed to compare design review and assessment of a tiny house

between novice students and professional experts using virtual reality and mixed reality

technologies. The data collected was in count form which are numeric and discrete. A

SW test was performed to determine the normality of the samples in order to select

“what t-test should be used”. The SW test did not reject normality and the standard

t-test was used.

These studies show that the combined procedure is still used implicitly without being

defined formally in a wide range of research areas.
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S O M E T H E O R E T I C A L R E S U LT S

“That’s all well and good in practice, but how does it work in

theory?” Shmuel Weinberger

3.1 the setup

Let Pθ be a distribution that fulfills the model assumptions of the MC test, and Q ∈
M \MΘ a distribution that violates these assumptions. For considerations of power, let

the null hypothesis of the main test be violated, i.e., θ 6∈ Θ0 and Q 6∈ M∗ (an analogous

setup is possible for considerations of size). The general setup we are interested in here

is as follows. Given is a statistical model defined by some model assumptions Θ,

MΘ = {Pθ , θ ∈ Θ} ⊂ M,

where Pθ , θ ∈ Θ are distributions over a space of interest, indexed by a parameter θ. MΘ

is written here as a parametric model, but we are not restrictive about the nature of Θ.

MΘ may even be the set of all i.i.d. models for n observations, in which case Θ would

be very large. However, in the literature, MΘ is usually a standard parametric model

with Θ ⊆ Rm for some m. There is a bigger model M containing distributions that do

not require one or more assumptions made in MΘ, but for data from the same space.

Given some data z, we want to test a parametric null hypothesis θ ∈ Θ0, which

has some suitably chosen “extension” M∗ ⊂ M so that M∗ ∩ MΘ = MΘ0 , against the

alternative θ 6∈ Θ0 corresponding to M \M∗ in the bigger model.

In the simplest case, there are three tests involved, namely the MS test ΦMS, the MC

test ΦMC and the AU test ΦAU . Let αMS be the level of ΦMS, i.e., Pθ(ΦMS(z) = 1) ≤ αMS

for all P ∈ MΘ. Let α be the level of the two main tests, i.e., Pθ(ΦMC(z) = 1) ≤ α for all

Pθ , θ ∈ Θ0 and Q(ΦAU(z) = 1) ≤ α for all Q ∈ M∗. To keep things general, for now we

do not assume that type I error probabilities are uniformly equal to αMS, α, respectively,
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and neither do we assume tests to be unbiased (which may not be realistic considering

a big nonparametric M).

The combined test is defined as

ΦCP(z) =

 ΦMC(z) : ΦMS(z) = 0,

ΦAU(z) : ΦMS(z) = 1.

Assume that a dataset is with probability λ ∈ [0, 1] generated from Pθ and with prob-

ability (1− λ) from Q (we stress that as opposed to standard mixture models, λ governs

the distribution of the whole dataset, not every single observation independently). The

cases λ = 0 and λ = 1 are those that have been treated in the literature, but only if

λ ∈ (0, 1) the ability of the MS test to inform the researcher whether the data are more

likely from Pθ or from Q is actually required. This setup challenges the MS test to dis-

tinguish between these two situations, which is different than the setup treated in the

literature.

Several simulations were ran in Chapter 4. Looking at the nominal levels in the

simulation, it is hard to choose a “winner” between MC, AU or CP as the levels were

very often, though not always, respected under H0 (namely for both Pθ , θ ∈ Θ0 and

Q ∈ M∗). However, in the power simulations where H0 was violated, a pattern emerged.

For λ = 0 (model assumption violated), the AU test was best and the MC test was worst.

For λ = 1, the MC test was best and the AU test was worst. The CP was in between

which was mostly the case in our simulations. The consequence of this is that the CP

performs clearly better than both MC and AU over the the best part of the range of λ.

For all the tests mentioned hereafter, we are in the situation where the null hypotheses

are violated. The events of rejection of the respective H0 are denoted RMS = {ΦMS(z) =

1}, RMC = {ΦMC(z) = 1}, RAU = {ΦAU(z) = 1}, RCP = {ΦCP(z) = 1}. In the case

that we are in Pθ and ΦMC is used, the probability of rejecting the null hypothesis is

Pθ(RMC). In the case that we are in Pθ and ΦAU is used, the probability of rejecting the

null hypothesis is Pθ(RAU). In the case that we are in Q and ΦMC is used, the probability

of rejecting the null hypothesis is Q(RMC). In the case that we are in Q and ΦAU is used,

the probability of rejecting the null hypothesis is Q(RAU).

We define the differences between the powers of the tests in either Pθ or Q as below;

(a) ∆MC = Pθ(RMC)−Q(RMC)

(b) ∆AU = Pθ(RAU)−Q(RAU)

(c) ∆Pθ
= Pθ(RMC)− Pθ(RAU)

(d) ∆Q = Q(RAU)−Q(RMC).
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We assume that both ∆Pθ
, ∆Q > 0 because 0 ≤ Pθ(RMC), Pθ(RAU), Q(RMC), Q(RMC) ≤ 1

and also in the case that we are in Pθ , ΦMC is expected to perform better compared to

ΦAU . Conversely, ΦAU is expected to perform better in Q compared to ΦMC.

We define T1 meaning that Pθ was selected by the Bernoulli (λ)-experiment select-

ing the distribution, and T2 is when Q was selected. We further define P(T1) = λ,

P(T2) = 1− λ, P(RMC|T1) = Pθ(RMC), P(RMC|T2) = Q(RMC), P(RAU |T1) = Pθ(RAU)

and Q(RMC|T2) = Q(RAU).

The powers of the MC and AU test in the setup where it could be in either situation

T1 or situation T2 is defined as follows;

Pλ(RMC) = P(RMC ∩ T1) + P(RMC ∩ T2)

= P(RMC|T1)P(T1) + P(RMC|T2)P(T2)

= Pθ(RMC)P(T1) + Q(RMC)P(T2)

= λPθ(RMC) + (1− λ)Q(RMC)

= λ
[
Pθ(RMC)−Q(RMC)

]
+ Q(RMC)

= λ∆MC + Q(RMC). (1)

Similarly,

Pλ(RAU) = P(RAU ∩ T1) + P(RAU ∩ T2)

= P(RAU |T1)P(T1) + P(RAU |T2)P(T2)

= Pθ(RAU)P(T1) + Q(RAU)P(T2)

= λPθ(RAU) + (1− λ)Q(RAU)

= λ
[
Pθ(RAU)−Q(RAU)

]
+ Q(RAU)

= λ∆AU + Q(RAU). (2)

This shows that the powers of the MC and AU are linear on λ with slopes ∆MC and

∆AU respectively as shown in Equation 1 and Equation 2.

Let’s then consider a combined procedure where the model assumption is tested using

an MS test. Depending on the outcome of the MS test (ΦMS), either ΦMC or ΦAU is used.

Let the MS test have Type I error (αMS) where Q is assumed when we are in fact in Pθ and

Type II error (1− α∗MS) where Pθ is assumed when in fact we are in Q. This combined

procedure would have eight possible outcomes, four of which are rejection; (i) in Pθ , MS

testing not rejecting model assumption and using ΦMC to test the main hypothesis, (ii)

in Pθ , MS testing rejecting the the model assumption and using ΦAU to test the main

hypothesis, (iii) in Q, MS testing rejecting the model assumption and using ΦAU to
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test the main hypothesis and (iv) in Q, MS testing not rejecting the model assumption

and using ΦMC to test the main hypothesis. The results from these four situations are

summarised in a ‘global’ rejection rate for the combined procedure Pλ(RCP). Note that

Rc
MS is the non-rejection of the MS test. From the law of total probability,

Pλ(RCP) = P(RAU ∩ RMS ∩ T1) + P(RMC ∩ Rc
MS ∩ T1) + P(RAU ∩ RMS ∩ T2)

+ P(RMC ∩ Rc
MS ∩ T2)

= P(RAU |RMS ∩ T1)P(RMS ∩ T1) + P(RMC|Rc
MS ∩ T1)P(Rc

MS ∩ T1)

+ P(RAU |RMS ∩ T2)P(RMS ∩ T2) + P(RMC|Rc
MS ∩ T2)P(Rc

MS ∩ T2)

= P(RAU |RMS ∩ T1)P(RMS|T1)P(T1) + P(RMC|Rc
MS ∩ T1)P(Rc

MS|T1)P(T1)

+ P(RAU |RMS ∩ T2)P(RMS|T2)P(T2) + P(RMC|Rc
MS ∩ T2)P(Rc

MS|T2)P(T2).

For simplicity, P(T1) = λ, P(T2) = 1 − λ, P(RMS|T1) = αMS, P(Rc
MS|T1) = 1 − αMS,

P(RMS|T2) = α∗MS, P(Rc
MS|T2) = 1− α∗MS, P(RAU |RMS ∩ T1) = Pθ(RAU |RMS),

P(RMC|Rc
MS ∩ T1) = Pθ(RMC|Rc

MS), P(RAU |RMS ∩ T2) = Q(RAU |RMS) and

P(RMC|Rc
MS ∩ T2) = Q(RMC|Rc

MS).

Pλ(RCP) = λ
[
Pθ(RAU |RMS)αMS + Pθ(RMC|Rc

MS)(1− αMS)
]

+ (1− λ)
[
Q(RAU |RMS)α

∗
MS + Q(RMC|Rc

MS)(1− α∗MS)
]
. (3)

This shows that the rejection probability of the combined procedure is a weighted

mean of rejection probabilities of the model-based and the alternative procedure. One

may wonder why, if this is the case, the combined procedure can have a rejection prob-

ability that is higher than both of these. The reason is that the two rejection probabilities

here are not unconditional, but conditional on the decision of the misspecification test,

and if the misspecification test does a good job, one should expect that the conditional

probabilities are larger than the unconditional ones. Therefore the combined procedure

can indeed be better than both unconditional rejection probabilities of the model-based

and alternative procedure. Equation (3) will be used in the next section as a starting

point for two lemmas that will be presented.
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3.2 a positive result for combined procedures

In this section we present a point of view and a result that makes us think somewhat

more positively about combined procedures and the impact of preliminary model test-

ing. A characteristic of the literature analyzing combined procedures is that they com-

pare the combined procedure with unconditional MC or AU tests both in situations

where the model assumption of the MC test is fulfilled, or not fulfilled. However, they

do not investigate a situation in which the MS test can do what it is supposed to do,

namely to distinguish between these situations. From hereonafter, we require four as-

sumptions:

(I) ∆Pθ
= Pθ(RMC)− Pθ(RAU) > 0,

(II) ∆Q = Q(RAU)−Q(RMC) > 0,

(III) α∗MS = Q(RMS) > αMS = Pθ(RMS),

(IV) Both RMC and RAU are independent of RMS under both Pθ and Q.

Keep in mind that this is about power, i.e., the H0 of the main test is violated for both

Pθ and Q. Assumption (I) means that the MC test has the better power under Pθ , (II)

means that the AU test has the better power under Q. Assumption (III) means that the

MS test has some use, i.e., it has a certain (possibly weak) ability to distinguish between

Pθ and Q. All these are essential requirements for preliminary model assumption testing

to make sense. Assumption (IV) though is very restrictive. It asks that rejection of the

main null hypothesis by both main tests is independent of the decision made by the MS

test. This is unrealistic in most situations. Approximate independence of the MS test

and the main tests is an important desirable feature of a combined test, and it should

not come as a surprise that a condition of this kind is required.
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Lemma 1 Assuming (I) - (IV), ∃λ ∈ (0, 1) such that Pλ(RCP) > P(RMC), Pλ(RCP) >

P(RAU) in the situation that the null hypothesis of the main test is violated.

Proof. By (I), for λ = 1 : Pλ(RMC) > Pλ(RAU) and, by (II), for λ = 0 : Pλ(RAU) >

Pλ(RMC). As Pλ(RMC) and Pλ(RAU) are linear functions of λ, there must be λ∗ ∈ (0, 1)

so that Pλ∗(RAU) = Pλ∗(RMC). Obtain

Pλ∗(RMC) = Pλ∗(RAU)

λ∗∆MC + Q(RMC) = λ∗∆AU + Q(RAU)

λ∗(∆MC − ∆AU) = ∆Q

λ∗(∆Pθ
+ ∆Q) = ∆Q (from (a), (b), (c) & (d))

λ∗ =
∆Q

∆Pθ
+ ∆Q

∈ (0, 1). (4)

Using assumption (IV), (3) now becomes

Pλ(RCP) = λ
[
Pθ(RAU)αMS + Pθ(RMC)(1− αMS)

]
+ (1− λ)

[
Q(RAU)α

∗
MS + Q(RMC)(1− α∗MS)

]
= λ

[
Pθ(RAU)αMS + Pθ(RMC)− Pθ(RMC)αMS)

]
+ (1− λ)

[
Q(RAU)α

∗
MS + Q(RMC)−Q(RMC)α

∗
MS)

]
= λ

[
− αMS∆Pθ

+ Pθ(RMC)
]
+ (1− λ)

[
α∗MS∆Q + Q(RMC)

]
= λ

[
− αMS∆Pθ

+ Pθ(RMC)− α∗MS∆Q −Q(RMC)
]
+ α∗MS∆Q + Q(RMC)

= Q(RMC) + λ∆MC + λ
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q.

From (1),

Pλ(RCP) = Pλ(RMC) + λ
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q. (5)

Plugging (4) into (5) we now have the rejection rate of CP, Pλ∗,1(RCP) where λ∗ comes

from (4) and 1 is because this is the proof for Lemma 1,

Pλ∗,1(RCP) = Pλ∗(RMC) + λ∗
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q

= Pλ∗(RMC) +
∆Q

∆Pθ
+ ∆Q

[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q

= Pλ∗(RMC) + ∆Q

[
−αMS∆Pθ

∆Pθ
+ ∆Q

−
α∗MS∆Q

∆Pθ
+ ∆Q

+ α∗MS

]
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= Pλ∗(RMC) + ∆Q

[
−αMS∆Pθ

− α∗MS∆Q + α∗MS∆Pθ
+ α∗MS∆Q

∆Pθ
+ ∆Q

]

= Pλ∗(RMC) +
∆Pθ

∆Q

∆Pθ
+ ∆Q

[
α∗MS − αMS

]
. (6)

Let τ =
∆Pθ

∆Q

∆Pθ
+∆Q

[α∗MS − αMS] Equation (6) now becomes

Pλ∗,1(RCP) = Pλ∗(RMC) + τ. (7)

Note that (7) is in the case where Pλ∗(RMC) = Pλ∗(RAU), therefore

Pλ∗,1(RCP) = Pλ∗(RAU) + τ. (8)

τ > 0 by (I) - (III) so Pλ∗,1(RCP) is greater than both Pλ∗(RMC) and Pλ∗(RAU).

The independence assumption in the previous proof is then relaxed by introducing

some small values as a measure of dependence, δ1, δ2, δ3 & δ4. Here we assume that

by adding a small value, say δi, the powers of the MC and AU that are not conditional

on the MS test but still conditional to whether or not the model assumption is violated

will be equal to the power of the MC and AU test conditional on the rejection or non-

rejection of the model assumption by the MS test. Note that the small value can be a

positive or a negative number. The relationship between the power of the main tests

conditional on the rejection or non-rejection of the model assumption and the power of

the main test not conditional on the MS test is still unclear. Therefore, we assume an

arithmetic relationship. We do not discard the possibility that the relationship could be

more complex. A new set of definitions is as follows,

(e) Pθ(RAU |RMS) = Pθ(RAU) + δ1

(f) Pθ(RMC|Rc
MS) = Pθ(RMC) + δ2

(g) Q(RAU |RMS) = Q(RAU) + δ3

(h) Q(RMC|Rc
MS) = Q(RMC) + δ4.

Let there be a δ > 0 so that δ = max{|δ1|, |δ2|, |δ3|, |δ4|}. For the following Lemma,

assumption (I) to (III) will still be required, but assumption (IV) will be replaced by

assumption (V) as follows;

(V) Both RMC and RAU under Pθ and Q are dependent on RMS with a small

enough value depending on the involved probabilities δ = max{|δ1|, |δ2|, |δ3|,
|δ4|} > 0 where δi for i = (1, 2, 3, 4) is given in (e) - (h).
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A new definition is introduced, τ where

τ = λ∗
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q (9)

=
∆Pθ

∆Q

∆Pθ
+ ∆Q

[α∗MS − αMS].

Note that the definition of τ only depends on assumptions (I) - (III).

Lemma 2 Assuming (I) - (III) and (V), ∃λ ∈ (0, 1) such that Pλ∗(RCP) > P(RMC),

Pλ∗(RCP) > P(RAU) in the situation that the null hypothesis of the main test is violated.

Proof. By (I) and (II), there must be λ∗ ∈ (0, 1) so that Pλ∗(RAU) = Pλ∗(RMC). Obtain

λ∗ =
∆Q

∆Pθ
+ ∆Q

∈ (0, 1).

Equation (3) is updated with the definitions given above in (e), (f), (g) and (h) and where

2 in the index of the power of the CP, Pλ,2(RCP) is because this is the proof for Lemma 2,

Pλ,2(RCP) = λ
[
(Pθ(RAU) + δ1)αMS + (Pθ(RMC) + δ2)(1− αMS)

]
+ (1− λ)

[
(Q(RAU) + δ3)α

∗
MS + (Q(RMC) + δ4)(1− α∗MS)

]
= λαMSPθ(RAU) + λαMSδ1 + λPθ(RMC) + λδ2 − λαMSPθ(RMC)

− λαMSδ2 + α∗MSQ(RAU) + α∗MSδ3 + Q(RMC) + δ4 − α∗MSQ(RMC)

− α∗MSδ4 − λα∗MSQ(RAU)− λα∗MSδ3 − λQ(RMC)− λδ4

+ λα∗MSQ(RMC) + λα∗MSδ4

= Q(RMC) + λ
[
Pθ(RMC)−Q(RMC)

]
+ λ

[
− αMS(Pθ(RMC)− Pθ(RAU))

− α∗MS(Q(RAU)−Q(RMC))
]
+ α∗MS

[
Q(RAU −Q(RMC)

]
+ λαMS(δ1 − δ2) + λα∗MS(−δ3 + δ4) + λ(δ2 − δ4) + α∗MS(δ3 − δ4) + δ4.

Using the definitions (a), (c) and (d) given in the beginning of this section,

Pλ,2(RCP) = Q(RMC) + λ∆MC + λ
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q

+ λαMS(δ1 − δ2) + λα∗MS(−δ3 + δ4) + λ(δ2 − δ4) + α∗MS(δ3 − δ4) + δ4.

From (1), Q(RMC) + λ∆MC = Pλ(RMC),

Pλ,2(RCP) = Pλ(RMC) + λ
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q + λαMS(δ1 − δ2)

+ λα∗MS(−δ3 + δ4) + λ(δ2 − δ4) + α∗MS(δ3 − δ4) + δ4.
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Substitute λ∗ =
∆Q

∆Pθ
+∆Q

and note that λ∗
[
− αMS∆Pθ

− α∗MS∆Q
]
+ α∗MS∆Q = τ as defined

in (9),

Pλ∗,2(RCP) = Pλ∗(RMC) + τ + λ∗αMS(δ1 − δ2) + λ∗α∗MS(−δ3 + δ4)

+ λ∗(δ2 − δ4) + α∗MS(δ3 − δ4) + δ4.

By (V),

Pλ∗,2(RCP) ≥ Pλ∗(RMC) + τ + λ∗αMS(−δ− δ) + λ∗α∗MS(−δ− δ)

+ λ∗(−δ− δ) + α∗MS(−δ− δ)− δ

≥ Pλ∗(RMC) + τ − δ(2λ∗αMS + 2λ∗α∗MS + 2λ∗ + 2α∗MS + 1)

It is known that αMS, α∗MS ∈ [0, 1] and λ∗ ∈ (0, 1), therefore (2λ∗αMS + 2λ∗α∗MS + 2λ∗ +

2α∗MS + 1) < 9,

Pλ∗,2(RCP) > Pλ∗(RMC) + τ − 9δ. (10)

Note that (10) is in the case where Pλ∗(RMC) = Pλ∗(RAU), therefore

Pλ∗,2(RCP) > Pλ∗(RAU) + τ − 9δ. (11)

Clearly τ > 0 and by definition δ > 0. If we assume τ > 9δ, then Pλ∗,2(RCP) is larger

than both Pλ∗(RMC) and Pλ∗(RAU).
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S I M U L AT I N G A T W O - S TA G E M S T E S T I N G P R O C E D U R E

“In God we trust; all others must bring data.” W. Edwards Deming

In the literature reviewed, the simulation studies to test the performance when using MS

testing were carried out in restricted situations. Restricted here means that the samples

used to test MS testing procedure all come from a single source. For example, in the

case of the one sample test, the samples are generated from one distribution and in the

case of two sample testing, both samples are generated from one distribution.

This simulation ‘models’ a situation in which both fulfilled and (in a specific way)

violated model assumptions can happen. As such this can hardly be criticised as less

realistic as simulations that only simulate one side of this. However, this is not free from

criticism as the reality is not really like this. We feel this setup is at least as realistic

as pretty much every other simulation or even theorem based on parametric models.

One must note is that although in reality we should not ever believe that any statistical

model assumption is fulfilled, in reality in fact there are situations in some data sets

that are pretty close to a specific model assumption and some that are further away. So

one will find situations that are very close to the parametric model (and depending on

how the situation exactly looks like, one could suspect that the simulation results for the

parametric case are very close to this) and other situations that are close to the second

distribution that is being looked at.

Obviously in reality there will be more than two candidate distributions, however

looking at a mixture of two is the simplest and therefore logical next step from looking

at only one (which is what is normally done). The aim is to understand what goes on

when looking at more than one possible model.

4.1 levene’s test as an ms test for equality of variances

This section replicates the work done in Zimmerman (2004) to investigate the perform-

ance of an MS testing procedure to test equality of variances and depending on the
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rejection of the MS test, either carry out a standard two sample t-test Gosset (“Student”)

(1908) or the Welch’s modified t-test Welch (1938) Welch (1947) Satterthwaite (1946) to

test the main null hypothesis that both samples come from same distribution. This com-

bined procedure is denoted by CP. This combined procedure is then compared to the

unconditional tests, the standard t-test and the Welch’s t-test denoted by Model-based

Constrained (MC) and Alternative Unconstrained (AU) respectively.

First, an independent random sample of size n1 was generated from the standard

normal distribution. The second sample n2 was generated with the ratio of the standard

deviation having a predetermined value ranging from 1 to 2.5 in increments of 0.5. The

total sample size n1 + n2 was fixed at 30 or 60 and the ratio n1/n2 ranged from 0.2

to 5. For every sample n1 and n2 generated, the two sample Student’s t-test and the

Welch’s t-test were applied without testing the homogeneity condition at the 0.01 and

0.05 significance level on both samples. Then, the Levene’s test of equality of variances

(see Section 2.3.2) was performed at the 0.01 and 0.05 significance level. If this test

does not reject the hypothesis of equal variances on both samples, the usual two sample

Student t-test based on pooled variances was performed at the same significance level.

If the Levene’s test rejected the hypothesis of equal variances on either or both samples,

the Welch’s modified t-test based on separate variances was performed also at the same

significance level. This procedure is repeated 10000 times and the rejection rates were

calculated.

The results shown in Table 1 is consistent with the results presented in Zimmerman

(2004). The unconditional two sample t-test’s or MC rejection rate depends on the

sample size and the magnitude of the ratio, that is when a large variance ratio is as-

sociated with a large sample size ratio, the rejection rate falls below the nominal level.

Conversely, when a large variance ratio is associated with a small sample size ratio,

the rejection rate increases above the nominal level. The rejection rates when the un-

conditional Welch’s t-test or AU remains consistently around the nominal level. The CP

rejection rates are better than the MC but not as good as the AU. Therefore the author re-

commends always using the Welch’s t-test when testing the main hypothesis of equality

of means.
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n1 n2
σ1
σ2

α = 1% α = 5%

MC AU CP MC AU CP

50 10

1.0 1.01 1.14 1.03 4.95 5.17 5.32

1.5 0.11 1.11 0.28 1.19 4.93 2.80

2.0 0.01 1.15 0.43 0.41 4.96 3.94

2.5 0.00 1.11 0.60 0.10 5.15 4.67

40 20

1.0 0.92 0.95 0.95 5.03 4.97 5.10

1.5 0.37 0.98 0.55 2.55 5.03 4.04

2.0 0.17 1.09 0.73 1.66 4.72 4.33

2.5 0.19 0.82 0.71 1.29 5.11 5.03

20 40

1.0 1.06 0.96 1.04 4.90 4.92 4.94

1.5 2.15 0.94 1.76 8.49 4.91 6.25

2.0 3.55 1.01 1.76 10.98 5.14 5.67

2.5 4.82 0.99 1.25 13.00 4.99 5.14

10 50

1.0 1.01 1.29 1.04 4.99 5.13 5.21

1.5 4.54 1.06 3.73 13.16 4.89 9.30

2.0 9.24 1.07 5.01 20.83 5.22 8.52

2.5 13.05 0.90 3.51 26.33 5.24 6.75

25 5

1.0 0.96 1.72 0.99 5.03 5.42 5.53

1.5 0.12 1.58 0.21 1.16 5.72 2.75

2.0 0.03 0.97 0.07 0.43 5.02 2.41

2.5 0.01 0.90 0.13 0.23 5.34 3.17

20 10

1.0 1.18 1.18 1.18 4.83 4.89 4.89

1.5 0.34 0.84 0.39 2.80 5.08 3.69

2.0 0.29 1.14 0.46 1.91 4.94 3.81

2.5 0.12 0.92 0.34 1.52 5.20 4.35

10 20

1.0 1.04 1.22 1.04 4.96 5.04 5.07

1.5 2.53 1.15 2.43 8.67 5.15 7.42

2.0 3.76 1.17 2.98 11.45 5.08 7.41

2.5 5.14 1.28 3.23 13.26 5.01 6.34

5 25

1.0 1.02 1.53 1.03 5.00 5.58 5.51

1.5 4.28 1.71 4.10 13.76 5.70 11.65
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2.0 8.87 1.48 7.04 20.15 5.17 12.90

2.5 13.45 1.32 8.66 25.71 5.51 12.00

Table 1: Rejection rates of the null hypothesis (%) for various combinations of sample
sizes, significance levels, ratios of standard deviations and the different meth-
ods.

4.2 simulation setup

The motivation for this section is to challenge the MS test by randomising the distribu-

tion of samples being put through the procedures. A simulation study was designed

to investigate the performance of a statistical inference test with and without model

checking.

Consider a parametric test with some assumptions and call this MC. Additionally,

consider a non-parametric test where one or more of the assumptions of MC are not

needed. We call this AU. We also consider a combined procedure where an MS test is

carried out to test a certain model assumption. Depending on the outcome of the MS

test, we either choose to do MC when the MS test decides that the model assumptions

is not violated or AU when the MS test decides that the model assumption is violated.

We call this combined procedure CP. The null hypothesis of MC and AU can be either

fulfilled to investigate the rejection rates or violated to investigate the power. All of

these tests were carried out at a significance level α. Figure 1 shows the flow chart of the

simulation process involving MC, AU and CP.

A two-sample situation with sample sizes n1 and n2 respectively is considered. Both

samples are generated from either one of two distributions Pθ or Q randomly. The

choice to generate both samples from either Pθ or Q is determined by a random number

generator from the Bernoulli distribution with λ probability of generating from Pθ . As

opposed to standard mixture models, λ governs the distribution of the whole dataset,

not every single observation independently.

MC is applied without any conditions and the decision to reject or not reject the

MC test’s null hypothesis is noted. Next, AU is applied without any conditions and the

decision to reject or not reject the AU test’s null hypothesis is noted. Then, CP is applied

after model checking using an MS test. The MS test is done on both samples and if both

the samples do not reject the model assumption, the MC test is used. If either one or

both the samples reject the model assumption, the AU test is used. The decision to reject

or not reject the main null hypothesis is noted. Finally, CPadj is applied with an adjusted
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value of αMS for the MS test. This is repeated M times and the rejection rates of all the

four methods is noted. All the simulations were done in R.

4.3 testing the main null hypothesis of equal distributions

The simulation process outlined in Figure 1 was carried out to investigate the effect

of MS testing for normality. Let’s consider sample sizes n = 8, 27 and 125 for both

samples generated. These sample sizes were chosen because they are the cube of the

first three prime numbers and they are representative of a sufficiently small sample size,

a moderately sized sample and a fairly large sample size. The simulation above was

repeated for M = 100, 000 times. All simulations in this thesis were done in R.

The t-test is chosen as the MC test because this is one of the most popular tests that

is used in research today. It was developed to monitor the stout quality in a brewery.

There are two types of t-tests; one sample and two samples. The one sample t-test is

used to test the null hypothesis that the mean of the population is equal to a certain

value, while the two sample t-test is used to compare the mean values of both samples.

The two sample t-tests may be conducted on independent samples, paired samples or

overlapping samples. As mentioned, it can be used as a quality control tool. Further-

more, another important use of t-tests is in the medical industry where the paired t-test

is used widely to study the impact of a particular treatment on a sample of patients

before and after the medication. For these reasons, the two sample t-test was chosen to

be studied here. Two important assumption of the t-test is that the means of the samples

are normally distributed and both samples have equal variance. The null hypothesis of

the two sample t-test is that both samples have equal means therefore it is implied that

both distributions are equal. This is so because it is posited that if two samples have

the same means and the same variance, therefore they must be the same. The altern-

ative hypothesis is that the means are not equal hence the distributions are not equal.

The Welch’s t-test is a modification of the standard t-test that does not assume equal

variances of both samples.

We also have the Wilcoxon-Mann-Whitney (WMW) test. This test also tests for equal-

ity of distributions in two samples. The WMW does not have the assumption that the

sample means are normally distributed and also that both samples have equal variances.

This leads researchers to believe that the WMW is an alternative to the t-test. Hence,

we choose this as the AU test. The null hypothesis of the non-parametric Wilcoxon-

Mann-Whitney test is two distributions are equal. The alternative hypothesis is that

one distribution is stochastically larger that the other. Although Mann and Whitney de-

veloped their method with the aforementioned hypotheses, there are many other ways
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Start

Generate a random Bernoulli
number with probability λ

s = 1 OR s = 0?
Generate two

samples from Pθ

Generate two
samples from Q

Run MS test on
both samples

with level αMSRun uncondi-
tional parametric
test with level α

Run unconditional
non-parametric
test with level α

Reject OR
Not Reject?

Reject OR
Not Reject?

Reject OR
Not Reject?

Run non-parametric
test with level α

Run parametric
test with level α

Reject OR
Not Reject?

Reject OR
Not Reject?

Output

Stop

s = 1 s = 0

Reject Not Reject

MC AUCP

Figure 1: A flow chart of the simulation process involving MC, AU and CP. A Bernoulli
random variable is used to decide between generating from a situation where
the model assumption is fulfilled or violated. After generating the sample,
it is put through three procedures, namely the MC, AU and CP, to calculate
the level or power of the testing procedures. MC and AU procedures do not
involve MS testing to check model assumptions.
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to formulate the hypotheses such that the Wilcoxon-Mann-Whitney U-test will still give

a valid test, see Fay and Proschan (2010) for some examples of formulation of the hypo-

theses.

4.3.1 t-test versus Wilcoxon-Mann-Whitney

MC is the two sample t-test, AU is the Wilcoxon-Mann-Whitney U-test and the MS

test is the Shapiro-Wilk test (see Section 2.3.2). Each of the tests was carried out at

α = αMS = 5% significance level.

Two distributions were considered and the probability of generating samples from

one of the distributions are given by λ. The values for Pθ , Q, and λ are given by Table 2.

Both samples generated from Pθ or Q have the same sample size and also have the same

parameters, i.e. same mean and variance in the case of Pθ and the same degree of free-

dom in the case of Q. The t distribution with 3 degrees of freedom was chosen because

it is the smallest degree of freedom where a mean and a variance exists to describe the

density curve. The t distribution with 4 degrees of freedom was chosen because the vari-

ance for this distribution is v
v−2 = 2 and distribution Pθ was also set to have a variance

of 2. The two sample t-test has an equal variance assumption therefore the variances are

made to be identical. The t distribution with 2 degrees of freedom was chosen as it only

has a mean value and has heavier tails, which may be able to challenge the two step

MS procedure. Since this is a multiple test situation, the Bonferroni correction is also

applied to the MS test in a separate procedure where the significance level is changed to

αadj where αadj =
αMS

2 using the Bonferroni correction to check the model assumptions

of both samples. We will call this combined procedure with adjusted level CPadj.

Situation Distribution Pθ Distribution Q λ

(1) Normal, µ = 0, σ2 = 1 t, d f = 3 0.5
(2) Normal, µ = 0, σ2 = 1 t, d f = 3 0.25

(3) Normal, µ = 0, σ2 = 1 t, d f = 3 0.75

(4) Normal, µ = 0, σ2 = 2 t, d f = 4 0.5
(5) Normal, µ = 0, σ2 = 2 t, d f = 4 0.25

(6) Normal, µ = 0, σ2 = 2 t, d f = 4 0.75

(7) Normal, µ = 0, σ2 = 1 t, d f = 2 0.5
(8) Normal, µ = 0, σ2 = 1 t, d f = 2 0.25

(9) Normal, µ = 0, σ2 = 1 t, d f = 2 0.75

Table 2: Distributions and lambda values examined in the simulation study. Both
samples are generated from either Pθ or Q with the given parameters
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4.3.1.1 Main null hypothesis is fulfilled

The situation where the main null hypothesis of equal distributions were looked at first

to study the Type-I error rates. The level of the MC, AU and CP tests were carried out

at the nominal level 5%. The levels of the main tests in CPadj were carried out at 5%, the

difference is the level of the MS test was adjusted using the Bonferroni correction where

αadj =
αMS

2 .

Situation n
Method

MC AU CP CPadj

(1)

8 4.616 (0.066) 4.968 (0.069) 5.082 (0.069) 4.999 (0.069)

27 4.711 (0.067) 4.704 (0.067) 4.955 (0.069) 4.922 (0.068)

125 4.798 (0.068) 4.977 (0.069) 5.011 (0.069) 4.995 (0.069)

(2)

8 4.406 (0.065) 4.899 (0.068) 4.987 (0.069) 4.899 (0.068)

27 4.534 (0.066) 4.690 (0.067) 4.826 (0.068) 4.834 (0.068)

125 4.813 (0.068) 4.942 (0.069) 4.989 (0.069) 4.985 (0.069)

(3)

8 4.849 (0.068) 5.068 (0.069) 5.183 (0.070) 5.098 (0.070)

27 4.975 (0.069) 4.943 (0.069) 5.168 (0.070) 5.156 (0.070)

125 4.957 (0.069) 4.974 (0.069) 5.069 (0.069) 5.036 (0.069)

(4)

8 4.742 (0.067) 4.935 (0.068) 5.064 (0.069) 5.005 (0.069)

27 4.854 (0.068) 4.781 (0.067) 5.011 (0.069) 5.001 (0.069)

125 4.958 (0.069) 5.019 (0.069) 5.103 (0.070) 5.098 (0.070)

(5)

8 4.521 (0.066) 4.817 (0.068) 4.929 (0.068) 4.848 (0.068)

27 4.730 (0.067) 4.790 (0.068) 4.968 (0.069) 4.975 (0.069)

125 5.051 (0.069) 4.974 (0.069) 4.998 (0.069) 4.980 (0.069)

(6)

8 4.840 (0.068) 4.962 (0.069) 5.091 (0.070) 5.042 (0.069)

27 4.964 (0.069) 4.797 (0.068) 5.088 (0.069) 5.091 (0.070)

125 4.988 (0.069) 4.999 (0.070) 5.085 (0.070) 5.056 (0.069)

(7)

8 4.361 (0.065) 5.086 (0.069) 5.108 (0.070) 5.039 (0.069)

27 4.502 (0.066) 4.880 (0.068) 5.017 (0.069) 5.003 (0.069)

125 4.581 (0.066) 4.933 (0.068) 5.018 (0.069) 5.001 (0.069)

(8)

8 3.995 (0.062) 4.956 (0.069) 4.984 (0.069) 4.912 (0.068)

27 4.339 (0.064) 4.759 (0.067) 4.918 (0.068) 4.908 (0.068)

125 4.453 (0.065) 4.977 (0.069) 5.004 (0.069) 5.000 (0.069)
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(9)

8 4.699 (0.067) 5.127 (0.070) 5.183 (0.070) 5.132 (0.070)

27 4.744 (0.067) 4.885 (0.068) 5.086 (0.069) 5.072 (0.069)

125 4.919 (0.068) 5.102 (0.070) 5.172 (0.070) 5.132 (0.069)

Table 3: Rejection rates of the null hypothesis (%) and standard errors (in paren-
theses)(%) for various sample sizes. The MC test is the standard t-test and the
AU test is the WMW test. Values underlined were rejected by the proportion
test as significantly different than 5%

Table 3 shows the values of the rejection rates and their respective standard errors

when running the simulations described above. As expected, most of the values of the

rejection rates are close to the nominal level of 5%. The rejection rates are then tested

with the proportion test with the null hypothesis that the rejection rate is equal to 5%.

The 95% confidence interval for the test is (4.865, 5.135) using the following expression

p̂± zα/2

√
p̂(1− p̂)

M
. (12)

The values that were rejected by the proportion test is underlined in Table 3. The

results of the proportion test show that the unconditional parametric test constantly un-

derperforms at level 5%. However, the performances of the AU, CP and CPadj are quite

similar and no clear advantage can be seen in favour of one method. The CPadj seems to

perform the best with only 3 instances where the rejection rates are significantly differ-

ent than 5% but a definitive conclusion cannot be made without studying the power of

the procedures. The Bonferroni correction does not seem to improve the rejection rates.

This could be due to the combined procedure having an alternative situation in the case

that the model assumption is not rejected.

4.3.1.2 Main null hypothesis is violated

We then consider investigating the power of these three approaches (MC, AU and CP)

to try and get a clearer picture of how they perform when the main null hypothesis is

violated. The main null hypothesis is that the distributions of both samples are equal.

The simulation study from the Section 4.2 is repeated to calculate the power of rejecting

a false null. Hence, out of the two samples generated, the second sample is generated

with the mean shifted at three different degrees of violation. This shift is referred to as

the non-centrality parameter (ncp). Three ncps were considered, namely 0.5, 1 and 2.

Eleven different values of λ = [0, 1] were considered to study how the power changes

with different mixture of samples. Although only two values of λ is needed to plot a
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Figure 2: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 8 and ncp = 0.5. The values on the legend for
the red, orange, grey, blue and yellow lines are the level on which the model
assumptions are tested. Levels of the main tests are 0.05.

linear line as proven in Lemma 1 in Chapter 4, simulating over the range of λ will give

a clearer picture of how the power behaves with random variation in the simulation.

Keselman, Othman and Wilcox (2013) recommended that the MS test be carried out

at a higher significance level to increase the power to “detect effects and concomitantly

reduce the probability of falsely accepting the null hypothesis that data are normally distributed”.

Therefore, 5 different levels of αMS were considered, αMS = {0.025, 0.05, 0.1, 0.15, 0.2}.
The results of these simulations are shown in the figures below.

Figures 2 - 10 shows the power analysis of different sample sizes across different λ

values considering different αMS levels and three procedures of testing the null hypo-

thesis that two samples come from the same distribution. Interestingly, the MS testing

procedure has consistently larger power compared to the MC and AU testing. When

λ = 0, the MC or in this case, the unconditional t-test, has a lower power to detect dif-

ference in means between two samples drawn from the t distribution. The AU, in this

case the Wilcoxon-Mann-Whitney U-test, always has a larger power than the MC when

λ = 0. In certain situations for example in Figures 4 - 9 and when λ = 1, namely when

all the samples were drawn from the normal distribution, the MC or the t-test performs

just as well as the MS testing procedure.

Looking at the different αMS levels, nothing conclusive can be said about which levels

give the best power. However, a case can be made for αMS = 0.1 (grey line). In Figure
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Figure 3: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 8 and ncp = 1
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Figure 4: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 8 and ncp = 2
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Figure 5: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 27 and ncp = 0.5
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Figure 6: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 27 and ncp = 1
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Figure 7: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 27 and ncp = 2
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Figure 8: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 125 and ncp = 0.5
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Figure 9: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 125 and ncp = 1
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Figure 10: Power levels for 5 different values of αMS, the MC and AU methods across
different λ values for n = 125 and ncp = 2
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2, where a small sample size (n = 8) and a minor violation of the null hypothesis

(ncp = 0.5) is studied, when λ ≥ 0.4, the power when αMS = 0.1 is the highest although

not by a huge magnitude. When λ < 0.4, the power when αMS = 0.1 is in the middle

of the pack. In the other plots, the trend seems to be that at smaller λ values, again

when there are more samples drawn from the non-normal distribution, larger αMS give

a slightly higher power. This means that the MS test is able to reject more samples

where the model assumptions were not fulfilled and pushing these samples to the non-

parametric test which has a more relaxed assumption leading to a higher power. As the

λ gets larger and there are more samples drawn from the normal distribution, the MS

test procedure benefits from a smaller αMS and pushing more samples to the parametric

test where normality is assumed. A good compromise then would be to set αMS = 0.1.

When the sample size is sufficiently large, n = 125, the power of AU and the MS testing

is quite similar. The MC still has the lowest power at smaller λ values.

4.3.2 Welch’s t-test versus Wilcoxon-Mann-Whitney

The simulations in the previous section is repeated replacing the MC t-test with the

Welch’s t-test. In the literature, the Welch’s t-test is suggested to be more robust and

should always be used in favour of the standard t-test, see Zimmerman (2004), Rux-

ton (2006) and Delacre, Lakens and Leys (2017). The AU remains the Wilcoxon-Mann-

Whitney. Pθ is the normal distribution and Q is the t distribution with 3 degrees of

freedom.

4.3.2.1 Main null hypothesis is fulfilled

n MC AU CP CPadj
8 4.112 (0.063) 4.899 (0.068) 4.758 (0.067) 4.649 (0.067)
27 4.481 (0.065) 4.690 (0.067) 4.808 (0.068) 4.814 (0.068)
125 4.809 (0.068) 4.942 (0.069) 5.001 (0.069) 4.991 (0.069)

Table 4: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes and λ = 0.25

n MC AU CP CPadj
8 4.328 (0.064) 4.968 (0.069) 4.859 (0.068) 4.751 (0.067)
27 4.680 (0.067) 4.704 (0.067) 4.941 (0.069) 4.905 (0.068)
125 4.793 (0.068) 4.977 (0.069) 5.059 (0.069) 5.039 (0.069)

Table 5: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes and λ = 0.5
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n MC AU CP CPadj
8 4.602 (0.067) 5.068 (0.069) 4.972 (0.069) 4.877 (0.068)

27 4.939 (0.069) 4.943 (0.069) 5.145 (0.070) 5.132 (0.070)
125 4.953 (0.069) 4.974 (0.069) 5.096 (0.070) 5.105 (0.070)

Table 6: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes and λ = 0.75

Tables 4 - 6 shows the value of the rejection rates and their respective standard errors

across different values of λ. About half of all the rejection rates shown are signific-

antly different than 5% according to the proportion test given in (12). These values are

underlined in Tables 4 - 6. The results show that in small sample sizes the Welch’s t-

test underperforms. In this particular setup, the Wilcoxon-Mann-Whitney test performs

quite similarly to the combined procedure.

4.3.2.2 Main null hypothesis is violated

The simulation in Section 4.3.1.2 is repeated with one change, MC is now the Welch’s t-

test. The main null hypothesis is violated with three ncps. The results are shown below

in Figure 11.

The power levels for the unconditional testing and the combined procedures are

shown in Figure 11. The results are quite similar with the ones presented in Section

4.3.1.2. The same conclusions can be made. There seems to be one difference, the point

where the powers of the MC and AU meet is now closer to λ = 1 in general. The

Welch’s t-test could be expected to be more powerful compared the standard t-test in

cases where the variances or sample size are not equal as was concluded in Zimmerman

(2004).

The power analysis is then repeated with the variances now being unequal i.e. the

ratio of the variances of samples is 1.5 ( σ2
σ1

= 1.5). The powers of the unconditional MC

and AU tests as well as the CP across λ are shown in Figure 12. An obvious difference

can be seen here. The power of all the tests considered now have a downward trend as

λ increases. There are exceptions to this pattern when the sample size and ncp is large.

Then the MC test has a larger power when λ = 1 compared to when λ = 0. The CP test

still has the highest power for most of the λ range compared to MC and AU.

4.3.3 t-test versus Wilcoxon-Mann-Whitney with the uniform distribution

The simulations in the previous section are repeated. Pθ is the standard normal dis-

tribution and Q is the uniform distribution with minimum and maximum of ±
√

3,
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Figure 11: Power levels for 5 different values of αMS, the MC (Welch’s t-test) and AU
methods across different λ values, different sample sizes and different ncps.
Note: the axes and line labels are the same as Figures 2 - 10.

Y ∼ Uni f (−
√

3,
√

3). Choosing such minimum and maximum would make the Y be

comparable with the standard normal distribution. The mean for Y is a+b
2 = −

√
3+
√

3
2 = 0

and the standard deviation for Y is (b−a)2

12 = (
√

3−(−
√

3))2

12 = 1.
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Figure 12: Power levels for 5 different values of αMS, the MC (Welch’s t-test) and AU
methods across different λ values, different sample sizes, different ncps and
ratio of samples’ variances is σ2/σ1 = 1.5. Note: the axes and line labels are the
same as Figures 2 - 10.

4.3.3.1 Main null hypothesis is fulfilled

Tables 7 - 9 shows the value of the rejection rates and their respective standard errors

across different values of λ. Some of the rejection rates shown are significantly different
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n MC AU CP CPadj
8 5.087 (0.070) 4.918 (0.068) 5.212 (0.070) 5.191 (0.070)
27 4.939 (0.069) 4.670 (0.067) 4.881 (0.068) 4.913 (0.068)
125 5.030 (0.069) 4.985 (0.069) 5.010 (0.069) 5.004 (0.069)

Table 7: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes and λ = 0.25

n MC AU CP CPadj
8 5.143 (0.070) 4.996 (0.069) 5.263 (0.071) 5.244 (0.071)
27 4.977 (0.069) 4.753 (0.067) 4.967 (0.069) 4.985 (0.069)
125 4.788 (0.068) 4.800 (0.068) 4.864 (0.069) 4.842 (0.068)

Table 8: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes and λ = 0.5

n MC AU CP CPadj
8 5.088 (0.070) 4.975 (0.069) 5.260 (0.071) 5.223 (0.070)
27 4.982 (0.069) 4.701 (0.067) 5.017 (0.069) 5.020 (0.069)
125 4.966 (0.069) 4.943 (0.069) 5.058 (0.069) 5.029 (0.069)

Table 9: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes and λ = 0.75

than 5% according to the proportion test given in (12). These values are underlined in

Tables 7 - 9. When λ is 0.25 or 0.75, the levels of MC, AU and CP are quite stable around

5%. However, when λ = 0.5, the levels of all thre procedure drops significantly below

5% with the exception of a few situations when n = 8 as shown in Table 8.

4.3.3.2 Main null hypothesis is violated

The simulation in Section 4.3.1.2 is repeated. The main null hypothesis is violated with

three ncps. The results are shown below in Figure 13.

The power levels for the unconditional testing and the combined procedures are

shown in Figure 13. The results with the alternative distribution being the uniform

distribution differs than what has been shown so far. In small sample sizes (n = 8) with

small violation of the main null hypothesis (ncp = 0.5), it is clear that the CP has larger

power across all λ. As the violations get larger (ncp = 1), the power of MC get higher

than the CP on all αMS levels except when αMS = 0.025. Otherwise the MC test without

any MS testing has the higher power compared to both CP and AU. AU has the lowest

power in all cases. This is similar to the findings in Rochon, Gondan and Kieser (2012).

This clearly violates the normality assumption of the t-test (despite being asymptotic-

ally still correct), and will be picked up by many normality tests. Still it would be a bad

decision to use the WMW test instead, even though its assumptions are fulfilled.
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Figure 13: Power levels for 5 different values of αMS, the MC (t-test) and AU methods
across different λ values, different sample sizes and different ncps. Note: the
axes and line labels are the same as Figures 2 - 10.

4.3.4 t-test versus Wilcoxon-Mann-Whitney with skewed distributions

The simulation was run again to investigate the effect of skewed distributions on the

combined procedure. Pθ and Q are now generated from a skewed standard normal
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distribution and skewed t distribution with 3 degrees of freedom respectively, both

with a slant parameter of 0.5. The reason for this is to investigate the effect a small

skewness has on all of the procedures. Figure 14 shows the density plot of the standard

normal, t distribution with 3 degrees of freedom, skewed normal with slant parameter

0.5 and a skewed t distribution with 3 degrees of freedom and slant parameter (Azzalini

(2013, p. 24)) 0.5 when n = 10000 and it shows that not much are separating these four

distributions except that the two t distributions have heavier tails.

Figure 14: Density plot of the standard normal, t distribution with 3 degrees of freedom,
skewed normal with slant parameter 0.5 and a skewed t distribution with 3

degrees of freedom and slant parameter 0.5 when n = 10000

4.3.4.1 Main null hypothesis is fulfilled

In this section the MC is the t-test and the AU is the WMW test. The simulations were

run 100000 times and the rejection rates of the main null hypothesis is given below in

Tables 10 - 12 for different values of λ.

n MC AU CP CPadj
8 4.368 (0.065) 4.943 (0.069) 5.020 (0.069) 4.925 (0.068)
27 4.775 (0.067) 4.907 (0.068) 5.128 (0.070) 5.099 (0.070)
125 4.859 (0.068) 4.974 (0.069) 4.991 (0.069) 4.964 (0.069)

Table 10: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes, skewed distributions and λ = 0.25

The values that are underlined are the rejection rates that are statistically significantly

different than the expected 5% according to the proportion test given in (12). For the
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n MC AU CP CPadj
8 4.602 (0.066) 4.992 (0.069) 5.079 (0.069) 5.017 (0.069)

27 4.830 (0.068) 4.833 (0.068) 5.060 (0.069) 5.068 (0.069)
125 4.854 (0.068) 4.943 (0.069) 5.048 (0.069) 5.037 (0.069)

Table 11: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes, skewed distributions and λ = 0.5

n MC AU CP CPadj
8 4.757 (0.067) 4.973 (0.069) 5.106 (0.070) 5.027 (0.069)

27 4.978 (0.069) 4.879 (0.068) 5.164 (0.070) 5.122 (0.070)
125 4.874 (0.068) 4.843 (0.068) 4.936 (0.069) 4.953 (0.069)

Table 12: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various samples sizes, skewed distributions and λ = 0.75

cases where a large proportion of the generated samples are from the skewed t distri-

bution, the t-test has a low Type-I error, statistically significantly lower than 5%. The

WMW seems to be much better in controlling the Type-I error in a setup with no MS test.

However, the combined procedure does appear to a better job than the unconditional

tests. The Type-I error is controlled well, with small standard errors.

4.3.4.2 Main null hypothesis is violated

The simulation in Section 4.3.1.2 is repeated. MC is the standard t-test and the AU is

the WMW test. The main null hypothesis is violated non-centrality parameters (ncps)

representing a small departure, a medium departure and a large departure from the

hypothesised mean. The results are shown in Figure 15.

Comparing the results in Figure 15 with the ones in Section 4.3.1.2, we can see that in

the case of λ = 0, the power of all three approaches in the case of skewed distributions

is lesser than the case of the non-skewed distribution. The opposite is true when λ = 1,

the power of all three approaches is larger than the case of non-skewed normal and

t distribution. This is evident from the gradients of the powers compared to Figures

2 - 10. This could suggest that the WMW test is not very good at rejecting the main

null hypothesis of equal distributions when the sample is generated from the skewed

t distribution when the means were not equal. This is the same conclusion made by

Rasch, Kubinger and Moder (2011). Interestingly, the standard t-test is quite good at

rejecting the main null hypothesis when the samples are generated from the skewed

normal distribution. This suggests the the t-test may be quite robust to a relatively

small skew as is discussed in Micceri (1989) and Sawilowsky and Blair (1992). Generally,

the same conclusions can be made as Section 4.3.1.2 & Section 4.3.2.2.
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Figure 15: Power levels for 5 different values of αMS, the MC (standard t-test) and AU
(WMW test) methods across different λ values, different sample sizes and
different ncps using skewed distributions
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4.4 ms test levels in the combined procedure

Simulations in Section 4.3.1.2 are referred to. We are now interested to study how the

MS test, namely the Shapiro-Wilk test in this particular simulation, performs. Figure 16

and Figure 17 show the rejection rates of the MS test across different levels of λ. The

blue lines in both figures show the levels of the MS test as this is in the situation where

the model assumption is fulfilled and the orange lines show the power of the MS test as

this is in the situation where the model assumption is violated. The grey lines are the

combined procedure’s MS test levels. Figure 16 show the rejection rates when the MS

test level is set at 5% or 0.05. The blue line shows an almost horizontal line across the

axis at the rejection rate is 0.1. This indicates the MS test rejects more model assumption

than it should going into the combined procedure.
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Figure 16: Rejection rates of the MS test at level 5%. The horizontal axis is λ, the vertical
axis is the rejection rates. Pθ is the standard normal distribution, Q is the t3
distribution, MC is the standard t-test and AU is the WMW test.
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Figure 17: Rejection rates of the MS test at level 2.5%. The horizontal axis is λ, the
vertical axis is the rejection rates. Pθ is the standard normal distribution, Q is
the t3 distribution, MC is the standard t-test and AU is the WMW test.

Figure 17 show the rejection rates when the MS test level is set at 2.5% or 0.025. This

is because of the Bonferroni correction done due to the fact that we are testing two

samples for the model assumption. Here, the blue line shows an almost horizontal line

across the axis at the rejection rate is 0.05. This indicates that the Bonferroni correction

is needed to control the level of the MS test at the nominal. Therefore it is recommended

that the Bonferroni correction is used in the situation where the CP is carried out for a

two-sample problem.

4.5 simulations for values of δi and τ

In this section we will look at some simulated values for δ1, δ2, δ3, δ4 and τ. The

definitions of the δi (i = 1, 2, 3, 4) and τ has already been established in Chapter 3 but

this section is mainly about looking at the simulated values of these variables.
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Note that we are in the situation of the null hypothesis of the main test is violated,

namely in the situation where the power is considered. The values of δi (i = 1, 2, 3, 4)

and τ are taken from the simulations already done earlier in this chapter.

n, ncp {δ1, δ2, δ3, δ4} τ

8, 0.5 {0.01597, 0.01162, 0.02390, 0.00021} 0.00079

8, 1 {0.01953, 0.03465, 0.03869, -0.00002} 0.00283

8, 2 {0.00185, 0.06059, 0.00386, 0.00009} 0.00265

27, 0.5 {0.007508, 0.02850, 0.02758, -0.00018} 0.00935

27, 1 {0.00311, 0.05023, -0.00238, 0.00021} 0.00725

27, 2 {0, 0.00604, 0, 0} 0

125, 0.5 {0.00002, 0.05886, -0.00393, 0.00004} 0.00498

125, 1 {0, 0.00157, 0, 0} 0

125, 2 {0, 0.00014, 0, 0} 0

Table 13: δi (i = 1, 2, 3, 4) and τ values for Pθ ∼ N(0, 1), Q ∼ t3, MC is t-test, AU is
WMW

n, ncp {δ1, δ2, δ3, δ4} τ

8, 0.5 {0.01597, 0.01200, 0.02390, 0.00020} 0.00012

8, 1 {0.01953, 0.03717, 0.03869, 0} 0.00186

8, 2 {0.00185, 0.07194, 0.00386, 0.00013} 0.00227

27, 0.5 {0.00751, 0.02984, 0.02758, -0.00016} 0.00937

27, 1 {0.00311, 0.05159, -0.00238, 0.00022} 0.00719

27, 2 {0, 0.00654, 0, 0} 0

125, 0.5 {0.00002, 0.05902, -0.00393, 0.00004} 0.00498

125, 1 {0, 0.00157, 0, 0} 0

125, 2 {0, 0.00014, 0, 0} 0

Table 14: δi (i = 1, 2, 3, 4) and τ values for Pθ ∼ N(0, 1), Q ∼ t3, MC is Welch’s t-test, AU
is WMW

n, ncp {δ1, δ2, δ3, δ4} τ

8, 0.5 {0.01330, 0.01059, 0.02989, -0.00002} -0.00080

8, 1 {0.01865, 0.02754, 0.03773, 0.00024} 0.00015

8, 2 {-0.00184, 0.04907, 0.01682, 0.00028} 0.00218

27, 0.5 {0.00891, 0.02753, 0.02717, -0.00023} 0.00491

27, 1 {0.00177, 0.05278, 0.00727, -0.00011} 0.01128

27, 2 {0, 0.00560, -0.00026, 0.00001} 0.00010

125, 0.5 {-0.00006, 0.06716, -0.00485, 0.00016} 0.01302

125, 1 {0, 0.00191, 0.00004, 0} 0.00003

125, 2 {0, 0.00017, 0, 0} 0

Table 15: δi (i = 1, 2, 3, 4) and τ values for Pθ,1 ∼ N(0, 1), Pθ,2 ∼ N(0, 1.5), Q1 ∼ t3,
Q2 ∼ t4, MC is Welch’s t-test, AU is WMW

The values for δi (i = 1, 2, 3, 4) and τ given in Table 13 refers to the simulations done

in Section 4.3.1.2. The values for δi (i = 1, 2, 3, 4) and τ given in Table 14 and Table 15

refers to the simulations done in Section 4.3.2.2. Table 15 differs from Table 14 only in
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the sense that the ratio of variance of the two samples generated are not equal. Clearly,

the definitions of δi (i = 1, 2, 3, 4) and τ given in the previous section are realistic. Note

that τ = 0 when the difference between means (ncp) is large and the sample size is fairly

large. The simulations were run M = 100, 000 times, the standard errors are very small,

hence even a small value of τ is still statistically significant.

Assumption (V) provides for a δ > 0 where δ = max{|δ1|, |δ2|, |δ3|, |δ4|}. Also Lemma

2 will hold only if τ > 9δ. From the simulated values of δi (i = 1, 2, 3, 4) and τ there is

not one situation where τ > 9δ is confirmed. This could be due to the assumptions of

Lemma 2 is still so strong that it does not apply in simulated simulations. The choice

of a single δ to approximate all δ1, δ2, δ3, δ4 is not a very sharp approximation as some

δis can be much smaller in absolute value than δ. τ > 9δ is simple and of theoretical

interest proving that weakening of the independence assumption is at least possible.

4.6 simulations for values of the conditional probabilities

In this section we will look at some simulated values for Pθ(RAU |RMS), Pθ(RMC|Rc
MS),

Q(RAU |RMS) and Q(RMC|Rc
MS) from Equation (3). Note again that we are in the situ-

ation of the null hypothesis of the main test is violated, namely in the situation where

the power is considered. The values of Pθ(RAU |RMS), Pθ(RMC|Rc
MS), Q(RAU |RMS) and

Q(RMC|Rc
MS) are taken from the simulations already done in the earlier sections.

λ Pθ(RAU |RMS) Pθ(RMC|Rc
MS) Q(RAU |RMS) Q(RMC|Rc

MS)
0 - - 0.1567 0.1343

0.1 0.1506 0.1519 0.1512 0.1346

0.2 0.1669 0.1450 0.1526 0.1355

0.3 0.1694 0.1491 0.1535 0.1339

0.4 0.1702 0.1483 0.1519 0.1360

0.5 0.1730 0.1517 0.1581 0.1343

0.6 0.1814 0.1535 0.1535 0.1323

0.7 0.1797 0.1508 0.1527 0.1353

0.8 0.1731 0.1554 0.1545 0.1379

0.9 0.1832 0.1528 0.1539 0.1310

1 0.1716 0.1532 - -

Table 16: Conditional probabilities for different values of λ when n = 8, ncp = 0.5 with
Pθ ∼ N(0, 1), Q ∼ t3, MC is t-test and AU is WMW

The conditional power values presented in Table 16 are extracted from the simula-

tions in Figure 2 which corresponds to Table 32 in the Appendix. The conditional power

values presented in Table 17 are extracted from the simulations in Figure 5 which cor-

responds to Table 35 in the Appendix. To recapitulate the notations used, Pθ(RAU |RMS)

means the power of the AU test to reject the main null hypothesis given that the MS
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λ Pθ(RAU |RMS) Pθ(RMC|Rc
MS) Q(RAU |RMS) Q(RMC|Rc

MS)
0 - - 0.3918 0.3677

0.1 0.4544 0.4471 0.3922 0.3631

0.2 0.4361 0.4375 0.3945 0.3674

0.3 0.4413 0.4362 0.3907 0.3687

0.4 0.4441 0.4383 0.3897 0.3636

0.5 0.4490 0.4416 0.3900 0.3660

0.6 0.4488 0.4354 0.3915 0.3689

0.7 0.4487 0.4439 0.3901 0.3658

0.8 0.4378 0.4379 0.3929 0.3691

0.9 0.4418 0.4381 0.3845 0.3580

1 0.4396 0.4358 - -

Table 17: Conditional probabilities for different values of λ when n = 27, ncp = 0.5 with
Pθ ∼ N(0, 1), Q ∼ t3, MC is t-test and AU is WMW

test rejects the model assumption in the situation where the model assumption is not

violated. Pθ(RMC|Rc
MS) means the power of the MC test to reject the main null hypo-

thesis given that the MS test does not reject the model assumption in the situation where

the model assumption is not violated. Q(RAU |RMS) means the power of the AU test to

reject the main null hypothesis given that the MS test rejects the model assumption in

the situation where the model assumption is violated. Q(RMC|Rc
MS) means the power

of the MC test to reject the main null hypothesis given that the MS test does not reject

the model assumption in the situation where the model assumption is violated.

As λ changes, the powers of the conditional tests stay stable around the power values

of the combined procedure given in Table 32 and Table 35 in the Appendix. This concurs

with Equation (3) where the power of the combined procedure is a linear combination of

the conditional probabilities weighted on λ and (1− λ). One observation worth noting

is that the values of Pθ(RAU |RMS) are consistently larger than all the other conditional

powers in both the selected situations presented here in this section.
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S I M U L AT I O N S F O R T H R E E - S TA G E M S T E S T I N G P R O C E D U R E

In Chapter 4, a two stage procedure was simulated. This represents most of the simu-

lation done in the literature that was reviewed. In this chapter, the three stage testing

procedure is considered. Two model assumptions are checked before finally deciding

on the model to be used. The main null hypotheses of the tests to choose from must

be comparable, namely the main null hypotheses of all the tests considered must essen-

tially test the same thing. For example, testing the equality of distributions of a sample

or multiple samples.

From the literature, there is not much that has been done on the three stage MS testing

procedure. One example is from Rasch, Kubinger and Moder (2011) which assessed the

statistical properties of a three-stage procedure including testing for normality and for

homogeneity of the variances. This is also recommended by Kim (2015). In most cases

there are more than one model assumption, a two stage MS test might not be sufficient

to check them. Spanos (2018) recommends that all model assumptions are listed and to

test them all in some specific order. However, he does not precisely define a sequence

on how to do this. In this chapter, we do not implement Spanos’ recommendation com-

pletely, but we do take one step further in the direction of investigating an overall model

checking process by defining a three stage procedure checking two model assumptions.
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5.1 main null hypothesis of equal distributions

The work in this section is similar to the work done by Rasch, Kubinger and Moder

(2011) where two model assumptions are tested to specify the model to be used. The

main null hypothesis is that two samples are equal. Two model assumptions are tested

that is the assumption of equal variance and the assumption of normality. These two

model assumptions will specify between three hypothesis tests which is the Wilcoxon-

Mann-Whitney test (WMW), the Welch’s t-test and the standard t-test. The Welch’s t-test

and the standard t-test does assume normality but the Welch’s t-test does not assume

equal variance while the standard t-test does assume equal variance. The WMW is

a non-parametric test with lesser assumptions. The null hypothesis is that the two

distributions are equal, so must be the variances. The alternative is that one distribution

is stochastically larger than the other. Whereas this does not necessarily imply that the

variances are equal, this does for example not hold for two normal distributions with

different means and different variances.

The simulation starts by generating a multinomial Bernoulli vector (l1, l2, l3) with prob-

ability (λ1, λ2, λ3) where ∑3
i=1 λi = 1. When l1 = 1, l2 = 0, l3 = 0, two samples of the

same size are generated from the t distribution with 3 degrees of freedom. When l1 = 0,

l2 = 1, l3 = 0, two samples of the same size are generated from the normal distribution

with mean 0 and different variance, σ1 = 1, σ2 = 1.5. When l1 = 0, l2 = 0, l3 = 1, two

samples are generated from the standard normal distribution. The sample sizes con-

sidered are n = 8, 27, 125 representing a small sample size, a moderate sample size and

a fairly large sample size respectively. The two samples are then tested with all three

tests considered without any model checking. Next, the two samples are put through

the combined procedure with model checking. If normality is rejected, the WMW test

is used. If normality is not rejected, the two samples are tested for equal variance. If

normality is not rejected and equal variance is rejected, the Welch’s t-test is used and

finally if normality and equal variance is not rejected, the standard t-test is used. This

process is summarised in Figure 18. The simulations are repeated M = 100, 000 times.

5.1.1 Main null hypothesis is fulfilled

Table 18 to Table 20 shows the rejection rates of the WMW test, Welch’s t-test, the

standard t-test and the combined, three stage Combined Procedure (CP). The values

in the tables show that level of the tests and the CP are around the nominal level 5%.

However, using the proportion test from Equation (12), quite a number of the values are
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Figure 18: The decision tree for the unconditional testing and the three stage MS com-
bined procedure for the main null hypothesis of equal distributions

statistically significantly different than 5%. The rejection rates where the null hypothesis

that the levels are equal to 5% that are rejected by the proportion test are underlined in

Table 18 to Table 20. The 95% confidence interval for the test is (4.865, 5.135).

(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 5.348 (0.071) 4.927 (0.068) 5.272 (0.071) 5.182 (0.070)
(0, 0, 1) 4.965 (0.069) 4.753 (0.067) 5.004 (0.069) 4.966 (0.069)
(1, 0, 0) 4.967 (0.069) 3.844 (0.061) 4.188 (0.063) 4.195 (0.063)

(0, 0.5, 0.5) 5.137 (0.070) 4.800 (0.068) 5.060 (0.069) 4.988 (0.069)
(0.5, 0.5, 0) 5.202 (0.070) 4.503 (0.066) 4.822 (0.068) 4.803 (0.068)
(0.5, 0, 0.5) 5.036 (0.069) 4.409 (0.065) 4.682 (0.067) 4.684 (0.067)

(1/3, 1/3, 1/3) 5.213 (0.070) 4.615 (0.066) 4.915 (0.068) 4.883 (0.068)

Table 18: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various λ1, λ2 and λ3 in the three stage procedure for n = 8

(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 5.116 (0.070) 4.990 (0.069) 5.078 (0.069) 5.021 (0.069)
(0, 0, 1) 4.872 (0.068) 5.015 (0.069) 5.035 (0.069) 5.038 (0.069)
(1, 0, 0) 4.793 (0.068) 4.530 (0.066) 4.588 (0.066) 4.725 (0.067)

(0, 0.5, 0.5) 4.988 (0.069) 5.019 (0.069) 5.061 (0.069) 5.054 (0.069)
(0.5, 0.5, 0) 4.881 (0.068) 4.692 (0.067) 4.768 (0.067) 4.826 (0.068)
(0.5, 0, 0.5) 4.736 (0.067) 4.685 (0.067) 4.735 (0.067) 4.810 (0.068)

(1/3, 1/3, 1/3) 4.894 (0.068) 4.789 (0.068) 4.832 (0.068) 4.893 (0.068)

Table 19: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various λ1, λ2 and λ3 in the three stage procedure for n = 27

The CP procedure does seem to be the best at maintaining a stable level but the WMW

and Welch’s t-test are not that far behind. The Welch’s t-test did have one instance

where the level was at 3.844% in Table 18. When n = 8, the Welch’s t-test constantly

underperforms at level 5%. When n = 27, the WMW almost always have a smaller level

than 5% but not statistically significantly so. Having said that, a smaller level is not a

problem in itself, this means the error probability is lower. However, a low level can also
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(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 5.443 (0.072) 5.132 (0.070) 5.153 (0.070) 5.141 (0.070)
(0, 0, 1) 5.048 (0.069) 5.124 (0.070) 5.125 (0.070) 5.129 (0.070)
(1, 0, 0) 4.871 (0.068) 4.763 (0.067) 4.770 (0.067) 4.861 (0.068)

(0, 0.5, 0.5) 5.240 (0.070) 5.100 (0.070) 5.105 (0.070) 5.104 (0.070)
(0.5, 0.5, 0) 5.213 (0.070) 4.884 (0.068) 4.895 (0.068) 5.001 (0.069)
(0.5, 0, 0.5) 5.012 (0.069) 4.944 (0.069) 4.949 (0.069) 5.063 (0.069)

(1/3, 1/3, 1/3) 5.123 (0.070) 4.968 (0.069) 4.979 (0.069) 5.043 (0.069)

Table 20: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various λ1, λ2 and λ3 in the three stage procedure for n = 125

be caused by a power that is also low. A closer look at the power of the test is needed.

Generally, the performances of the AU (WMW and Welch’s t-test), MC (standard t-test)

and CP are quite similar and no clear advantage can be seen looking at the levels alone.

5.1.2 Main null hypothesis is violated

Table 21 to Table 25 shows the power levels of the WMW test, Welch’s t-test, the stand-

ard t-test and the three stage CP procedure for three different sample sizes and two ncps.

When the sample size is small (n = 8), the WMW and the Welch’s test perform slightly

worse than the standard t-test and the CP procedure. In some situations, it is signific-

antly worse, in others not significantly worse. Remember that because the simulations

were done 100, 000 times, even a small difference is quite significant. The powers of the

CP is quite close to that of the standard t-test. When n = 27, the powers of the WMW

increases and in some cases, for example when (λ1 = 1, λ2 = 0, λ3 = 0), the WMW has

quite the advantage over the other three methods but this is due to the samples being

generated in the model where WMW was chosen as the test.

(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 11.350 10.942 11.591 11.405

(0, 0, 1) 14.774 14.837 15.303 15.209

(1, 0, 0) 14.074 11.485 12.263 12.373

(0, 0.5, 0.5) 13.166 13.046 13.646 13.497

(0.5, 0.5, 0) 12.606 11.206 11.903 11.842

(0.5, 0, 0.5) 14.363 13.155 13.801 13.784

(1/3, 1/3, 1/3) 13.086 12.476 13.161 13.086

Table 21: Powers of the rejection of a false main null hypothesis (%) for various λ1, λ2
and λ3 in the three stage procedure for n = 8 and ncp = 0.5
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(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 29.910 29.996 31.350 30.900

(0, 0, 1) 44.183 45.188 46.094 45.912

(1, 0, 0) 40.070 34.215 35.965 36.146

(0, 0.5, 0.5) 36.929 37.578 35.965 38.367

(0.5, 0.5, 0) 34.685 31.722 33.299 33.173

(0.5, 0, 0.5) 41.963 39.415 40.750 40.766

(1/3, 1/3, 1/3) 38.067 36.418 37.819 37.666

Table 22: Powers of the rejection of a false main null hypothesis (%) for various λ1, λ2
and λ3 in the three stage procedure for n = 8 and ncp = 1

(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 27.716 28.946 29.218 29.035

(0, 0, 1) 41.206 43.546 43.602 43.592

(1, 0, 0) 38.427 33.678 33.920 35.896

(0, 0.5, 0.5) 34.315 36.180 36.341 36.257

(0.5, 0.5, 0) 33.169 31.418 31.673 32.570

(0.5, 0, 0.5) 39.922 38.774 38.919 39.911

(1/3, 1/3, 1/3) 35.856 35.292 35.494 36.116

Table 23: Powers of the rejection of a false main null hypothesis (%) for various λ1, λ2
and λ3 in the three stage procedure for n = 27 and ncp = 0.5

(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 77.694 80.498 80.704 80.554

(0, 0, 1) 93.659 94.659 94.997 94.997

(1, 0, 0) 90.926 84.078 84.282 84.423

(0, 0.5, 0.5) 85.831 87.721 87.844 87.753

(0.5, 0.5, 0) 84.474 82.283 82.476 83.980

(0.5, 0, 0.5) 92.288 89.466 89.561 91.142

(1/3, 1/3, 1/3) 87.577 86.457 86.621 87.626

Table 24: Powers of the rejection of a false main null hypothesis (%) for various λ1, λ2
and λ3 in the three stage procedure for n = 27 and ncp = 1

(λ1, λ2, λ3) WMW Welch’s t-test Standard t-test CP
(0, 1, 0) 85.080 86.930 86.956 86.920

(0, 0, 1) 96.927 97.531 97.531 97.531

(1, 0, 0) 95.516 88.953 88.969 95.089

(0, 0.5, 0.5) 90.945 92.228 92.243 92.223

(0.5, 0.5, 0) 90.412 88.114 88.135 91.149

(0.5, 0, 0.5) 96.363 93.382 93.388 96.421

(1/3, 1/3, 1/3) 92.505 91.203 91.215 93.178

Table 25: Powers of the rejection of a false main null hypothesis (%) for various λ1, λ2
and λ3 in the three stage procedure for n = 125 and ncp = 0.5
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Generally, from the rejection rates in Table 18 to Table 25, it is difficult to choose a best

method. However, a good balance between level and power across λs and sample sizes

is the CP. The levels of the CP is well managed at around the nominal level 5% and the

power is among the highest in most of the ratios of λs that was considered. Second to

the CP, we would recommend using the WMW without any model checking.

5.2 main null hypothesis of regression slope coefficient significance

The work in this section is similar to the setup presented in Mayo and Spanos (2004)

where they looked at a probabilistic reduction approach to model checking in linear

regression. Let’s consider a simple linear regression model

yt = β0 + β1xt + ut, t = 1, 2, . . . , n (13)

where yt is the dependent variable, xt the independent variable, β0 the intercept, β1 the

slope coefficient and ut is the error component.

In Mayo and Spanos (2004), five model assumptions were considered namely Normal-

ity, Linearity, Homoskedasticity, Independence and t-homogeneity. According to Spanos

(1999), t-homogeneity is short for time homogeneity, which is an assumption that the

transition probabilities do not change over time. In this section, these five assumptions

are reduced to two, namely Normality and Independence. The main null hypothesis

that is of interest here is whether there is a significant relationship between the inde-

pendent and dependent variables. This is achieved by testing the null hypothesis that

the slope coefficient is equal to zero (β1 = 0) as introduced in Scetion 2.3.5. The test-

ing of the residuals for these two model assumptions will choose between three linear

models which is either the AutoRegressive (AR(1)) model, a robust regression method

or the standard linear regression model. The AR(1) model is used when the assumption

of independence is rejected, as this could imply that the error terms are dependent or

some autocorrelation is present. The robust regression method is used when the inde-

pendence assumption is not rejected but the assumption of normality is rejected. Finally,

the standard linear regression is used in the case where both model assumptions are not

rejected. To the best of our knowledge, this kind of a three stage combined procedure

has not been investigated, therefore the choice of model to use was purely imagined to

be a good representation of a real world problem.

The autoregressive model is widely used in areas of statistics such as econometrics

and signal processing as a representation of a type of random process specifically time-

varying process. Simply put, the autoregressive model specifies that the output variable



5.2 main null hypothesis of regression slope coefficient significance 99

depends linearly on its own previous values. The AR(1) means the first-order autore-

gressive model of a time series Yt which is defined as follows;

Yt = β0 + β1Yt−1 + ut, (14)

where t is time and ut is noise at time t.

In robust statistics, robust regression is a form of regression analysis designed to

overcome some limitations of traditional parametric and non-parametric methods. Ro-

bust regression provides an alternative to least squares regression that works with less

restrictive assumptions. Specifically, it provides much better regression coefficient estim-

ates when outliers are present in the data. Outliers violate the assumption of normally

distributed residuals in least squares regression. They tend to distort the least squares

coefficients by having more influence than they deserve. The robust method that was

chosen for this section is by Koller and Stahel (2011) and Koller and Stahel (2017). This

is an MM-estimator that is recommended in the R documentation of the lmrob function.

An example of a standard linear regression method was already discussed in Section

2.3.5.

The simulation starts by generating a multinomial Bernoulli vector (l1, l2, l3) with prob-

ability (λ1, λ2, λ3) where ∑3
i=1 λi = 1. When l1 = 1, l2 = 0, l3 = 0, a residuals vector

is generated from an AR(1) process. This is done by first generating a sample from a

standard normal distribution as residuals. Autocorrelation is then added to the resid-

uals using the function filter in R. The recursive linear filter was chosen to introduce

autocorrelation to the error terms generated. Let the filter coefficient be f1 and the resid-

uals generated from the standard normal distribution is ε. Note that there is an implied

coefficient 1 at lag 0 in the recursive filter which is

ε f ilter[i] = ε[i] + f1 × ε[i− 1].

We chose f1 = 0.05.

When l1 = 0, l2 = 1, l3 = 0, a residuals vector is generated from a t distribution with 3

degrees of freedom. We choose this distribution because of the heavy tails. When l1 = 0,

l2 = 0, l3 = 1, a residuals vector are generated from the standard normal distribution.

The sample sizes considered are n = 16, 27, 125 representing a small sample size, a

moderate sample size and a fairly large sample size respectively. According to White

(2019), the minimum time needed to achieve a reasonable power is 15.91. Therefore, the

sample size selection was modified and the smallest sample size that was considered is

16.
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A linear model is built using the residuals that were generated. The three methods

were then fitted without any MS testing and the significance of the slope coefficient was

tested using the standard t-test. For the combined procedure, the residuals are first

tested for autocorrelation using the Durbin-Watson (DW) test. The DW test is a widely

used test for independence in a statistical regression analysis. In particular, the error

term in the standard linear regression model is extended to allow for the possibility that

the errors are correlated with their past. Referring to Equation (13), the term ut now

becomes ut = ρut−1 + εi. The DW test assesses whether or not ρ = 0, namely

H0 : ρ = 0 against H1 : ρ 6= 0.

The DW test statistic (Durbin and Watson (1971)) is given as;

DW =
∑T

t=2(ut − ut−1)
2

∑T
t=1 u2

t
.

The DW statistic will always have a value between 0 and 4. A value of 2.0 means that

there is no autocorrelation detected in the sample. If autocorrelation or dependence is

not rejected, the AR(1) time series model is used and the slope coefficient is tested for

significance using the t-test. If autocorrelation or dependence is rejected, the residuals

are tested for normality. If both autocorrelation and normality is rejected, the robust

regression model is used and the slope coefficient is tested for significance using the

t-test. If autocorrelation is rejected and normality is not rejected, the the standard linear

regression model is used and the slope coefficient is tested for significance using the

t-test. This process is summarised in Figure 19. The level for both MS tests and also the

main tests are set at 0.05. The simulations are repeated M = 10, 000 times when n = 16,

27 and repeated M = 1, 000 times when n = 125 due to the limitation of the processing

power and time and computer memory.

5.2.1 Main null hypothesis is fulfilled

Table 26 to Table 28 shows the rejection rates of the AR(1) model, robust regression, the

standard linear regression and the three stage Combined Procedure (CP). The values in

the tables show that level of the tests and the CP are around the nominal level 5% except

when using the AR(1) model.

For Table 26 and 27 the 95% confidence interval for the proportion test (Equation (12))

is (4.57, 5.43) and for Table 28 the 95% confidence interval for the proportion test is

(3.7, 6.3). Values outside of this interval are considered rejected for the null hypothesis
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Figure 19: The decision tree for the unconditional testing and the three stage MS com-
bined procedure for the main null hypothesis of regression coefficient signi-
ficance

that the level is equal to 5% and are underlined. The respective standard errors of the

rejection rates are presented in the parentheses. The CP does seem to be the best at main-

taining a stable level when the sample sizes are 16 and 27 but when the sample size is

125, the level can drop considerably especially when λ2 = λ3 = 0.5. Note that the stand-

ard errors for the rejection rates in Table 28 are quite large due to the relatively small

number of iterations, so these rejection rates values can fluctuate quite significantly.

(λ1, λ2, λ3) AR(1) Robust regression Linear regression CP
(0, 1, 0) 7.47 (0.263) 5.07 (0.219) 4.77 (0.213) 4.66 (0.211)
(0, 0, 1) 6.99 (0.255) 5.23 (0.223) 4.94 (0.217) 4.86 (0.215)
(1, 0, 0) 7.22 (0.259) 6.05 (0.238) 5.89 (0.235) 5.71 (0.232)

(0, 0.5, 0.5) 6.91 (0.254) 4.97 (0.217) 4.69 (0.211) 4.71 (0.212)
(0.5, 0.5, 0) 7.08 (0.256) 5.35 (0.225) 5.59 (0.230) 5.28 (0.224)
(0.5, 0, 0.5) 7.30 (0.260) 5.35 (0.225) 5.34 (0.225) 5.06 (0.219)

(1/3, 1/3, 1/3) 7.23 (0.259) 5.64 (0.231) 5.55 (0.229) 5.27 (0.223)

Table 26: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various λ1, λ2 and λ3 in the three stage procedure for n = 16

(λ1, λ2, λ3) AR(1) Robust regression Linear regression CP
(0, 1, 0) 6.19 (0.241) 4.64 (0.210) 4.89 (0.216) 4.18 (0.200)
(0, 0, 1) 6.32 (0.243) 5.14 (0.221) 5.02 (0.218) 4.70 (0.212)
(1, 0, 0) 6.64 (0.249) 6.11 (0.240) 6.07 (0.239) 5.59 (0.230)

(0, 0.5, 0.5) 6.29 (0.243) 5.27 (0.223) 5.02 (0.218) 4.73 (0.212)
(0.5, 0.5, 0) 6.11 (0.240) 5.65 (0.231) 5.33 (0.225) 4.73 (0.212)
(0.5, 0, 0.5) 6.88 (0.252) 5.65 (0.231) 5.78 (0.233) 5.35 (0.225)

(1/3, 1/3, 1/3) 6.29 (0.243) 5.70 (0.232) 5.57 (0.229) 5.37 (0.225)

Table 27: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various λ1, λ2 and λ3 in the three stage procedure for n = 27
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(λ1, λ2, λ3) AR(1) Robust regression Linear regression CP
(0, 1, 0) 5.6 (0.727) 6.0 (0.751) 5.5 (0.721) 3.6 (0.589)
(0, 0, 1) 4.0 (0.620) 4.4 (0.649) 4.5 (0.656) 3.7 (0.600)
(1, 0, 0) 4.0 (0.620) 6.1 (0.757) 5.6 (0.727) 4.3 (0.641)

(0, 0.5, 0.5) 4.3 (0.641) 4.9 (0.683) 4.4 (0.649) 2.9 (0.531)
(0.5, 0.5, 0) 5.2 (0.702) 5.6 (0.780) 6.0 (0.751) 4.2 (0.634)
(0.5, 0, 0.5) 5.7 (0.733) 6.6 (0.785) 5.9 (0.745) 5.5 (0.721)

(1/3, 1/3, 1/3) 6.5 (0.780) 6.8 (0.796) 6.9 (0.801) 5.3 (0.708)

Table 28: Rejection rates of the main null hypothesis (%) and standard errors (in paren-
theses)(%) for various λ1, λ2 and λ3 in the three stage procedure for n = 125

5.2.2 Main null hypothesis is violated

The simulation in the previous section is repeated but now the main null hypothesis is

violated namely β1 6= 0. We chose β1 = 0.1. Table 29 to Table 31 show the powers of the

three unconditional tests and the combined procedure when the main null hypothesis is

violated. The powers of the CP are not particularly high, only in one situation the power

of the CP is higher than other unconditional methods. When n = 27, the unconditional

AR(1) has the lowest power across all λ values considered. When the levels and powers

are considered together, it is difficult to choose one best method. Nevertheless, there

is no evidence to conclude that the CP is much worse than the unconditional tests.

Therefore, the CP can be favoured to be used in this situation as the Type I error is quite

well controlled in small to moderate sample sizes.

(λ1, λ2, λ3) AR(1) Robust regression Linear regression CP
(0, 1, 0) 24.90 28.08 23.81 27.06

(0, 0, 1) 40.70 38.45 40.88 39.50

(1, 0, 0) 38.86 39.19 41.51 39.61

(0, 0.5, 0.5) 32.36 32.43 31.61 32.87

(0.5, 0.5, 0) 30.70 34.26 32.91 33.39

(0.5, 0, 0.5) 39.20 38.18 40.63 39.13

(1/3, 1/3, 1/3) 34.56 34.87 35.11 35.09

Table 29: Powers of the rejection of the main null hypothesis (%) for various λ1, λ2 and
λ3 in the three stage procedure for n = 16
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(λ1, λ2, λ3) AR(1) Robust regression Linear regression CP
(0, 1, 0) 68.76 84.27 70.24 80.02

(0, 0, 1) 95.36 96.75 97.46 96.36

(1, 0, 0) 93.61 96.12 96.87 95.06

(0, 0.5, 0.5) 81.86 90.19 84.16 88.01

(0.5, 0.5, 0) 81.36 90.18 83.82 87.89

(0.5, 0, 0.5) 94.68 96.16 97.02 95.75

(1/3, 1/3, 1/3) 86.15 92.35 88.61 90.58

Table 30: Powers of the rejection of the main null hypothesis (%) for various λ1, λ2 and
λ3 in the three stage procedure for n = 27

(λ1, λ2, λ3) AR(1) Robust regression Linear regression CP
(0, 1, 0) 1 1 1 1

(0, 0, 1) 1 1 1 1

(1, 0, 0) 1 1 1 1

(0, 0.5, 0.5) 1 1 1 1

(0.5, 0.5, 0) 1 1 1 1

(0.5, 0, 0.5) 1 1 1 1

(1/3, 1/3, 1/3) 1 1 1 1

Table 31: Powers of the rejection of the main null hypothesis (%) for various λ1, λ2 and
λ3 in the three stage procedure for n = 125

This chapter illustrates some examples of a three stage Combined Procedure with

two model checking stages. This is to show that there are many more combinations of

tests and model checking that can still be explored and researched. The model that was

chosen as an example is the AR(1) model. One could argue that it is not realistic that

AR(1) is the only possible deviation from dependence. The reason it was chosen was

because it was the simplest dependence model and so it was a good start.

Nonetheless, the simulations show that the CP controls the Type I error well and

has good power when the main null hypothesis is violated. The same conclusions in

Chapter 4 can be made i.e. the CP can be useful in certain situations in a three stage CP,

particularly when the sample size is small to moderate.

There are of course many more combinations of λ to consider which could potentially

inform a three dimensional representation of the powers.
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S U M M A RY A N D C O N C L U D I N G R E M A R K S

“The quiet statisticians have changed our world; not by

discovering new facts or technical developments, but by changing

the ways that we reason, experiment and form our opinions about

it.” Ian Hacking

This thesis presented a novel methodology to study the performance of a combined pro-

cedure where a final main test is chosen by carrying out one or several misspecification

tests. To come up with this methodology, an intensive but by no means exhaustive lit-

erature survey in Chapter 2 was carried out to understand how researchers carry out

statistical hypothesis tests in practice, specifically how they deal with model assump-

tions. The literature shows that many researchers, particularly non-statisticians, do not

fully understand the implications of making sure that model assumptions are fulfilled

before using any statistical inference tests.

The misspecification paradox is introduced and discussed. Hennig (2007) first coined

the term goodness-of-fit paradox, but we have decided to use misspecification paradox

moving forward. A number of studies that discusses the combined procedure were

surveyed to get a sense of a general recommendation, but we found that no agreement

can be made whether MS testing should or should not be done. However, quite a

number of authors do recommend that a test which has lesser assumptions should

always be used without any model checking.

Chapter 3 presents a theory that shows that in certain conditions, the combined pro-

cedure has a higher power compared to the unconditional tests. We start by defining

a few terms that is needed for the theory to be valid, which in the situation where the

model assumption is not fulfilled, the power of the unrestricted model is higher than

the power of the restricted model. Conversely, in the situation where the model assump-

tion is fulfilled, the power of the restricted model is higher than the unrestricted model.

Using the law of total probabilities as a starting point and the assumption that the MS

test is independent of the main test, we were able to show that for a certain value of λ
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(Equation (4)), the power of the combined procedure is indeed larger than the uncondi-

tional tests. The rather strict assumption of independence between the tests was then

relaxed a little by adding some small measures of dependence, and the same conclusion

still holds. As we have noted, the relationship that defines the dependence between the

tests could potentially be more complex than a simple addition.

We also found that all the studies that simulate this combined procedure do it in a re-

strictive manner where all the samples are generated from a situation that either always

violated the model assumption or always fulfills the model assumption. Therefore, a

simulation setup was formulated in Chapter 4 where a random process is introduced in

the beginning of the simulation to make the choice of either being in the situation where

the model assumption is violated or fulfilled. Simulations were done and the Type I er-

ror rates were compared to the nominal level. In order to explore the power of the tests,

a second set of simulations are carried out where one of each pair of samples has the

mean shifted in varying degrees. A few combinations of distributions and hypothesis

tests were considered. Looking at the levels of the tests and the combined procedure,

there is not much evidence to support using the combined procedure over the uncondi-

tional tests. However, when inspecting the power plots, we can see that in the case where

there is close to or equal chance of generating the samples from either a situation where

the model assumptions are fulfilled or violated, the power of the combined procedure

is larger than both the unconditional tests. This is not so apparent when the sample size

is large. For this to be true there are some general requirements that have to be fulfilled,

for example, the MS test must be at most weakly dependent or approximately independ-

ent to the main test. Secondly, in the situation where the model assumption is violated,

the AU test must have a better power than the MC test and conversely, in the situation

where the model assumption is fulfilled, the MC test must have a better power than the

AU test. Finally, the MS test must have some use, namely it has a certain (possibly weak)

ability to distinguish between the situation where the model assumption is fulfilled and

violated.

Different levels of the MS test was also considered due to recommendations in some

of the literature. It was found that the level of the MS test does not really affect the

power of the CP. To choose a winner among the tests, both level and power must be

examined. A level that is significantly larger than the nominal level can be a problem

whereas a level that is lower than the nominal level is not a problem as this may indicate

that the error probability is low. However, a level that is too low means that the power

could be low as well which is also a problem. A power that is high should also further

examined to check if the level is also too high. Hence, to choose a test is not an easy task
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of balancing a level that is not too high whilst also requiring the power to be sufficiently

high.

An example from the literature review (Rochon, Gondan and Kieser (2012)) shows that

in terms of power, the two-sample t-test is better than the non-parametric WMW test if

the underlying distributions are uniform. This clearly violates the normality assumption

of the t-test (despite being asymptotically still correct), and will be picked up by many

normality tests. Still it would be a bad decision to use the WMW test instead, even

though its assumptions are fulfilled. An optimal combined procedure therefore should

involve an MS test that picks up only those deviations from normality for which the

WMW test (or whatever test is chosen as AU test) is actually helpful.

We then look at the level of the MS test conditional on the model and found that the

level of the MS test is significantly higher than the nominal level, specifically twice of

the nominal level. This leads us to recommend that the Bonferroni correction be used

when a two-sample test problem is considered.

In some of the literature surveyed (Mayo and Spanos (2004), Rasch, Kubinger and

Moder (2011)), a combined procedure with two or more model assumptions were con-

sidered. Therefore, in Chapter 5, a three stage combined procedure testing was studied.

Two family of models were considered, equal distributions models and regression sig-

nificance models. We first look at the main null hypothesis of equal distributions. The

levels show slightly uncontrolled Type I error for the unconditional tests. The powers

of the three stage combined procedure is larger than the unconditional tests especially

when (λ1 = 1/3, λ2 = 1/3, λ3 = 1/3). This basically means that there is equal chance

of getting two samples from either a t distribution with 3 degrees of freedom, normal

distribution with mean 0 and unequal variances or standard normal distribution.

In all of the simulations that we considered, it can be argued that the combined pro-

cedure does indeed help in the choice of either using an MC or AU test. Certainly in

some situations, it was shown that the CP has a better control of the level of the test

and a good enough power. In some situations the CP has the best power of rejecting a

false main null hypothesis. The CP also works well in cases where the sample size is

small, n = 8. The CP is at the very least, almost as good as using a test without checking

the model assumptions. Given a choice between not checking the model assumptions

and checking them without significant loss of power and increased error probability, we

feel that CP has the advantage here given the aforementioned requirements is fulfilled

and also the Bonferroni correction is done in the case that a two-sample problem is

considered.

Some suggestions for future work could be to ask, how much of a violation can cause

problems for the level and power? For example, the variance of a t2 distribution can-
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not be calculated, therefore the Central Limit Theorem (CLT) does not hold. Numerous

other violations of the model assumption has the potential to be further studied. The

CLT works very well for a uniform distribution, so using something that assumes nor-

mality will still work quite well. Therefore, a good MS test for this reason would be one

who detects those deviations from the normal that are really problematic, particularly

heavy tails, non-existing variance or even if the variance exists but tails are heavy such

as in the case of the t3 distribution. Another example of the violation of the model as-

sumption is independence of the samples which according to Cressie (1980) causes the

biggest problems in the one-sample t-test. We are not aware of any literature examining

of independence testing combined with the t-test.

There are also work such as Berk et al. (2013) and Hendry and Doornik (2014) that

formally takes into account the effect of MS testing on subsequent tests which is called

the post selection inference. Comparing post selection inference methods and CP could

potentially be a good research area.

We believe that the focus of model checking is too much on the formal assumptions

and not enough on deriving tests that can find the particular violations of model as-

sumptions that are most problematic in terms of level and power. The development

of MS tests that are better suited for this task and the investigation of the resulting

combined procedures is a promising research area.
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A
A P P E N D I X

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.13916 0.14082 0.14261 0.14328 0.14358 0.12263 0.14074

0.1 0.13919 0.1407 0.14222 0.1426 0.14252 0.12553 0.14011

0.2 0.13993 0.1418 0.14316 0.14346 0.1432 0.12741 0.14033

0.3 0.14111 0.14307 0.14427 0.14432 0.14441 0.13064 0.14066

0.4 0.14311 0.1445 0.14561 0.14578 0.14572 0.13347 0.1416

0.5 0.14615 0.14747 0.14856 0.14861 0.14819 0.13745 0.14301

0.6 0.14811 0.1491 0.14995 0.14993 0.14961 0.14086 0.1452

0.7 0.14869 0.14959 0.14979 0.14976 0.14965 0.14248 0.14454

0.8 0.15365 0.15424 0.15486 0.15457 0.15413 0.14912 0.14759

0.9 0.15353 0.15408 0.15427 0.15401 0.15331 0.15027 0.14736

1 0.15462 0.15506 0.1554 0.15516 0.15452 0.15303 0.14774

Table 32: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 8 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.39816 0.40249 0.40533 0.40614 0.40632 0.35965 0.4007

0.1 0.40219 0.40596 0.40816 0.40844 0.40827 0.36732 0.40301

0.2 0.40677 0.41003 0.4122 0.41257 0.41211 0.37562 0.40472

0.3 0.41531 0.41787 0.41938 0.41907 0.41884 0.38869 0.41084

0.4 0.42097 0.423 0.42411 0.42345 0.42304 0.39754 0.41343

0.5 0.43215 0.4339 0.4346 0.43383 0.43234 0.41214 0.42106

0.6 0.43475 0.43652 0.43706 0.43658 0.4358 0.41859 0.4247

0.7 0.44177 0.44297 0.44312 0.44199 0.44079 0.42904 0.4276

0.8 0.44955 0.45038 0.44927 0.44776 0.44606 0.44018 0.43213

0.9 0.45879 0.45911 0.45804 0.45648 0.45463 0.45332 0.43847

1 0.46244 0.46286 0.4622 0.46041 0.45818 0.46094 0.44183

Table 33: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 8 and ncp = 1
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.88208 0.886 0.88855 0.88911 0.88916 0.82358 0.88722

0.1 0.88862 0.89221 0.89494 0.89577 0.89585 0.83509 0.89289

0.2 0.89603 0.89922 0.90087 0.90137 0.90156 0.84852 0.89795

0.3 0.90585 0.90839 0.90992 0.91022 0.91046 0.86384 0.9073

0.4 0.91294 0.91527 0.91647 0.91659 0.91638 0.87694 0.91254

0.5 0.92186 0.92387 0.92476 0.92477 0.92435 0.89273 0.91936

0.6 0.92845 0.92957 0.93049 0.93016 0.92974 0.905 0.92486

0.7 0.93729 0.93785 0.93826 0.93762 0.93696 0.91904 0.93155

0.8 0.94431 0.94461 0.94459 0.94363 0.94328 0.93339 0.93721

0.9 0.95188 0.95188 0.95134 0.95062 0.94964 0.94582 0.94316

1 0.9605 0.96007 0.95902 0.95811 0.95698 0.96074 0.94932

Table 34: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 8 and ncp = 2

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.3829 0.38842 0.38497 0.38503 0.38513 0.3392 0.38427

0.1 0.38843 0.38962 0.3903 0.39029 0.39003 0.34989 0.38719

0.2 0.3953 0.3964 0.39691 0.39662 0.39611 0.36105 0.39149

0.3 0.39921 0.39981 0.39982 0.3994 0.3988 0.36964 0.39216

0.4 0.40372 0.40453 0.40411 0.40324 0.40248 0.37859 0.3944

0.5 0.41213 0.4125 0.41161 0.41044 0.40923 0.39088 0.39904

0.6 0.41573 0.41597 0.41504 0.41369 0.41243 0.39877 0.40092

0.7 0.42591 0.42594 0.42456 0.42324 0.42176 0.41301 0.40867

0.8 0.42807 0.42757 0.42623 0.42439 0.42281 0.41898 0.40815

0.9 0.43209 0.43233 0.4301 0.42794 0.42595 0.42775 0.40889

1 0.43664 0.43621 0.43452 0.43271 0.4305 0.43602 0.41206

Table 35: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 27 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.90594 0.9075 0.90873 0.90924 0.9094 0.84282 0.90926

0.1 0.90841 0.90969 0.91061 0.91091 0.91091 0.85162 0.91023

0.2 0.91403 0.91513 0.91558 0.91559 0.91549 0.86304 0.91422

0.3 0.91994 0.92073 0.92088 0.92067 0.92059 0.8752 0.91818

0.4 0.92233 0.92281 0.92278 0.92247 0.92198 0.88476 0.91901

0.5 0.92887 0.92923 0.92907 0.92867 0.92834 0.89701 0.92456

0.6 0.93058 0.93091 0.93069 0.9303 0.9295 0.90654 0.92532

0.7 0.93732 0.93709 0.93631 0.93553 0.93494 0.919 0.92999

0.8 0.94203 0.94173 0.94118 0.94035 0.9398 0.92962 0.93407

0.9 0.94532 0.94493 0.94361 0.94275 0.94166 0.93933 0.93463

1 0.94944 0.94864 0.94722 0.94593 0.94462 0.94997 0.93659

Table 36: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 27 and ncp = 1
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.99998 0.99997 0.99998 0.99998 0.99998 0.99389 0.99998

0.1 0.99997 0.99997 0.99998 0.99998 0.99998 0.99393 0.99998

0.2 0.99997 0.99997 0.99999 0.99999 0.99999 0.99472 0.99999

0.3 0.99999 0.99999 0.99999 0.99999 0.99999 0.99561 0.99999

0.4 0.99999 0.99999 0.99999 0.99999 0.99999 0.99614 0.99999

0.5 0.99999 0.99999 0.99999 0.99999 0.99999 0.99688 0.99999

0.6 0.99999 0.99999 0.99999 0.99999 0.99999 0.99774 0.99999

0.7 0.99999 0.99999 0.99999 0.99999 0.99999 0.99805 0.99999

0.8 0.99999 0.99999 0.99999 0.99999 0.99999 0.99853 0.99999

0.9 1 1 1 1 1 0.99948 1

1 1 1 1 1 1 1 1

Table 37: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 27 and ncp = 2

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.95512 0.95516 0.95516 0.95516 0.95516 0.88969 0.95516

0.1 0.95901 0.95898 0.95893 0.95877 0.95879 0.90096 0.95817

0.2 0.95912 0.95908 0.95895 0.95888 0.95879 0.90719 0.95826

0.3 0.96181 0.96168 0.9615 0.96135 0.96118 0.91646 0.96046

0.4 0.96452 0.96441 0.96414 0.96391 0.96385 0.92667 0.96244

0.5 0.96565 0.96555 0.96531 0.96487 0.96462 0.93397 0.9628

0.6 0.96819 0.96793 0.96766 0.96742 0.96719 0.94228 0.96511

0.7 0.96915 0.96893 0.96846 0.96814 0.96766 0.94936 0.9654

0.8 0.97189 0.97155 0.97106 0.97065 0.97025 0.95909 0.96748

0.9 0.97408 0.97369 0.97277 0.97237 0.97181 0.96804 0.96872

1 0.9749 0.97439 0.97366 0.97302 0.97243 0.97531 0.96927

Table 38: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 125 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 1 1 1 1 1 0.99843 1

0.1 1 1 1 1 1 0.99861 1

0.2 1 1 1 1 1 0.99878 1

0.3 1 1 1 1 1 0.99891 1

0.4 1 1 1 1 1 0.99896 1

0.5 1 1 1 1 1 0.99933 1

0.6 1 1 1 1 1 0.99938 1

0.7 1 1 1 1 1 0.99954 1

0.8 1 1 1 1 1 0.9998 1

0.9 1 1 1 1 1 0.99981 1

1 1 1 1 1 1 1 1

Table 39: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 125 and ncp = 1
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 1 1 1 1 1 0.99986 1

0.1 1 1 1 1 1 0.99983 1

0.2 1 1 1 1 1 0.99983 1

0.3 1 1 1 1 1 0.99982 1

0.4 1 1 1 1 1 0.99987 1

0.5 1 1 1 1 1 0.9999 1

0.6 1 1 1 1 1 0.99993 1

0.7 1 1 1 1 1 0.99994 1

0.8 1 1 1 1 1 1 1

0.9 1 1 1 1 1 0.99997 1

1 1 1 1 1 1 1 1

Table 40: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for n = 125 and ncp = 2

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.1332 0.13558 0.1384 0.13975 0.14066 0.11485 0.14074

0.1 0.13381 0.13585 0.13827 0.1392 0.13976 0.11848 0.14011

0.2 0.13438 0.13686 0.13893 0.13989 0.14027 0.12035 0.14033

0.3 0.1353 0.13783 0.13988 0.14055 0.14115 0.12339 0.14066

0.4 0.13772 0.13965 0.14141 0.14211 0.14254 0.12688 0.1416

0.5 0.14044 0.14231 0.14428 0.14495 0.14503 0.1305 0.14301

0.6 0.14333 0.1448 0.14625 0.14668 0.14682 0.13501 0.1452

0.7 0.14365 0.14497 0.14591 0.14633 0.14657 0.1366 0.14454

0.8 0.14862 0.14959 0.15075 0.1509 0.15079 0.14353 0.14759

0.9 0.14839 0.14927 0.15004 0.15027 0.15 0.14462 0.14736

1 0.15015 0.15086 0.15164 0.15181 0.15154 0.14837 0.14774

Table 41: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 8 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.38646 0.39225 0.3969 0.3991 0.40024 0.34215 0.4007

0.1 0.39032 0.39547 0.39965 0.40134 0.40229 0.3502 0.40301

0.2 0.39513 0.39967 0.40363 0.40531 0.40595 0.35933 0.40472

0.3 0.40433 0.40812 0.41124 0.41222 0.41307 0.37352 0.41084

0.4 0.41025 0.41316 0.41596 0.41653 0.41703 0.38322 0.41343

0.5 0.42193 0.42465 0.42668 0.42714 0.42655 0.39884 0.42106

0.6 0.42492 0.42758 0.42934 0.43014 0.4302 0.40571 0.4247

0.7 0.43209 0.43402 0.43532 0.43511 0.43486 0.41692 0.4276

0.8 0.44062 0.44195 0.44196 0.44136 0.44047 0.42973 0.43213

0.9 0.44962 0.45036 0.45026 0.44961 0.44866 0.44311 0.43847

1 0.45394 0.45472 0.4547 0.45366 0.45229 0.45188 0.44183

Table 42: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 8 and ncp = 1
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.87468 0.87997 0.88398 0.88533 0.88614 0.80261 0.88722

0.1 0.88183 0.88683 0.89063 0.89236 0.89318 0.81708 0.89289

0.2 0.88938 0.89375 0.89683 0.89803 0.89884 0.83179 0.89795

0.3 0.90012 0.90365 0.90642 0.90732 0.908 0.84931 0.9073

0.4 0.90757 0.9108 0.91307 0.91369 0.91389 0.8634 0.91254

0.5 0.91731 0.92017 0.92195 0.92239 0.92232 0.88149 0.91936

0.6 0.92415 0.92592 0.92758 0.92775 0.9277 0.89546 0.92486

0.7 0.93365 0.93482 0.93576 0.93555 0.93516 0.91123 0.93155

0.8 0.94122 0.94192 0.94225 0.9417 0.94165 0.92727 0.93721

0.9 0.94929 0.94949 0.94931 0.94885 0.94814 0.9418 0.94316

1 0.95841 0.95808 0.9572 0.95649 0.95556 0.95849 0.94932

Table 43: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 8 and ncp = 2

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.38241 0.38409 0.38471 0.38483 0.38497 0.33678 0.38427

0.1 0.38783 0.38915 0.38995 0.39001 0.38982 0.34746 0.38719

0.2 0.39478 0.39596 0.39659 0.3964 0.39591 0.35938 0.39149

0.3 0.39863 0.39933 0.39952 0.39914 0.39859 0.36767 0.39216

0.4 0.40325 0.40409 0.40375 0.40294 0.4022 0.377 0.3944

0.5 0.4116 0.412 0.41117 0.41007 0.40888 0.38955 0.39904

0.6 0.4151 0.41542 0.41456 0.41328 0.41205 0.39726 0.40092

0.7 0.42519 0.42529 0.42399 0.42274 0.42132 0.41175 0.40867

0.8 0.42744 0.427 0.42574 0.42396 0.42239 0.41791 0.40815

0.9 0.43138 0.43164 0.42951 0.42743 0.4255 0.42681 0.40889

1 0.43614 0.43572 0.43405 0.4323 0.43013 0.43546 0.41206

Table 44: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 27 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.90575 0.90733 0.9086 0.90912 0.90931 0.84078 0.90926

0.1 0.90822 0.90953 0.91049 0.91082 0.91082 0.84957 0.91023

0.2 0.9138 0.91493 0.91544 0.91548 0.91539 0.8613 0.91422

0.3 0.9197 0.92055 0.92076 0.92058 0.9205 0.87357 0.91818

0.4 0.9221 0.92263 0.92263 0.92235 0.92186 0.88344 0.91901

0.5 0.92871 0.92911 0.92898 0.92859 0.92826 0.89587 0.92456

0.6 0.93041 0.93078 0.93057 0.93021 0.92944 0.90561 0.92532

0.7 0.9372 0.93697 0.93622 0.93545 0.93488 0.91857 0.92999

0.8 0.9418 0.94153 0.94102 0.9402 0.93967 0.9291 0.93407

0.9 0.94512 0.94474 0.94342 0.9426 0.94153 0.93899 0.93463

1 0.94923 0.94844 0.94703 0.94575 0.94447 0.94974 0.93659

Table 45: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 27 and ncp = 1
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.99998 0.99997 0.99998 0.99998 0.99998 0.99339 0.99998

0.1 0.99997 0.99997 0.99998 0.99998 0.99998 0.99358 0.99998

0.2 0.99997 0.99997 0.99999 0.99999 0.99999 0.99447 0.99999

0.3 0.99999 0.99999 0.99999 0.99999 0.99999 0.99531 0.99999

0.4 0.99999 0.99999 0.99999 0.99999 0.99999 0.99585 0.99999

0.5 0.99999 0.99999 0.99999 0.99999 0.99999 0.99679 0.99999

0.6 0.99999 0.99999 0.99999 0.99999 0.99999 0.99753 0.99999

0.7 0.99999 0.99999 0.99999 0.99999 0.99999 0.99794 0.99999

0.8 0.99999 0.99999 0.99999 0.99999 0.99999 0.99847 0.99999

0.9 1 1 1 1 1 0.99946 1

1 1 1 1 1 1 1 1

Table 46: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 27 and ncp = 2

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.95512 0.95516 0.95516 0.95516 0.95516 0.88953 0.95516

0.1 0.95901 0.95898 0.95893 0.95877 0.95862 0.90083 0.95817

0.2 0.95912 0.95908 0.95895 0.95888 0.95879 0.90704 0.95826

0.3 0.96181 0.96168 0.9615 0.96135 0.96118 0.91631 0.96046

0.4 0.96452 0.96441 0.96414 0.96391 0.96385 0.92656 0.96244

0.5 0.96565 0.96555 0.96531 0.96487 0.96462 0.93391 0.9628

0.6 0.96819 0.96793 0.96766 0.96742 0.96719 0.94222 0.96511

0.7 0.96915 0.96893 0.96846 0.96814 0.96766 0.94932 0.9654

0.8 0.97187 0.97153 0.97105 0.97064 0.97024 0.95905 0.96748

0.9 0.97408 0.97369 0.97277 0.97237 0.97181 0.968 0.96872

1 0.9749 0.97439 0.97366 0.97302 0.97243 0.97531 0.96927

Table 47: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 125 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.13067 0.13338 0.13541 0.13641 0.13715 0.11662 0.13791

0.1 0.12963 0.13212 0.13432 0.13545 0.13618 0.11693 0.13612

0.2 0.12784 0.13027 0.13232 0.13329 0.13378 0.11693 0.13341

0.3 0.1236 0.12573 0.12706 0.12793 0.12855 0.11374 0.12888

0.4 0.1238 0.12559 0.12708 0.12803 0.12855 0.11513 0.12885

0.5 0.1227 0.12424 0.12567 0.12672 0.12704 0.11433 0.126

0.6 0.11882 0.12035 0.12157 0.12217 0.12281 0.11195 0.12279

0.7 0.11909 0.12025 0.12174 0.12209 0.12231 0.11292 0.12169

0.8 0.11498 0.11647 0.1179 0.1181 0.11866 0.11035 0.11757

0.9 0.1129 0.11382 0.11516 0.11566 0.1158 0.10977 0.1149

1 0.11168 0.11277 0.11386 0.11415 0.11437 0.10942 0.1135

Table 48: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 8, ncp = 0.5 and σ2/σ1 = 1.5
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.37918 0.384 0.38857 0.39065 0.39191 0.34609 0.39301

0.1 0.37307 0.37772 0.38184 0.38394 0.38468 0.34385 0.38463

0.2 0.36326 0.36711 0.37092 0.37282 0.37351 0.3377 0.37255

0.3 0.35317 0.35707 0.36036 0.36214 0.36302 0.32935 0.36252

0.4 0.3497 0.35315 0.35634 0.35735 0.35799 0.32905 0.3571

0.5 0.34233 0.34509 0.34826 0.3491 0.34942 0.32372 0.34696

0.6 0.32969 0.33257 0.33478 0.33548 0.33626 0.31571 0.33346

0.7 0.32697 0.32929 0.33115 0.33217 0.33215 0.31562 0.32749

0.8 0.31622 0.31834 0.32006 0.32035 0.32051 0.30867 0.31726

0.9 0.31042 0.31158 0.31308 0.31361 0.31388 0.30472 0.30997

1 0.30254 0.30383 0.30442 0.30462 0.30444 0.29996 0.2991

Table 49: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 8, ncp = 1 and σ2/σ1 = 1.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.86862 0.87353 0.87739 0.87947 0.88014 0.82197 0.88086

0.1 0.86125 0.86546 0.86956 0.87114 0.87192 0.81848 0.87212

0.2 0.85613 0.85958 0.8628 0.86394 0.86455 0.81868 0.86358

0.3 0.85225 0.85573 0.85803 0.85902 0.85924 0.8183 0.85639

0.4 0.84696 0.84973 0.85161 0.85226 0.85234 0.81926 0.8481

0.5 0.84201 0.84425 0.84586 0.84625 0.84602 0.81816 0.84108

0.6 0.83815 0.83994 0.84084 0.8405 0.83992 0.81921 0.83436

0.7 0.8338 0.83508 0.83486 0.8347 0.83427 0.81974 0.82725

0.8 0.82506 0.82574 0.82607 0.82577 0.82509 0.81557 0.81695

0.9 0.8215 0.82172 0.82135 0.82051 0.81909 0.81654 0.81039

1 0.81476 0.81476 0.81374 0.81266 0.81119 0.81407 0.80165

Table 50: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 8, ncp = 2 and σ2/σ1 = 1.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.37208 0.37323 0.37423 0.37453 0.37446 0.33202 0.37284

0.1 0.36321 0.36456 0.36561 0.36537 0.36565 0.32701 0.36326

0.2 0.35692 0.35805 0.35885 0.35884 0.35917 0.32536 0.35598

0.3 0.34941 0.3509 0.35161 0.35135 0.35105 0.32015 0.34552

0.4 0.34246 0.34343 0.34371 0.34375 0.34345 0.31847 0.33763

0.5 0.33384 0.33471 0.33534 0.3347 0.33438 0.31266 0.32778

0.6 0.32466 0.3254 0.32566 0.32483 0.32372 0.30811 0.31598

0.7 0.31863 0.31882 0.31885 0.31801 0.31696 0.3047 0.30885

0.8 0.30885 0.3096 0.30985 0.30916 0.30816 0.29919 0.29754

0.9 0.29923 0.29978 0.29921 0.29842 0.29744 0.29413 0.2863

1 0.29049 0.29069 0.29085 0.28991 0.28877 0.28946 0.27716

Table 51: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 27, ncp = 0.5 and σ2/σ1 = 1.5
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.89438 0.89636 0.89815 0.89894 0.89924 0.83181 0.90008

0.1 0.88571 0.88756 0.88906 0.88953 0.88961 0.82823 0.88733

0.2 0.87903 0.88035 0.88094 0.88117 0.88092 0.82699 0.87737

0.3 0.86842 0.86926 0.86951 0.86925 0.86849 0.82491 0.8638

0.4 0.8608 0.86191 0.86164 0.86093 0.86035 0.82282 0.85276

0.5 0.85177 0.85186 0.8514 0.85009 0.8485 0.81998 0.83878

0.6 0.84066 0.8406 0.83982 0.83816 0.8366 0.81482 0.82665

0.7 0.83362 0.83334 0.83243 0.83041 0.82863 0.81403 0.81512

0.8 0.82511 0.82454 0.82274 0.82068 0.81869 0.8116 0.80458

0.9 0.8142 0.81345 0.81104 0.8088 0.80645 0.80649 0.79027

1 0.80632 0.80471 0.80183 0.79878 0.79575 0.80498 0.77694

Table 52: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 27, ncp = 1 and σ2/σ1 = 1.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.99996 0.99996 0.99997 0.99997 0.99997 0.99431 0.99997

0.1 0.99998 0.99998 0.99998 0.99998 0.99997 0.99464 0.99995

0.2 0.99994 0.99993 0.99994 0.99994 0.99994 0.99548 0.99994

0.3 0.99991 0.99992 0.99992 0.9999 0.99989 0.99602 0.99986

0.4 0.99995 0.99996 0.99994 0.99994 0.99993 0.99676 0.99989

0.5 0.99994 0.99994 0.99994 0.99993 0.99991 0.99701 0.99986

0.6 0.99987 0.99985 0.99986 0.99987 0.99986 0.99754 0.99982

0.7 0.99989 0.99989 0.99985 0.99985 0.99985 0.9984 0.99978

0.8 0.99991 0.99991 0.99988 0.99987 0.99984 0.9988 0.99974

0.9 0.99989 0.99988 0.99987 0.99986 0.99985 0.9994 0.99979

1 0.99987 0.99986 0.99983 0.99981 0.99981 0.99989 0.99974

Table 53: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 27, ncp = 2 and σ2/σ1 = 1.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.95129 0.95139 0.95146 0.95147 0.95146 0.88275 0.95147

0.1 0.94285 0.94282 0.94268 0.94249 0.94234 0.88117 0.94121

0.2 0.93296 0.93269 0.93226 0.93195 0.93165 0.87879 0.92946

0.3 0.92588 0.92542 0.92494 0.9245 0.92402 0.87856 0.92109

0.4 0.91924 0.91874 0.91791 0.91703 0.91616 0.8807 0.91247

0.5 0.90985 0.90929 0.90798 0.90717 0.90633 0.87692 0.90063

0.6 0.90203 0.9013 0.90023 0.89879 0.89764 0.87518 0.89149

0.7 0.89329 0.89244 0.89092 0.88952 0.88785 0.87353 0.88058

0.8 0.88443 0.88364 0.8819 0.88044 0.87905 0.87179 0.87033

0.9 0.87748 0.87637 0.8742 0.87224 0.87071 0.87179 0.86012

1 0.86828 0.8672 0.86466 0.86251 0.86093 0.8693 0.8508

Table 54: Powers of the combined procedure and the MC and AU tests where MC is the
Welch’s t-test, AU is the WMW test for n = 125, ncp = 0.5 and σ2/σ1 = 1.5
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.14574 0.14599 0.14593 0.14513 0.14469 0.14414 0.13928

0.1 0.14680 0.14744 0.14755 0.14716 0.14577 0.14480 0.14006

0.2 0.14865 0.14947 0.14933 0.14837 0.14753 0.14694 0.14104

0.3 0.14842 0.14879 0.14878 0.14835 0.14736 0.14677 0.14114

0.4 0.14860 0.14949 0.14968 0.1493 0.14875 0.14692 0.14251

0.5 0.15214 0.15277 0.15263 0.15235 0.15116 0.15035 0.14434

0.6 0.15323 0.15386 0.15374 0.15333 0.15265 0.15165 0.14587

0.7 0.15344 0.15393 0.15381 0.15346 0.15290 0.15169 0.14591

0.8 0.15254 0.15283 0.15267 0.15221 0.15203 0.15041 0.14481

0.9 0.15453 0.15481 0.15498 0.15432 0.15321 0.15271 0.14578

1 0.15462 0.15506 0.15540 0.15516 0.154529 0.15303 0.14774

Table 55: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test where Q is the uniform distribution,
n = 8 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.43774 0.43623 0.43285 0.42827 0.42404 0.43792 0.40300

0.1 0.43814 0.43671 0.43313 0.42901 0.42528 0.43801 0.40541

0.2 0.4433 0.44187 0.43862 0.43482 0.43102 0.44323 0.41049

0.3 0.44101 0.44004 0.43722 0.43337 0.43006 0.4405 0.41115

0.4 0.44875 0.44783 0.44483 0.44164 0.43902 0.44833 0.41934

0.5 0.45102 0.45052 0.44852 0.44513 0.44182 0.45074 0.42307

0.6 0.45333 0.45254 0.45029 0.44734 0.44462 0.45241 0.42638

0.7 0.45649 0.45604 0.45442 0.45183 0.44940 0.45568 0.43057

0.8 0.45273 0.45267 0.45095 0.44904 0.44671 0.45178 0.4292

0.9 0.45772 0.45742 0.45575 0.45377 0.45221 0.45664 0.43614

1 0.46244 0.46286 0.4622 0.46041 0.45818 0.46094 0.44183

Table 56: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test where Q is the uniform distribution,
n = 8 and ncp = 1

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.9668 0.9613 0.95336 0.94779 0.9442 0.97175 0.93616

0.1 0.96635 0.96151 0.95346 0.94834 0.94479 0.97083 0.93769

0.2 0.96466 0.96032 0.95346 0.94894 0.94586 0.96856 0.93792

0.3 0.96458 0.96037 0.9541 0.94981 0.94665 0.96806 0.93868

0.4 0.96415 0.96061 0.95527 0.95172 0.94917 0.96735 0.94098

0.5 0.9629 0.95989 0.95484 0.95144 0.94923 0.96552 0.94175

0.6 0.96279 0.96079 0.9568 0.954 0.95174 0.96518 0.94426

0.7 0.96171 0.95991 0.95678 0.9543 0.95219 0.96344 0.94507

0.8 0.96078 0.95928 0.95681 0.95475 0.95327 0.96214 0.94606

0.9 0.96104 0.96014 0.95839 0.95691 0.95544 0.96189 0.94774

1 0.96050 0.96007 0.95902 0.95811 0.95698 0.96074 0.94932

Table 57: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test where Q is the uniform distribution,
n = 8 and ncp = 2
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.42623 0.41871 0.40852 0.40328 0.40022 0.43138 0.39503

0.1 0.42777 0.42086 0.41137 0.40634 0.40311 0.43267 0.39711

0.2 0.42717 0.42107 0.41239 0.4072 0.40419 0.43186 0.39682

0.3 0.42839 0.42251 0.41479 0.41014 0.40743 0.4319 0.39916

0.4 0.42895 0.42376 0.41691 0.41319 0.4108 0.43244 0.40086

0.5 0.43251 0.42846 0.42238 0.41857 0.41582 0.4348 0.40482

0.6 0.43505 0.43183 0.42617 0.42257 0.42026 0.43702 0.40709

0.7 0.43429 0.43163 0.42711 0.42474 0.42221 0.43548 0.40753

0.8 0.43629 0.43451 0.43113 0.42842 0.42654 0.43667 0.41067

0.9 0.43568 0.43464 0.43186 0.4296 0.4275 0.43573 0.4101

1 0.43664 0.43621 0.43452 0.43271 0.4305 0.43602 0.41206

Table 58: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test where Q is the uniform distribution,
n = 27 and ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.93435 0.92426 0.91607 0.91291 0.9114 0.95305 0.91015

0.1 0.93658 0.92783 0.92093 0.91777 0.91625 0.95304 0.9142

0.2 0.93821 0.93019 0.92295 0.92006 0.91865 0.95303 0.91622

0.3 0.93858 0.93103 0.9248 0.92248 0.9212 0.95191 0.91815

0.4 0.941 0.93464 0.92904 0.92675 0.9255 0.95308 0.92146

0.5 0.94206 0.93689 0.93231 0.93017 0.92903 0.95188 0.92454

0.6 0.94435 0.93991 0.93612 0.93432 0.93289 0.95217 0.92759

0.7 0.94581 0.94257 0.93901 0.93714 0.93606 0.95176 0.93065

0.8 0.94822 0.94559 0.94292 0.94132 0.94029 0.95222 0.93424

0.9 0.94808 0.9465 0.9445 0.94307 0.94183 0.95059 0.93519

1 0.94944 0.94864 0.94722 0.94593 0.94462 0.94997 0.93659

Table 59: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test where Q is the uniform distribution,
n = 27 and ncp = 1

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.96085 0.96085 0.96085 0.96085 0.96085 0.97597 0.96085

0.1 0.96284 0.96274 0.96268 0.96262 0.96251 0.9771 0.96217

0.2 0.96435 0.96432 0.96407 0.96402 0.96394 0.9771 0.96343

0.3 0.96509 0.96495 0.96461 0.96441 0.96429 0.97646 0.96322

0.4 0.96638 0.96622 0.96601 0.96589 0.96549 0.97582 0.96392

0.5 0.96887 0.9685 0.9682 0.96784 0.96752 0.97728 0.966

0.6 0.97024 0.97002 0.96957 0.96926 0.96896 0.97674 0.96668

0.7 0.97056 0.97027 0.96977 0.96937 0.96895 0.97531 0.96743

0.8 0.97267 0.97237 0.97189 0.97137 0.97098 0.976 0.96847

0.9 0.97405 0.97371 0.97319 0.97269 0.97223 0.97597 0.96951

1 0.9749 0.97439 0.97366 0.97302 0.97243 0.97531 0.96927

Table 60: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test where Q is the uniform distribution,
n = 125 and ncp = 0.5
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.1186 0.1207 0.12281 0.12315 0.12373 0.10444 0.12235

0.1 0.12464 0.12666 0.12842 0.12914 0.12904 0.11158 0.12646

0.2 0.13027 0.13214 0.13338 0.13387 0.13427 0.11812 0.13137

0.3 0.13507 0.13621 0.13724 0.13778 0.1378 0.12481 0.13378

0.4 0.13986 0.14115 0.14213 0.14224 0.1425 0.1303 0.13862

0.5 0.14548 0.14679 0.14751 0.14762 0.14729 0.13734 0.14287

0.6 0.15327 0.15443 0.15488 0.15465 0.1544 0.14566 0.14854

0.7 0.15648 0.15739 0.15812 0.15804 0.15779 0.15071 0.15154

0.8 0.16143 0.16216 0.16275 0.16266 0.1622 0.1574 0.15615

0.9 0.16452 0.16498 0.16513 0.16496 0.16446 0.16164 0.1579

1 0.17374 0.17393 0.17396 0.17335 0.17272 0.17214 0.16464

Table 61: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test for skewed distributions, n = 8 and
ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.32361 0.3283 0.33223 0.33411 0.33509 0.29209 0.33309

0.1 0.34375 0.34788 0.35157 0.35295 0.35404 0.31412 0.35134

0.2 0.36315 0.36685 0.36985 0.37112 0.37153 0.3368 0.36696

0.3 0.37913 0.38274 0.38562 0.38649 0.38621 0.35556 0.38046

0.4 0.39897 0.40147 0.40319 0.40337 0.40266 0.37891 0.39404

0.5 0.41852 0.42078 0.42184 0.42195 0.42102 0.40217 0.41125

0.6 0.43938 0.44112 0.4423 0.44223 0.44151 0.42534 0.43077

0.7 0.45928 0.46026 0.46043 0.45985 0.45901 0.44942 0.44567

0.8 0.47731 0.47801 0.47789 0.47717 0.47592 0.46953 0.46094

0.9 0.49407 0.49432 0.49331 0.49187 0.49057 0.48978 0.47423

1 0.51888 0.51877 0.51736 0.51543 0.51345 0.51773 0.49524

Table 62: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test for skewed distributions, n = 8 and
ncp = 1

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.7849 0.79005 0.79517 0.79706 0.7979 0.73915 0.79839

0.1 0.80021 0.80543 0.8096 0.81127 0.81205 0.75858 0.81147

0.2 0.82072 0.82546 0.82885 0.83047 0.83162 0.78398 0.83008

0.3 0.83944 0.84317 0.84643 0.8479 0.84833 0.80761 0.84629

0.4 0.85949 0.86271 0.86596 0.86709 0.86762 0.83253 0.86443

0.5 0.87795 0.88066 0.88258 0.88316 0.88347 0.85484 0.88069

0.6 0.89889 0.90074 0.9024 0.90302 0.90293 0.88115 0.89954

0.7 0.91896 0.92011 0.92166 0.92191 0.92171 0.90525 0.91852

0.8 0.93834 0.939 0.93961 0.93984 0.93957 0.92963 0.93592

0.9 0.95756 0.95772 0.95727 0.95685 0.95622 0.95303 0.95193

1 0.97832 0.97787 0.97719 0.97643 0.97562 0.9783 0.97089

Table 63: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test for skewed distributions, n = 8 and
ncp = 2
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.31384 0.31689 0.31995 0.32119 0.32165 0.2432 0.32263

0.1 0.32866 0.33196 0.33453 0.33523 0.3357 0.26383 0.33494

0.2 0.34823 0.35098 0.35344 0.35398 0.35425 0.29033 0.35077

0.3 0.36689 0.36954 0.37062 0.37054 0.37028 0.31543 0.36529

0.4 0.38306 0.38474 0.3855 0.38502 0.38443 0.33908 0.37751

0.5 0.40209 0.40348 0.40346 0.40289 0.40182 0.36674 0.39283

0.6 0.42147 0.42207 0.42176 0.42085 0.42006 0.39191 0.40828

0.7 0.43558 0.436 0.43577 0.43519 0.43364 0.41374 0.42153

0.8 0.45542 0.45589 0.45515 0.45349 0.4518 0.44124 0.43716

0.9 0.47216 0.47187 0.4711 0.46945 0.46714 0.46445 0.45008

1 0.48878 0.48819 0.48592 0.48358 0.4814 0.48839 0.46243

Table 64: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test for skewed distributions, n = 27 and
ncp = 0.5

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.81726 0.82315 0.82804 0.83041 0.83188 0.67122 0.8348

0.1 0.83038 0.8361 0.84083 0.84294 0.8442 0.69732 0.84617

0.2 0.84891 0.85375 0.85765 0.85912 0.86012 0.73121 0.86101

0.3 0.86143 0.86562 0.86951 0.87086 0.8716 0.75888 0.8719

0.4 0.87666 0.88065 0.88369 0.8847 0.88523 0.78826 0.8848

0.5 0.89171 0.89476 0.89745 0.89836 0.89894 0.81974 0.89754

0.6 0.91053 0.91273 0.91404 0.91448 0.91448 0.85237 0.91237

0.7 0.92363 0.92516 0.92598 0.92624 0.92625 0.87905 0.9239

0.8 0.94021 0.94097 0.94133 0.94118 0.94088 0.91196 0.93703

0.9 0.95453 0.95481 0.95451 0.95415 0.9537 0.94016 0.94936

1 0.97086 0.97047 0.96973 0.96884 0.96808 0.97141 0.96293

Table 65: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test for skewed distributions, n = 27 and
ncp = 1

λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.99934 0.99948 0.99954 0.99956 0.99957 0.97592 0.99958

0.1 0.99951 0.99955 0.99961 0.99962 0.99964 0.97773 0.99965

0.2 0.99954 0.99959 0.99964 0.99969 0.99969 0.98118 0.99971

0.3 0.99971 0.99975 0.9998 0.99981 0.99981 0.9833 0.99982

0.4 0.99974 0.99978 0.99982 0.99983 0.99984 0.98507 0.99987

0.5 0.99971 0.99978 0.9998 0.99981 0.99982 0.98794 0.99983

0.6 0.99985 0.99987 0.99988 0.9999 0.9999 0.99022 0.99992

0.7 0.99978 0.99984 0.99984 0.99986 0.99988 0.99267 0.99988

0.8 0.99989 0.99995 0.99996 0.99997 0.99998 0.99526 0.99998

0.9 0.99993 0.99994 0.99994 0.99994 0.99995 0.99771 0.99996

1 1 1 1 1 1 1 1

Table 66: Powers of the combined procedure and the MC and AU tests where MC is
the standard t-test, AU is the WMW test for skewed distributions, n = 27 and
ncp = 2
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λ
αMS MC AU

0.025 0.05 0.1 0.15 0.2
0 0.91144 0.91156 0.91155 0.91156 0.91158 0.70112 0.9116

0.1 0.91742 0.9175 0.91749 0.91747 0.91742 0.72684 0.91723

0.2 0.92504 0.92496 0.92493 0.92484 0.92482 0.75734 0.92455

0.3 0.93249 0.93242 0.93225 0.93218 0.93207 0.78506 0.93163

0.4 0.9398 0.93975 0.93962 0.9396 0.93941 0.81451 0.93859

0.5 0.94806 0.94803 0.94788 0.94777 0.94772 0.84146 0.94682

0.6 0.95472 0.95457 0.95438 0.95415 0.95399 0.87084 0.95306

0.7 0.96573 0.96558 0.96525 0.9651 0.96477 0.90289 0.96357

0.8 0.97176 0.97152 0.97118 0.97084 0.97062 0.92968 0.96923

0.9 0.97977 0.97959 0.97921 0.97888 0.97859 0.95887 0.97709

1 0.98739 0.98718 0.98696 0.98654 0.98632 0.98774 0.98428

Table 67: Powers of the combined procedure and the MC and AU tests where MC is the
standard t-test, AU is the WMW test for skewed distributions, n = 125 and
ncp = 0.5
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