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Abstract 
 
A wealth of available climate information has prompted data integration into climate services 
for the health sector, reducing society’s vulnerability to climate hazards. We discuss challenges 
related to product choice, highlighting that without consideration of biases, collaboration 
between climate and health sectors, reliability of climate-informed public health decisions is 
undermined. 
 
Introduction 
Human disruption to the Earth’s natural systems presents a serious threat to human health and 
well-being. Fundamental changes to the global climate system as a result of anthropogenic 
activities and other non-anthropogenic drivers can directly affect health outcomes, for example 
through injuries and premature deaths as a result of extreme weather events, such as extreme 
heat, tropical storms and floods. Climate change can also affect health indirectly by altering 
the geographical distribution and burden of communicable and non-communicable diseases. 
 
In particular, the impact of climate variation and climate change on vector-borne diseases, 
including malaria and dengue fever, is of growing concern. Vector-borne diseases are 
especially sensitive to climate conditions, which influence the life history of both the pathogen 
and the vector to determine the geographical distribution, seasonality and interannual variation 
of disease transmission. Dengue fever is a viral infection transmitted by Aedes mosquitoes and 
is prevalent in urban and peri-urban areas of tropical and sub-tropical climates. Temperatures 
within an optimum range of 28-30°C can increase Aedes aegypti mosquito development, 
survival and reproduction and decrease the time taken for the pathogen to develop inside the 
mosquito (the extrinsic incubation period)1. Rainfall can increase the availability of dengue 
mosquito larval habitats in the short-term (i.e. within a few weeks), whilst drought conditions 
can influence dengue risk over longer time periods (e.g. 3-5 months later), by altering water 
storage behaviours that increase dengue transmission2. Similarly, outbreaks of malaria, which 
is caused by Plasmodium parasites transmitted by Anopheles mosquitoes, are sensitive to 
climate conditions, and are closely related to predictable seasonal rainfall patterns, which have 



been used to develop early warnings of malaria outbreaks up to four months in advance3. Over 
longer time scales, the warming global climate has been implicated in the return of epidemic 
malaria to the East African highlands4, warmer temperatures combined with urbanization are 
considered to favour the transmission of arboviruses including dengue in sub-Saharan Africa5 
and the expansion of the Aedes aegypti vector into temperate latitudes6. 
 
Climate services  
The growing acknowledgement of the impacts of climate on human health and the urgent need 
to manage these risks from climate variability and change has led to the development and 
demand for climate services aimed at reducing human vulnerability to climate hazards. The 
WMO defines a climate service as a decision aide derived from climate information that assists 
individuals and organizations in society to make improved ex-ante decision-making7. For the 
health sector, climate services can improve the communication of climate-related risks to health 
professionals, identify those populations that are most vulnerable, as well as identify when and 
where climate associated health risks may be greatest, and effectively design and target 
interventions8. Climate services are crucial for strengthening the resilience of the health sector 
in a world with increasing frequency of climate extremes. For a climate service to be successful 
it must be based on credible scientific information, respond to user-requirements and result in 
timely and relevant information that can be easily incorporated into decision-making. The 
ability for a climate service to foster effective collaboration and communication between the 
users and service providers, including climate scientists and public health practitioners, is also 
a key component of success. Coproduction of a climate service, where climate and health 
sectors continually work together during development can ensure successful delivery of a 
climate service that can be truly useful for health decision making (Fig. 1). Climate services 
can be applied to public health decisions at many levels, from the local scale to global. For 
example, a nationwide predictive model framework was developed using seasonal climate 
forecasts to produce probabilistic dengue predictions in Brazil ahead of the 2014 FIFA World 
Cup, drawing on an interdisciplinary collaboration between climate scientists, epidemiologists, 
impact modellers and the Ministry of Health9. In highland areas of Ethiopia with periodic 
malaria epidemics, the Epidemic Prognosis Incorporating Disease and Environmental 
Monitoring for Integrated Assessment (EPIDEMIA) tool was developed to enhance integration 
between climate information and epidemiological surveillance, supporting early warning 
system development and improving outbreak detection at the regional level10. 
 
Earth observations 
Earth observations are a critical component of climate services, providing timely production 
and delivery of climate information, which can be incorporated alongside epidemiological 
information to support public health decision-making. Earth observations are atmospheric, 
oceanic or terrestrial data and information collected about our planet via in-situ observations 
such as meteorological stations and atmospheric soundings and remote-sensing technologies, 
such as satellite imagery11.  
 
Earth observations provide a valuable and accessible resource for investigating the 
relationships between the environment and human health, including the impacts of climate 



variation on vector-borne disease risk. Satellite-derived environmental data can provide global 
estimates of land surface temperatures, rainfall and land cover classifications of particular 
relevance to the transmission of vector-borne diseases, enabling the development of timely 
disease forecasts and fine-scale intervention risk maps as well as tracking the health impacts of 
climate change. Earth observations are particularly desirable for addressing limitations in 
accessing and using local ground data, such as meteorological station data, which can be 
complemented with satellite-derived climate products. Remotely-sensed climate observations, 
such as temperature and rainfall estimates can be incorporated into disease modelling 
frameworks and have been used to develop forecasts for dengue early warning12 and determine 
seasonal variation in malaria incidence due to local climate conditions13. 
 
Issues of scale 
In regions of the world with incomplete historical coverage of meteorological stations, or where 
stations are situated far apart satellite-derived climate products provide a useful resource for 
obtaining spatially continuous historical climate observations. This provides an opportunity for 
the development of tailored climate services that do not need to rely on ground truth data, as 
satellite data can complement ground measurements. Incorporating globally derived climate 
information into a functioning locally relevant climate services can in practice be challenging8. 
These challenges include a lack of knowledge about which products are available and suitable 
and the challenge of providing climate information in a suitable format to be used by the health 
sector. Climate information is often required at a variety of spatial and temporal scales, to suit 
multiple needs. Tailoring these global scale products and translating them to be interoperable 
with localised data in order to provide information for local level decision making can be a 
challenge to the service success (Fig. 1). Health and epidemiological data are often reported by 
health centres and hospitals to health authorities and aggregated to administrative levels (i.e., 
district and province level). Climate information needs to be collated at the appropriate spatial 
and temporal scale to match epidemiological data. Coarse resolution gridded climate 
observations and forecasts often need to be aggregated, downscaled and bias corrected for use 
in a health impact model, which is not a straightforward task especially in areas with diverse 
topography, such as the Andes mountains and foothills.  
 
Global climate products are desirable as they are easily accessible and provide a wide range of 
climatic variables. These products have good spatial and temporal coverage, which enables 
global comparisons across multiple timescales. These data vary from coarse scale resolution 
datasets (50 km) and datasets with finer resolutions (up to 1 km) (Table S1). For example, the 
ERA5-Land reanalysis dataset provided by the European Centre for Medium-Range Weather 
Forecasts (ECMWF) covers the period January 1981 to near real time, providing estimates of 
meteorological variables that include mean temperature, precipitation and humidity at a high 
spatial resolution of 9 km (0.08°). In addition, these data are available at an hourly timescale, 
enabling their use in defining climate indicators for disease forecasting, such as number of wet 
days and diurnal temperature ranges. Fine scale (<0.1°) spatial climate information can be 
especially useful to detect variations in microclimate that may be masked at coarser resolution 
products, which neglect in the effects of topography, presence of water bodies and land surfaces 
that may influence climate measurements. The spatial scale of climate information is an 



important aspect to consider when downscaling climate information to match epidemiological 
data to ensure the appropriate aspects of climate variability that may affect disease transmission 
processes are captured.  
 
In contrast to the ERA5-Land, the Climate Research Unit (CRU) timeseries provided by the 
University of East Anglia has a coarser spatial resolution (0.5°/55 km) but has the advantage 
of providing monthly climate information covering an extensive time period from January 
1901- December 2019, which may be useful for detecting historical and long-term climate 
impacts on disease risk. Given the diversity of global climate products available and differences 
in spatiotemporal resolution, the purpose of the climate service needs to be considered carefully 
before selecting the most appropriate source of climate information. For example, a climate 
product with the ability to detect fine scale variations in local climate may be useful for 
predicting differences in disease risk across an urban landscape. In contrast, long term climate 
products with coarser resolution may be more suitable to detect spatiotemporal associations 
between disease risk and climate variables over a wide geographical area with larger 
administrative units (e.g., regions or provinces), especially with global climate change.  
 
Methodological and formatting differences 
In addition to availability and spatiotemporal resolution, global climate products differ in the 
techniques used to scale products and methods used to produce continuous estimates. As 
previously mentioned, epidemiological data are often provided at much finer scales, usually 
aggregated to administrative units, whereas climate information is usually provided as a grid, 
which must be reconciled to a common spatial unit for use in health impact models. Gridded 
climate products and forecasts often need to be downscaled to approximate local conditions on 
the ground. These datasets are commonly affected by biases, which are systematic deviances 
from the local climate. Biases are caused by the lack of horizontal resolution as a result of 
computational constraints, simplifications of physics in the climate model and inaccuracies in 
static data, such as land cover. These biases can be addressed using bias-correction techniques 
and downscaling techniques to ensure that the climate model output produces data that better 
reflects local climate observations. Common downscaling techniques include dynamical and 
statistical downscaling that rely on statistical relationships between local climate variables and 
global scale predictors. Bias correction methods include the use of a change factor derived from 
a global climate model to historical observations to better capture local climate observations. 
These methods have a number of assumptions to be aware of, such as assuming the biases in 
climate models remains constant over time, and use of different bias correction techniques can 
affect the outcome14.  

Downstream impact of the choice of climate inputs to health specific decision-tools 
The availability of fine scale climate information has led to an improved understanding of the 
local climate impacts on health outcomes, such as mosquito-borne disease transmission. 
However, using climate information in a climate product or service without due consideration 
and awareness of inherent biases and methodological differences between available products 
may undermine the appropriateness and reliability of the public health decisions made as a 
result. A significant challenge in the development of climate services is effectively identifying 



and conveying these methodological differences, their limitations and the impact they may 
ultimately have on public health decision making.  

Despite the wealth of global climate products available there is no general consensus or 
guidance on the most appropriate data source to use for applications such as disease mapping 
and forecasting, and the reliability of sources to be used to inform public health decisions. In 
addition, there has been no direct comparison of different data sources, how to select the most 
appropriate resource and how the use of different products can impact climate-sensitive disease 
analyses.  
 
Implications of different climate data sources on understanding vector-borne diseases in 
southern Ecuador 
As a case study, we used simple temporal models adapted from previous studies to assess how 
the choice of climate product as a model input affected vector-borne disease model outputs12,13. 
We used Bayesian hierarchical models of monthly cases of dengue between 2002-2014 and 
malaria between 1990-2015 for the city of Machala, in southern Ecuador, a city at risk of the 
health impacts of climate change15. Prior studies found that dengue and malaria transmission 
were sensitive to changes in climate in this region12,13. We compared five global products of 
monthly mean temperature and precipitation, with local weather station data to investigate the 
impact of local climate variation on these two vector-borne diseases. In this example, we used 
global climate products of similar temporal coverage but differing spatial resolution, which 
included CHELSA timeseries, CRU timeseries version 4.04, monthly ERA5-Land, 
TerraClimate and WorldClim historical monthly timeseries. Mean temperature and 
precipitation from these sources differed in comparison to estimates from the local 
meteorological station (Fig. 2A-B). In particular mean temperatures from the CRU and ERA5-
Land datasets were much cooler (up to 5°C lower) than those observed from the meteorological 
station, while seasonal dips in temperatures from the CHELSA dataset were much warmer than 
station observations (Fig. 2A, Fig. S1). The global climate products were able to capture peaks 
in rainfall over the time period as measured by the local meteorological station, although up 40 
mm more rainfall per day was recorded in the ERA5-Land dataset (Fig. 2B, Fig. S1).  
 
Comparison of model parameter estimates revealed differences in the modelled impact of 
climate variation on disease risk (Fig. 2C-D). The model showed that warmer temperatures 
would lead to increased risk of dengue. The magnitude of this effect was similar for 
WorldClim, TerraClimate and CHELSA models but was slightly reduced for models with 
ERA5 and CRU products. For malaria risk, there was a divergence in the impact of climate on 
malaria between the models (Fig. 2D). Whilst the observed station data and ERA5 models 
indicate a positive association between malaria cases with warmer temperatures, the credible 
intervals for the temperature parameter estimate contained zero. If these data were to be used, 
this could lead to the conclusion that variation in temperature does not have a significant impact 
on malaria risk, even though temperature has been previously demonstrated to be an important 
factor explaining malaria seasonality and interannual variability in southern Ecuador13. 
Whereas the credible interval for precipitation contained zero in the dengue and malaria models 
using the observed station data, CHELSA and ERA5 data showed a negative association 



between rainfall and malaria risk. In contrast to this the CRU model showed a positive 
association between rainfall and malaria (Fig. 2D). This result could be due to inherent biases 
in the underlying climate information and methods used to produce monthly precipitation 
estimates that cause differences between observed and modelled estimates.  

In addition to the issue of selecting the most appropriate climate product to best capture local 
climate variation, grid cell selection is also important. In a predictive dengue model developed 
previously, the climate conditions of the grid cell adjacent to the reference Granja Santa Ines 
meteorological station in Machala was found to be more representative of the local climate 
than the grid cell within which the station was located. Temperatures for the grid cell 
corresponding to the meteorological station location were consistently colder than the station 
observations. Therefore ensemble climate forecasts for the adjacent grid cell were used to 
predict the evolution of the dengue season in 2016, as a simple bias-correction to account for 
this difference12. In our analysis using the corresponding grid cell, which covers a 
topographically diverse area including the Andes foothills, we would expect a 40% increase in 
dengue cases for a 1°C increase in mean temperature. Using the adjacent grid, which is 4°C 
warmer we would expect a 46% increase in dengue cases for a 1°C increase in mean 
temperature (Fig. S2).  
 
This simple example highlights the issues and considerations when selecting the most 
appropriate climate products for modelling climate-sensitive diseases. However, it exemplifies 
a single specific problem for one location that will not be universal for all applications. In some 
instances, global climate dataset models may not align with ground truth conditions in areas 
with incomplete weather station coverage. In this example, Machala is located on the coast of 
Ecuador and has the Andes mountains situated to the east. Orographic events mean the climate 
variables in the grid cell may not reflect actual conditions in the coastal city, where the weather 
station is located, and the majority of mosquito-borne disease transmission occurs. In summary, 
it is important to first compare remotely derived data to ground truth data and second to 
consider geographic sources of local variation in the absence of ground truth data when 
choosing the most suitable climate product. This can be achieved through close collaboration 
between experts and scientists from the health and climate sectors, enabling local biases in 
climate information to be detected and corrected for before incorporation into the health 
decision-making tools.  

Conclusions 
Earth observations and forecasts are helping to reduce society’s vulnerability to climate 
hazards, through the development of tailored climate products and services for health and other 
sectors. The availability of and access to global data sources have allowed for gaps in local 
weather station data to be supplemented with global observations and provided estimates of 
environmental conditions in areas lacking locally observed data, which is useful for developing 
early warning systems over large geographical domains or in remote areas. However, as 
illustrated in examples for two climate-sensitive vector borne diseases - dengue and malaria – 
the choice of climate data product can have important downstream implications for interpreting 
the importance of climate as predictors of disease risk. These findings have implications for 



the health sector, as public health practitioners face decisions about how and when to respond 
to climate-associated health risks. For example, a misinformed conclusion about climate-
malaria relationships that is used as the basis of an early warning system reliant on climate 
predictors that gives incorrect information about when and where to distribute bed nets to tackle 
an outbreak could lead to a misallocation of precious health resources. We have highlighted 
that simple off the shelf usage of climate data products, without thorough understanding and 
interrogation of methodological and scale issues can lead to such misinformed conclusions.  
 
Coproduction of climate services is vital to ensure that a climate service is truly useful for 
health decision making. A strong partnership and interdisciplinary collaboration between the 
health and climate sectors that supports appropriate climate data selection and fosters continued 
sharing of information, skills and progress will also contribute to a sustained climate service to 
improve future decisions by health sector practitioners. When choosing a climate product to 
inform health impact models, it is important to consider inherent biases and methodological 
differences between climate products, variation in weather station coverage and local climate 
variations, which may not be captured by gridded products. Improved communication of 
methods used to conduct global climate projects, with guidance for users on their appropriate 
use and limitations is needed to enhance the uptake of these products and avoid misuse. 
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Fig. 1. Cross-disciplinary processes involved in coproduction of an operational climate 
service. Evidence for climate-disease relationships can be informed global climate products 
that can supplement lacking ground truth data. Earth observations, such as remotely sensed 
climate data often provided as global climate products, have to be combined with 
administrative-level epidemiological data such as cases of dengue for data-analysis. At this 
point co-development of the climate service, with continual sharing of information between 
climate scientists and public health officials as well as engaging stakeholders, can ensure 
methodological and data biases are addressed and the resulting climate service suits the user’s 
needs. Collaboration between sectors to verify resulting forecasts and evaluate their success 
for climate-sensitive diseases is an iterative process to reach the final operational climate 
service. 

 

 



 

Fig. 2. Global climate observations using different global climate datasets and impact on 
parameter estimates in climate-sensitive disease models. A) Monthly mean temperature and 
B) precipitation from the Granja Santa Ines meteorological station in Machala, Ecuador and 
corresponding location estimates from five global climate datasets; CHELSA timeseries, CRU 
TS v.4.04, ERA5-Land monthly, TerraClimate and WorldClim historical timeseries. Posterior 
mean and 95% credible intervals of mean temperature (tmean) and precipitation (prcp) 
variables in temporal models of monthly C) dengue cases 2002-2014 and D) malaria cases 
1990-2015 in Machala. Estimates in grey are for models using climate data from the Granja 
Santa Ines meteorological station and estimates in shades pink are for models using climate 
data from five global climate datasets; CHELSA timeseries, CRU TS v.4.04, ERA5-Land 
monthly, TerraClimate and WorldClim historical timeseries. 
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