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Computationally Efficient Forward Operator for
Photoacoustic Tomography Based on Coordinate

Transformations
Teemu Sahlström, Aki Pulkkinen, Jarkko Leskinen, and Tanja Tarvainen

Abstract

Photoacoustic tomography (PAT) is an imaging modality that utilizes the photoacoustic effect. In PAT, a photoacoustic image is
computed from measured data by modeling ultrasound propagation in the imaged domain and solving an inverse problem utilizing
a discrete forward operator. However, in realistic measurement geometries with several ultrasound transducers and relatively
large imaging volume, an explicit formation and use of the forward operator can be computationally prohibitively expensive.
In this work, we propose a transformation based approach for efficient modeling of photoacoustic signals and reconstruction of
photoacoustic images. In the approach, the forward operator is constructed for a reference ultrasound transducer and expanded
into a general measurement geometry using transformations that map the formulated forward operator in local coordinates to
the global coordinates of the measurement geometry. The inverse problem is solved using a Bayesian framework. The approach
is evaluated with numerical simulations and experimental data. The results show that the proposed approach produces accurate
three-dimensional photoacoustic images with a significantly reduced computational cost both in memory requirements and in time.
In the studied cases, depending on the computational factors such as discretization, over 30-fold reduction in memory consumption
and was achieved without a reduction in image quality compared to a conventional approach.

Index Terms

Photoacoustic tomography, ultrasound, coordinate transformations, computational modeling, inverse problems

I. INTRODUCTION

PHOTOACOUSTIC tomography (PAT) is an imaging modality based on the photoacoustic effect [1], [2]. In PAT, the
imaging process is started by illuminating the imaged target with a short, typically nanosecond scale, light pulse. As the

light is absorbed in the target, it creates areas of localized thermal expansion and pressure increase [3]. This pressure relaxes
as broadband ultrasound waves that are recorded on the boundary of the imaged target. The photoacoustic image is then
reconstructed from the measured photoacoustic waves by solving an inverse problem [3], [4]. Applications of photoacoustic
imaging include e.g. breast cancer imaging, imaging of vasculature, small animal imaging, gastrointestinal imaging, and small
animal imaging [1], [5], [6].

Various image reconstruction methods for PAT have been utilized [4]. These methods include analytic approaches such
as filtered back-projection and eigenfunction expansion [7]–[10]. Furthermore, techniques based on numerical solution of the
forward problem such as time-reversal [11], [12], regularized least squares techniques [13]–[16], and a Bayesian approach [17]–
[20] have been utilized. The analytic methods are derived for specific measurement geometries such as planar or cylindrical,
and therefore they cannot be applied in general measurement geometries. The time-reversal, regularized least squares, and
Bayesian method are, on the other hand, based on a numerical approximation of the forward problem. Compared to the
analytic reconstruction methods, these methods can be utilized in general measurement geometries. In addition, they offer
advantages by enabling the incorporation of the measurement system specifics such as finite size and frequency response of
ultrasound transducers.

A major drawback of the reconstruction methods utilizing the numerical approximation of the forward model is the high
computational cost, as ultrasound propagation within the entire imaged domain has to be simulated. Furthermore, memory
requirements for storing the forward operator can grow infeasibly large, especially when working with high resolution three-
dimensional (3D) photoacoustic images. The requirements for a large memory overhead and computational resources have
previously been alleviated using various methods. As an example, some of the memory requirements can be circumvented by
exploiting inherent symmetries of the measurement setup [21]–[23]. Additionally, the forward model can be formulated such
that the entries of the system matrix can be computed in a matrix-free fashion [18], [24], [25]. Furthermore, various sparsity
or compressed sensing methods have been used to lessen the computational burden [26]–[28].

In this work, we propose a computationally efficient approach to the inverse problem of PAT based on coordinate trans-
formations in the forward operator. A similar approach has been utilized in [29]. In that study, a separable forward model
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was formulated for a linear ultrasound transducer array with rectangular elements. Furthermore, a coordinate transformation
was utilized to simulate photoacoustic signals in a frame of reference of the ultrasound transducer in the case of point-like
and linear ultrasound transducer arrays. In this work, we generalize the approach to arbitrary geometric configuration and
formulate it for the inverse problem of PAT. In the approach, the discrete forward operator is constructed utilizing coordinate
transformations between global coordinates that describe the forward operator of a single transducer and local coordinates of
a PAT measurement geometry with various transducer positions. Furthermore, we formulate and solve the inverse problem of
PAT utilizing these coordinate transformations in the forward operator.

In this work, ultrasound propagation is computationally approximated using a numerical approach based on Green’s functions.
The inverse problem is formulated in the framework of Bayesian inverse problems. The proposed method enables significant
savings in both computation time and memory requirements compared to an explicit formation of the full forward operator
while retaining the computational and implementational simplicity of matrix based approaches. Furthermore, by defining the
transducer geometry using coordinate transformations, the approach can be applied in arbitrary transducer configurations as
opposed to methods utilizing symmetries of the measurement setup.

The remainder of this paper is structured as follows. The forward problem of PAT and the transformation based forward
operator are described in Section II. The inverse problem and the implementation of the reconstruction algorithm are described
in Section III. Simulation and experimental studies are presented in Sections IV and V, respectively. Finally, results are discussed
and conclusions are given in Sections VI and VII.

II. FORWARD MODEL

In PAT, propagation of ultrasound waves in a non-attenuating, homogeneous, and infinite domain Ω can be described by an
initial value problem [1] 

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0

p(r, t = 0) = p0(r)

∂

∂t
p(r, t = 0) = 0,

(1)

where p(r, t) is the pressure at position r and time instant t, c is the speed of sound, and p0(r) denotes the instantaneous
initial pressure generated by the photoacoustic effect. In practice, the photoacoustic signal that samples p(r, t) is measured
on a finite number of points or surfaces around the imaged domain. The assumptions for non-attenuating and homogeneous
domain have been shown to produce accurate photoacoustic images in soft-tissue or soft-tissue mimicking targets [14], [15],
[17]–[19]. However, if the target is composed of heterogeneous tissues such as soft-tissue and bone, the homogeneous model
could still be useful when the modeling errors are taken into account [30].

In this work, the solution of the wave equation (1) is approximated by the solution of a reformulated wave-equation [31],
[32]

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
=

1

c2
p0(r)

∂

∂t
ν(t), (2)

where ν(t) ≥ 0 is a temporal distribution describing the formation of the initial pressure p0(r) in the domain. As the temporal
width of ν(t) approaches zero, (2) becomes a better approximation of (1).

The solution of the wave-equation (2) can be written as a convolution of the initial pressure p0 and the Green’s function G
of Eq. (2) [33]

p(r, t) =

∫
Ω

p0(r̃)G(r − r̃, t)dr̃, (3)

where r denotes the observation position and r̃ is a position in domain Ω. Furthermore, G in (3) can be written as

G(r − r̃, t) =
1

c2
F−1

{
iων̂(ω)Ĝ(‖r̃ − r‖, ω)

}
(t), (4)

where F−1 is the inverse Fourier transform, i is the imaginary unit, ω is the angular frequency, and ν̂ is the Fourier transform
of ν. In 3D, Ĝ is the Green’s function of the Helmholtz equation defined as [33]

Ĝ(‖r̃ − r‖, ω) =
1

4π‖r̃ − r‖
exp

(
i
ω

c
‖r̃ − r‖

)
. (5)

In this work, the initial pressure distribution p0(r) is discretized using a tetrahedral mesh. The discretized initial pressure p0,l

is defined using L piecewise linear basis functions χl, l = 1, . . . , L, centered at the grid nodes. The initial pressure can then
be approximated as

p0(r) ≈
L∑
l=1

p0,lχl(r). (6)
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Fig. 1. Principle of the transformation based forward model in PAT. In the transformation based forward model, the photoacoustic signals are computed in a
local coordinate system using a reference transducer position. These are transformed to the transducers in the global coordinate system using mappingsMn.
In the figure, an example of the transformation-based forward model in the case of a rotation is illustrated. In this situation, the reference transducer (shown
as the dark blue rectangle) is chosen as s1. The recorded signal for the fifth transducer s5 can then be simulated in the local coordinate system by rotating
the initial pressure distribution p0(r) to the orientation corresponding to transducer s5.

Using the discretized initial pressure, the solution of the wave equation (2) can be approximated as

p(r, t) ≈
L∑
l=1

p0,l

∫
Ω

χl(r̃)G(r − r̃, t)dr̃, (7)

where the integral is approximated using, for example, Gaussian quadratures. In addition to the outlined approach of using
Green’s functions, ultrasound propagation could also be simulated using other methods such as the k-space time-domain method
[34].

Consider now a measurement setup consisting of N ultrasound transducers at positions sn, n = 1, . . . , N . Further, let the
recorded photoacoustic signal be discretized using M temporal points. Then, the discretized conventional forward model for
PAT can be written as

pt,CNV = KCNVp0 (8)

where pt,CNV ∈ RMN is a vector containing photoacoustic time-series of each ultrasound transducer, KCNV ∈ RMN×L is a
discrete forward operator describing (7), and p0 = {p0,1 · · · p0,L}

T ∈ RL is the discretized initial pressure. In practice, the
discrete forward operator can be formed by simulating the impulse responses for each of the nodes of the domain Ω and
placing the resulting wave-forms on the columns of the forward operator.

A. Transformation based forward model

Let us now define global (laboratory) and local (transducer) coordinate systems denoted by r and r′ respectively. A coordinate
mapping Mn for each ultrasound transducer position between the global and local coordinate systems can then be written as

r =Mn(r′) = Rnr
′ + Tn (9)

where Rn is a rotation matrix and Tn = {Tx,n Ty,n Tz,n}T is a translation vector corresponding to the n:th ultrasound transducer
position.

Using the coordinate mappingMn, the initial pressure p0(r) in the global coordinate system and the initial pressures pn0 (r′)
corresponding to the transducer positions in the local coordinate system can be written as

p0(r) = pn0 (M−1
n (r)) (10)

pn0 (r′) = p0(Mn(r′)), (11)
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Γp0Q
T vec

(
KT

REF

(
Γ−1
e vec

(
KREF

(
Qηp0|pt

)
L×N

))
N×M

)
+ ηp0|pt = Γp0

(
QT vec

(
KREF

(
Γ−1
e (pt − ηe)

)
N×M

))
+ ηp0

(24)

as visualized in Fig. 1.
Let us now choose a reference transducer location such that in the local coordinate system

pt,REF = KREFp0, (12)

where pt,REF ∈ RM is the photoacoustic time-series for a reference point and KREF ∈ RM×L is the corresponding discrete
forward operator. Furthermore, let Qn ∈ RL×L be an interpolation matrix approximating the mapping (11) in a discrete setting
i.e.

pn0 = Qnp0. (13)

In this work, the interpolation matrix Qn describes linear interpolation utilizing barycentric coordinates over the tetrahedral
elements.

Utilizing the mapping (13), a transformation based forward model for the n:th transducer in the local coordinates can now
be written as

pnt,TRN = KREFQnp0. (14)

The problem of solving the photoacoustic time-series for each transducer in the global coordinate system is thus equivalent to
solving the photoacoustic time-series for a reference transducer in the local coordinates for multiple orientations of the initial
pressure.

Using (14), the numerical implementation of the forward model (8) can be approximated as

pt,TRN ≈


KREFQ1

KREFQ2

· · ·
KREFQN

 p0

= KTRNp0,

(15)

This approximation reduces the memory requirements with respect to storing the forward operator KCNV ∈ RMN×L into storing
the forward operator KREF ∈ RM×L and N sparse matrices Qn ∈ RL×L. In the case of tetrahedral mesh, every row of Qn
contains at most four nonzero elements. As an example, using a mesh with 106 nodes, a fraction of 4 · 10−8 of the entries of
Qn are nonzero.

III. INVERSE PROBLEM

In this work, the inverse problem of PAT is approached in a Bayesian framework [17], [19], [35]. In the approach, all
parameters are modeled as random variables, and it combines the information obtained through the measurements, forward
model, and prior model for the unknown parameters. The solution of the inverse problem, i.e. the posterior distribution, is
given by the Bayes’ formula [35]

π(p0|pt) ∝ π(pt|p0)π(p0), (16)

where π(pt|p0) is the likelihood distribution and π(p0) is the prior distribution.
The discrete observation model for PAT can be written as

pt = Kp0 + e, (17)

where pt ∈ RMN is a vector of measured photoacoustic waves, K and p0 are the discretized forward operator and initial
pressure, and e ∈ RMN is additive measurement noise [35]. Assume now, that the initial pressure p0 and the measurement
error e are mutually independent, and that the measurement error is Gaussian distributed e ∼ N (ηe,Γe), where ηe ∈ RMN is
the expected value and Γe ∈ RMN×MN is the covariance matrix. The likelihood distribution can then be written as [35]

π(pt|p0) ∝ exp

{
−1

2
‖Le(pt −Kp0 − ηe)‖22

}
, (18)

where Le is the Cholesky decomposition of the inverse covariance matrix of the measurement error Γ−1
e = LT

e Le.
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Let us further model the initial pressure as Gaussian distributed p0 ∼ N (ηp0 ,Γp0), where ηp0 ∈ RL is the expected value
and Γp0 ∈ RL×L is the covariance matrix. Then, the posterior distribution can be written as

π(p0|pt) ∝ exp

{
− 1

2

(
‖Le(pt −Kp0 − ηe)‖22+

‖Lp0(p0 − ηp0)‖22
)}
.

(19)

Now, in the case of a linear observation model and Gaussian distributed noise and parameters, the posterior distribution (19) is
also Gaussian p0|pt ∼ N (ηp0|pt ,Γp0|pt), where ηp0|pt is the expected value and Γp0|pt is the covariance matrix. The expected
value of the posterior distribution, which corresponds to the maximum a posteriori (MAP) estimate, can be computed by
solving a linear system of equations of the form

Hηp0|pt = d, (20)

where

H = Γp0K
TΓ−1

e K + I, (21)

d = Γp0K
TΓ−1

e (pt − ηe) + ηp0 , (22)

and I is an identity matrix [17], [35]. Furthermore, the covariance matrix Γp0|pt is given by

Γp0|pt = (KTΓ−1
e K + Γ−1

p0 )−1. (23)

In this work, the MAP-estimates ηp0|pt are solved iteratively using both conventional forward operator KCNV, Eq. (8), and
the transformation based forward operator KTRN, Eq. (15), using the general minimum residual method (GMRES) inbuilt
in MATLAB. Solving (20) as is using K = KCNV can, however, be computationally prohibitively expensive in realistic 3D
measurement geometries with several ultrasound transducers and dense spatial discretization.

The computational cost associated with the conventional forward model can be alleviated by utilizing the transformation
based approach. Let us first define a total interpolation matrix Q ∈ RNL×L as a matrix, where the interpolation matrices Qn
are stacked column-wise. Then, using the derivation of the MAP-estimate and the transformation based forward model (15),
the linear system of equations (20) can be written as shown in (24), where vec(·) denotes a column-wise vectorization of a
matrix and (·)A×B denotes a column-wise matrix reshaping operation resulting in a matrix with A rows and B columns. This
enables the efficient computation of the MAP-estimate.

A. Prior distribution

In the Bayesian framework for inverse problems, prior information about the imaged target is included in the solution of
the inverse problem via the prior distribution. In this work, a Gaussian piece-wise polynomial prior distribution is used. It is
defined by its mean ηp0 and a covariance function [36]

Γp0 =

{
σ̃2
p0(κ− ‖ri − rj‖)b, for κ− ‖ri − rj‖ > 0

0, for κ− ‖ri − rj‖ ≤ 0,
(25)

where κ is a constant controlling the spatial correlation, ri,j are positions of the discretization points and σ̃2
p0 = σ2

p0/κ
b, σp0

is the standard deviation. Furthermore, the power b is defined as b = (D/2) + q + 1, where D is the spatial dimension of the
problem and q is a constant.

The parameters κ and q control the shape of the covariance function. Thus by the choice of these parameters, the covariance
function (25) can be tuned to closely match the Ornstein-Uhlenbeck process that has previously been utilized in PAT [17]–[19],
[32]. The advantage of the piece-wise polynomial covariance function, compared to the Ornstein-Uhlenbeck process, is that the
values of the covariance become exactly zero after some distance κ. Therefore, when using small values of κ, the covariance
matrix can be stored as a sparse matrix conserving computer memory.

IV. SIMULATIONS

In the numerical simulation studies, forward solutions using the transformation based forward model were compared against
the conventional forward model using various levels of spatial discretizations and lengths of the light pulses. Furthermore, the
solution of the inverse problem was studied using various spatial discretizations, light pulse durations, and measurement noise
levels.

Computations were performed with MATLAB (R2016b, The MathWorks, Inc., Natick, MA) using a PC with two Intel Xeon
E5-2630 CPUs @2.20 GHz and 256 GB of random access memory.
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Fig. 2. Initial pressure of the numerical phantom used in the comparison of the forward solutions and reconstructions. Thresholded value on the surface of
the phantom is shown as red (threshold value 0.5). Maximum intensity projections in the x-, y-, and z-directions are shown as 2D grayscale images.

TABLE I
SPATIAL AND TEMPORAL DISCRETIZATIONS USED IN THE COMPARISON OF THE FORWARD MODELS. AVERAGE LENGTH ∆h AND STANDARD

DEVIATION OF THE ELEMENT SIDE LENGTHS, NUMBER OF NODES AND ELEMENTS IN THE SPATIAL DISCRETIZATION, LENGTH OF TIME STEP ∆t, AND
NUMBER OF TIME POINTS M IN THE TEMPORAL DISCRETIZATION

∆h (µm) Nodes Elements ∆t (ns) M

142± 28 9030 46104 41.9 202
115± 23 15836 85115 33.9 249
88± 15 36273 195472 29.4 286

TABLE II
STANDARD DEVIATIONS (SD) AND FULL WIDTH HALF MAXIMUM VALUES (FWHM) FOR THE LIGHT PULSES ν1−8 USED IN THE COMPARISON OF THE

FORWARD MODELS

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

SD (ns) 200 150 100 80 60 40 20 10
FWHM (ns) 471 353 234 188 141 94 47 24

A. Comparison of forward solutions

The validity of the transformation based forward model (15) was compared against the conventional forward model (8)
by comparing and simulating photoacoustic data using different discretizations. In the simulations, a domain consisting of a
1.5 mm radius ball was considered. The measurement geometry consisted of 300 point-like ideal ultrasound transducers which
were distributed equidistantly on a sphere with a radius of 5.05 mm. The initial pressure used in the simulations is shown in
Fig. 2. The speed of sound was set to c = 1500 m/s.

The forward solutions were computed using three spatial and temporal discretizations. In this work, all temporal discretizations
were chosen such that ∆t = ∆xmin/c, where ∆t is the time step and ∆xmin is the shortest tetrahedron side length in the
spatial discretization. Furthermore, the number of time steps M was chosen based on the time of flight (TOF) of the ultrasound
waves in the domain such that M ≥ TOF/∆t. The average length of the vertices, the number of nodes and elements, and the
length and number of time steps are shown in Table I. The light pulse ν in the wave equation (2) was modeled as Gaussian.
Eight light source pulse lengths νi, i = 1, · · · , 8 shown in Table II were considered. The studied initial pressure was linearly
interpolated to each of the discretizations.

Photoacoustic data pt,TRN was simulated by the proposed approach using coordinate transformations (15). This was compared
against photoacoustic data pt,CNV simulated using a conventional approach (8) where the full forward operator KCNV was
employed. The solutions were compared by computing relative errors

EFWD = 100% · ‖pt,CNV − pt,TRN‖
‖pt,CNV‖

. (26)

These are shown in Table III.
From the relative errors, it can be seen that the modeling errors of the transformation-based forward model increase with

decreasing length of the light pulse and coarser discretization. These errors can be explained by the varying levels of interpolation
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TABLE III
RELATIVE ERRORS EFWD(%) OF THE FORWARD SOLUTIONS FOR LIGHT PULSES ν1−8 AND THREE DISCRETIZATIONS WITH AN AVERAGE LENGTH OF

THE VERTICES ∆h

EFWD (%)

∆h (µm) ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

142 1.3 2.1 3.3 3.9 4.7 5.7 14.2 22.2
115 0.9 1.4 2.1 2.5 3.1 3.8 7.1 17.0
88 0.5 0.8 1.3 1.5 1.8 2.3 3.6 9.0

TABLE IV
SPATIAL AND TEMPORAL DISCRETIZATIONS USED IN DATA SIMULATION. AVERAGE LENGTH ∆h AND STANDARD DEVIATION OF THE ELEMENT SIDE
LENGTHS, NUMBER OF NODES AND ELEMENTS IN THE SPATIAL DISCRETIZATION, LENGTH OF TIME STEP ∆t, AND NUMBER OF TIME POINTS M IN

THE TEMPORAL DISCRETIZATION

∆h (µm) Nodes Elements ∆t (ns) M

43± 7 287085 1622008 13.7 613

errors within the transformation based forward model. As the spatial discretization becomes denser, the interpolation errors get
smaller. Furthermore, as the light pulse becomes shorter, interpolation error increase.

B. Comparison of reconstructions

The validity of the transformation-based forward operator in the inverse problem of PAT was studied by solving the inverse
problem with various discretizations, lengths of the light pulse, and measurement noise levels. The reconstructions were
compared against reconstructions computed using the conventional forward operator. In the simulations, the same target volume
(1.5 mm radius ball), transducer geometry, and initial pressure (Fig. 2) as in the comparison of the forward models were used.

1) Data Simulation: Photoacoustic data was simulated using the solution of the wave-equation (7). Spatial and temporal
discretizations used in data simulation are shown in Table IV. The temporal light pulse in (7) was modeled as Gaussian with
varying lengths (Table II).

To study the effect of measurement noise, five levels εi, i = 1, · · · , 5 of uncorrelated Gaussian distributed zero-mean noise
was added to the data. The noise levels were chosen such that standard deviation σe was set to 0.1, 0.5, 1.0, 2.0, and 4.0% of
the maximum simulated pressure value in the data for the light pulse length ν1. These noise levels corresponded to signal to
noise ratios of 42.9, 29.0, 23.1, 17.0, and 10.0 dB, which were used to determine the noise levels for the light pulses ν2−8.

2) Inverse Problem: In the inverse problem, the spatial and temporal discretizations were the same as in the comparison
of the forward model (Table I). Furthermore, in the simulations for the model matrices KCNV and KREF, the light pulses were
modeled as Gaussian using the same parameters as in the comparison of the forward models (Table II).

The prior distribution used in the inverse problem was a Gaussian distribution with the expected value of ηp0 = 0.5 that
is equal to the mean between the minimum and maximum values of the simulated initial pressure. Further, the covariance
was the piece-wise polynomial distribution (25) with the parameters σp0 = 1/2, κ = 1200 µm, D = 3, and q = 3. The
standard deviation was chosen such that the values of the initial pressure lied within ±1 standard deviation from the expected
value. Using these values, the piece-wise polynomial covariance function approximates an Ornstein-Uhlenbeck process with
a characteristic length of ` = 0.4 mm. Measurement noise statistics were modeled using the same parameters as in the data
simulation.

MAP-estimates were computed utilizing the transformation based forward model by solving the system of equations (24)
using the GMRES method. The iterations were computed until the relative residual of the iteration was less than 10−6 that
was found to ensure the convergence of the iteration. The initial guess of the iteration was set similar to Ref. [18] as

ηp0|pt,init = αp̃0, (27)

where
p̃0 = QTvec

(
KT

REF (pt)M×N
)
, (28)

and α is a solution of a minimization problem

α = arg min
α
‖pt − αKREF(Qp̃0)L×N‖ (29)

=
pt (KREF(Qp̃0)L×N )

(KREF(Qp̃0)L×N )
T
KREF(Qp̃0)L×N

. (30)
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Fig. 3. Cross sections of the MAP-CNV and MAP-TRN estimates on the (x,y,0) plane for the noise level ε3, discretizations ∆h = 144 and 88µm, and for
light pulses ν1, ν3, and ν7.

Using this initial guess instead of just a zero vector was found to be beneficial and reduce the time to compute the recon-
structions. The MAP-estimates were compared against MAP-estimates obtained using the conventional approach where the
full forward operator was constructed and by solving the system of equations (20) iteratively using the GMRES method.

The quality of the MAP-estimates was evaluated by computing relative errors

EMAP = 100% · ‖p0,SIM − p0,MAP‖
‖p0,SIM‖

, (31)

where p0,SIM is the simulated initial pressure and p0,MAP is the MAP estimate of the initial pressure.
3) Results: Cross-sections of the MAP-estimates computed using the transformation-based forward model (MAP-TRN) and

conventional forward model (MAP-CNV) are shown in Fig. 3. The figure illustrates MAP-estimates computed using light
pulses ν1, ν4, and ν7, discretizations ∆h = 142 and 88 µm, and the noise level ε3. Relative errors of the MAP-CNV and
MAP-TRN estimates using discretizations ∆h = 142, 115 and 88 µm, measurement noise levels ε1−5, and light pulses ν1−8

are shown in Fig. 4.
As can be seen, the differences in the quality of conventional MAP-CNV estimates and transformation-based MAP-TRN

estimates as well as the relative errors between the estimates depend on both the spatial discretization and the light pulse
duration. As the spatial discretization gets denser, errors in the interpolation used by the transformation-based forward model
get smaller, and the relative errors of the MAP-TRN estimates decrease close to the values of the respective MAP-CNV
estimates. Furthermore, as the light pulse gets shorter, interpolation errors grow, as the spatial resolution increases. On the
other hand, when using discretizations of approximately ∆h ≈ 90µm, the differences in the relative errors of the MAP-estimates
are small at all light pulse lengths. One should, however, note that a sufficient level of discretization is highly dependent on
the structure of the reconstructed target.

The memory requirements for the forward operators KCNV, KREF and the interpolation matrix Q and their assembling times
are shown in Table V for each discretizationn level ∆h. It should be noted that, since the temporal formation of the initial
pressure is implemented as Gaussian, the temporal support for the impulse response is infinite. Therefore, the model matrices
are, by definition, full and their memory requirement is larger compared to sparse matrices. The usage of full matrices could
be circumvented by, for example, setting the simulated impulse responses to zero below some predefined small threshold or
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Fig. 4. Relative errors of the MAP-CNV and MAP-TRN estimates at discretizations ∆h = 142, 115, and 88 µm. For each light pulse ν1−8, relative errors
at five measurement noise levels ε1−5 are presented.

TABLE V
MEMORY REQUIREMENT AND TIME TO ASSEMBLE THE MATRIX SEPARATED BY THE SLASH-SYMBOL FOR THE CONVENTIONAL FORWARD OPERATOR

KCNV , AND THE PROPOSED TRANSFORMATION BASED FORWARD OPERATOR BASED ON KREF AND INTERPOLATION MATRIX Q AT EACH
DISCRETIZATION LEVEL ∆h

∆h (µm) KCNV (GB) / (s) KREF (GB) / (s) Q (GB) / (s)

142 4.38 / 323.1 0.01 / 2.9 0.14 / 4.1
115 9.46 / 738.9 0.03 / 7.9 0.26 / 6.0
88 24.9 / 1522.1 0.08 / 17.5 0.62 / 13.3

by defining the light pulse in a different manner. Furthermore, the total reconstruction time, total time used in the GMRES-
iterations and number of GMRES-iterations using the conventional model and the transformation based model for light pulse
ν6 and noise level ε3 are shown in Table VI for each discretization level ∆h. As it can be seen, the forward operator KREF

can be computed significantly faster and requires much less memory compared to KCNV. Additionally, the reconstruction times
using the transformation based model are lower compared to the conventional model.

C. Blood vessel mimicking numerical phantom

Then, in order to simulate a more realistic target, a blood vessel mimicking numerical phantom was considered. The target
domain consisted of a ball with a radius of 5 mm. The initial pressure was constructed of blood vessel mimicking structures
illustrated in Fig. 5. The measurement setup consisted of 1000 point-like ideal ultrasound transducers distributed evenly on a
sphere with a radius of 5.05 mm.

1) Data simulation: Photoacoustic data was simulated with the wave equation using (7). The spatial and temporal discretiza-
tions used in the data simulation are shown in Table VII. The light pulse ν in (2) was modeled as Gaussian with standard
deviation of 20 ns (light pulse ν7 of simulations of Table II). Further, uncorrelated zero-mean Gaussian noise was added to the
data. Standard deviation of the noise was chosen such that the SNR was equal to approximately 23.5 dB (approximately noise
level ε3 of the previous simulations). This corresponded to a standard deviation σe of approximately 0.5% of the maximum
simulated value.

2) Inverse problem: The spatial and temporal discretizations used in the inverse problem are given in Table VII. The
prior distribution used in computing the MAP-estimate was the Gaussian piece-wise polynomial prior distribution (25). The
expected value and standard deviation of the prior distribution were set to ηp0 = 0.5 and σp0 = 0.5 respectively. Furthermore,
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Fig. 5. Simulated (top row) and estimated (bottom row) initial pressure in the numerical vessel phantom. Images from left to right: a thresholded volumetric
plot of the initial pressure (threshold value of 0.3) with maximum intensity projections in the x-, y-, and, z-directions (first column) and cross sections of the
initial pressure on (x,y,0), (x,0,z) and (0,y,z) planes (columns 2-4).

TABLE VI
TOTAL RECONSTRUCTION TIMES tREC , TOTAL TIME USED IN THE GMRES ITERATIONS tITER AND NUMBER OF ITERATIONS FOR THE

RECONSTRUCTIONS USING THE CONVENTIONAL AND TRANSFORMATION BASED MODEL FOR EACH DISCRETIZATION ∆h. THE DATA SHOWN IS
BASED ON RECONSTRUCTIONS WITH LIGHT PULSE ν6 AND NOISE LEVEL ε3

Conventional model Transformation based

∆h (µm) tREC (s) tITER (s) Iter. count tREC (s) tITER (s) Iter. count

142 32.2 0.20 160 20.9 0.12 181
115 62.6 0.43 144 37.7 0.24 157
88 156.1 1.13 138 114.9 0.80 144

the parameters controlling the structure of the covariance function were chosen as κ = 1080 µm, D = 3, and q = 3. These
parameter choices approximate the Ornstein-Uhlenbeck process with a characteristic length of ` = 0.18 mm. The measurement
noise was modeled as uncorrelated zero-mean Gaussian with a standard deviation equal to to the noise added to the simulated
measurement data.

MAP-estimate utilizing the transformation-based forward model was computed by solving the system of equations (24) using
the GMRES method. The iterations were computed until a relative residual of 3 · 10−5, which was confirmed to guarantee
convergence of the iteration. With this criterion, the iteration converged in 85 iterations with the computation time of 10 hours
and 35 minutes (approximately 370 seconds per iteration). The initial guess was set similarly as earlier using (27). The memory
requirements for the interpolation matrix Q and the forward operator KREF were 74.8 GB and 3.2 GB respectively. The results
could not be compared against the conventional approach in which the whole forward operator had been formulated. This
was due to the 3171.6 GB memory requirement of the full forward operator KCNV. Instead, a time-reversal reconstruction was
computed to provide a comparison result. This is presented in the supplementary material.

3) Results: The numerical blood-vessel like phantom and the MAP-estimate are shown in Fig. 5. As it can be seen, the
reconstruction using the transformation-based forward model is able to distinguish the vessel-like details of the phantom.
Furthermore, even the smaller structures of the phantom are facilitated by the relatively dense spatial discretization.
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TABLE VII
SPATIAL AND TEMPORAL DISCRETIZATIONS USED IN THE DATA SIMULATION AND INVERSE PROBLEM FOR THE BLOOD VESSEL MIMICKING

PHANTOM. AVERAGE LENGTH ∆h AND STANDARD DEVIATION OF THE ELEMENT SIDE LENGTHS, NUMBER OF NODES AND ELEMENTS IN THE SPATIAL
DISCRETIZATION, LENGTH OF TIME STEP ∆t, AND NUMBER OF TIME POINTS M IN THE TEMPORAL DISCRETIZATION

∆h (µm) Nodes Elements ∆t (ns) M

Data simulation 87± 15 1231086 7054660 20.5 362
Inverse problem 89± 16 1197719 6915553 22.4 331

V. EXPERIMENTAL STUDY

A. Measurement setup

The measurement setup consisted of a Nd:YAG laser and an optical parametric oscillator (model NT352B-10, Ekspla Uab,
Lithuania), which provided 3 ns long pulses at 700 nm wavelength at a repetition rate of 10 Hz. The pulses were guided
through an optical fiber and collimated using a plano-convex lens into approximately 14 mm diameter beam. The pulse energy
was set to 1 mJ. Photoacoustic waves were measured using a circular cylindrically focused PZT transducer (model V383,
Olympus NDT, MA, USA; aperture diameter 9.53 mm, focal distance 33 mm) connected to a receiver (model 5800 PR,
Olympus NDT; pass-band 0.1 to 10 MHz, gain 40 dB). The transducer had a central frequency of 3.4 MHz and a FWHM
bandwidth from 1.7 MHz to 5.1 MHz. The focal FWHM dimensions were 6.2 mm, 13 mm, and 1.6 mm in lateral, axial, and
elevational directions, respectively.

The imaged target was made of 210 µm diameter black fishing line (Berkley FireLine Fused MicroIce, Pure Fishing Inc.,
SC, USA). The line was tied to a structure consisting of two loops separated by a knot with loose ends. To form a 3D structure,
one of the loops was lifted approximately 80 degrees from the horizontal xy plane to the vertical yz plane. Dimensions of
the loops were 3 mm and 2 – 2.5 mm in the yz and xy planes, respectively. The knot was cast inside a phantom made of
water, gelatin (10%, Sigma-Aldrich, MO, USA), intralipid (1%, Fresenius Kabi AB, Uppsala, Sweden), and Indian ink (Royal
Talens, the Netherlands). Guidelines for homogeneous gelatin-Intralipid phantom manufacturing were followed [37]. Optical
absorption [38] and reduced scattering [39] were 0.1 cm−1 and 10 cm−1, respectively. The cylindrical phantom had a height of
13.4 mm and a diameter of 13 mm. The line structure was positioned at the center of the phantom. The phantom was immersed
in a water tank filled with room temperature deionized and degassed water. Visualization of the target and the phantom are
presented in Fig. 6 a) and b).

Laser pulses were administered above the phantom (z-direction) through the air-water interface. The transducer was moved
around the phantom in seven elevational (z-directional) planes using 0.5 mm increments. Furthermore, for every plane, the
transducer was rotated 185 degrees with increments of 1 degree on a 32.4 mm radius circle. In total, this resulted in 1295
transducer positions. The photoacoustic data was sampled at 100 MHz and averaged over 10 consecutive measurements using
an oscilloscope (model 6051A WR, LeCroy Inc., NY, USA). Visualization of the measurement geometry is shown in Fig. 6
c).

B. Inverse problem

For the inverse problem, a cylindrical computation domain with a height of 6 mm and a radius of 4.5 mm was considered. The
spatial and temporal discretizations are given in Table VIII. The light pulse ν was modeled as Gaussian with a length (standard
deviation) of 10 ns, which was the approximate shortest length of the light pulse supported by the temporal discretization. The
speed of sound was determined according to the temperature of the water and set to c = 1483 m/s.

The response of the finite-sized transducer was modeled using a patch-based approach [40] by discretizing the surface of
the transducer in 6488 points on an equidistant grid and averaging the recorded wave-forms. The discretization ∆hs, i.e.
the distance between adjacent points on the transducer surface was chosen such that ∆hs = λmax/2, where λmax is the
wavelength of the maximum supported frequency of the ultrasound transducer (∼ 7 MHz). The frequency response of the
ultrasound transducer was modeled according to the specifications of the transducer by including a frequency domain filtering
operation to the forward operator.

Prior distribution used in the reconstructions was the Gaussian polynomial based prior distribution (25). Expected value was
set to ηp0 = 0. Standard deviation was set to σp0 = 0.25. Parameters for the piece-wise polynomial covariance matrix were
set to κ = 300µm, D = 3, and q = 3. Statistics of the measurement noise were evaluated from a 500 time point measurement
signal preceding the illumination. The standard deviation of the measurement noise for each transducer was between 3.9 ·10−3

and 7.2 · 10−3 and the expected value between −2.3 · 10−3 and 2.5 · 10−3. For reference, the maximum value of the recorded
signal was 0.13.

The MAP-estimate was computed by solving the system of equations (24) using the GMRES method. The initial guess for
the iteration was set as in the simulations using (27). The iteration was ended when the relative residual reached the value of
10−6. This resulted in 11 iterations and a reconstruction time of approximately 1250 seconds. The memory requirement for
the interpolation matrix Q and the single transducer forward operator KREF were 49.0 GB and 2.3 GB, respectively. Due to



12

Fig. 6. Visualization of the experimental setup and phantom used in the study. (a) Flat un-cast fishing line knot with two loops. (b) Partially cast knot with
the bottom loop twisted towards the vertical yz plane. (c) Visualization of the measurement geometry. In the setup, the ultrasound transducer (shown in blue)
is rotated 185◦ around the imaged target (shown as the red knot) with 1◦ increments on seven planes with 0.5 mm increments (black dots).

TABLE VIII
SPATIAL DISCRETIZATIONS USED IN THE INVERSE PROBLEM FOR THE EXPERIMENTAL PHANTOM. AVERAGE LENGTH ∆h AND STANDARD DEVIATION
OF THE ELEMENT SIDE LENGTHS , NUMBER OF NODES AND ELEMENTS IN THE SPATIAL DISCRETIZATION, LENGTH OF TIME STEP ∆t, AND NUMBER

OF TIME POINTS M IN THE TEMPORAL DISCRETIZATION

∆h (µm) Nodes Elements ∆t (ns) M

96± 16 728213 4112879 26.6 387

memory requirements, the results could not be compared against the conventional approach where the whole forward operator
would have been formulated. The forward operator KCNV would have required 2919.6 GB of memory. Therefore, to provide
a comparison, a time-reversal reconstruction was computed. It is presented in the supplementary material.

C. Results

Cross-sections of the MAP-estimate computed from the experimental data are shown in Fig. 7. As it can be seen, the knot
and the two loops are clearly visible. It can, however, be seen that the elevational (z-directional) resolution of the reconstruction
is worse compared to the lateral and axial resolution in the xy plane. The loop of the knot, which is located approximately in
the xy plane, can be distinguished in several slices even though it should be visible in only a single slice. This reduction in
resolution is due to the measurement setup and more specifically due to the features of the ultrasound transducer (cylindrical
focus) and the measurement geometry. Furthermore, as the target is illuminated from the top, most of the light within the
z-directional loop is absorbed into the top-most parts of the loop.

VI. DISCUSSION

In the transformation-based forward model, the forward operator is constructed for a single reference transducer and extended
to a general measurement geometry using coordinate transformations and interpolations. These interpolations can lead to
modeling errors when using coarse discretizations. In this work, it was found that when using discretizations relevant to the
principal applications of PAT (in the range of . 100 µm), the modeling errors due to the interpolations were small both in
the forward solutions and in the reconstructions. One should, however, note that the manifestation of the modeling errors in
the reconstructed images is additionally dependent on the reconstructed target, i.e. the size and smoothness of the target with
respect to the spatial discretization.

One of the major benefits of the transformation-based forward operator in the inverse problem of PAT is the significant
reduction of memory requirements compared to the conventional forward operator. However, the inverse problem of PAT
introduces additional memory requirements in the form of the prior distribution. The prior covariance matrix contains L2

entries, where L is the number of the discretized initial pressure values and can thus potentially require significant amounts of
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Fig. 7. Cross sectional images of the reconstruction using the data from the experimental phantom at vertical planes of z = -1.5, -1.0, -0.5, 0, 0.5, 1.0 and
1.5 mm.

memory. As an example, if the prior distribution is defined by a covariance matrix based on an exponential based distribution
such as the Ornstein-Uhlenbeck process, the covariance matrix is, by definition, a full matrix. In this work, this problem was
alleviated by using a piece-wise polynomial covariance matrix, which is sparse by nature. Furthermore, in this work, the prior
information was implemented using a matrix-free approach where the implementation was performed row-wise as a series of
dot products. This type of approach is, however, not optimal with respect to the computation time. Implementation of the prior
distribution could be further improved by using a regular (cubic voxel-based) discretization and Fourier transform-based 3D
convolutions [18].

The transformation based approach was implemented by storing the forward operator and the interpolation matrix to memory
and using them in the iterations. This enables flexible implementation of the approach, as a single forward operator can be
used alongside various interpolation matrices to compute reconstructions in different transducer geometries. On the other hand,
the entries of the forward operator and the interpolation matrix could be computed in a matrix free fashion during the iterative
process. This would reduce the memory requirements but could increase the computational time as the entries of these matrices
would have to be computed repeatedly during each iteration.

In this work, the photoacoustic images were reconstructed iteratively using the general minimum residual method, that was
found to converge to the correct solution. The optimality of this method was, however, not exhaustively studied. It was found that
the convergence rate of the iteration was highly dependent on the complexity of the reconstructed target and the measurement
geometry. As an example, reconstruction of the blood-vessel mimicking phantom simulation study took 83 iterations, whereas
reconstruction of the experimental phantom took only 11 iterations.

In addition to PAT, the proposed method of formulating the forward model using the transformation based approach could
also be used in applications such as thermoacoustic tomography.

VII. CONCLUSION

In this work, a transformation-based approach for modeling photoacoustic signals in PAT was proposed. The model was
compared against the conventional forward model using simulations. Furthermore, the performance of the transformation-based
forward model was studied in reconstructions using both simulated and experimental photoacoustic data. The results show that
the transformation-based forward model is able to produce as accurate forward solutions as the conventional forward model
in the limit of sufficient spatial and temporal discretization. Furthermore, the method is simple to implement and it can be
straightforwardly implemented and utilized in various measurement geometries. The method reduces the computation cost of
the PAT inverse problem significantly while maintaining the accuracy of the estimates when compared to the conventional
approach.
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