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There are numerous ways to estimate the true number of species in a community based 
on incomplete samples. Nonetheless, comparable approaches to estimate the number 
of species shared between two incompletely sampled communities are scarce. Here, 
we introduce the ‘total expected species shared’ (TESS) measure and provide the R 
function for its calculation. Based on parametric asymptotic models, TESS provides 
estimates of the true number of species shared between incompletely sampled com-
munities based on abundance data. We compare TESS results with abundance-based 
non-parametric methods in terms of precision and accuracy, using different simulated 
sampling scenarios. We further calculate TESS using an empirical dataset, highlighting 
changes in accuracy and precision with increasing sample size. We also demonstrate 
how TESS values can be combined with species richness estimators in turnover esti-
mates using traditional β-diversity indices. Our results show that mean values of TESS 
reliably approximate the true shared species number for varying sample completeness 
scenarios, with both accuracy and precision increasing with increasing sample com-
pleteness. Overall, we demonstrate the viability of TESS in estimations of the true 
number of species shared between two incompletely sampled communities. We also 
stress the importance of a sufficient sample size for the accuracy of estimates – requir-
ing sampling designs that carefully balance sampling effort per site with the number 
of sampling sites.

Keywords: ACE-shared, β-diversity, Chao1-shared, sample size, TESS, 
under-sampling

Introduction

β-Diversity describes the change in the assemblage composition between different 
communities (Whittaker 1960) and is commonly measured as the change in species 
composition between pairs of samples, resulting in (dis)similarity matrices (Tuomisto 
2010). Such (dis)similarity matrices are calculated using a variety of approaches that 
compare the observed number of species shared by, and unique to, the paired samples 
(Koleff et al. 2003, Baselga 2010).

Biodiversity studies commonly rely on highly incomplete samples (i.e. samples 
that do not contain all species present in the local community). Such ‘undersampling’ 
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represents a general problem for biodiversity assess-
ments of hyper-diverse taxa and mega-diverse regions 
(Coddington  et  al. 2009, Schroeder and Jenkins 2018). 
For species richness assessments, a plethora of methods to 
estimate the number of species in a community from the 
number of species observed in an incomplete sample have 
been developed (Chao and Chiu 2016). Nonetheless, com-
parable approaches to estimate the number of species shared 
between two incompletely sampled communities are scarce 
(Beck  et  al. 2013). According to our knowledge, the only 
available approach has been a non-parametric method that 
uses frequencies of shared rare species (Chao  et  al. 2000), 
with subsequent suggested improvements (Pan et al. 2009). 
These calculations form extensions of the abundance-based 
coverage estimator (ACE, Chao and Lee 1992) that esti-
mates the number of species in a community. Parametric 
asymptotic models based on curve fitting, which have been 
used to estimate species richness within a single community 
(Flather 1996, Rosenzweig  et  al. 2003), have nonetheless 
never been explored to estimate shared species between two 
communities.

We now introduce a novel approach to estimate the 
number of species shared between two communities based 
on abundance data and simple probability calculations that 
works for low sampling completeness scenarios. This approach 
is based on expected number of species shared (ESS) between 
two communities represented by samples of standardized size 
m (Morisita 1959, Grassle and Smith 1976, Trueblood et al. 
1994, Zou and Axmacher 2020). It assumes that the prob-
ability for a species to be shared by two communities, but to 
be missing from randomly drawn samples of these communi-
ties, follows a hypergeometric distribution. In this regard, it 
resembles rarefaction approaches used to estimate the species 
richness for a standardized sample size (Hurlbert 1971). The 
measure of ESS can be expressed as

ESSij m
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where m represents the standardized sample size (number 
of individuals) used for the comparison; S represents the 
total species number; and for samples i and j representing 
the compared communities, Ni* and Nj* are the total sample 
sizes, and Nik and Njk represent the abundances of the kth 
species in samples i and j. To calculate this measure, the user 
needs to specify a standardized sample size (m) for which the 
expected number of species shared between the two samples 
is estimated. The ESS-concept has been expanded to create 
further measures such as the chord-normalized expected spe-
cies shared (CNESS) index that work robustly across sample 
sizes in estimating the relative dissimilarity between samples 
of standardized size (Zou and Axmacher 2020). Variation of 
the standardized sample size m in ESS-based dissimilarity 

measures allows for an emphasis to be put either on domi-
nant species (using low values of m) or more strongly on the 
overall composition of the sampled communities (for high 
values of m). Nonetheless, the maximum value for m has 
remained limited to the size of the smallest sample.

In the following sections, we demonstrate a way to expand 
the value-range for m in probabilistic calculation-based ESS 
measures. This expansion allows us to estimate the total num-
ber of species shared by two communities that are represented 
by incomplete samples, and we call this estimate the ‘total 
expected species shared’ (TESS). TESS is generated by comb-
ing the ESS with asymptotic extrapolation models. After 
introducing this measure, we show changes in accuracy and 
precision of TESS with increasing sample size based on simu-
lated data, and we compared the TESS results with two abun-
dance based non-parametric methods – the abundance-based 
coverage estimator (ACE)-shared species (Chao et al. 2000), 
and the Chao1-shared species estimator (Pan  et  al. 2009). 
We further calculate the TESS for an empirical dataset, again 
showing changes in accuracy and precision with increasing 
sample size. We also briefly demonstrate how TESS values 
can be combined with standard species richness estimators to 
estimate true similarity based on traditional measures such as 
the Jaccard index. We finally discuss performance and appli-
cations of TESS.

Material and methods

For this study, we started with creating four simulated com-
munities following specific distribution models: one baseline 
or ‘control’ community and three different ‘scenario’ commu-
nities that shared either 25 (scenario S25), 50 (scenario S50) 
or 75 (scenario S75) species with the ‘control’ community. In 
a second step, we then developed the probability-based mod-
els for the calculation of TESS. In a third step, we evaluated 
the performance of TESS in comparison with other indices 
based on the simulated communities and on empirical data. 
Finally, we demonstrated the application of TESS in estima-
tions of the true similarity in the species pool between two 
incompletely sampled communities.

Simulated communities

The four simulated communities used in this study each con-
tained approximately 100 000 individuals distributed among 
100 species. Their structure followed a log-normal distribu-
tion model (loge SD = 1, loge mean = 6.5). We parameterized 
the model so that the minimum abundance of any species in 
any of the resulting four communities exceeded 50 individu-
als to fit the assumed threshold for the minimum population 
size required for the long-term survival of a species (Franklin 
1980). After creating the first (baseline or ‘control’) com-
munity, we selected a set numbers of species (25, 50 and 75 
species) from this community that were to be shared with 
the three ‘scenario’ communities (S25, S50 and S75, respec-
tively). To determine which species specifically are shared, we 
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randomly selected individuals from the ‘control’ community 
and recorded their respective species names until this process 
reached the required number of species. In both the ‘control’ 
and respective ‘scenario’ community, we then ranked all spe-
cies from the most to least abundant, and we ensured that the 
shared species selected from the ‘control’ population occu-
pied the same abundance rank in the ‘scenario’ community, 
while all other species in the ‘scenario’ communities were 
allocated new species names that differed from the names of 
the ‘control’ community.

In addition to the log-normal distribution model, we 
repeated the generation of communities containing 100 
species and approximately 100 000 individuals with a 50 
individuals-minimum threshold for each species, for com-
munities following negative binomial (mean = 1000, size = 3) 
and geometric abundance distribution (probability of suc-
cess = 0.001) models. We created two communities following 
each model, one a ‘control’ and the other as S50 (50 shared 
species) to gain further insights into the performance of the 
TESS approach for these different community structures 
(Supporting information).

The conceptual framework for TESS

The relationship between ESS and the (log-) sample size (m) 
for each simulation scenario can be approximated by the fol-
lowing model (Fig. 1):

ESS where= - ´ =- ´a b e M mc M d
, log( ) 	 (1)

In this model, the asymptotic value a represents the esti-
mated overall number of species shared between the two 
communities. A robust estimation of this number based 
on the Weibull model requires a high sampling complete-
ness, as four parameters that determine the curve need to be 
estimated. Nonetheless, when the sampling completeness 
is relatively low, the asymptotic value can also be estimated 
using a three3-parameter logistic regression model (Fig. 1; 
Supporting information):

ESS where=
+ ´
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where a′ again represents the total number of expected species 
shared (TESS) between the two communities. We developed 
an R function to calculate these asymptotic values (a and a′). 
The function was based on the increase of ESS values with 
increasing sample size (m), calculated for a specific number 
of values for (m) (default: 40) that were equally distributed 
between the value of loge(m) = 1 and the actual size of the 
randomly drawn sample. The values of ESS for the increasing 
values of m created 40 ‘knots’ used to fit the respective curves 
(Fig. 1). We then used the resulting relationship to approxi-
mate the value of the parameters defining our four-parameter 
Weibull model and estimated the parameters of the model 

Figure 1. Change of the ESS value along with the change of m on a logarithmic scale for different ‘scenario’ groups. Points represent 
observed values, while the lines refer to asymptotic regression models based on 4 (red) and 3 (blue) parameters used in the parametrization 
of the respective models.
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equation by nonlinear least-squares (Crawley 2012), in turn 
obtaining the value of TESS. Initial simulations for scenario 
S50 (log normal-distributed abundance patterns) showed 
that the four-parameter Weibull model effectively estimates 
the true number of shared species for sample sizes > 400 
individuals, whereas three-parameter logistic regression mod-
els tend to slightly overestimate the shared species number 
for large sample sizes (Supporting information). In the TESS 
function that we developed (Supporting information), the 
calculation of a four-parameter Weibull model is therefore 
set as default option. Nonetheless, in cases where the sample 
size was too low to calculate the Weibull model, the curve was 
fitted using the three-parameter logistic regression model.

While we present results for communities with log nor-
mal-distributed abundance patterns in the main text, the 
curve-fitting methods were also shown to perform well for 
negative binomial or geometric species abundance distribu-
tion models (Supporting information).

Evaluation of TESS

To evaluate the overall performance of TESS, we compared 
its estimations with estimations for shared species based 
on the ACE-shared species estimator (Chao  et  al. 2000) 
and the Chao1-shared species estimator (Pan  et  al. 2009). 
We assumed two sampling scenarios: ‘equal sampling’ and 
‘unequal sampling’. For the ‘equal sampling’ scenario, sam-
ples taken from both ‘scenario’ and ‘control’ groups were of 
equal size, with sample sizes of the two samples varying from 
25 to 1000 individuals. For ‘unequal sampling’, the control 
sample was set constant at 200 individuals, while the ‘sce-
nario’ samples varied from 25 to 1000 individuals.

We repeated this approach for 1000 iterations (randomly 
drawn sub-samples from the underlying simulated com-
munities/empirical samples) to evaluate the precision and 
accuracy of TESS, ACE-shared and Chao1-shared species 
estimators. Precision was calculated as coefficient of variation 
(CV) and accuracy was calculated as scaled root mean square 
error (SRMSE) (Walther and Moore 2005), expressed as:
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where Ej is the estimated shared number of species for the 
jth simulation, E  is the mean value of the estimated shared 
species richness, n is the number of simulations and A is the 
actual shared number of species.

Testing TESS using an empirical dataset

We selected a dataset for oribatid mite communities from 
a spruce forest stands in the Tharandter Wald, Germany 

(Zaitsev  et  al. 2002) as empirical dataset (available from 
<https://doi.org/10.5519/0066354>, dataset Source_ID 
‘CM1_2002_Zaitsev’, Hudson  et  al. 2016, 2017). We 
selected three samples, with different sample sizes (135 150, 
64 906 and 50 048 individuals representing 53, 51 and 38 
species, respectively). In total, the three samples contained 
71 species, and the lowest abundance of any species within 
these three samples was 34 individuals. We considered these 
samples to be complete, i.e. we assumed that they contained 
all species found in the local mite communities. We then 
took random subsamples of set sizes from each of these three 
samples and calculated the TESS for each pair of subsamples, 
before comparing these TESS values with the known number 
of species shared by the samples. We repeated this approach 
for varying sub-sample sizes to again generate insights into 
the sample size-specific performance of TESS.

When evaluating this performance of TESS on the empir-
ical data, we used the same two sampling scenarios as for the 
simulated data, i.e. an ‘equal sampling’ and an ‘unequal sam-
pling’ scenario, with sample sizes ranging from 25 to 1000 
individuals. While the minimum sample size of 25 is too 
low to realistically estimate the species shared between the 
underlying communities, we set this low value in order to 
obtain insights into the overall performance of TESS across 
a wide range of sample sizes. Resampling and calculation was 
repeated for 1000 iterations again to generate values for the 
mean and 95% confidence intervals (CI). We plotted mean 
and 95% CI against the sample size for TESS.

Extending the use of TESS to estimate the true 
similarity of communities

The calculation of measures describing (dis)similarity 
(β-diversity) such as the Jaccard or Sørensen indices are 
currently based on ratios between the number of species 
shared between, and unique to, two samples that were ran-
domly taken from underlying communities (Koleff  et  al. 
2003). Normally, these measures rely on the species actu-
ally observed in each sample (but see Chao  et  al. 2006). 
They are therefore heavily influenced by sample complete-
ness, and they commonly heavily underestimate similarity 
where sampling completeness is low (Chao  et  al. 2006). 
Nonetheless the same formulae used in these measures can 
also be employed in the context of estimated values for 
both, the number of shared and unique species. In this case, 
the species richness of a community can be estimated from 
an incomplete sample using a variety of species richness 
estimators, such as the abundance-based coverage estimator 
(ACE, Chao and Lee 1992), the Chao1 estimator (Chao 
1984) or iNEXT (iNterpolation/EXTrapolation) tech-
niques (Chao and Jost 2012, Chao et al. 2014, Hsieh et al. 
2016). These values can now be combined with the TESS 
value. This approach allows us to estimate the similarity 
between incompletely sampled communities. To exemplify 
this approach, we use the ACE estimator in combination 
with the TESS measure to estimate the similarity based on 
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Jaccard similarities for incomplete samples. Other species 
richness estimators can easily replace ACE in such calcu-
lations. In the example we illustrate here, we furthermore 
used the simulated data to estimate the similarity both 
for the ‘equal sampling’ and ‘unequal sampling’ scenarios, 
with sample sizes ranging from 25 to 1000 individuals, and 
repeated these calculations for 1000 iterations to calculate 
mean similarity values and their 95% confidence intervals.

All calculations were based on the R software (<www.r-
project.org>). The functions ‘SSweibull()’ and ‘SSlogis()’, 
from the ‘stats’ package, were used to calculate the Weibull 
and logistic regression models. The function ‘nls()’ was 
used to determine the non-linear least-square estimates of 
the model parameters. The package ‘SpadeR’ (Chao  et  al. 
2016) was used to calculate ACE-shared and Chao1-shared 
species estimators and the package ‘vegan’ (Oksanen et al. 
2018) to calculate ACE. We provide all R functions and  
scripts required for the calculation of TESS (Supporting 
information) and for our simulations (Supporting 
information).

Results

For two samples randomly drawn from the simulated com-
munities, the ‘total expected number of species shared’ 
(TESS) between control and respective scenario commu-
nity was generally much closer to the true number of species 
shared between the two underlying communities than the 
number of species shared between the two samples (Fig. 2). 
Crucially, this was true even for a small sample completeness. 
Comparing the two sampling scenarios, TESS had a larger 
variance, but an estimated mean closer to the real value in 
equal as compared to unequal sampling (Fig. 2). TESS values 
increased strongly with increasing sample size for very low 
sample completeness (0.2–0.5, i.e. from 25 to 100 individu-
als randomly taken from the two baseline communities of 
approximately 100 000 individuals) and rapidly approached 
the true number of species shared when sample sizes increased 
further (Fig. 2). The variance of TESS exceeded that of the 
observed number of shared species across all measurements 
(see 95% CI ranges in Fig. 2). Nonetheless, TESS variance 

Figure 2. Ratio between the estimated or observed number and the actual number of species shared between two communities, plotted 
against sampling completeness (as total number of species contained in the treatment sample/total number of species in the underlying 
community – actual sample sizes are provided in brackets below the data points for further guidance). Panels refer to plots for three different 
sharing scenarios (S25: 25% of species shared; S50: 50% of species shared; S75: 75% species shared) and two sampling scenarios – equal 
and unequal – of the simulated data; error bars represent 95% confidence intervals (CIs); dots represent individual simulations.



1103

decreases dramatically with increasing sample size (Fig. 2). 
Overall, our results indicate that TESS can robustly estimate 
the actual number of species shared between two commu-
nities for a sampling completeness > 0.5 (in our case, this 
is reached at ~ 100 individuals, Fig. 2). When the sampling 
completeness is higher than 0.7 (in our case at ~ 200 indi-
viduals), TESS is a highly accurate estimator (Fig. 2), with 
results for scenario ‘S25’ being slightly more accurate than 
results for the other two scenarios (‘S50’ and ‘S75’).

TESS had a similar precision (CV) to both ACE-shared 
and Chao1-shared estimators for equal sampling scenarios. 
TESS performed worse than these two measures only for 
scenario S25 when the sample size was extremely low (25 
individuals) (Fig. 3). For the unequal sampling scenarios, 
TESS had a higher precision than both the ACE-shared and 
Chao1-shared estimators across almost all scenarios and sam-
ple sizes (Fig. 3). For accuracy (SRMSE), TESS again showed 
a similar performance to ACE-shared and Chao1-shared esti-
mators for equal sampling scenarios (Fig. 4). For the unequal 
sampling scenario, TESS had a higher accuracy than both, 
Chao1-shared and ACE-shared estimations, particularly once 
the sampling size exceeded 100 individuals (Fig. 4).

For the empirical data, TESS values showed a larger vari-
ance, but a more accurate mean value when compared to the 
observed number of species shared by the samples from the 
underlying ‘communities’ (Fig. 5). Comparisons of results for 
the two sampling scenarios showed the same trends as for the 

simulated data, with equal sampling generally resulting in a 
larger variance, but a mean estimated value that is slightly 
closer to the real value than for unequal sampling (Fig. 5).

When combining TESS with the ACE-based species 
richness estimator to obtain the estimated similarity for 
the Jaccard index (Fig. 6), the mean similarity values par-
ticularly for small sample sizes provide a greatly superior 
approximation of the real similarity when compared to simi-
larity measures based on the observed species’ distributions 
in incomplete samples. Nonetheless, the variance of esti-
mated similarity values is much higher than for the observed 
values. Furthermore, reflecting the clear trends observed in 
TESS values, equal sampling results in a higher variance of 
the resulting estimation, but a mean value that is closer to 
the real similarity value than unequal sampling scenarios for 
small sample sizes (i.e. < 200 individuals). Both estimated 
and observed similarities closely approximate the real similar-
ity for large sample sizes (n > 500 individuals, Fig. 6).

Discussion

Performance of TESS

The results we obtained support the viability of our new mea-
sure to estimate the total number of expected species shared 
(TESS) between two incompletely sampled communities, 

Figure 3. Relationship between sample size and the coefficient of variation (CV) for TESS, ACE-shared and Chao1-shared estimators for 
three different sharing scenarios (S25: 25% of species shared; S50: 50% of species shared; S75: 75% species shared) and two sampling 
scenarios of the simulated data.
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with mean TESS values robustly approximating the true 
number of species shared for a wide range of sample sizes, 
particular for scenarios based on samples of equal sizes. It 
needs to be emphasized that TESS was specifically developed 
for abundance-based datasets and cannot be used for pres-
ence/absence data.

To our knowledge, TESS represents the first parametric 
curve-fitting method allowing for estimations of the true 
number of species shared between two incomplete com-
munities, using probability estimations combined with 
asymptotic models. Similar to other parametric curve-fitting 
methods, the variance for the asymptote of TESS cannot be 
mathematically generated (Chao and Chiu 2016), prevent-
ing rigorous statistical comparisons between the two paired 
samples. While variance values can be generated for such 
non-parametric approaches (Chao  et  al. 2000, Pan  et  al. 
2009, Chao and Chiu 2012), the high uncertainties in esti-
mated results usually meant researchers showed little interest 
to draw direct statistical conclusions. TESS provides a clear 
pathway that is both easy to understand and to calculate, 
while providing results that – for intermediate to high sample 
completeness – are superior to existing approaches such as 
the ACE-shared and Chao1-shared estimators. TESS uses 
‘knots’ that describe distinct points of the curve that shows 
the changes in ESS with increasing sample sizes (m). The 
resulting ‘smooth’ curve through the ‘knots’ is then expressed 

by a mathematical formula describing the total number of 
species shared between two communities as its asymptote. 
In the R script (Supporting information), we also provide a 
curve-fitting routine of the model that provides an R2 value 
of the model fit.

Parametric asymptotic models based on curve-fitting 
have already been used to estimate species richness for abun-
dance data before (Flather 1996, Rosenzweig  et  al. 2003), 
but not to estimate the shared number of species. In TESS, 
both Weibull and three-parameter logistic regression models 
provide accurate results. While the four-parameter Weibull 
model estimations are slightly more accurate (Supporting 
information), it is not mathematically meaningful to use 
these models for small sample sizes. The three-parameter 
model in contrast is applicable for small sample sizes, too, 
but tends to overestimate the actual number of shared species 
for large sample sizes. In our R script for the TESS function 
(Supporting information), the default setting is to calculate 
the four-parameter Weibull model, while the script auto-
matically shifts to the alternative, three-parameter logistic 
regression model if the sample size is insufficient to calculate 
a Weibull model. Our function additionally allows users to 
override this approach and manually select a three- or four-
parameter model approach.

With ESS already accounting for effects of sample size 
and completeness through the inclusion of the standardized 

Figure 4. Relationship between sample size and the scaled root mean square error (SRMSE) for TESS, ACE-shared and Chao1-shared 
estimators for three different sharing scenarios (S25: 25% of species shared; S50: 50% of species shared; S75: 75% species shared) and two 
sampling scenarios of the simulated data.
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sample size parameter m (Grassle and Smith 1976), TESS 
uniquely works across a wide range of sample complete-
ness scenarios. The high standard deviation of TESS values 
for highly incomplete samples, however, means that precise 
approximations of the true number of shared species requires 
a sample completeness > 50%. In other words, TESS works 
well when at least half of all species present in the underlying 
community are also present in the respective samples. Beyond 
this threshold, we have shown that TESS provides a superior 
measure of the number of shared species compared to the 
observed species richness for two randomly taken incomplete 
samples. We can therefore significantly decrease the threshold 
of sample completeness required for a meaningful analysis.

When the sample completeness is very small (< 0.2), 
samples are generally not informative. In these cases, mean 
TESS results strongly underestimate the true number of spe-
cies shared. It might be possible to include a correction factor 
accounting for this trend, for example introducing an addi-
tional function related to estimated sampling completeness. 
However, the sampling completeness of empirical field data 
usually cannot be known and the uncertainty of estimating 
sampling completeness will always remain extremely high for 
very small sample sizes (Colwell et al. 2012). In addition, the 
accuracy of TESS further depends on the species abundance 
distribution patterns of the shared species, with a higher sam-
pling completeness being required when communities chiefly 

share rare rather than common species, which could explain 
the slightly different performances for the empirical data 
between paired samples.

With regards to our different sampling scenarios, we 
assumed that one of the communities was already almost 
completely sampled for the unequal sampling scenarios. In 
this case, TESS strongly underestimates the real value of 
shared species for small sample sizes of the second sample. 
Equal sampling scenarios in contrast generate a larger over-
all variance in the estimated shared species values. Given the 
crucial role of a sufficiently large sample size for TESS cal-
culations, field study sampling designs still need to carefully 
balance sampling effort at each individual site – to reach the 
50% threshold – with the number of replicates or, more gen-
erally, sites sampled.

Applications of TESS

While TESS could be used for example to investigate ques-
tions relating to species losses from fragmented habitats in 
comparison to large, unfragmented areas of the same habi-
tat, we see one key application of this measure when it is 
combined with a species richness estimator to estimate the 
true species (dis)similarity between communities that are 
represented by incomplete samples. We already demonstrate 
that combining TESS with a species diversity estimator (here 

Figure 5. Mean values and 95% CIs for the estimated (TESS) and observed number of shared species for varying sample sizes between the 
paired samples for the empirical data. The dashed lines refer to the actual number of shared species between the two sites; error bars repre-
sent 95% confidence intervals (CIs are very small for observed values and hence are invisible in these graphs).
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ACE) greatly increases the accuracy, despite at a relatively 
low precision, of the Jaccard similarity index when compared 
to results based on observed numbers of shared and unique 
species in incomplete samples. While we only demonstrated 
this approach for Jaccard similarities, TESS allows us to con-
duct similar calculations for all β-diversity measures whose 
calculations are based on the numbers of unique and shared 
species (Koleff  et  al. 2003). The high variance observed in 
our estimated β-diversity values is due to the combination of 
three main sources of variation occurring during the calcula-
tions of TESS and of the two ‘true’ species richness values for 
each of the incomplete samples. The combination of mul-
tiple errors means that even in cases where the total shared 
number of species can be estimated accurately, the tendency 
of established species richness estimators to underestimate 
total species richness in incomplete samples results in a ten-
dency of similarity overestimation, which is particularly vis-
ible in intermediate sampling completeness scenarios While 
species richness estimators differ in terms of their accuracy 
(Walther and Moore 2005), an evaluation of the ‘best’ species 

richness-estimator remains beyond the scope of this study. 
Nonetheless, our results show that estimated Jaccard indices 
are useful in cases where communities are only represented by 
samples of small sizes especially when the underlying commu-
nities can be assumed to share a high proportion of species. 
In such cases, (dis)similarity measures based on estimated 
values are greatly superior to measures using observed values 
in approximating the true turnover rate. In contrast, where 
two communities share only few species, both estimated and 
observed (dis)similarity indices generate values close to the 
true value even for relatively small sample sizes.

Underlying calculations of TESS can also be used across 
entire sets of samples, with multiple pairwised compari-
sons allowing users to generate pairwised ‘total shared spe-
cies’ matrices. From an applied biodiversity-conservation 
perspective, again combined with species richness estima-
tors, TESS can provide an indication of the uniqueness of 
an assemblage, with low values of estimated shared species 
indicative of a high uniqueness that in many cases can be 
interpreted as a high conservation value (Barlow et al. 2010, 

Figure 6. Mean Jaccard similarity values based on the estimated and observed number of species for varying sample sizes and the three dif-
ferent sharing scenarios (S25: 25% species shared; S50: 50% species shared; S75: 75% species shared) and the two sampling scenarios 
described in the Methods chapter for simulated data. Dashed lines refer to the real proportion of species similarity (for example, the total 
number of species is 175 for the S25 scenario, resulting in a Jaccard similarity of 25/175 = 0.14), while error bars represent the 95% CI for 
each index. Note: this approach combined TESS with a well-established species richness estimator (in this example, we use ACE), and a 
more accurate estimator will likely strongly decrease the range of the 95% CIs for the estimated similarities.
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Ejrnæs  et  al. 2018). When evaluating the uniqueness, it is 
nonetheless important to consider potential site-specific fac-
tors and associated contributions of unusual species combi-
nation, for example in relation to the presence and impact 
of invasive alien species (Legendre and De Cáceres 2013). 
TESS can furthermore allow better insights into the degree of 
‘true’ nestedness (Baselga 2010) of species pools in degraded 
habitats, or between habitat types in the context of land-use 
change. Overall, knowing the total number of species shared 
between two habitats from a subset of incomplete samples 
will therefore be helpful for both conservation management 
and biodiversity assessments, offering additional important 
insights for community changes.
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