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ABSTRACT 

 

Reducing radiation-induced side effects is one of the most important challenges in 

paediatric cancer treatment. Recently, there has been growing interest in using spatial 5 

normalisation to enable voxel-based analysis of radiation-induced toxicities in a variety of 

patient groups. The need to consider three-dimensional distribution of doses, rather than 

dose-volume histograms, is desirable but not yet explored in paediatric populations. In this 

paper, we investigate the feasibility of atlas construction and spatial normalisation in 

paediatric radiotherapy. We used planning computed tomography (CT) scans from twenty 10 

paediatric patients historically treated with craniospinal irradiation to generate a template 

CT that is suitable for spatial normalisation. This childhood cancer population 

representative template was constructed using groupwise image registration. An 

independent set of 53 subjects from a variety of childhood malignancies was then used to 

assess the quality of the propagation of new subjects to this common reference space 15 

using deformable image registration (i.e., spatial normalisation). The method was 

evaluated in terms of overall image similarity metrics, contour similarity and preservation 

of dose-volume properties. After spatial normalisation, we report a dice similarity 

coefficient of 0.95±0.05, 0.85±0.04, 0.96±0.01, 0.91±0.03, 0.83±0.06 and 0.65±0.16 for 

brain and spinal canal, ocular globes, lungs, liver, kidneys and bladder. We then 20 

demonstrated the potential advantages of an atlas-based approach to study the risk of 

second malignant neoplasms after radiotherapy. Our findings indicate satisfactory 

mapping between a heterogeneous group of patients and the template CT. The poorest 

performance was for organs in the abdominal and pelvic region, likely due to respiratory 

and physiological motion and to the highly deformable nature of abdominal organs. More 25 

specialised algorithms should be explored in the future to improve mapping in these 

regions. This study is the first step toward voxel-based analysis in radiation-induced 

toxicities following paediatric radiotherapy. 
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MAIN BODY 30 

 

1. INTRODUCTION 

 

Radiation therapy (RT) is currently used to treat 40 to 50% of childhood cancer 

cases in the UK (The Royal College of Radiologists 2019). While the radiation is precisely 35 

targeted to destroy the cancer cells, it may also damage surrounding healthy cells leading 

to sequalae that can appear years to decades after treatment (Arain et al 2015). The higher 

risk of radiation-induced late effects in children is linked to the increased sensitivity of 

developing tissues, where radiation induces both organ damage and impairment of 

maturational processes (Paulino et al 2010). Furthermore, with current survival rates 40 

reaching 75% at 10-years (Cancer Research UK 2015), most paediatric patients become 

long term survivors allowing for late effects to manifest. The long term harmful effects of 

radiotherapy include infertility, impaired physical growth and pubertal development 

(Schwartz 1999), renal problems (Skinner 2018), neurocognitive deficits (Roddy and 

Mueller 2016), as well as a range of other life-threatening issues. Second cancers are the 45 

leading cause of mortality in long term survivors, followed by cardiac and pulmonary death 

(Armstrong et al 2009). Reducing radiation-induced side effects is one of the most 

important ongoing challenges in paediatric cancer treatment, but there is a lack of 

evidence-based dose/volume guidelines to inform treatment planning. This has recently 

been recognised internationally with the establishment of the Paediatric Normal Tissue 50 

Effects in the Clinic (PENTEC) task force (Constine et al 2019), which seeks to increase 

knowledge about paediatric radiotherapy dose constraints using published data.  

Mathematical models of radiation-induced side effects are a powerful tool to guide 

treatment planning and clinical decision-making. The development and validation of 

treatment toxicity models is however very challenging, and when considering paediatric 55 

populations specific obstacles must be addressed (Constine et al 2019). Radiation dose to 

volume is the key predictive factor of radiation-induced effects. In adults, radiation-induced 

effects occur mostly in organs within the radiotherapy target volumes. In contrast, for 

children organs and tissues outside the target volume are also important, as side-effects 

may develop in different regions receiving lower doses at different timescales. It is 60 

common for treatments to encompass large volumes in comparison to children’s body size 

(e.g, in craniospinal irradiation), meaning a wider range of organs and tissues can receive 

a significant radiation dose. Smaller bodies also cause organs to be closer to the high-dose 

regions, increasing dose due to secondary radiation. Tissues and organs which are not 

directly irradiated may still have a long-term risk of radiation-induced second cancers, as 65 

result of leakage and scattered radiation (Xu et al 2008, Harrison 2013). Additionally, the 

quality of toxicity models depends on the quantity and quality of the data. Collating large 
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datasets for individual cancer types is challenging as childhood cancers are both rare and 

heterogeneous (Pappo et al 2015). Moreover, routine clinical data is not detailed and has 

limited delineations of organs and tissues; likewise, anatomy remote from the target 70 

volume is not usually imaged. To achieve larger sample sizes, it is desirable to identify 

methodologies that can leverage all clinically existing anatomical and dosimetric 

information from this heterogeneous cohort, including partial data. This can potentially be 

achieved by finding solutions to group patients according to organ at risk and not disease 

diagnosis (Constine et al 2019). Radiotherapy delivery is rapidly evolving, with advanced 75 

techniques such as intensity modulated radiotherapy, intensity modulated arc-therapy 

(IMAT), helical tomotherapy, passive scattering proton therapy, and pencil beam scanning 

proton therapy (PBS-PT) becoming more accessible (Sterzing et al 2009, Mesbah et al 

2011, Ludmir et al 2018, Padovani et al 2019). These not only change the characteristics 

of dose distribution in healthy tissues (for example, low dose bath in IMAT and biological 80 

effectiveness of protons), but also make it even more challenging to achieve larger sample 

sizes for assessment per modality. 

To address these challenges and facilitate analysis of complex 3D imaging and 

treatment data from heterogeneous patient groups, a possible solution to is to define a 3D 

common reference space and normalise spatial information from individuals of the patient 85 

group into it. Image registration is used to propagate spatial data (such as 3D imaging 

information and dosimetry) from the individuals onto the common reference space, which 

may be defined as a representative subject or unbiased population atlases (Joshi et al 

2004, Ghosh et al 2010). Spatial normalisation allows one to move from region-of-interest 

to voxel-based analysis, which is particularly desirable in radiotherapy research to 90 

understand dose-toxicity relationships (Palma et al 2020). Spatial normalisation preserves 

the 3D information of the dose distributions (Monti et al 2018), unlike traditional techniques 

that simplify volumetric dose into 2D dose-volume histograms (DVHs). It is an 

advantageous approach that allows one to identify heterogeneous regional radiosensitivity 

(i.e. sub-volumes of organs and tissues) while not relying on a priori definition of volumes 95 

(Palma et al 2020). The need to consider the actual spatial distribution of doses, rather 

than organ DVHs, is recognised in late normal tissue damage research for paediatric 

populations (Trott 2017). Spatial normalisation in radiotherapy has become a topic of 

interest in recent years, with recent studies focusing on radiation-induced side-effects on 

prostate, head and neck and lung (Acosta et al 2013, Palma et al 2016, Dréan et al 2016, 100 

Monti et al 2017, Beasley et al 2018, Mylona et al 2019, Marcello et al 2020, Mylona et al 

2020, McWilliam et al 2020) and to predict outcomes (Ibragimov et al 2019).  

In this work, we investigate the feasibility of atlas construction and spatial 

normalisation in paediatric radiotherapy to enable voxel-based analysis of radiation-

induced toxicities. The methodology was developed to serve as a framework to facilitate 105 

the development, validation, and clinical translation of radiotherapy-induced late effects 
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models in childhood cancer patients. The atlas-based approach allows one to spatially 

standardise a heterogenous population in an unbiased way, while preserving localised 

spatial anatomical, functional and dosimetric information.  

 110 

2. METHODS AND MATERIALS 

 

2.1. Paediatric atlas construction  

 

To spatially normalise complex anatomical and treatment imaging data, image 115 

registration is used to propagate information from individual subjects onto a common 

reference space. The first key step is to define a reference space representative of the 

population being studied. For our application, a simple, common, popular and scalable 

approach is to choose as reference space the planning computed tomography (CT) scan of 

a representative subject from the population (e.g., subject with average age or average 120 

height). However, the selection of a single subject as reference space introduces bias to 

the registrations which propagates to subsequent analysis. For example, if the selected 

reference volume has atypical anatomical features then all registrations are potentially 

more challenging and will estimate atypical and/or implausible transformations 

(Namburete et al 2018). Choosing an adequate reference is a challenging problem, 125 

particularly for the paediatric cancer population, known to be heterogeneous and prone 

to deviations in anatomy. Anatomical variations can occur simply due to changes with 

age, but more complex variations can occur with the treatments used, increasing the risk 

of individual subjects having atypical features. For example, some require invasive 

therapies which may cause co-morbidities and require additional interventions that are 130 

visible on CT imaging (such as the use of shunts or changed anatomy from surgical 

interventions). For such reasons, we opted to construct the reference space using 

groupwise image registration and paediatric radiotherapy CT images. Groupwise image 

registration is a process that iteratively alternates between co-registration of all subjects 

to a reference image and updating this reference image with the average model produced. 135 

Figure 1 provides a schematic overview of the pipeline proposed, which is detailed in the 

following sections.  
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Figure 1- Schematic of pipeline used to generate the paediatric common reference space. 140 

The pipeline is divided into three main steps: (1) Data pre-processing: definition of inputs 

to be used in pairwise registrations (multichannel images and corresponding masks); (2) 

Groupwise image registration: iterative process of registering a set of images together to 

a common reference space; (3) Atlas construction: generate template CT and contours. 

 145 

2.1.1 Patient data 

 

The paediatric radiotherapy data used in our study was requested in line with the 

internal information governance procedures of the University College London Hospital 

(UCLH) Radiotherapy Department and was provided as fully-anonymised datasets. For 150 

atlas construction we used data from twenty children historically treated with 3D conformal 

photon craniospinal irradiation (CSI). This included 10 boys and 10 girls with a median age 

of 8 y (range: 3 – 15 y). All patients underwent a CT scan of the brain and whole spine, 

immobilised in the treatment position, for radiotherapy planning purposes. For simplicity, 

CSI CT scans are labelled as whole-body (as all major organs are visible), but limbs are 155 

usually partially out-of-field. Imaging resolution for all scans was 0.98×0.98×2.5 mm3. The 

following RT structures were used for validation purposes in the study: central nervous 

system (CNS) (whole brain and spinal canal down to L3), ocular globes, lungs, liver, kidneys 

and bladder. This set of contours was chosen to be clinically relevant and to cover different 

regions of the body. Clinically available contours were used if possible, and missing 160 

contours were additionally generated. Hence, the segmentation dataset had inter-user 

variability. All new contours were reviewed to clinically acceptable standards by an 

oncologist (EC) and/or physicist (CV). Manual segmentation and review was performed 

using the open-source software ITK-SNAP (Yushkevich et al 2006). Simple post-processing 

was employed before analysis to all contours to remove common segmentation errors (e.g. 165 

remove holes and discard small regions outside organ). 

 

2.1.2. Pre-processing 
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The following pre-processing steps were applied to all CTs prior to atlas construction 170 

to generate the inputs for image registration. The CTs were corrected to exclude external 

elements (e.g., couch and anaesthesia equipment) and to ignore shunts and high-intensity 

artefacts. External elements were defined as voxels outside the body contour and were 

overwritten as air (HU=-1000). High-intensity artefacts were replaced with “NaN” value so 

that they would not contribute to the average image constructed at each iteration. 175 

Furthermore, since the location and volume of bowel gas is variable between patients and 

hence there is no true one-to-one mapping, bowel gas regions (defined from the body, 

inferior to the lungs, as HU<-200) were overwritten with water intensity (HU=0). A binary 

mask was defined as a dilation of the body contour and used as input to speed the 

registrations.  180 

Inter-subject image registration is particularly challenging in the CSI paediatric 

population due to the heterogeneous anatomy of children of both sexes aged 2-16 years. 

To guide the deformable registrations between subjects with different body sizes, the input 

images were defined as multichannel images. The first channel corresponds to the pre-

processed CT image, while the second channel corresponds to the binary mask of the 185 

individual’s skeleton (defined as HU>150). All multichannel CTs (and respective masks) 

were also automatically cropped in the anterior-posterior direction to further reduce 

computation time and memory requirements. 

The binary images used in the pre-processing were generated semi-automatically 

based on thresholding of the CTs, morphological operations and existing manual RT 190 

segmentations, and then visually inspected and manually corrected (if needed) to remove 

gross labelling errors. 

 

2.1.3. Groupwise image registration 

 195 

We constructed a reference space representative of the paediatric radiotherapy 

population using groupwise image registration. The output of interest is the final average 

intensity image produced, which we denominate as the “template CT” from here onwards. 

We have modified the method available in NiftyReg (https://github.com/KCL-

BMEIS/niftyreg) for groupwise registration, tailoring it for co-registration of whole-body CT 200 

images of paediatric subjects. The process is initialised by automatically selecting the 

initial reference to be the subject with closest age to the average age of the population 

studied. The pipeline then alternates between pairwise registration of all images to the 

reference image and updating the reference image at the end of each iteration. The 

updated reference is obtained by averaging the intensities of all the pairwise registration 205 

results whilst enforcing the mean of all transformations to be the identity transform. The 

complexity of the transformation model increases with iteration number, from rigid to fine 

deformable image registration (DIR). Coarser registrations allow one to initially capture the 
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large global variations in subject height and weight, which are followed by finer 

registrations to capture the smaller intra-patient variations in organ shape and size. This 210 

refinement process hence facilitates the co-registration of subjects with different body 

sizes and reduces computation times. A total of eleven iterations (one rigid-only, two affine 

and eight deformable) was empirically defined as further iterations were found to not 

provide sharper mean images. 

Rigid and affine iterations use the block matching-based algorithm available in 215 

NiftyReg (Ourselin et al 2001, Modat et al 2014). Multichannel and cropped images were 

generated at the end of the last affine step and used in the following iterations. The DIR 

steps make use of the velocity fields parametrisation of the B-spline free form deformation 

based algorithm (Rueckert et al 1999, Modat et al 2012), guaranteeing transformations 

that are diffeomorphic, symmetric and inverse-consistent. All pairwise deformable 220 

registrations use a multi-resolution approach with five levels. Locally Normalised Cross 

Correlation (LNCC) and Sum Squared Difference (SSD) were used as similarity metrics in 

the CT and skeleton channels, respectively. Bending energy and linear elasticity penalty 

terms were used for regularisation in all registrations to encourage smooth deformations. 

The number of levels to perform and control point spacing were updated with iteration 225 

number to progressively recover finer deformations. The finest registrations were carried 

out using five resolution levels and a control grid spacing of 12.5 mm.  

In addition to generating the average CT image, at the last iteration the 

corresponding average contours are also generated by propagating and averaging the 

organ contours for all subjects (majority voting), using the same transformations.  230 

 

2.2. Evaluation experiments  

 

To evaluate the constructed paediatric atlas for spatial normalisation, an 

independent set of 53 patients historically treated at UCLH was used. This evaluation 235 

dataset included 31 boys and 22 girls with a median age of 5 y (range: 1 – 16 y) from a 

variety of disease cohorts, including CSI (n=30), abdominal neuroblastomas (n=18), brain 

tumours (n=3) and Ewing sarcomas (n=2). Similarly to the data described in Section 2.1.1 

Patient data, planning CT images and corresponding contours (CNS, ocular globes, lungs, 

liver, kidneys and bladder) were used for analysis. Clinical RT doses were also available for 240 

every subject, with prescription and fractionation varying between patients. All subjects 

were registered to the template CT using affine followed by non-rigid registration. The 

registration parameters and pre-processing strategy were similar to those used for the 

finest pairwise registrations in the groupwise pipeline.  

 245 
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The quality of the spatial normalisation process was evaluated considering how well 

the registrations aligned organs at the common reference space and if dose-volume 

properties are preserved after registration; furthermore, smooth deformations are 

important to promote the preservation of dose-volume characteristics. To evaluate the 

mapping in regions without manual labels, intensity-based similarity and deformation 250 

metrics were calculated. All metrics of image quality, contour similarity and dose-volume 

characteristics used are defined in Table 1 and briefly described in the following 

paragraphs. The following nomenclature is used to differentiate the different spaces where 

three-dimensional subject-specific information (i.e. CT, contours and dose) are defined: s 

= information of each subject in its native coordinate system; t = information of the 255 

template CT itself on its own coordinate system (common reference space); 𝑠 → 𝑡 = 

information propagated from the subject space into the template CT coordinate system 

via image registration. 

 

Table 1- Quantities used in the evaluation of the spatial normalisation. 260 

Quantity Equation Description 

Normalised Cross-

Correlation (NCC) 
NCC =

∑[(Is→t(r) − Is→t
̅̅ ̅̅ ̅) × (It(r) − It̅)]

√∑(Is→t(r) − Is→t
̅̅ ̅̅ ̅)2 × ∑(It(r) − It̅)2

 
IA(r) is the pixel intensities 

(HU) in image A at voxel r, and 

IA̅ the mean intensity. NCC is a 

metric of the degree of 

similarity between images. 

Ranges from -1 to 1 with 

highest values representing 

higher image similarity. 

Root Mean Squared 

of intensity 

differences (HURMS) 

ΔHURMS = √
1

n
∑(Is→t(r) − It(r))2 

IA are the pixel intensities 

(HU) in image A. 

ΔHURMS provides a measure of 

disparity in image intensities. 

Units of ΔHURMS: HU. 

Average absolute 

local volume change 

(LVCavg) 

LVCavg =
1

n
∑|LVC(r)| , 

 where  

LVC(r) = {
1 − 1/J(r)

J(r) − 1
     

J(r) < 1
J(r) ≥ 1

 

LVC is the local volume 

change, computed from the 

determinant of the Jacobian 

(J) of the deformation (Pilia et 

al 2019).  

Dice Similarity 

Coefficient (DSC) 
DSC = 2 ×

Vt ∩ Vs→t 

|Vt| + |Vs→t|
 

VA represents the voxels that 

define a volume of interest A. 

Ranges from 0 to 1, with 

highest values representing 

better contour overlap. 
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Jaccard Coefficient 

(JC) 
JC =

Vt ∩ Vs→t 

Vt ∪ Vs→t 
 

Ranges from 0 to 1, with 

highest values representing 

better contour overlap. 

Average distance 

between surfaces 

(DTavg) 

DTavg = max {DTs,s→t
̅̅ ̅̅ ̅̅ ̅̅ ̅, DTs→t,s

̅̅ ̅̅ ̅̅ ̅̅ ̅} DTA,B
̅̅ ̅̅ ̅̅ ̅ is the mean of the 

distribution of values for 

distance between each point 

on the surface of volume A to 

the closest point on the 

surface of volume B.  

Units of DTavg: mm. 

Distance between 

centroids (ΔTR) 

ΔTR = ‖Rs→t − Rt ‖ RA is the centroid of a volume 

A.  

Units of ΔTR: mm. 

Relative difference 

of areas of DVHs 

(RDA)  

RDA =
∫|DVHs→t − DVHs|dx

max {∫ DVHsdx , ∫ DVHs→tdx}
 

DVHA is dose-volume 

histogram for volume A. 

RDA ranges from 0 and 1, with 

the lowest representing better 

DVH preservation. (Adapted 

from Acosta et al 2013). 

Dose-organ overlap 

(DOO) DOO =
∫ Ds→t(x)dx

Vt∩Vs→t

∫ Ds→t(x)dx
Vt∪Vs→t

 

VA represents the voxels that 

define a volume of interest A, 

and DA the three-dimensional 

dose matrix inside A. 

DOO ranges from 0 and 1, with 

the highest values 

representing better DVH 

preservation (Acosta et al 

2013).  

Definitions: 

• s = information of each subject in its native coordinate system;  

• t = information of the template CT itself on its own coordinate system (common reference 

space);  

• s → t = information propagated from the subject space into the template CT coordinate 

system.  

 

Intensity-based similarity was assessed by calculating the Normalised Cross 

Correlation (NCC) and the root mean square error (HURMS) between the deformed CTs and 

template CT. To demonstrate the range of deformations recovered, we also computed the 

average absolute local volume change (LVCavg) using the determinant of the Jacobian of 265 

the pairwise deformations (Pilia et al 2019). 
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To describe the similarity between contours defined in the template space (𝑉𝑡) and 

the equivalent contours propagated from each subject to this space via image registration 

(𝑉𝑠→𝑡), we computed the Dice Similarity Coefficient (DSC), Jaccard Coefficient (JC), average 

distance between surfaces (DTavg) (Mishchenko 2015) and distance between centroids 270 

(ΔTR). These quantities measure accuracy of the registrations in mapping organ volume, 

location and shape. 

Spatial normalisation should preserve the dose-volume properties of each 

individual subject, such that DVH-based models of side-effects would be similar if 

performed on the subject or common reference space. The differences in the dose-volume 275 

histograms computed in the subject (DVHs) and template (DVHs→t) spaces were assessed 

using the dose relative difference of areas of DVHs (RDA) and dose-organ overlap (DOO) 

(Acosta et al 2013).  

It should be noted that not all patients included had planning CTs that covered the 

same field-of-view, which may impact in the metrics reported. When computing different 280 

measures of registration quality, pixels outside the body and the common field-of-view 

were excluded from analysis. 

 

2.3 Critical evaluation of spatial normalisation for radiation-induced second malignant 

neoplasms risk 285 

 

Our aim in this part of the study was to demonstrate the potential of the proposed 

atlas-based approach to facilitate radiation-induced late effects research in childhood 

cancer treatment (Figure 2). The risks of radiation-induced second malignant neoplasms 

(SMNs) were estimated for a group of patients using the common reference space (𝑠 → 𝑡) 290 

and compared the equivalent values using the original subject space (𝑠). For this purpose, 

we used a subset of subjects for whom clinically acceptable dual radiotherapy plans were 

available. This included fourteen patients from different disease cohorts (from the n=53 

evaluation cohort): CSI (n=3), abdominal neuroblastomas (n=7), brain tumours (n=3) and 

Ewing’s sarcoma (n=1). A photon plan and a pencil-beam scanning proton therapy plan 295 

were available for risk estimation for each subject. As different patient groups and 

treatment modalities were included, this subgroup had variability in the 3D dose 

distributions considered. This was intentionally chosen such that organs were located in 

both homogeneous dose regions and within dose gradients, and with varying position 

relative to the RT field (i.e., inside the RT target, near-target and out-of-field). In the case 300 

of the proton therapy plans, an estimation of homogeneous whole body neutron dose was 

included (Schneider et al 2002). In addition to assessing mean and maximum organ doses 

(Davg and Dmax), (i.e., linear dose-response model), a mechanistic model was used to 

estimate the excess absolute risk (EAR) of radiation-induced carcinomas in the CNS, lungs, 
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liver, and bladder (Schneider et al 2011). This model accounts for cell killing, repopulation 305 

and fractionation effects and was developed for therapeutic exposures. EAR is estimated 

from the dose to volume data using the mechanistic dose-response model (i.e., non-linear 

model), and an age-dependent modifying function. Parameters depend on the tissues 

being irradiated, and are available in the original publication (Schneider et al 2011). We 

report the Davg, Dmax, and EAR for both modalities, as well as the risk ratio (RR) between 310 

modalities. For convenience, the RR was defined to range between 0 and 1 such that it 

does not depend on which modality is estimated as superior: 

RR = min {
EARprotons

EARphotons

,
EARphotons

EARprotons

} 

 

 315 

Figure 2- Diagram showing data workflow for spatial normalisation to facilitate radiation-

induced late effects research. 

 

2.4 Implementation details and data analysis 

 320 

The pipelines for atlas construction, subject propagation, validation workflow and 

SMN models were implemented in Matlab 2019a (Mathworks Inc.). Statistical analysis was 

also performed in Matlab, using the Statistical Toolbox, with statistical significance set at 

5%. Not every patient included had complete segmentation sets due to variations in the 

field-of-view covered by the planning CT. Therefore, the dimensions of the samples used 325 

were variable. 
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3. RESULTS 

 

3.1 Overview of the template space  330 

 

The atlas construction took approximately 35.5±0.5 hours on a dual Intel® Xeon 

Gold 6134 CPU (3.20GHz), 128GB memory (computation was repeated three times). Figure 

3 shows the atlas constructed using the twenty CSI subjects, as well as segmentations, 

average HU and volume differences per voxel. The deformable registration of all subjects 335 

to this template took 66±30 minutes (per subject) on the same system.  

 

 

Figure 3- (a) Template CT generated using groupwise image registration on selected axial, 

sagittal and coronal views and (b) corresponding contours. (c) Map of local average 340 

intensity difference between template and subject CTs. (d) Map of average absolute value 
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of the local volume change when co-registering subjects. Maps resulted from averaging 

over the twenty subjects used for atlas construction, excluding pixels away from the body. 

 

Figure 4 shows some examples of registrations for different disease cohorts, 345 

highlighting some of the common pitfalls of the spatial normalisation process. The 

registrations were able to successfully align the overall anatomy at the common reference 

space despite the wide variation in age, height, and weight between subjects. Large local 

deformations were challenging to completely capture, and visually we could identify 

common patterns of misregistration such as local misalignment of individual bones (e.g. 350 

individual vertebrae and ribs) and poor matching at soft tissue boundaries (e.g. between 

right kidney and liver). Image quality was an important source of registration variability 

contributing to fuzzier aspect in regions without consistently sharp anatomical boundaries. 

 

 355 

Figure 4- Examples of registrations to the (f) template CT, including subjects from (a-c) 

craniospinal irradiation (CSI) and (d-e) other disease cohorts. Top row: subject CT scans 
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(rigid-only alignment). Middle row: deformed CT scans. Bottom row: Difference map 

between registered scans (deformable registration) and template CT. In general, the 

registrations can successfully align the anatomy, but specific challenges arise in different 360 

body regions. Contrast in anatomical boundaries is fundamental to guide the registration, 

but clinical scan quality may vary. The boundary between liver and kidneys is less sharp 

in (a) than in (b), for example (top arrows), leading to poorer anatomical matching in this 

region; likewise, large deformations of the bladder are challenging to recover, where filling 

varies from (a) full to (b) empty (bottom arrows). Imaging artefacts can also be 365 

problematic, such as (c) motion artefacts (top arrow) and/or the use of contrast agents 

(bottom arrow). Note that high-intensity artefacts were masked out of the registration. 

Different disease cohorts have differences in image acquisition of parameters, patient 

positioning and imaged field-of-view ((d) brain tumour vs (e) abdominal neuroblastoma). 

Arrows indicate misregistration regions on the skeleton (d) and soft tissues (e). 370 

 

The average values for NCC was 0.97±0.01, indicating a good match between 

deformed and template CTs. HURMS was 94±10 HU, which also indicates good global 

alignment. A level of difference in intensity is expected due to the variability in CT 

intensities between patients and the fuzzier aspect of the template CT. We also report a 375 

LVCavg of 0.38±0.16, which is indicative of the magnitude of volume changes that must be 

captured by the registrations, with the largest values being attributed to variations in 

patient size across the population studied. 

 

3.2 Evaluation of anatomical and dose mapping 380 

 

Figure 5 shows an example of the different CTs, contours and doses used in the 

evaluation of the anatomical and dose mapping.  
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 385 

Figure 5- Example of data (images, contours and doses) used in the evaluation 

experiments. (a) CT, lungs contour (red) and dose distribution for one of the subjects 

included in the analysis (Ewing sarcoma); (b) Subject CT propagated to the template (affine 

followed by deformable registration), and corresponding deformation grid; (c) Template CT 

and lungs contour (blue), and overlaid deformed lungs contour (red) and deformed dose 390 

distribution; (d) Template CT by itself. 

 

The quantities calculated for each organ are summarised in Table 2. Details of the 

distribution in volume and dose per organ within the patient group are also provided. 

Figure 6 complements this information by displaying the distribution of the DSC and RDA 395 

for all contours, chosen as representative measures of anatomical and dose mapping 

results.  

 

Table 2- Quantitative evaluation of contour and dose deformation for different organs, 

expressed as mean ± standard deviation. 400 

 Volume of interest 

Quantity  CNS 
Ocular 

globes 
Lungs Liver Kidneys Bladder 

DSC 0.95±0.05 0.85±0.04 0.96±0.01 0.91±0.03 0.83±0.06 0.65±0.16 

JC 0.92±0.08 0.74±0.06 0.92±0.02 0.83±0.5 0.71±0.08 0.50±0.16 

DTavg (mm) 0.7±1.0 0.9±0.4 0.8±0.3 2.7±1.1 2.5±1.3 7.1±3.8 

ΔTR (mm) 2.9±5.7 1.7±0.8* 1.3±0.7* 4.9±2.7 7.0±4.5* 9.6±4.6 

RDA 0.02±0.04 0.04±0.04 0.05±0.05 0.06±0.03 0.09±0.06 0.29±0.28 

DOO 0.92±0.07 0.75±0.07 0.86±0.05 0.81±0.06 0.65±0.09 0.36±0.18 
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Number of 

subjects in 

analysis 

(no, %) 

53  

(100%) 

34  

(64%) 

52  

(98%) 

49  

(92%) 

49  

(92%) 

49  

(92%) 

Volume 

(ml), 

median 

(range) 

1331 

(29 – 1891) 

16 

(10 – 21) 

597 

(49–2834 

645 

(328 – 1632) 

121 

(62 – 284) 

64 

(10 – 350) 

Mean organ 

dose (Gy), 

median 

(range) 

23.6 

(1.3 – 38.9) 

26.2 

(0.2 – 35.9) 

3.5 

(0 – 16.4) 

6.7 

(1.1 – 25.0) 

5.2 

(1.4 – 14.1) 

1.1 

(0 – 16.3) 

DSC = Dice Similarity Coefficient 

JC = Jaccard Coefficient 

DTavg = Average distance between surfaces  

ΔTR = Distance between centroids  

RDA = Relative difference of areas of DVHs  

DOO = Dose-organ overlap  

CNS = brain and spinal canal 

*For organs composed of two separate volumes, ΔTR reported is the maximum value of the individual 

sub-volumes. 
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Figure 6- Boxplots for distribution of dice similarity coefficient (DSC) and relative difference 

of areas (RDA) after spatial normalisation. Subjects with contours defined available for 

analysis: N={53, 34, 52, 49, 49, 49} for {CNS, Ocular Globes, Lungs, Liver, Kidneys, 405 

Bladder}.Outliers fall outside the ±2.7 standard deviation range. 

 

In general, better matching is found for organs in the head and thorax, than for 

those located in the abdomen and pelvis. The poorest performance was achieved in the 

bladder, the organ that exhibited the largest inter-subject volume variation due to 410 

differences in filling (excluding cases where other organs were partially imaged). Upon 

visual inspection of outliers for other regions of interest, the worst performances 

corresponded to abnormal anatomies, such as individuals with enlarged kidneys or 

inflammation in the lungs. A common error (affecting approximately 1 in 5 subjects) in CNS 

registration corresponded to misregistration of individual spinal vertebrae, which could 415 

lead to mismatch of the inferior end of the spinal canal (which was consistently defined at 

L3 for all subjects and template). Registrations also struggled with the kidney 

superior/inferior boundaries where contrast is poor, reflected in higher errors mapping the 

structure centroid. Registration quality was generally better for CSI than for other cohorts 
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(abdominal neuroblastoma, brain and Ewing’s sarcoma). For example, the average DSC 420 

for the liver was 0.92±0.02 and 0.88±0.03 for CSI and other cohorts, respectively. 

Considering CSI subjects only, we also investigated the relationship between all metrics 

and absolute age difference (relative to the template CT). We did not find any strong 

evidence that subjects with ages furthest away from average were better registered to the 

template CT. When pooling data for all organs and subjects, the Pearson’s correlation 425 

coefficients were -0.05, -0.04, 0.08, 0.04, 0.04 and -0.04 (p>0.05) for DSC, JC, DTavg, ΔTR, RDA 

and DOO, respectively, showing a weak correlation between age similarity and 

anatomical/dose mapping to the template CT. 

 

3.3 Additional evaluation experiments 430 

 

Separately to the previous experiments, we also evaluated anatomical and dose 

mapping to the template for the twenty subjects used in the atlas construction. We found 

no strong statistical evidence that the measured quantities were better for CSI subjects 

used for atlas construction than for those used only for evaluation (p>0.05, Wilcoxon rank 435 

sum test).  

The anatomical and dose mapping achieved with other choices of common 

reference space was also assessed, and compared to the proposed template CT. First, we 

calculated all metrics when spatially normalising to a population-representative individual. 

The chosen individual was the subject closest to the average age, also used for atlas 440 

construction. Then, we repeated the same analysis but choosing as reference the youngest 

and oldest subjects (proxy for least representative subjects) to highlight the importance of 

adequate reference selection for spatial normalisation. Results are shown in Table 3 when 

pooling data for all organs and subjects. Figure 7 showcases the differences in DSC for all 

organs when comparing spatial normalisation to the template CT and representative 445 

subject only. Spatial normalisation to a representative subject generally resulted in poorer 

metrics achieved in comparison to the template CT but improved against using as 

reference space subjects with more dissimilar ages (and hence expected to be less 

representative of the population).  

Finally, to evaluate the impact of initial template selection in the atlas constructed, 450 

the atlas construction process was repeated by iterating the initial template selected over 

the remaining nineteen subjects. All atlases generated were comparable to the proposed 

atlas after affine registration (NCC=0.993±0.003 and HURMS=45±9 HU), irrespective of 

which subject was used to initiate the process. Visually, the inter-atlas anatomical 

variability was small in comparison with the inter-subject variability presented in the 455 

patient group. Furthermore, all anatomical and dose mapping metrics were recalculated 

on two (out of nineteen) of these comparable atlases, the ones constructed using the 

youngest and oldest subjects as the initial reference. Similar metrics were found on the 
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three different template CTs analysed, demonstrating the robustness of the atlas 

construction process. These results are also summarised in Table 3 and Figure 7.  460 

 

Table 3- Quantitative evaluation of contour and dose deformation to different common 

reference spaces: proposed template CT (evaluated in Sections 3.1 and 3.2), population 

individuals (youngest, average and oldest in age), and template CTs generated with 

different initial template (youngest and oldest subjects). Data pooled for all organs and 465 

subjects. Expressed as mean ± standard deviation. Note how similar results are achieved 

for all template CTs; representative subject is associated with poorer metrics but 

outperforms the less representative individuals. 

Quantity Template CT 

Other common reference spaces  

Individuals 
Template CT  

with different initialisation 

Average  Youngest Oldest Youngest  Oldest  

DSC 0.86±0.13 0.83±0.15 0.75±0.23 0.81±0.14 0.86±0.13 0.86±0.13 

JC 0.77±0.17 0.74±0.19 0.64±0.26 0.70±0.18 0.78±0.17 0.78±0.17 

DTavg (mm) 2.5±2.8 2.7±3.1 3.9±3.8 4.6±4.3 2.5±2.8 2.4±2.9 

ΔTR (mm) 4.6±4.8 5.6±6.0 8.4±7.1 9.4±8.2 4.6±4.8 4.5±4.8 

RDA 0.09±0.15 0.11±0.17 0.12±0.17 0.10±0.13 0.10±0.15 0.10±0.15 

DOO 0.73±0.21 0.69±0.07 0.62±0.27 0.66±0.21 0.73±0.21 0.73±0.21 

 

 470 
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Figure 7- Boxplots for distribution of dice similarity coefficient (DSC) after spatial 

normalisation comparing different common reference spaces: proposed template CT, 

representative population individual, and templates CT generated with a different initial 

template (youngest subject). Subjects with contours defined available for analysis: N={53, 475 

34, 52, 49, 49, 49} for {CNS, Ocular Globes, Lungs, Liver, Kidneys, Bladder}. Outliers fall 

outside the ±2.7 standard deviation range. Note how similar results are achieved for both 

template CTs, with higher metrics found relative to the representative subject. 

 

3.4 Evaluation of a common reference space to facilitate the study of radiation-induced 480 

second malignant neoplasms  

 

The radiation-induced SMN risk from photon and proton therapy treatments was 

estimated by propagating the dose onto the template CT and contours (subject to common 

reference space), and by using the dose on the native CTs and contours (subject space) 485 

(Figure 8). There was no strong evidence of statistically significant differences in the Davg, 

Dmax, EAR and RR calculated on the two spaces (Wilcoxon paired signed rank tests, p-values 
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>0.05 for the majority of data pairs). This suggests that analysis on the common reference 

or subject space is equivalent for DVH-based studies and the added uncertainties to dose-

volume characteristics associated with the spatial normalistion have a small impact on the 490 

population level. 

 

 

Figure 8- (a) Average dose (𝐷𝑎𝑣𝑔), (b) Maximum dose (𝐷𝑚𝑎𝑥) and (c) Excess Absolute Risk 

(EAR) calculated for CNS, lungs, liver and bladder considering both photon and proton 495 

therapy plans, and corresponding (d) Risk Ratio (RR) between the two modalities 

calculated using the dose onto the template CT and contours (subject to common 

reference space), and by using the dose on the native CTs and contours (subject space). 

Subjects with contours defined available for analysis: N={14, 13, 10, 10} for {CNS, Lungs, 

Liver, Bladder}. Outliers fall outside the ±2.7 standard deviation range. Asterisks indicate 500 

p<0.05 for Wilcoxon paired signed rank tests. 
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In Figure 9 we showcase examples of proton plans for paediatric Ewing sarcoma and 

neuroblastoma to highlight the potential benefits of using the common reference space for 

SMN risk modelling and analysis. While prescription is very different between cohorts, both 505 

treatments irradiate the spine at similar dose levels (estimated V20Gy to the CNS of 3.1% 

and 2.3%, respectively) but at distinct sub-regions. Propagating dose to a common 

template space allows to explore how such spatial relationships may impact the 

relationships between dose and clinical end-points. Furthermore, the template CT and its 

contours (blue) allow for DVH-based analysis in the absence of segmentations on the 510 

subject CT (red) and to account for volume effects when only partial volumes were imaged. 

For example, in the neuroblastoma case the absolute EAR for the CNS would be 12.9 per 

10,000 person-years if not properly accounting for partial imaging of this organ (i.e., brain 

is outside the imaged region); 0.54 per 10,000 person-years is the estimated absolute 

value in the template space. Note that when calculating EAR shown in Figure 8, we only 515 

used the common field-of-view between subject and template for a fairer comparison. 

Finally, the template CT may be used to generate virtual phantoms to estimate out-of-field 

doses. A possible way of doing this is by using the patient-specific inverse deformations to 

generate a patient-specific phantom.  

 520 
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Figure 9- Two clinical cases demonstrating the advantages of dose analysis on the 

template CT (top: Ewing sarcoma; bottom: neuroblastoma). Propagating dose from subject 

space (b) to the common reference space (c) allows to explore the spatial relationships 

between dose and clinical end-points – for example, both cases irradiate comparable spinal 525 

volumes with 20 Gy or more, but at distinct anatomical regions. Furthermore, the template 

contour (blue) allows for DVH-based analysis in the absence of patient-specific 

segmentations (red) and to account for volume effects when only partial volumes were 

imaged. Finally, the template CT may be used to generate virtual phantoms to estimate 

out-of-field doses by, for example, using the patient-specific inverse deformations (a). 530 
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4. DISCUSSION 

 

In this study, we investigated the feasibility of atlas-construction and spatial 

normalisation to facilitate voxel-based analysis of radiation-induced toxicities in paediatric 535 

radiotherapy patients. This methodology exploits imaging and contour segmentation 

information from a CSI cohort to spatially standardise the heterogeneous paediatric 

population and facilitate subsequent analysis. The methodology was applied to paediatric 

CSI, abdominal neuroblastoma, Ewing sarcoma and brain tumour patients. The single 

synthetic template generated was able to satisfactorily account for considerable variability 540 

in age and gender. This demonstrates the potential of spatial normalisation of a 

heterogeneous population to facilitate subsequent analysis of varied clinical end-points in 

larger paediatric populations. To the best of our knowledge, this is the first-time atlas 

construction and spatial normalisation were investigated for whole-body images of 

paediatric cancer patients who underwent radiotherapy. 545 

We chose for atlas construction the CSI patient group for its potential as a reference 

frame, as the radiation fields used cover many organs and tissues. CSI is routinely used in 

the treatment of medulloblastomas, a relatively common tumour type that can occur 

across all ages of development which also facilitates data availability. Treatment 

positioning is supine and consistent across patients, reducing variability in pose. In this 550 

cohort the gross tumour is usually resected prior to radiotherapy and hence not visible on 

CT, minimising potential issues that variable gross tumour positions could cause on the 

atlas construction. A limitation is that shunts and, particularly for younger patients, 

intubation are commonly used, adding external elements and artefacts to the CTs. While 

we have demonstrated that other cohorts can be satisfactory overlaid on the template CT, 555 

registration quality metrics were higher for CSI subjects likely due to the increased 

similarity in terms of setup and presentation. The patients in non-CSI cohorts were also 

younger on average and hence it is possible that larger deformations had to be captured. 

Other cohorts will also have unique characteristics not commonly found in the CSI cohort. 

For example, excessive gas in the bowel is observed commonly in abdominal 560 

neuroblastoma patients (Lim et al 2020), increasing the challenges in co-registering these 

images to a CSI-based template.  

The methodology’s success in spatially normalising radiotherapy data depends on 

the accuracy achieved in inter-subject DIR. The paediatric population is particularly 

challenging to co-register. Large deformations must be captured to co-register subjects 565 

across development stages, which poses a complex challenge to DIR due to inter-subject 

variability across sex, age, height, weight, internal anatomy and abnormalities caused by 

disease. These challenges differ between anatomical regions. Volumes in the abdomen 

and pelvis are highly deformable and, due to physiological motion, one-to-one mapping 

does not always exist, making the registrations very challenging. Indeed, we found better 570 
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spatial mapping for organs in head and thorax (DSC of 0.95±0.05, 0.85±0.04 and 

0.96±0.01 for CNS, ocular globes and lungs) than in other regions (0.91±0.03, 0.83±0.06 

and 0.65±0.16 for liver, kidneys and bladder). The poorest performance was in the bladder, 

a highly deformable organ: 50% of the subjects had a DSC below 0.7. For reference, 

American Association of Physicists in Medicine (AAPM) commissioned Task Group 132 575 

suggest a DSC of 0.8 – 0.9 as being good performance for image registration (Brock et al 

2017). However, it must be noted that DSC is higher for larger volumes and interpretation 

of the absolute values must always consider the absolute organ volumes. RDA and DOO 

ranged between 0.02±0.04 – 0.29±0.28 and 0.36±0.18 – 0.92±0.07, respectively, for the 

same contours. These are comparable to values reported in other studies. In a recent 580 

study, Pilia et al report DSC of 0.80±0.11, 0.44±0.23, and 0.58±0.14 for liver, kidneys and 

bladder, respectively, when using Elastix groupwise to co-register adults whole body MRIs 

(Pilia et al 2019). Acosta et al report RDA and DOO of 0.09±0.05 and 0.64±0.1 for spatial 

normalisation of rectum dose (Acosta et al 2013). Monti et al report a DOO in the range 

0.39±0.11 – 0.58±0.10 for brain dose sub-volumes (Monti et al 2020).  585 

We consider our results promising, particularly when taking into consideration that 

we are using a general-purpose registration methodology, the task of inter-subject 

registration is very challenging, and the fact that we are dealing with whole-body images. 

Nevertheless, more specialised approaches should be explored in the future, particularly 

to improve matching in highly deformable organs (e.g., bladder) or when there is no true 590 

one-to-one mapping (e.g., regions of bowel gas). For example, by using additional a priori 

structural information (i.e., landmarks or contours) to guide the registration such that large 

local deformations can be better captured (Johnson and Christensen 2002, Rivest-Hénault 

et al 2014). Further work is also needed to evaluate the atlas constructed using more 

comprehensive datasets, with more organs and numbers of patient per cohort, ideally from 595 

multiple institutions. 

One of the most promising applications of spatial normalisation is to develop voxel-

based risk models of late effects that account for heterogeneous spatial radiosensitivity, 

which can potentially be used to develop personalized risk-guided therapies. This is an 

emerging area in radiation toxicities research (Palma et al 2020). Other groups have 600 

investigated voxel-based analysis to identify radiosensitive subregions of organs (such as 

bladder, rectum, lungs and head and neck) in adult cohorts, which can then be avoided 

during RT planning (Acosta et al 2013, Palma et al 2016, Monti et al 2017, McWilliam et al 

2017, Beasley et al 2018). Palma et al introduced recently the concept of comprehensive 

NTCP models that include full spatial information of the dose distributions (Palma et al 605 

2019a). The present study is the first step toward voxel-based analysis in radiation-induced 

toxicities after paediatric radiotherapy. Our next step is to use the proposed methodology 

to explore the dose-response relationships for paediatric late effects. 

Page 27 of 38 AUTHOR SUBMITTED MANUSCRIPT - PMB-111198.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



28 
 

The spatial normalisation process was evaluated in our study at the organ level, 

which is the level of accuracy historically used in radiation-induced toxicity analysis. Our 610 

results indicate similar normal tissue complication probability (NTCP) models can be 

generated using the common reference or native spaces. For voxel-based analysis 

applications, validation of spatial mapping at sub-structures and/or voxel level is required 

but it is a challenging problem, particularly for homogeneous organs with few imaging 

features. Further work is therefore required to evaluate and improve registrations at finer 615 

resolutions. For example, this could be done by evaluating the accuracy of mapping 

anatomical landmarks, or by dividing organs into well-defined sub-structures that can be 

analysed separately. Improving localised mapping is increasingly relevant for clinical 

endpoints such as brain injury (Gunther et al 2015, Viselner et al 2019), lung fibrosis (Veiga 

et al 2018) and heart failure (McWilliam et al 2017). We recommend that in clinical studies 620 

investigating organ-specific end-points additional validation is performed accordingly. 

Better soft tissue mapping may be achievable by incorporating complementary multimodal 

imaging such as MRI (Monti et al 2020), or by digitally enhancing the CT images to improve 

contrast. Furthermore, we would like to highlight that achieving adequate voxel-level 

mapping allows one to potentially develop radiation-induced toxicity predictive models 625 

that consider simultaneously with the local dose, the localised tissue radiosensitivity which 

can be measured with co-registered multimodal functional imaging (Yankeelov et al 2014). 

In the paediatric population, accounting for patient-specific radiosensitivity is particularly 

important as spurts of growth are occurring as part of the normal development into 

adulthood.  630 

While the methodology is not specific to this clinical endpoint and can be adapted 

to other endpoints, in our opinion it is very promising in the study of radiation-induced 

SMNs. The use of the template CT for analysis addresses some of the challenges associated 

with this end-point: 

(1) spatial normalisation brings the opportunity to understand the SMN dose-response 635 

as function of the local dose instead of dose to volume (e.g. average dose) and 

potentially identify sub-regions of increased radiosensitivity. 

(2) the methodology generates standardised whole-body organ segmentations that 

are often missing from routine clinical data (i.e. atlas-based segmentation). This has 

advantages even for traditional DVH-based modelling where manual segmentation 640 

becomes prohibitive for large numbers of subjects. Manual segmentation is associated 

with variability between clinicians and is challenging to deploy practically on larger 

datasets as several organs relevant to SMN risk are not segmented clinically due 

limited clinical resources. 

(3) the template CT can be used to account for missing anatomical information, as it 645 

can be used to estimate out-of-field doses and volumes (i.e. population-representative 

virtual phantom). Typically, the planning CT images do not cover the whole-body (only 
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treated regions), which complicates studying out-of-field effects. The template CT built 

from the CSI cohort covers all organs and therefore can be used as radiotherapy-

specific synthetic phantom to estimate of anatomy and out-of-field doses. In this case, 650 

it is increasingly important to investigate age and gender-specific templates. The use 

of computational and/or physical phantoms is common in radiation dosimetry, 

although these are usually built from healthy individuals (Segars et al 2009, Christ et 

al 2009, Lee et al 2015, Xie et al 2017).  

(4) the template CT is whole-body and hence allows us to harness routine dose-volume 655 

information from patient groups which were irradiated at different sites, making the 

most of partial information and allowing to understand the dose-response at different 

dose levels (i.e., inside the RT target, near-target and out-of-field).  

Choosing a representative common reference space is a key step for spatial 

normalisation. The template CT proposed was constructed using groupwise image 660 

registration to reduce bias associated with the choice of the common reference space in 

subsequent analysis. The choice of image used to initialise the atlas construction process 

can still bias the final template generated (Agier et al 2020);  however, the differences we 

found when varying the initialisation were small. To the best of our knowledge, using 

population-specific average atlases for radiotherapy applications, as in our study, had not 665 

been investigated before in the literature of radiation-induced toxicities. The typical 

approach is to define an individual from the population as the single template. This can be 

empirically performed – for example, manually by visual inspection (Beasley et al 2018) or 

choosing a subject with mean/median anatomical features (Palma et al 2016, Monti et al 

2017, Mylona et al 2019). We report poorer anatomical and dose mapping metrics using 670 

this simpler approach than for the average atlas. Another method is to use less biased 

methods of identifying the population’s most representative individual – for example, using 

clustering approaches (Acosta et al 2013, Marcello et al 2020). There are a variety of 

methods proposed for optimal atlas selection developed in the context atlas-based 

segmentation (Rohlfing et al 2004, Aljabar et al 2007, Zhou et al 2014, Iglesias and 675 

Sabuncu 2015). Others have used well-established anatomical atlases developed for 

neuroimaging applications (Monti et al 2020) or virtual anatomies (Palma et al 2019b). 

These templates are theoretically easier to share between institutions and facilitate 

standardisation of how spatial analysis is performed across studies; however, they are not 

necessarily representative of the populations analysed. With this in mind, we aim to make 680 

our model available in the future to facilitate other studies in paediatric late effects 

(https://cmic-rt.github.io/RT-PAL/). The bias in atlas selection and subsequent voxel-based 

analysis of toxicity can be mitigated by repeating analysis on multiple references to verify 

if similar spatial patterns arise even when the common reference space varies (Dréan et 

al 2016, Marcello et al 2020, McWilliam et al 2020).  685 
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We used a general-purpose, well-established groupwise registration tool, tailored 

to better deal with the challenges in co-registering the CSI paediatric cancer population. 

More efficient approaches could be explored, both in terms of memory requirements and 

to better deal with co-registering heterogenous datasets. Groupwise image registration is 

a popular methodology in human brain studies (Dickie et al 2017); whole-body studies like 690 

ours are still rare due to challenges in registering heterogeneous large datasets of high 

resolution images (Pilia et al 2019, Agier et al 2020). While the template constructed 

effectively represented both genders and a wide range of ages for demonstration 

purposes, it is admittedly a simplified approach not able to fully account for the anatomical 

variation in heterogeneous populations. Multiple (age and gender-specific) templates may 695 

be constructed with larger datasets. Accounting for anatomical differences between 

genders is relevant as side-effects can be gender-specific (for example, second breast 

cancers (Inskip et al 2009)). The benefits of age-appropriate atlases have been 

demonstrated in neuroimaging applications (Fonov et al 2011). While the quality of 

mapping may be improved by splitting the population into sub-groups using several, more 700 

refined atlases, this will also reduce how generalisable the methodology and subsequent 

findings are. Hence a single representative template is an attractive approach, particularly 

in rare populations (such as paediatric cancers) where it is more challenging to gather 

large datasets. Alternatively, atlas synthesis has been proposed using hierarchical imaging 

clustering to form a pyramid of classes (Wang et al 2010). Alternative strategies may help 705 

with the challenges in co-registering whole-body images and scaling to larger datasets, by 

using deep-learning to speed up the processes (Ahmad et al 2019) or by avoiding dense 

registration (Agier et al 2020).  

Despite the associated challenges, methodologies focused on whole-body imaging 

have the potential of enabling risk prediction in big data studies. Examples of the potential 710 

applications that leverage three-dimensional whole-body population data are discussed in 

detail by Strand et al and include anomaly detection, group comparisons, longitudinal 

analysis and correlation analysis (Strand et al 2017). Similar ideas were recently explored 

in the context of radiotherapy toxicity predictive modelling for liver stereotactic ablative 

radiotherapy (Ibragimov et al 2018, 2019). These studies harnessed the potential of 715 

artificial intelligence and spatial normalisation to a common reference space to combine 

complex three-dimensional imaging and non-imaging data to build predictive models of 

radiotherapy outcomes. 

Finally, detailed long-term data collection is essential to understand and minimise 

adverse effects of radiotherapy. Single institutions have limited ability to gather adequate 720 

data due to the rarity of childhood cancers. Late effects such as SMNs have long latency 

periods which make data collection challenging (Armstrong et al 2009, Bhakta et al 2017). 

The need for comprehensive, multi-institutional collection of dosimetry and follow up data 

is recognized by the paediatric radiotherapy community, with on-going initiatives to 

Page 30 of 38AUTHOR SUBMITTED MANUSCRIPT - PMB-111198.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



31 
 

combine efforts to accelerate outcomes-based research toward patient benefit (Berrington 725 

de Gonzalez et al 2017). An example of such initiatives is the Paediatric Proton/Photon 

Consortium Registry (PPCR), a consented registry with 15 institutions that has been 

collating detailed baseline, treatment and follow-up information since 2012, including 

planning CT images and dosimetry (Lawell et al 2019). The methodology developed in this 

work aims to leverage complex 3D data and facilitate analysis in such emerging rich 730 

datasets and clinical trials data. 

 

5. CONCLUSIONS 

 

In this work, we proposed and evaluated atlas construction and spatial 735 

normalisation in paediatric radiotherapy CTs. An atlas-based template CT model 

representative of the paediatric cancer population was developed using groupwise image 

registration. Spatial normalisation to this template CT was evaluated with promising 

results, indicating it is possible to spatially standardise the paediatric radiotherapy 

populations despite considerable variability in age and gender. The proposed 740 

methodological framework leverages deformable image registration to enable modelling 

and validation of dose-response relationships in paediatric radiotherapy. This study is the 

first step toward voxel-based analysis in radiation-induced toxicities following paediatric 

radiotherapy.  

 745 
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