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Abstract 

A range of computational modelling techniques are employed to explore the 

structures, defect and electronic properties of three transparent conducting 

oxides (TCOs): SnO2, In2O3 and ZnO. 

Bulk interatomic potential (IP) based calculations are carried out to model point 

defects in SnO2 and In2O3. We report new IPs for the two binary oxides, which 

offer an improvement over the previously available models, and give defect 

formation energies comparable with those obtained using density functional 

theory (DFT). 

The intrinsic point defects in ZnO are investigated in detail using a hybrid 

quantum mechanical/molecular mechanical (QM/MM) embedded cluster 

approach. The formation energies show the oxygen vacancy to be the most 

favourable under O-poor conditions and zinc vacancies under O-rich conditions. 

Our calculations are also able to assign several of the widely studied 

luminescence bands to defect states.  

For extrinsic dopants, including in ZnO, we compute the structure and formation 

energies of Li and H dopants in both substitutional and interstitial form and their 

complexes, the LiZn-Lii(oct) complex has the lowest formation energy in Zn-poor 

conditions. The HO is energetically favoured compared to Hi. 

Using QM/MM calculations, we investigate the native point defect on the 

electrical and optical properties of In2O3. The oxygen vacancy is the lowest-

energy donor defect, with a predicted luminescence peak at 2.12 eV using the 

B97-2 functional.  

Finally, we study the solid-solution of In2O3 and SnO2 over a range of dopant 

concentrations, which provide local structure information.  
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make a unique contribution to our understanding of the defect chemistry, 

electronic properties and luminescent behaviour of the most intensively studied 

TCOs (SnO2, In2O3 and ZnO), which control many of the applications of the 

materials. 

The benefit of this work is the insight it has provided into the defect structures 

and processes in TCOs, contributing extensive new knowledge and data on 

this class of material of direct interest to our colleagues in the materials, 

physical and chemical theory and simulations communities. The new 

approaches and methods we have developed can provide effective solutions 

to a range of problems, which will help computational scientists who encounter 

similar challenges. Our work will help experimentalists interpret their data and 

provide them with new pointers leading to developing and performing new 

experiments, leading to new discoveries in the field. Additionally, the 

technological and engineering communities will be able to apply the new 
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Chapter 1 

Introduction 

1.1     Background and Motivation 

Generally, conductivity and optical transparency are incompatible because 

transparency requires band gaps larger than 3.3 eV which makes carrier 

doping very difficult. The combination of high optical transparency and high 

electrical conductivity in transparent conducting oxides (TCOs) results in the 

class of materials being widely used in many fields. 

TCO materials can be used as transparent electrodes in liquid crystal displays 

(LCD) [1], which can be the positive and negative electrodes together with liquid 

crystal electrodes, to drive the rotation of liquid crystal molecules to present 

different characters and images. In addition to LCD, TCOs are widely used in 

transparent electrodes for flat panel displays [2], solar cells [3, 4], light emitting 

displays (LED) [5], Organic light emitting displays (OLED) [6, 7], antistatic 

coating [8], heat reflecting filters [9], infrared reflective coating [10], 

electrochromic devices and smart windows [11] and transparent thin films 

transistors [12].The growing demand for this kind of material has, therefore, 

resulted in extensive research on TCO materials over the past half century. 

The applications of TCOs depends critically on the band structure of the 

material. By doping to increase the free carrier density sufficiently to move the 

Fermi level into the conduction band, the oxide can be made electronically 

degenerate. Degenerate doping needs point defects or impurities with an 

ionization energy close to the conduction band to donate electrons. For TCO 

materials such as the most commonly used SnO2, In2O3 and ZnO, there are, 
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however, still many topics that remain controversial in the study of their defect 

properties. 

 ZnO exhibits strong n-type conductivity with electrons in the conduction band 

as charge carriers. Despite extensive research, the source of this conductivity 

is still a matter of debate. For many years, the n-type conductivity has 

traditionally been attributed to intrinsic defects. However, in 2000, a first-

principle density functional calculations carried out by Van de Walle revealed 

that none of the native defects exhibits characteristics consistent with a high-

concentration shallow donor, but that hydrogen is an excellent candidate to 

incorporate in high concentrations and behaves as a shallow donor. [13] The 

source of the n-type conductivity of SnO2 and In2O3 also remain a topic of 

debate. The n-type conductivity has intuitively been attributed to the presence 

of oxygen vacancies, but other sources have also been proposed. [14-17]  

A second widely investigated aspect of these materials is their luminescent 

properties. More generally, the origin of luminescent transitions has long been 

one of main research topics for luminescent materials and for more than half a 

century, extensive research has been devoted to the luminescence properties 

of TCO materials, including both intrinsic and extrinsic luminescence. However, 

the exact origin of the intrinsic luminescence due to native defects is still 

controversial but is related to its electronic and defect properties. 

The main aim of this work is therefore to understand the defect chemistry, 

electronic properties and luminescent behaviour of the n-type TCO materials, 

to achieve which we use a range of computational modelling approaches based 

both on interatomic potential and electronic structure techniques. 

1.2     Thesis Outline  

The work of this thesis focuses on the three most commonly used n-type TCO 

materials: SnO2, In2O3 and ZnO. In Chapter 4, we present a consistent 

interatomic force field for indium sesquioxide (In2O3) and tin dioxide (SnO2) that 

has been derived to reproduce lattice energies and, consequently, the oxygen 

vacancy formation energies in the respective binary compounds. In Chapter 5, 

intrinsic point defects in ZnO are investigated using hybrid quantum 
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mechanical/molecular mechanical (QM/MM) embedded cluster approach. We 

have studied the structure, formation and ionisation energies, and the 

equilibrium defect and carrier concentrations of the point defects. In Chapter 6, 

we report the properties of Li and H in both substitutional and interstitial form 

and their complexes, which again are investigated using the QM/MM 

embedded cluster approach. Chapter 7 contains the study of intrinsic point 

defects in In2O3 using the QM/MM embedded cluster approach, while in 

Chapter 8, the solid solutions of In2O3 and SnO2 are investigated using the 

interatomic potential model derived in Chapter 4. 

The following chapter summarises the relevant background and literature and 

Chapter 3 then describes the computational methodologies employed. 

  



Chapter 2 

Literature review 

2.1     Indium Oxide 

Indium sesquioxide (In2O3) is an n-type semiconductor, and it is generally 

thought that both the intrinsic oxygen vacancies and the extrinsic dopants, 

especially Sn, contribute to the carrier concentration. [18] Indeed Sn doped 

In2O3 (referred to as ITO) is a widely studied material. After Rupprecht [19] first 

carried out the study on the optical and electrical properties of In2O3 in 1950s, 

In2O3 and ITO have attracted considerable experimental and theoretical 

interest. 

2.1.1     Crystal and Defect Sites 

At low temperature and ambient pressure, In2O3 adopts the body-centred cubic 

bixbyite crystal structure (space group No. 206, Ia3, a=10.117 Å), which 

contains 80 atoms or 16 formula units in its conventional cubic unit cell. The 

structure can be viewed as a 2 ×2 ×2 supercell of the fluorite (CaF2) lattice with 

one quarter of the anionic sites vacant, which results in two types of cationic 

sites, 8b and 24d in Wyckoff’s notation, as illustrated in Figure 2.1. These 

structural vacant sites (Wyckoff 16c) can provide spaces for oxygen as 

interstitials. Both structural oxygen and vacant sites are coordinated by four 

cations, one b site, and three d sites.  
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Figure 2.1 Lattice sites in In2O3. In the right hand figure, the coordination of the cations is 
shown, with In ions represented by the larger purple spheres and O ions by the smaller red 

spheres. 

Interstitial oxygen can play a key role in the properties of ITO as the formation 

of such defects can compensate n-type carriers, which will detrimentally affect 

the conductivity. Frank and Köstlin [20] reported a defect model that includes 

two kinds of interstitial oxygen: one is loosely bound to tin, the other forming a 

strongly bound Sn2O4 complex. Subsequently, the structural property of the 

defect cluster with substitutional tin and interstitial oxygen has been extensively 

modelled by Warschkow et al.. [21, 22] 

The interstitial oxygen in In2O3 is tetrahedrally coordinated by four cations, with 

one b-site cation at x=y=z=1/4 on the 16c axis and three d-site cations, as 

shown in Figure 2.2. The ideal position of the interstitial oxygen should be 

equidistant from the four cations, which is x=y=z=0.116. González et al. [23] 

reported the interstitial position to be x=y=z=0.086 in bulk-ITO samples and 

x=y=z=0.091 in nano-ITO samples by experiment. Mössbauer experimental 

results suggested that the tin atoms substitute to the b-site indium rather the d-

site indium. [24] However, density functional calculation results suggested that 

only when Sn dopants are located at the d-site nearest to the oxygen interstitial, 

can displacement of interstitial oxygen from the ideal fourfold position be 

plausible. [21] 
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Figure 2.2 Interstitial oxygen position in In2O3. 

2.1.2     Defects in In2O3 

The material properties of In2O3, including the electronic properties, are 

dependent on the defect chemistry and it is, therefore, essential to understand 

the defect properties of In2O3. 

Regarding theoretical investigations, there have two classes of computational 

technique that have been used to study point defects in In2O3: interatomic 

potential methods and density functional theory (DFT).  

Using interatomic potential methods, Warschkow et al. [21, 22] determined the 

local geometry and energetics of defect clusters containing one to three tin 

dopant substitutional atoms around a single oxygen interstitial in In2O3.They 

found a strong d-site preference in nearest coordination to an interstitial. Walsh 

et al. [25] have reported an accurate interatomic potential for indium oxide. 

Moreover, the formation of intrinsic defects calculated using the Mott-Littleton 

approach shows anion Frenkel pairs to be the lowest energy form as a result 

of the structural anion vacancy sites in the bixbyite structure. They then 

investigated further the thermodynamics of anion Frenkel pair formation and 

found that the anion Frenkel pairs are likely to contribute to the high-

temperature thermal expansion of In2O3. [26] 

Using local density approximation (LDA) and a LDA + U approach in DFT, 

Reunchan and co-workers [27] proposed that the oxygen vacancy is a double 

donor, while the indium vacancy is a triple acceptor in indium oxide; while 
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Ágoston et al. [28] investigated electron compensation in In2O3 using hybrid 

functional HSE06 and found that n-type doping is intrinsically limited by 

compensating acceptor defects in In2O3. Using the generalised gradient 

approximation (GGA), Lany and Zunger [29] calculated the  defect  and carrier 

densities in In2O3. They found that oxygen interstitials are remarkably unstable, 

oxygen vacancies and indium interstitials do not lead to more than 1014 cm-3 

free electrons at room temperature in equilibrium, which fails to explain the 

observed electron densities of 1018 cm-3. In contrast, intrinsic defects are 

observed to have an effect on the band structure and the optical properties. 

LDA calculations by Palandage and Fernando [30] show that the indium 

interstitial coexisting with an oxygen vacancy is a good candidate to create 

donor levels in the gap region of In2O3, contributing to the free electron density 

and hence conductivity. Huang et al. [31] reported that the oxygen vacancy and 

indium interstitial are close to the bottom of conduction band and act as shallow 

donors, while the defect energy states of the indium vacancy and oxygen 

interstitial are just above the top of the valence band and act as shallow 

acceptors using the GGA method. Contrary to this, first-principles molecular 

orbital calculations [32] suggested that the oxygen vacancy cannot act as a 

native donor because the defect level formed is much lower than the 

conduction band bottom. The native donor in In2O3 was proposed to be an 

indium interstitial which can generate a shallow donor level, but with the 

coexistence of an oxygen vacancy. 

Experimentally, Rosenberg [33, 34] found a consistent statistical interpretation 

assuming the predominant defect in In2O3 is the interstitial indium by the 

oxidation rate measurement, which was later accepted by De Wit [35] using 

Hall and conductivity measurements. 
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2.2     Tin Oxide 

2.2.1     Crystal Structures 

Tin dioxide (SnO2) is an intrinsic, n-type semiconductor which crystallizes in the 

tetragonal rutile structure (space group No. 136, P42/mnm, a=4.737 Å, c=3.185 

Å, u=0.307) [36] as shown in Figure 2.3. The rutile structure of SnO2 has only 

one octahedrally coordinated lattice site for cations and one trigonal site for 

anion, which can be thought of as infinite columns of edge sharing SnO6 

octahedra; each edge-shared oxygen is corner shared with an adjacent infinite 

chain. Each tin is coordinated to six oxygen and each oxygen is coordinated to 

three tin, two within a column, and one within the adjacent column. There are 

two possible cationic interstitial sites in SnO2, in Wyckoff 4c site (0, 0.5, 0) 

(green ball in Figure 2.3), which is in the centre of an unoccupied oxygen 

octahedron, and Wyckoff 4g site (u, -u, 0) (u being the variable parameter of 

the rutile structure, blue ball in Figure 2.3). 

 

Figure 2.3 Crystal structure of bulk SnO2. The coordination of the cations is shown, with Sn 
ions represented by the larger grey spheres, O ions by the smaller red spheres, 4c interstitial 

sites by green spheres and 4g interstitial sites by blue spheres. 
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2.2.2     Defects in SnO2 

A number of studies have been reported on aspects of the atomic structure, 

electronic structure and surface properties of SnO2, as a result of the 

widespread applications of the material due to its unique properties. Intrinsic 

defects in SnO2 are, moreover, thought to contribute to the conductivity, which 

can be further enhanced by extrinsic doping. 

An early computational study on the defect and dopant properties was reported 

by Freeman and Catlow. [37] Based on the reported set of potentials, the 

Schottky and Frenkel defects are found to have similar energies with that of 

Schottky trio slightly lower, and the calculations predicted that a significant 

proportion of dopant species will be in interstitial sites. Using interatomic 

potential methods, Hines et al. [38] reported anion Frenkel is the most stable 

defect and the anion interstitial tend to occupy (0, 0.5, 0) site which in contrast 

the (u, -u, 0) reported by Freeman and Catlow. [37] 

DFT studies of defects in SnO2 have focused mainly on oxygen vacancies 

rather than considering a range of defects. Based on a tight-bind Green’s-

function calculation, the oxygen vacancy was reported to  produce shallow 

donor levels [39], which was later predicted by LDA-DFT calculations [40]. They 

found that the tin interstitial and oxygen vacancy dominate in the defect 

structure of SnO2 with surprisingly low formation energies and strong mutual 

attraction. In contrast, the LDA/LDA+U results reported by Janotti and van de 

Walle [41] show that the oxygen vacancy is a deep donor and the Sn interstitial 

is unstable with very high formation energy, the tin antisite has even higher 

formation energies and is also an unlikely source of conductivity in SnO2. 

Buckeridge et al. [42] also observed the oxygen vacancy is a negative U deep 

donor using the hybrid functionals by QM/MM embedded cluster approach. 

Their results are in good agreement with the plane-wave supercell based study 

by Scanlon and Watson. [43] Godindho et al. [44] predicted oxygen vacancies 

compensated through Sn reduction to be the most abundant intrinsic defect 

under oxygen-poor conditions, in their GGA-DFT study on the electronic 

property of the most probable isolated defects and their clustered pairs.  
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Experimentally, oxygen vacancies, rather than tin interstitials, were found to be 

the cause of nonstoichiometry in SnO2. By measuring the conductivity as a 

function of oxygen partial pressure at elevated temperatures using a four-point 

technique, Samson and Fonstad [45] found the dominant native defect in SnO2 

is a doubly ionisable oxygen vacancy. 

2.2.3     Optical properties in SnO2 

Due to the high electrical conductivity and high optical transparency properties, 

SnO2 can be used as a transparent conducting electrode in opto-electronic 

devices. The study of photoluminescence (PL) properties of SnO2 is of 

significance for the optoelectronic integration of these devices. 

The PL peak is usually due to the radiative recombination involving some defect 

states. Gu et al. [46] investigated the optical properties of SnO2 particles 

synthesised by a simple sol-gel method. They assigned the luminescence to 

the recombination of electrons in a conduction band with holes in the oxygen 

vacancy centre. The experimental results by Luo et al. [47] showed that surface 

oxygen vacancies are the possible origin of the observed two emission peaks 

of the ultra-long SnO2 nanowires synthesised by thermal oxidation of tin powder 

using gold film as the catalyst. Similarly, Jeong et al. [48] found that the peak 

of the SnO2 thin films by thermal chemical vapor deposition at 2.4 eV was due 

to the concentrations of oxygen vacancies and another peak at 3.1 eV was 

related to structural defects. 

2.3     Zinc Oxide 

2.3.1     Crystal Structures 

Zinc oxide is a transparent semiconductor with a direct band gap of 3.4 eV. 

Under ambient conditions, ZnO crystallizes in the wurtzite structure (space 

group P63mc, a=3.2495 Å, c=5.2069 Å) [49] as shown in Figure 2.4. The 

wurtzite structure of ZnO is composed of two interpenetrating hexagonal close-

packed (HCP) sublattices, in which anion and cation tetrahedra are bonded to 

four corresponding hexahedra. 
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Figure 2.4 Crystal structure of bulk ZnO. The coordination of the cations is shown, with Zn 
ions represented by the larger grey spheres and O ions by the smaller red spheres, the 

colour scheme adopted in all following figures. 

2.3.2     Intrinsic Defects in ZnO 

Native defects play a key role in the electrical and optical properties of ZnO, 

such as controlling doping, luminescence efficiency and minority carrier lifetime. 

Therefore, understanding the intrinsic point defects in ZnO is important to its 

successful device application. 

Experimentally, Hagemark and co-workers have carried out an extensive study 

on the ZnO defect system. [50-53] Two donors, a native donor zinc interstitial 

and an unknown donor D, and a native acceptor, zinc vacancy, have been 

suggested as the major defects. The unknown donor could be a frozen-in 

oxygen vacancy which thermodynamically cannot be distinguished from a 

foreign donor. Thomas [54] introduced zinc interstitials into zinc oxide by 

heating the crystals in zinc vapor followed by rapid quenching. Instead of 

forming oxygen vacancies, the zinc atmosphere produced zinc interstitials 

which were found to act as donors with a low ionisation energy. Look and 

Hemsky [55] also reported that the shallow donor level at about 30 meV below 

the conduction band minimum could be attributed to zinc interstitials; and the 

zinc interstitial (and not the oxygen vacancy) is the dominant residual native 

shallow donor in ZnO. However, later, theoretical calculations have suggested 

that the oxygen vacancy is a deep, not a shallow donor, and the H impurity is 

a better dominant shallow donor candidate. 

Janotti and van de Walle performed a systematic study of the native defects in 

ZnO. [41, 56-59] Using LDA and LDA+U-DFT, they find that oxygen vacancies 
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are deep rather than shallow donors with high formation energies; zinc 

interstitials are shallow donors which also have high formation energies; zinc 

vacancies are deep acceptors and are probably related to the green 

luminescence; oxygen interstitials act as deep acceptors at octahedral site with 

high formation energies. The first principles study by Erhart et al. [60, 61] also 

showed that the oxygen vacancies are deep donors while the zinc interstitials 

are shallow donors. The oxygen dumbbell interstitials are shallow acceptors, 

while the zinc vacancy is the dominate acceptor under oxygen-rich conditions 

for Fermi levels in the upper half of the band gap. Oba et al. [62] reported that 

the oxygen vacancy induces a deep and localised in-gap state, whereas the 

zinc interstitial is a shallow donor and hence can be a source of the carriers. 

They proposed that the oxygen vacancy is relevant to the nonstoichiometry of 

ZnO, and that sources other than the native defects such as the H impurity 

need to be considered for the n-type conductivity. Vidya et al. [63] found the 

oxygen vacancy would be the dominant intrinsic defect under both Zn-rich and 

O-rich conditions and it is a deep double donor by density functional 

calculations. The zinc interstitial and zinc antisite were found to be shallow 

donors with formation energies higher than that of the oxygen vacancy. 

2.3.3     Extrinsic Dopants in ZnO 

In 1950s, Mollwo [64] and Thomas and Lander [65] reported that hydrogenation 

of ZnO at high temperatures produces n-type conductivity. However, little 

attention was focused on those results for many years until first-principle 

calculations predicted that hydrogen in ZnO is always present and acts as a 

donor. van de Walle [13] firstly reported that hydrogen acts as a source of 

conductivity, it can incorporate in high concentrations and behaves as a shallow 

donor. Hydrogen is tightly bound to an oxygen atom in ZnO forming an OH 

bond. Oba et al. [66] reported the H interstitial and substitutional as shallow 

donors that are likely to form with a substantial concentration in n-type ZnO. 

Lyons et al. [67] reported that the hydrogen forms highly stable complexes with 

the zinc vacancy with the acceptor levels closer to the VBM. The hydrogenated 

zinc vacancy led to similar optical transitions as the isolated zinc vacancy. 
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Experimentally, Lavrov et al. [68] identified two shallow donors: hydrogen at the 

body-centred lattice site HBC with an activation energy of 53 meV and hydrogen 

bound in an oxygen vacancy via a combined study of Raman scattering, IR 

absorption and photoluminescence. They then performed a Raman study and 

found that most hydrogen forms shallow donors HBC. HBC migrates through the 

crystal and forms electrically inactive H2. [69] The EPR and ENDOR studies at 

95 GHz by Hofmann et al. [70] identified that one of the two observed donor 

resonances is related to hydrogen with a concentration of about 6*1016 cm-3. 

Shimomura et al. [71] reported a determination of the location of a muonium 

(Mu, an analogue of isolated hydrogen whose proton is substituted by a positive 

muon) as a shallow donor in ZnO. Cox et al. [72] also reported Mu in ZnO act 

as a shallow donor by direct spectroscopic observation of its muonium 

counterpart. 

Depending on the growth method, nominally undoped ZnO single crystals may 

contain In, Ga, Al, Pb donors, Li acceptors, and a row of transition metal 

impurities (V, Mn, Cu, Co, Fe, Ni). [73, 74] Therefore, it is important to 

understand the effects of the each dopant. 

Li is known to act as a major impurity in ZnO growth. However, the location of 

the acceptor level of Li substitutional Zn (LiZn) remains controversial. First-

principles calculations by Lee and Chang found that LiZn is a shallow acceptor 

while it is mostly compensated by Li interstitial (Lii). However, when co-doped 

with H impurities, the formation of compensating interstitials is severely 

suppressed, and the acceptor solubility is greatly enhanced by forming H-

acceptor complexes. [75, 76] Park et al. [77] also found that substitutional 

group-I elements are shallow acceptors. Experimental work using 

cathodoluminescence spectroscopy (CL), photoconductivity (PC) and Hall-

effect measurements reported the acceptor state among 150 meV- 260meV. 

[78, 79] 

In contrast, instead of introducing a shallow level, other calculations reported 

the LiZn to be a deep acceptor. Carvalho et al. found that the ionisation level of 

LiZn is between 0.6-1.1 eV above the valance band, which explains the difficulty 

in realising p-type ZnO using Li as monodopant. [80] Sokol et al. [81] reported 
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the defect level of LiZn is at 0.807 eV above the valance band, which is in 

agreement with experiments. [82] The Li acceptor level is at least 500 meV 

above the valence band and optically detected magnetic resonance (ODMR) 

showed that radiative recombination occurs with the deep state. [83] 

2.3.4     Optical properties in ZnO 

There are numerous studies on the common luminescence bands observed in 

ZnO including green, yellow, orange and red broad bands, but the exact source 

of the intrinsic luminescence of ZnO due to native defects is still controversial. 

Green luminescence (GL) centred at about 2.5 eV is the most commonly 

observed emission in ZnO. However, the nature of the GL has been one of the 

most controversial topics. Some studies assign the GL to the oxygen vacancy. 

Vanheusden and co-workers [84, 85] reported that the recombination of a 

photogenerated hole with the singly ionised charge states of oxygen vacancy 

is responsible for the GL in ZnO. The experimental results by Wu et al. [86] and 

Li et al. [87] also suggested the same mechanism. The photoluminescence (PL) 

and deep level transient spectroscopy (DLTS) result of Hofmann et al. [88] 

suggested a correlation between the GL at 2.45 eV and a donor level 530 meV 

below the conduction band, which was attributed to (0/++) transition (from 0 to 

+2 charge state) of the oxygen vacancy. 

Some studies speculated that zinc vacancies contribute to the GL. Čížek et al. 

[89] found that the GL has multiple origins and consists of a band at 2.3 eV due 

to recombination of electrons of the conduction band by zinc vacancy acceptors 

coupled with hydrogen and a band at 2.47 eV related to oxygen vacancies. Heo 

et al. [90] assigned the GL to the transition from donor to deep zinc vacancy 

acceptors. 

Kappers et al. [91] found that there is no correlation between the GL and the 

presence of oxygen and/or zinc vacancies, using optical absorption, PL and 

electron paramagnetic resonance (EPR) on ZnO grown by the seeded 

chemical vapor transport method. Other native defects have been proposed to 

be the origin of the green luminescence.  For example, Korsunska et al. [92] 

suggested that the emitting centres responsible for GL are complex defect 
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including zinc interstitials, while Lin and Fu [93] concluded that the GL 

corresponded to the oxygen antisite defect. 

Yellow luminescence (YL) is also commonly observed in ZnO which is less 

controversial. The YL is commonly associated with excess oxygen. Zelikin and 

Zhukovskii [94] attributed the YL to an excess of oxygen or Zn vacancies near 

extended lattice defects. Wu et al. [86] suggested that the mechanism 

responsible for the YL is the recombination of a delocalised electron close to 

the conduction band with a deeply trapped hole in the single negatively charged 

interstitial oxygen ion. Other hypotheses such as Li impurities [95, 96] or OH 

groups [97] also have been proposed. 

Red luminescence (RL) and orange luminescence (OL) are less commonly 

observed in ZnO than GL and YL. RL and OL are commonly reported to 

correspond to the presence of excess oxygen. Studenikin et al. [98] found the 

GL and OL resulted from oxygen-poor and oxygen-rich conditions, respectively, 

in ZnO. Wu et al. [99] also observed the orange emission disappeared and GL 

appeared due to the deficient of oxygen in the reducing atmosphere. They 

attributed the orange emission to oxygen interstitials. Djurišić et al. [97] 

concluded that the RL is related to oxygen interstitials, but possibly involving 

zinc vacancy complexes. 

2.4 Perspective 

It is clear that despite extensive study over many years, both the defect 

structures and origins of luminescent bands in these materials remains 

uncertain and often controversial. This thesis aims to clarify the fundamental 

defect and luminescent properties of the materials using state-of-the art 

computational methods. 

  



Chapter 3 

Theoretical Methods 

3.1    Introduction 

Computational modelling methods are used to calculate structures and 

electronic properties of molecules and solids. Computational modelling is a 

particularly useful tool for the study of defects in solid-state systems, because 

of the difficulties in studying defects directly through experiment. In particular, 

calculations can be used to assist in the analysis and interpretation of 

experimental data. 

Interatomic potential (IP) and quantum mechanical (QM) methods are two of 

the most widely used approaches in computational chemistry. The IP method 

provides a computationally less demanding approach to calculating structural 

and energetic properties, while the QM method, which is far more 

computationally intensive provides descriptions of the electronic structures, 

properties and reactivity. Therefore, according to different demands, different 

computational techniques need to be selected. The IP method can be used to 

investigate large systems and a large number of structural configurations in a 

relatively short computational time. The QM methods are suitable to model 

accurate electronic structures and properties. 

In this chapter, a detailed overview of both the IP method and QM method used 

in this thesis is given. Firstly, a brief description of the theory of the IP and QM 

methods is given. We then describe the defect calculations methods using the 

two levels of theory. Finally, the details of the software packages used in this 

thesis are given. 

https://en.wikipedia.org/wiki/Molecule
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3.2     Interatomic potential Methods 

The interatomic potential method, (sometimes referred to as the atomistic 

method), is based on the use of function (or less commonly numerical) forms 

and parameter sets to calculate the potential energy of a system of atoms or 

ions as a function of their coordinates in static lattice and molecular dynamics 

simulations. The classic interatomic potential method allows calculations to be 

performed on structures containing many thousands of atoms in a relatively 

short computational time. However, atomistic simulations based on interatomic 

potentials neglect the quantum aspects of the nuclear and electronic degrees 

of freedom, so that the electron structures or electron state cannot be 

calculated directly. Nevertheless, they can reproduce well, cohesive, elastic 

and dielectric properties of solids and can be used to predict properties as a 

function of temperature. 

3.2.1     Energy calculation 

The internal energy of a solid is a function of the position and momentum of all 

electrons and nuclei, which is very complicated. The interatomic potential 

method simplifies this calculation by incorporating the effect of the electrons 

into a single atomic centre. The energy of the system can be determined by: 

𝑈 = ∑ 𝑈𝑖
𝑁
𝑖=1 +

1

2!
∑  𝑁

𝑖=1 ∑ 𝑈𝑖𝑗
𝑁
𝑗=1 +

1

3!
∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 ∑ 𝑈𝑖𝑗𝑘

𝑁
𝑘=1 + ⋯ ,         (3.1) 

where the first term 𝑈𝑖  is the self-energies of the atoms, the second term 

𝑈𝑖𝑗 represents the two-body interactions, the third term 𝑈𝑖𝑗𝑘 is the there-body 

interactions. The contribution to the energy usually decreases as the order 

increases. The potential models used in this thesis do not include three body 

or higher order terms. 

In the interatomic potential method, normally, the lattice and defect energies of 

the ionic and semi-ionic materials are based on the Born model [100] of the 

solid, which describe the solid by pairwise terms with long-range interactions 

and short-range repulsive terms. 
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3.2.2     Pairwise Potentials 

The long range interactions are described by the pairwise Coulomb potential 

which is the most important part for calculating the energy: 

𝑈𝑖𝑗
Coulomb =

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
 ,                                                         (3.2) 

where 𝑞 is the charge, 𝜀0 is the permittivity and 𝑟𝑖𝑗 is the distance between two 

ions i and j. Despite the simplicity of Coulomb’s law, it is complicated to sum 

for a periodic system. In particular the summation for an infinite periodic solid 

can be conditionally convergent, which is addressed by the widely used Ewald 

summation [101] which effects a partial transformation into reciprocal space. 

The two-body short range interactions, are commonly modelled by the 

Buckingham potential [102], Lennard-jones potential [103] and polynomial 

harmonic potential.  

 The Buckingham potential can be represented as 

𝑈𝑖𝑗
Buckingham

= 𝐴𝑖𝑗𝑒−𝑟𝑖𝑗/𝜌𝑖𝑗 −
𝐶𝑖𝑗

𝑟𝑖𝑗
6  ,                                        (3.3) 

where Aij, ρij and Cij are parameters for each interaction pair. 

The Lennard-Jones potential has the following form: 

𝑈𝑖𝑗
Lennard−Jones =

𝐴𝑖𝑗

𝑟𝑖𝑗
m −

𝐶𝑖𝑗

𝑟𝑖𝑗
𝑛  ,                                                 (3.4) 

where Aij and Cij are constants. 

In this thesis, we also used the polynomial potential as given by 

𝐸𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 = C0 + C1(𝑟 − 𝑟0) + C2(𝑟 − 𝑟0)2 + ⋯ + Cn(𝑟 − 𝑟0)𝑛 ,    (3.5) 

where C0, C1, C2, Cn are constants. 

3.2.3     Shell Model 

To model polarisable ions, polarisation effects need to be incorporated into the 

Born model. The most popular and accurate way is the shell model. In this 



3.2     Interatomic potential Methods  

46 

thesis, the sum charge of the core and the shell is equal to the formal charge 

of the ion. 

In the shell model, atoms are considered as a charged core connected to a 

massless charged shell by an harmonic spring. 

The ionic polarizability is given as 

𝛼 =
𝑌2

𝑘
 ,                                                                   (3.6) 

where Y is the charge of the massless shell, k is the harmonic spring constant, 

A dipole is created by the displacement of the shell relative to the core. Short 

range interactions are normally taken as acting through the shells. 

Standard procedures are available for undertaking summations which for the 

Coulomb term, as noted, use the Ewald technique, while for short range terms 

employ real space summations up to a specified cut-off. Derivatives may also 

be calculated from which properties such as elastic, dielectric and lattice 

dynamical properties may be calculated. 

3.2.4     Mott Littleton approach 

In the Mott-Littleton approach [104], the defective structure is divided into two 

regions, with the point defect at the centre of the inner spherical region (region 

1). The atoms in region 1 are assumed to be strongly perturbed by the defect. 

Therefore, interactions between atoms in region 1 are treated most accurately 

with explicit relaxation with respect to their Cartesian coordinates. Beyond 

region 1, Region 2 is treated using the approximation of linear response theory, 

in which the potential energy is assumed to be harmonic and forces linear 

around the equilibrium with respect to atomic coordinates and is divided into 

subregions 2a and 2b. This approximation allows us to determine ionic 

displacements in region 2 in response to a perturbation due to a defect in region 

1. Ionic displacements are calculated based on a harmonic representation of 

the true potential energy surface with an explicit account of all forces on ions in 

the nearest spherical shell region 2a and a more approximate treatment of the 

further region 2b extending to infinity, where only long-range Coulomb 

interactions with the defect are considered. 
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The total energy is calculated by: 

𝐸 = 𝐸1(𝑥) + 𝐸12(𝑥, 𝑦)+𝐸2(𝑦) ,                                                   (3.7) 

where x is the coordinate and y is the displacement of the ions, 𝐸1 is the energy 

of region 1, 𝐸12  is the interaction between region 1 and region 2, 𝐸2  is the 

energy of region 2. 

3.3     Quantum Mechanical Methods 

Atomistic simulations based on interatomic potentials neglect the quantum 

aspects of the nuclear and electronic degrees of freedom, so that the electron 

structures or electron state cannot be calculated. Quantum Mechanics (QM) 

can be used to construct realistic models of electrons in many-body systems.  

In QM, all particles including electrons behave like waves, and the wave 

function is used to describe the behaviours of these waves. There are two 

widely used QM methods: Hartree-Fock (HF) and Density Functional Theory 

(DFT). The many body wave function is constructed from single particle wave 

functions in HF method, while in DFT, instead of the many body wave function, 

the charge density of the system constructed by the single particle wave 

function is used. 

3.3.1     Schrödinger equation 

Schrödinger equation is a linear partial differential equation which describes 

the wave function or state function of a quantum mechanical system. 

The time-independent Schrödinger equation form is 

[−
ℏ2

2𝑚
∇2 + 𝑉(𝑟)] 𝜓(𝑟) = 𝐻̂𝜓(𝑟) = 𝐸𝜓(𝑟) ,                         (3.8) 

where ℏ is a modification of Planck’s constant (h/2π), 𝑚 is the mass of the 

particle, ∇2 is the Laplacian, 𝑉(𝑟) is the potential energy at point r, 𝐻̂ is the 

Hamiltonian operator, 𝜓(𝑟) is the wavefunction and 𝐸 is the total energy. The 

energy of a system can be obtained by solving this equation. 

The Hamiltonian operator can be further divided into electronic and nuclear 

operator components as: 
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𝐻̂ = 𝐾𝑁 + 𝐾𝐸 + 𝑉𝑁𝑁 + 𝑉𝑁𝐸 + 𝑉𝐸𝐸  ,                           (3.9) 

where 𝐾 is kinetic energy, 𝑉 is potential, 𝑁 is nuclear and 𝐸 is electronic. 

The Schrödinger equation can only be solved accurately in a few cases, e.g. 

the free electron. For the system with more than one electron or particle, most 

solutions calculated are only approximations of the exact solution. Therefore, 

to find the most accurate solution, precise representations of many body wave 

functions need to be found. 

The first approximation is the Born-Oppenheimer (adiabatic) approximation. 

[105] This approximation is the assumption that the electronic motion and the 

nuclear motion can be separated, because the nuclei are much heavier and 

slower than the electrons. Considering the electronic degrees of freedom, with 

frozen nuclear positions, the nuclear kinetic energy term can be neglected, and 

the nuclear repulsion can be applied as a constant for a given configuration of 

nuclei. Based on this, the electronic part of the Schrödinger equation is 

separated from the nuclear part: 

𝐸𝑒𝜓 = 𝐻̂𝑒𝜓 = (𝐾𝐸 + 𝑉𝑁𝐸 + 𝑉𝐸𝐸)𝜓 ,                                        (3.10) 

where 𝜓 is the many-electron wave function that depends parametrically on the 

positions of the nuclei, 𝐸𝑒  is the electronic energy, 𝐻̂𝑒  is the electronic 

Hamiltonian which only contains the electronic part of equation 3.9. 

This approximation works for most systems but cannot deal with extremely light 

nucleated species or systems in the excited state. For more complicated 

problems, such as heavier atoms, molecules, the number of particles and 

degrees of freedom increases. Further approximations are needed to get exact 

solution for many-body system in which the motions of the nuclei, the electron-

electron interactions and proton-electron interactions need to be considered. 

3.3.2     Hartree-Fock method 

The Hartree-Fock (HF) method solves the Schrödinger equation based on the 

single electron wave function by assume that the N electrons in the system are 

independent particles, occupying single electron spin orbitals (𝜓𝑁(𝑟)) with 
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single electron wave functions. The initial many body wave functions can be 

representing as a set of spin orbitals: 

𝜓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) ≈ 𝜓1(𝑥1)𝜓2(𝑥2)𝜓3(𝑥3) … 𝜓𝑁(𝑥𝑁) ,           (3.11) 

where 𝑁 is the number of electrons. The Hartree equations are numerically 

solved by the self-consistent field (SCF) methods, but this rough approximation 

does not satisfy the Pauli exclusion principle. The Pauli exclusion principle 

stipulated that no two particles of half-integer spin (fermions) can occupy the 

same quantum state. For a two particle system with two identical independent 

particles 1 and 2, for example, with wave functions 𝜓𝑖 and 𝜓𝑗 that describe two 

quantum states 𝑖  and 𝑗 , respectively (with 𝑖  and 𝑗  comprising all quantum 

numbers which identify the two states), the wave function of the system can be  

𝜓𝑖𝑗 = 𝜓𝑖(𝑥1)𝜓𝑗(𝑥2).  Because the two particles are identical and 

indistinguishable, the same system state can be achieved if particle 1 occupies 

state 𝑗 and particle 2 is in state 𝑖, resulting in another system wave function 

𝜓′
𝑖𝑗

= 𝜓𝑗(𝑥1) 𝜓𝑖(𝑥2). That is the same system is represented by two different 

wave functions, 𝜓 and 𝜓′, producing two different sets of physical properties, 

which would be physically unreasonable. A choice of the system wave function 

as a linear combination of 𝜓𝑖𝑗 and 𝜓′
𝑖𝑗

 avoids this problem. 

The Pauli exclusion principle requires the many body wave function is 

antisymmetric with respect to interchange of any two electron coordinates: 

𝜓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) = −𝜓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) ,           (3.12) 

which implies for the two independent electrons 𝜓 = 𝜓𝑖𝑗 − 𝜓′
𝑖𝑗

. The minus 

sign here makes the wavefunction to vanish if both states are 𝑖 or 𝑗, therefore 

both electrons cannot occupy the same state. 

Instead of using the simple form of the wavefunction shown in equation 3.11, a 

Slater determinant [106] is used to construct a properly antisymmetric 

normalised wavefunction of 𝑁 particles: 

𝜓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) =
1

√𝑁
det|𝜓1(𝑥1)𝜓2(𝑥2)𝜓3(𝑥3) … 𝜓𝑁(𝑥𝑁)| .           (3.13) 

The total energy is: 
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𝐸 = ⟨𝜓|𝐻̂|𝜓⟩ = ∑ 𝐻𝑖
𝑁
𝑖=1 +

1

2
∑ (𝐽𝑖𝑗 − 𝐾𝑖𝑗) .𝑁

𝑖,𝑗=1                   (3.14) 

The first term deals with the kinetic and potential energy due to interaction with 

electrons and atomic nuclei: 

𝐻𝑖 = ∫ 𝜓𝑖
∗(𝑥) [−

1

2
∇2 + 𝑉(𝑥)] 𝜓𝑖(𝑥) 𝑑𝑥 .                          (3.15) 

The second term deals with the electron- electron interactions, where 𝐽𝑖𝑗 is the 

Coulomb integral: 

𝐽𝑖𝑗 = ∬ 𝜓𝑖
∗(𝑥1)𝜓𝑗

∗(𝑥2)
1

𝑟12
𝜓𝑖(𝑥1)𝜓𝑗(𝑥2) 𝑑𝑥1𝑑𝑥2  ,                    (3.16) 

and 𝐾𝑖𝑗 is the Exchange integral: 

𝐾𝑖𝑗 = ∬ 𝜓𝑖
∗(𝑥1)𝜓𝑗

∗(𝑥2)
1

𝑟12
𝜓𝑖(𝑥2)𝜓𝑗(𝑥1) 𝑑𝑥1𝑑𝑥2 .                     (3.17) 

The HF method has been widely used and can give useful results for total 

energies and estimates of bonding and geometry. But the HF fails accurately 

to describe electron correlation. By including the electron correlation energy or 

approximations to the energy, the post Hartree-Fock method allows accurate 

descriptions of electronic system. However, these methods are very 

computationally expensive. 

As noted, the HF method is based on a many electron wavefunction. Density 

Functional Theory (DFT), discussed in the next section, replaces the multi-body 

electron wavefunction with the electron density, which helps to make 

calculations with an acceptable level of accuracy on large systems more 

tractable. 

3.3.3     Density Functional Theory 

Density functional theory (DFT) is a computational quantum mechanical 

modelling technique that can predict the electronic structure in a multi-electron 

system of many-body systems, in particular atoms, molecules, and condensed 

phases. The DFT method has become a very widely used method for 

calculating the electronic structure of the ground state of matter with its 

extensive accuracy, applicability and computational economy. 



3.3     Quantum Mechanical Methods  

51 

Density functional theory was developed in the 1960s on the basis of the 

Thomas-Fermi model [107, 108] , which describes the physical properties of 

the ground state of a system by means of particle densities.  

The electronic kinetic energy obtained by integrating the kinetic energy density 

of a homogeneous electron gas as: 

𝑇 =
3

10
[3𝜋2]2/3 ∫ 𝑛 (𝑟)5/3𝑑𝑟 = 𝐶𝑘 ∫ 𝑛 (𝑟)5/3𝑑𝑟 .                         (3.18) 

The potential energy due to the attraction between the nuclei and the electrons 

is: 

𝑉𝑒𝑁 = ∫ 𝑛(𝑟) 𝑉𝑁(𝑟)𝑑𝑟 .                                                      (3.19) 

The potential energy due to the electron-electron interactions of the system, 

which is approximated by the classical Coulomb repulsion between electrons 

is: 

𝑉𝑒𝑒 =
1

2
∬

𝑛(𝑟)𝑛′(𝑟)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ .                                             (3.20) 

The Thomas-Fermi energy is composed of the kinetic and potential energies: 

𝐸𝑇𝐹[𝑛(𝑟)] = 𝐶𝑘 ∫ 𝑛 (𝑟)5/3𝑑𝑟 + ∫ 𝑛(𝑟) 𝑉𝑁(𝑟)𝑑𝑟 +
1

2
∬

𝑛(𝑟)𝑛′(𝑟)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ .    (3.21) 

Although DFT originated in Thomas-Fermi theory, DFT did not have a firm 

theoretical basis until Hohenberg-Kohn theorem [109] was proposed. The first 

theorem of Hohenberg-Kohn states that the ground state energy of the full 

fermion subsystem without spin is a unique function of the particle density 

function, that is, the physical properties of the ground state of the system are 

determined by the population density function. The second Hohenberg-Kohn 

theorem proves that, under the condition of a constant number of particles, the 

ground state energy equals the total energy functional and takes the minimum 

value of the correct particle number density function. That is to say, under the 

condition of constant number of particles, the energy functional to the density 

functional variation gives the energy of the ground state of the system. The 

energy functional can be written as: 
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𝐸𝐻𝐾[𝑛(𝑟)] = ∫ 𝑛 (𝑟)𝑉(𝑟)𝑑𝑟 + 𝐹[𝑛(𝑟)] ,                     (3.22) 

Where the F[𝑛(𝑟)] functional is unknown and all properties of the system are 

calculated from the electron density 𝑉. To solve the unspecified particle density 

function and kinetic energy function problem in the Hohenberg-Kohn theorem, 

Kohn and Sham [110] produced the famous Kohn-Sham equation. In the 

framework of the Kohn-Sham DFT, the complex multi-body problem (due to the 

interaction of electrons in an external electrostatic potential) is simplified as a 

problem that no interacting electrons move in the effective potential. This 

effective potential includes external potential fields and the effects of Coulomb 

interactions between electrons, such as exchange and correlation. In Kohn-

Sham theory, the 𝐹[𝑛(𝑟)] is composed of three terms, 

𝐹[𝑛(𝑟)] = 𝑇𝑠[𝑛(𝑟)] + 𝑉𝑒𝑒[𝑛(𝑟)] + 𝐸𝑥𝑐[𝑛(𝑟)] ,                      (3.23) 

where the first term 𝑇𝑠[𝑛(𝑟)] is the kinetic energy of a non-interacting electron 

gas of density 𝑛(𝑟) , the second term 𝑉𝑒𝑒[𝑛(𝑟)] is the classical electrostatic 

energy of the electrons as equation (3.20) and the third term 𝐸𝑥𝑐[𝑛(𝑟)] is the 

exchange-correlation energy which contains the difference between the exact 

and non-interacting kinetic energies and also the non-classical contribution to 

the electron-electron interactions. The first two terms are known exactly and 

contribute the majority of the energy, the third being a small unknown quantity. 

The total energy of the system is expressed as  

𝐸𝐾𝑆[𝑛(𝑟)] = ∫ 𝑛 (𝑟)𝑉(𝑟)𝑑𝑟 + 𝑇𝑠[𝑛(𝑟)] + 𝑉𝑒𝑒[𝑛(𝑟)] + 𝐸𝑥𝑐[𝑛(𝑟)] .         (3.24) 

3.3.4     Pseudopotentials 

To make the problem of describing very many particles tractable in quantum 

chemistry two further approximations are widely used. First, the one electron 

wave functions, i.e. orbitals are represented by linear combinations of basis 

functions. In our work, we employ the GAMESS-UK package where basis 

functions are chosen as atomically centred Gaussian functions [111, 112]:  

𝜒(𝜁, 𝑛, 𝑚, 𝑙; 𝑟, 𝜃, 𝜙) = 𝑁𝑌𝑙,𝑚(𝜃, 𝜙)𝑟2𝑛−2−𝑙𝑒−𝜁𝑟2
 ,                                (3.25) 
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where 𝑁  is a normalization constant, 𝜁  is the exponent, 𝑌𝑙,𝑚  are spherical 

harmonic functions, 𝑛, 𝑚, 𝑎𝑛𝑑 𝑙  indices determine the type of orbital (s, p, 

d ,etc.).Details of the basis used will be given below in the next section. Second, 

to save the calculation costs, the pseudopotential (also called Effective Core 

Potential, ECP) approximation treats the core electrons and the valence 

electrons separately. The explicit description of the core electrons of an atom 

is replaced with an effective potential, or pseudopotential. Usually, the potential 

matches the core potential exactly outside a chosen core radius, but varies 

smoothly within the core radius, to avoid the large oscillations of the wave 

function in this region. 

To describe a point defect in an extended system such as a 3-dimensional 

periodic solid, e.g. a TCO semiconductor, in this work, we will use an 

embedded cluster approach. [113] Therein a region of interest around a point 

defect is treated with a QM method of choice, whereas the effect of the system 

remainder is represented by an embedding potential in the QM Hamiltonian. 

Such an embedding potential will include long-range Coulomb contributions 

and short-range terms due to Pauli repulsion and localisation of the explicitly 

treated electrons in the QM region. The latter contributions are especially 

important to include for cations surrounding the QM region as negatively 

charged electrons would naturally be attracted to positive centres of the 

environment. Conventionally, these interactions are represented by 

pseudopotentials – compared to ECP electrons of the environment rather than 

of the core are now replaced by the potential. It is convenient to choose 

embedding pseudopotentials in the same form as that of the ECP as it allows 

to use common QM packages such as GAMESS-UK without or with a minimum 

of modifications. In this thesis, a specially designed local ECP was used for this 

purpose as detailed in the next section. 

3.3.5     QM/MM techniques 

The QM/MM model uses a system of five approximately concentric regions. 

Regions 1-3 are part of the active region which will undergo geometry 

optimization, Regions 4 and 5 are frozen and no changes can be made to any 

of the species within them.  
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Region 1 contains the central defect and its surrounding atoms, typically of the 

order of 100 atoms (97 for In2O3, 86 for ZnO in this thesis), is treated with a QM 

method. 

In this thesis, we use DFT with a tripple zeta plus polarization Gaussian basis 

set for oxygens (Def2-TZVPP) [114] and a double zeta plus polarization set for 

In and Zn cations (cc-pVDZ-PP). [115, 116] To reduce the computational load, 

we have removed f functions from the oxygen basis set and some of the highly 

diffuse functions from the cation basis sets, which do not contribute to the 

bonding in thesis ionic solids. The resulting reduced basis set was carefully 

optimised to reproduce the total energy and eigenstates of the appropriate 

isolated ions. 

For electron exchange and correlation, we have employed three hybrid 

functionals, BB1k functional [117], which has been fitted to both 

thermochemical and kinetic data including 42% exact exchange; the PBE0 

functional [118], which is frequently used in plane-wave basis calculations 

including 25% exact exchange; and the B97-2 functional [119], which has been 

fitted to a broad range of thermochemical date with 21% exact exchange.  

In order to embed the QM cluster within a polar environment, Region 3 and 4 

(9704 for In2O3, 10460 for ZnO in this thesis) is treated with the MM method 

using interatomic force fields. [120] Details on forcefields can be found in Ref. 

[25] for In2O3 and Ref. [120] for ZnO. 

Between the QM and MM region, a 5Å thick interface region is introduced as 

Region 2. Here, semi-local atom-centred pseudopotentials (similar to effective 

core potentials, or ECPs commonly used in quantum chemical calculations of 

heavy atoms) are placed on cationic sites that describe the short-range 

embedding potential acting on the electrons in the QM region and that prevent 

spillage of electronic density from the QM to the MM regions. In this thesis, a 

10 electron ECP for Zn [116] and 29 electron ECPs for In [121] were used. The 

pseudopotential used in this study has the form: 

𝑟2𝑈𝑝(𝑟) = 𝐴1 𝑟 𝑒𝑥𝑝(−𝑍1𝑟2) + 𝐴2𝑟2𝑒𝑥𝑝(−𝑍2𝑟2) + 𝐴3𝑟2𝑒𝑥𝑝(−𝑍3𝑟2) ,   (3.26) 

https://en.wiktionary.org/wiki/%C3%85#Translingual


3.3     Quantum Mechanical Methods  

55 

where the parameters 𝐴𝑖 and 𝑍𝑖 are fitted in order to minimize the gradients on 

the ions in the QM and interface region and the spread of deep core levels in 

the energy spectrum. The specially designed local ECP parameters for In and 

Zn are taken from Buckeridge et al. [42], as given in Table 3.1. 

Table 3.1 Embedding cation ECP parameter in atomic units in ZnO. [42] 

 i 𝐴𝑖 𝑍𝑖 

In 1 -41.9141 30.1562 

2 16.3490 1.5145 

3 0.3166 0.3335 

Zn 1 -11.3067 22.6000 

2 39.4802 4.9852 

3 0.0579 0.1781 

 

The long-range embedding potential is provided by the point charges on the 

MM centres surrounding the QM region. The effect of the whole QM/MM model 

termination is cancelled by the use of a group of compensating point charges 

that are placed around the cluster to reproduce the Madelung potential and 

field at lattice sites in the central active part of the QM/MM model. To account 

for the missing polarisation effects outside the active region, an posteriori 

correction to the total energy of a charged defect is introduced using Jost’s 

formula: 

𝐸𝑝𝑜𝑙 = −
𝑄2

2𝑅
(1 −

1

𝜀0
) ,                                                            (3.27)  

where 𝑄 is the charge on the defect, 𝑅 is the radius of the active region and ε0 

is the permittivity. For vertical processes of charge state change from 𝑄 to 𝑄+ 

Δ𝑄 with only electronic relaxation, we us Jost’s correction: 

𝐸𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑙 = −
(𝑄 + ∆𝑄)2

2𝑅
(1 −

1

𝜀∞
) +  

𝑄2

2𝑅
(

1

𝜀∞
−

1

𝜀0
) ,                           (3.28)  

where 𝐸𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑙  is the vertical polarization energy, and 𝜀∞  is the high-

frequency permittivity. The hybrid QM/MM embedded cluster approach used is 

implemented in the CHEMSHELL [122] package. The QM/MM energy is 

obtained in an additive approach as a sum of QM and MM terms with the 
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interaction energy between the two regions accounted for by the QM term 

whose Hamiltonian includes the embedding potential. The GAMESS-UK [123] 

code is employed in QM calculations, while the GULP package has been used 

to calculate MM contributions. 

The advantages of this method are a comprehensive account of short and long-

range polarization effects of a charged defect; the lack of periodic image 

interactions; and access to the vacuum level, which allows ionization energies 

to be determined with an absolute reference. 

3.4     Point Defects in Semiconductors 

3.4.1    Compact and diffuse defect states 

A defect can have several competing electronic states, including the compact 

state and the diffuse state. The ground state of the defect will be the lower 

energy state, but under non-equilibrium conditions (such as the optical 

ionisation transitions), transitions between states can occur. Previous studies 

have focused on the compact nature of the defect, where the carriers are 

completely bound to the defect and individual atoms around it, and only the 

ionization to or from the energy band is considered. However, in dielectrics, a 

point defect can trap one or more charged carriers (depending on the charge 

amount of the defect) to form a shallow, diffuse hydrogenic orbitals, especially 

when the potential for forming such a diffuse state is an attractive Coulombic 

well. The energy level of the diffuse s-like carrier will shift into the gap relative 

to the band edge (depending on the defect charge state), and the ground state 

of the corresponding defect can be either its diffuse state, or the corresponding 

compact state. The holes in the compact state are completely bound to the 

defect and have a very local wave function. The wave function of the diffuse 

state has a larger distribution range, which diffuses in the defect and several 

atoms around the defect, as shown in Figure 3.1. These two states can coexist, 

and transitions can happen between them, which may be observable 

depending on both the property of the defect and the kinetics of the experiment. 
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The diffuse state energy level can be calculated from the effective mass theory. 

[124] 

Figure 3.1 A schematical comparison between a compact state and a diffuse state. The blue 
lines represent the wave function 𝜓, the black line represents the shape of the electrostatic 

potential. 

In effective mass theory, the bands for the semiconductor are assumed as 

isotropic, nondegenerate, and parabolic. The energy (in atomic units) of 

hydrogenic defect traps for electrons and holes is 

𝐸𝐻 = −
𝑍2𝑚∗

2𝜀2  ,                                                             (3.29) 

where 𝑍 is the charge state of nuclei (compact state), 𝑚∗ is the electron/hole 

effective mass, 𝜀 is the static dielectric constant. 

The energy of helium defect traps for two electrons or two holes is 

𝐸𝐻𝑒 =
𝑚∗

𝜀2 (𝐼1(𝐻𝑒) + 𝐼2(𝐻𝑒)) ,                                            (3.30) 

where 𝐼1(𝐻𝑒) is the first ionisation energy and  𝐼2(𝐻𝑒) is the second ionisation 

energy of helium. 

The energy of hydride defect traps for two electrons is 

𝐸𝐻𝑦𝑑𝑟𝑖𝑑𝑒 =
𝑚∗

𝜀2
(𝐼1(𝐻) + 𝐴(𝐻)) ,                                                (3.31) 

where 𝐼1(𝐻) is the first ionisation energy of hydrogen and 𝐴(𝐻) is the electron 

affinity of hydrogen. 

3.4.2     Formation energies 

The formation energy of a defect X in charge state 𝑞 (𝐸𝑓[𝑋𝑞]) is determined as 

[125]: 
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𝐸𝑓[𝑋𝑞] = 𝐸[𝑋𝑞] − 𝐸0 − ∑ 𝑛𝑖𝜇𝑖
𝑖

+ 𝑞𝐸𝐹 ,                                       (3.32) 

where 𝐸[𝑋𝑞] is the total energy of the defective structure, 𝐸0 is the energy of 

the perfect crystal, 𝑛𝑖  is the number of atoms of species i (host atoms or 

impurity atoms) that have been added to (𝑛𝑖 > 0) or subtracted from  (𝑛𝑖 < 0) 

in forming X, 𝜇𝑖  is the chemical potential of species i, and 𝐸𝐹  is the Fermi 

energy. 

A diagram (Figure 1 in Ref [126]) is used to illustrate the formation energy as a 

function of the Fermi-level position and for various charge states 𝑞 as shown in 

Figure 3.2. For a neutral defect, 𝑞 = 0; if one electron is removed, 𝑞 = +1; if 

one electron is added, 𝑞 = −1. In the semiconductor, the defect can exhibit 

various charge states. In the diagram, The zero point of the abscissa is the 

valence band maximum (VBM), the dotted line is the conduction band minimum 

(CBM). The solid black lines are the formation energy defined by Equation 

(3.33), and the slope of the lines indicate different charge states, the point of 

intersection of the solid black lines indicate the transition levels (deep donor 

level (+/0) and deep acceptor level (0/-) ). The solid red lines indicate the 

energetically most favourable charge states for a given Fermi level. 

 

Figure 3.2 Formation energy diagram. 
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3.4.3     Ionization energies as defect (transition) levels 

Understanding vertical ionization potentials and electron affinities can provide 

information on many defect processes that play a key role in light absorption 

and luminescence, and charge trapping. A conventional configurational 

coordinate diagram [127] (Figure 4.10 in Ref [128]) is used to analyse the 

optical properties of the defects. 

As shown in the lower part (blue) of Figure 3.3, an electron trapped by an 

acceptor in the ground state (A−) can be excited to the conduction band if it 

absorbs a photon with sufficient energy (Eab), the resulting configuration being 

the neutral charge state plus a conduction electron, A0 + e−. The defect in the 

ionised state will relax (Erel*) before emitting a photon and returning to its 

ground state via an electron–hole recombination. The relaxation lowers the 

energy of the ionised state as the surrounding atoms move to new stable 

positions. On emission, a conduction band electron undergoes a vertical 

transition from the conduction band to the empty defect state (A0), i.e. 

recombining with the hole bound to the acceptor, giving rise to a PL (EPL). Again, 

the atoms around the defect relax back to the initial ground state (Erel) after the 

optical emission. An analogous process will involve a hole ionisation from an 

acceptor, which, in other words, describes a capture by the acceptor of an 

electron from the valence band—see the upper part of the configuration-

coordinate diagram shown in Figure 3.3. The energy difference between the 

minima of the ionised and ground states can be identified in the PL spectra as 

a zero-phonon line (ZPL). [128]  
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Figure 3.3 A configuration-coordinate (q) diagram of ionisation and capture by an acceptor A 
of an electron, e− shown in blue—A(−1|0)e—and of a hole, h+ shown in red—A(0|−1)h. [128] 

3.4.4     Charge carrier and defect concentrations 

The concentration of each defect 𝑋 in each charge state 𝑞 is given by: 

𝐶𝑋𝑞 = 𝑁𝑋𝑔𝑋𝑞𝑒𝑥𝑝 (−
𝐸𝑓(𝑋𝑞)

𝑘𝑇
) ,                                      (3.33) 

where NX is the density of sites in which the defect may form, gX
q is the 

degeneracy of the charge state, EF is the self-consistent Fermi energy, k is 

Boltzmann’s constant. 

The electron (n0) and hole (p0) carrier concentrations can be determined by 

integrating the density of states weighted by the appropriate Fermi-Dirac 

function: 

𝑛0 = ∫ 𝑓e(𝐸)𝜌(𝐸)𝑑𝐸
∞

Eg

 ,                                             (3.34) 

𝑝0 = ∫ 𝑓h(𝐸)𝜌(𝐸)𝑑𝐸 ,
0

−∞

                                            (3.35) 

where 𝑓e(𝐸)= [exp ((EF-E)/kT) +1]-1 is the Fermi-Dirac distribution function and 

𝑓h(𝐸)=1-𝑓e(𝐸). 

The self-consistent Fermi energy and equilibrium defect and carrier 

concentrations are determined from the computed formation energies using a 

Fortran code ‘SC-FERMI”. [129] 
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3.5     Computational Codes 

3.5.1     General Utility Lattice Program (GULP) 

The General Utility Lattice Program (GULP) [130, 131] can perform a wide 

range of simulations of solids surfaces, defects and, clusters using interatomic 

potential methods. GULP can be used to perform geometry optimizations and 

Mott-Littleton calculations and can find transition states for ionic migration 

processes using the “Nudged Elastic Band” approach. 

In this work, the interatomic potential calculations of defect formations and 

energies of both In2O3 and SnO2 (see Chapter 4) are performed using MM Mott-

Littleton procedure as implemented in GULP. 

3.5.2     ChemShell 

ChemShell is a computational Chemistry environment which support hybrid 

quantum mechanical/molecular mechanical (QM/MM) calculations. [122, 132] 

It has interfaces with a range of other Quantum Mechanical and Molecular 

Mechanical codes including GAMESS-UK [123] and GULP. 

We carried out a more sophisticated and accurate QM/MM calculations to 

simulate the defect properties of In2O3 and ZnO (see Chapter 5-8) using the 

Embedded Cluster Technique employing ChemShell. 

3.5.3     Knowledge Led Master Code (KLMC) 

Our in-house code Knowledge Led Master Code (KLMC) [133] automates 

many repetitive or complex tasks, traditionally performed by the user, using a 

range of third party codes. The applications of KLMC include simple task 

farming; structure prediction of nanosized clusters, surfaces, and bulk phases 

using a range of global optimization techniques based on basin hopping and 

genetic algorithms; exploration of ergodic regions and statistical sampling of 

solid solutions or multiple point defects in a crystalline solid. 

In this Thesis, random structure generations and global minimum simulations 

for the solid solutions of In2O3 and SnO2 simulations are carried out using 
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KLMC in conjunction with third party coded GULP and Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS). [134] 

3.5.4     SC-FERMI 

SC-FERMI [129] is a Fortran code that calculates the self-consistent Fermi 

level and defect concentrations given a set of formation energies (at VBM). The 

inputs include the defect formation energies, density of sites where they can 

form, and the degeneracy of each charge state; the material bandgap; and the 

calculated density of states of the pristine system. The output is the self-

consistent Fermi energy EF, the total concentrations of each defect as well as 

the concentration of its individual charge states, and the free carrier 

concentrations. 

3.6     High Performance Computing (HPC) 

The calculations of this Thesis have been run on several HPC systems, 

including two UCL-based and two national HPC.  

The QM/MM calculation of defects In2O3 and ZnO (Chapter 5-8) was performed 

on Archer. Archer is the UK National Supercomputing Service, provided for two 

research Councils (EPSRC, NERC,) and managed by Edinburgh Parallel 

Computer Centre (EPCC), using technology supplied by Cray Inc. It is designed 

for calculations that require large numbers of cores working in parallel.  

The solid solutions of In2O3 and SnO2 simulations (Chapter 9) are carried out 

on UCL-based Legion, Grace and UK National Tier 2 HPC Thomas. 

Time to run calculations on Archer and Thomas was requested and granted 

through my membership of the UK's HEC Materials Chemistry Consortium, 

which is funded by EPSRC (EP/L000202, EP/R029431). This work made use 

of computational support by CoSeC, the Computational Science Centre for 

Research Communities, which was made available through my membership of 

the EPSRC funded Materials Chemistry High End Computing Consortium 

(MCC). 

  



Chapter 4 

Interatomic Potentials and Defect 

Structures of In2O3 and SnO2 

4.1     Introduction 

In this Chapter, we will focus on the defect structure of In2O3 and SnO2 

materials and of the relationship between their defect and electronic properties. 

In In2O3 and SnO2, as discussed in Chapter 2,  the n-type conductivity has 

intuitively been attributed to the presence of oxygen vacancies, but other 

sources have also been proposed [14-17] and the matter remains a topic of 

debate. Accurate modelling of intrinsic and extrinsic defects is needed to 

understand the source of the conductivity.  

ITO (indium tin oxide) is a disordered system, which necessitates large length 

scale simulations of multiple atomic environments in the presence of charge 

carriers to understand its structural and electronic properties. Fully ab initio 

approaches to such problems are limited by both computational resources and 

methodological problems in the study of charged defects. Computational 

techniques based on interatomic potentials, in contrast, are particularly well 

suited to explore such systems, but require sufficiently accurate and 

transferable parameterisation. As shown below, previous work on the 

parameterisation of interatomic potentials suffered from a number of problems 

related to transferability and/or accuracy in the reproduction of essential 

physical properties of both parent In2O3 and SnO2 compounds. In this Chapter, 

we demonstrate the first transferable interatomic potential model, that 

reproduces well both the structure and physical properties of In2O3 and SnO2 
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including their dielectric response and lattice energies. We then apply our 

models to develop a consistent and reliable set of models for the defect 

structure of the materials. 

For TCO materials, native defects may act as donors resulting in intrinsic n-

type conductivity as has been recently demonstrated by Buckeridge et al. [42] 

Further extrinsic doping such as Sn in In2O3 is, however, required to achieve 

technologically desired concentrations of charge carriers. Hence, the main aim 

of this Chapter is to explore defect properties of both SnO2 and In2O3 and the 

effects of defects on the electronic properties and structure of these materials. 

A new set of interatomic potentials is derived and applied which accurately 

reproduces the physical and structural properties of the two binary oxides. In 

particular, atomistic simulations are used to investigate the energetics of point 

defects and intrinsic disorder in In2O3 and SnO2. The interatomic potential 

model, including a suitable approach to reproduce the fundamental band gaps, 

is shown to give reasonable intrinsic defect formation energies (in comparison 

with more accurate but computationally expensive electronic structure 

methods), indicating that the defect properties are modelled well. Furthermore, 

the formation energies of clusters of an oxygen interstitial surrounded by one 

or more tin substitutional defects in indium oxide are calculated and analysed. 

The results help explain experimental observations regarding the 

configurations of tin clusters in ITO. 

4.2     Approach and settings 

The lattice and defect energies in this Chapter are based on the Born model of 

the ionic solid [20], discussed in the previous Chapter 3.2.2. The pairwise 

interactions between the ions are modelled by a combination of the 

Buckingham [135], Lennard-Jones, constant offset and polynomial harmonic 

potentials to describe a smooth monotonically decaying functions as shown in 

Figure 4.1. The previously derived potential functions are also shown for 

comparison. In the range of bonding distances, our potentials typically have a 

similar gradient to the previous models, but are shifted down in energy, which, 

allowed us to reproduce the experimentally observed lattice energies – a key 
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feature of our new models. Importantly, we have common oxygen parameters 

for SnO2 and In2O3. 

One significant new feature in our model is the addition of a repulsive 1 𝑟4⁄  

potential, which helps to reproduce the rutile structure as the ground state for 

SnO2 and penalise a hypothetical anatase phase of this material. One possible 

rationalisation is that the unusual trigonal structure of oxygen in a rutile 

environment results in its higher-order polarisability (deformation), which is not 

accounted for by the standard shell model. This potential could help to maintain 

the balance of the induced multipolar interactions in SnO2.  

Careful choice of the potential parameters is crucial for accurate modelling of 

both structural and physical properties, which we will address in section 4.3 

below. The parameters of our model, obtained by empirical fitting as discussed 

below are given in Table 4.1. 

The resulting potentials were used to study point defects in both In2O3 and 

SnO2, using the Mott-Littleton method [136, 137] as implemented in GULP.  

In this work, the radius of region 1 is chosen as 15 Å (so that there are 1093 

atoms for In2O3 and 1189 for SnO2 in the region) with a 30 Å radius for region 

2a, which corresponds to the 15 Å cut-off used in the force field 

parameterisation. Our tests show that this choice provides an acceptable 

convergence of defect energies to ca. 0.1 eV or better with relatively low 

computational costs. The defect energy is defined as the energy required to 

form a point defect in the system by adding or removing constituent ions in their 

formal charge states to or from the gas phase (or vacuum) where the energy 

of such gas phase ions is set to zero. Defect energies resulting from Mott-

Littleton calculations can in turn be used to calculate defect formation energies 

that refer to atoms removed from or added to their standard states to obtain 

energies of solution or of redox processes and can be combined to calculate 

e.g. Schottky and Frenkel formation energies. 
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Figure 4.1 Interatomic potential model for In2O3 and SnO2. Metal-oxygen interactions are 
shown in the top panel, while metal-metal and oxygen-oxygen interactions are shown in the 
bottom panel. Our model is compared with others previously published (see text for details). 
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4.3     Interatomic potentials 

The first interatomic potentials for SnO2 reported by Freeman et al. [37], were 

fitted to static and high frequency dielectric and elastic constants of SnO2; the 

lattice energy and lattice parameter though were less well described, as shown 

in Table 4.3. A parameterisation of the Buckingham potential for In2O3 based 

on the oxide parameters of Freeman et al. [37] and Bush et al. [135] , with In-

O parameters of McCoy et al. [138] was reported by Warschkow et al. [22], in 

which the dielectric properties were not, however, fitted. Walsh et al. [25] 

reported an alternative parameterisation, which in contrast reproduced well the 

static and high-frequency dielectric constants (see Table 4.4), but the lattice 

energy again deviated from experiment and the oxide parameters were 

incompatible with Freeman’s SnO2 potentials. 

In order to describe the crystal properties of both binary oxides and ITO, it is 

necessary to construct a common interatomic force field for In2O3 and SnO2 (as 

summarised in Table 4.1). The present interatomic force field is a revised 

potential which reproduces better the structure and dielectric constants 

compared to the set of interaction parameters summarised as P-1 in Table 4.2. 

The new model was obtained by empirical fitting, using the GULP code, to 

calculated lattice parameters, lattice energy, static and high-frequency 

dielectric constants and gave a better agreement with the experimental data 

compared to earlier work, as shown in Table 4.3 and Table 4.4. 
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 Table 4.1 Interatomic Potential Parameters for SnO2 and In2O3. 

(a) Buckingham potential 

Interaction A (eV) ρ (Å) C (eV Å6)    

Sn shell - O shell 1805.11 0.32 0.00    

In shell - O shell 1937.36 0.32 30.00    

O shell - O shell 24.66 0.50 32.61    

O core - O shell 41944.48 0.20 0.00    

(b) Lennard-Jones potential 

Interaction A (eV Åm) B (eV Ån) m n   

Sn core - Sn shell* 0 2.00 12 6 

Sn shell – Sn shell 1 0 18 1 

Sn shell - O shell 7.89 0 4 0 

Sn shell – O shell 1 0 18 1 

In shell - In shell 0 28 12 6 

In shell – In shell 1 0 18 1 

In shell – O shell 1 0 18 1 

O core - O shell 10 0 12 6 

(c) Polynomial potential 

Interaction n C0 rmin rmax 

Sn shell - O shell 1 -1.567 0.00 2.15 

In shell - O shell 1 -0.65 0.00 2.30 

(d) Polynomial harmonic potential 

Interaction n C0 C1 C2 rmin rmax 

Sn shell - O shell 2 -280.31 236.42 -43.67 2.15 2.30 

In shell - O shell 2 -44.17 47.29 -11.41 2.30 2.70 

(e) Shell model 

Species Y (e) k (eV Å-2)     

Sn 4.34 94.05     

In 2.63 7.53     

O -3.16 70.51     

*The interaction between one atom’s core and another atom’s shell.  
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 Table 4.2 Interatomic Potential Parameters for SnO2 and In2O3 (P-1). 

(a) Buckingham potential 

Interaction A (eV) ρ (Å) C (eV Å6) Cutoff 

Sn shell - O shell 1588.75 0.33 0.00 15 

Sn shell - Sn shell 0.10 0.30 2.00 15 

In shell - O shell 1914.95 0.32 30.00 15 

In shell - In shell 0.00 0.30 28.00 15 

O shell - O shell 24.66 0.50 32.61 15 

O core - O shell 41944.48 0.20 0.00 15 

(b) Lennard-jones potentials 

Interaction A (eV Åm) B (eV Ån) m n 

O core - O shell 10 0 12 6 

Sn core - Sn shell 0 0 12 6 

(c) Shell model 

Species Y (e) K (eV Å-2)   

Sn 4.34 94.05   

In 2.63 7.53   

O -3.16 70.51   

Note. Short-range interaction cut-offs are set to 15 Å. 
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Table 4.3 Calculated and experimental crystal properties of SnO2. 

Parameter Experimental P1 Present 

work 

Freeman et al. 

[37]  

Lattice parameter, a(Å) 4.737 

[139],4.738 

[140] 

4.737 4.742 4.706 

Static dielectric constant 14.0 [141] 16.761 16.724 13.8 

High frequency dielectric 

constant 

3.785 [141] 3.914 3.889 3.894 

Lattice energy (eV) -122.125 -113.72 -122.32 -110.68 

Elastic constants [142]     

C11 (GPa) 261.7 310.42 290.55 299 

C12 (GPa) 177.2 201.65 191.07 212 

C13 (GPa) 156.0  249.45 198 

C33 (GPa) 450.0  620.61 522 

C44 (GPa) 103.07 113.98 119.20 111 

C66 (GPa) 207  236.36 228 

Table 4.4 Calculated and experimental crystal properties of In2O3. 

Parameter Experimental P1 Present 

work 

Walsh et 

al. [25] 

Warschkow et 

al. [22]  

Mccoy et 

al. [138] 

Lattice parameter, 

a(Å) 

10.117 [143] 10.121 10.119 10.121 10.120 10.115 

Static dielectric 

constant 

8.9-9.5 [144] 9.136 9.191 9.052 6.872 9.455 

High frequency 

dielectric constant 

4 [145] 3.937 3.941 3.903 3.534 4.907 

Lattice energy (eV) -149.98 -

142.34 

-150.01 -140.60 -141.91 -141.14 

Elastic constants       

C11 (GPa)  346.30 337.14 297.75 368.10 324.4 

C12 (GPa)  155.48 154.99 141.78 150.11 151.7 

C44 (GPa)  94.08 93.19 76.42 111.24 120.7 

 

In the following sections we use the new model to explore the defect and 

electronic properties of the materials. 
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4.4     Electron and Hole Formation 

Although methods based on interatomic potentials are incapable of calculating 

the electronic structure or electron states directly, it is still possible to estimate 

crudely the band gap hypothesizing that the valence band maximum can be 

represented by an hole localised on an anion, the conduction band minimum 

by an electron on a cation, and take the difference in energy between the two. 

Such an assumption is broadly supported by ab initio calculations on ionic 

compounds of normal metals, including both SnO2 and In2O3. In our model, the 

hole state is obtained by instantaneous ionisation of an oxide ion including high-

frequency dielectric response (via shell relaxation) to form an O- ion on an oxide 

ion site (the OO˙ defect). As the on-site energy contributions - beyond dipolar 

polarisation - are not accounted for by the model, we also customarily subtract 

from the calculated ionisation potential the second O electron affinity. (9.41 eV 

adopted from Waddington [146], cf. 8.75 eV from ref. Freeman et al. [37], 8.89-

9.58 eV from Ladd and Lee et al. [147]). For the electron, the localised state 

would be the Sn3+ (for SnO2) or In2+ (for In2O3) ion on the appropriate cation 

site (SnSn' or InIn' in defect notation); the on-site fourth (third) ionisation potential 

of the gas phase Sn (In), is subtracted from the respective defect energy. All 

energy terms used to calculate required quantities are collected in Table 4.5 

for SnO2 and Table 4.6 for In2O3. 

The calculated band gap of SnO2, by this crude procedure, is 5.21 eV, 

compared with the experimental value of 3.6 eV. [148] For In2O3, we calculate 

the band gap of 6.71 eV, as compared to the experimental value of 2.7 eV. [18] 

(These experimental values are fundamental band gaps, so that excitonic 

effects, which we do not attempt to model in our procedure, are not included). 

Whereas the position of the valence band is determined by these calculations 

quite accurately (within ~0.5 eV of available experimental data [149-151]), the 

conduction band is severely underbound, which can be clearly related to the 

one-site localisation model for an electron. While the latter approximation is 

reasonable for a hole, electrons in the conduction band are well known to be 

strongly delocalised. We will therefore use the difference between the 

calculated and experimental band gap as a measure of electron localisation, 
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which can subsequently be employed as a parameter of the electronic structure 

in calculations on more complex mixed materials including lightly-doped ITO 

and solid solutions between tin and indium oxides. Therefore, the 

corresponding corrections for the energies of the bottom of the conduction band 

for end member compounds are +1.65 eV and +4.01 eV of SnO2 and In2O3, 

respectively.  The large differences can be probably attributed to the more 

stable environment for the localised electron used to model the CBM when 

situated on a Sn4+ site in SnO2 compared with an In3+ site in In2O3, due to the 

higher net positive charge and the shorter cation-anion bond length (circa 2.05 

Å in SnO2 vs 2.18 Å in In2O3). 

Table 4.5 Electron-hole formation in SnO2. The SnSn' and OO˙ defect energies, fourth 
ionisation energy of Sn and second electron affinity of O are used to compute the ionisation 
potential I and electron affinity A of the material, the difference of which gives the band gap. 

Terms P1(eV) Energy (eV) Hines et al. 

[38] 

Experimental 

band gap [148] 

SnSn' (=e') 37.25 37.33   

OO˙ (=h˙) 17.57 18.06   

O- + e' → O2- 8.75 9.41   

𝐼 = −𝐸ℎ 8.82 8.65 8.0  

Sn3+ →e'+ Sn4+ 40.73 40.73   

𝐴 = −𝐸𝑒   3.48  3.40  2.5  

Band gap (correction) 5.34 (-1.74) 5.25 (-1.65) 5.5 3.6 

Table 4.6 Electron-hole formation in In2O3. The InIn' and OO˙ defect energies, third ionisation 
energy of In and second electron affinity of O are used to compute the ionisation potential I 

and electron affinity A of the material, the difference of which gives the band gap. 

Terms P1(eV) Energy (eV) Experimental 

band gap [18] 

InIn' (=e') 27.08 27.10  

OO˙ (=h˙) 16.99 17.05  

O- + e'→ O2- 8.75 9.41  

𝐼 = −𝐸ℎ 8.24 7.64  

In2+ →e'+ In3+ 28.03 28.03  

𝐴 = −𝐸𝑒   0.95 0.93  

Band gap (correction) 7.39 (-4.69) 6.71 (-4.01) 2.7 

 

Next, we turn our attention to atomic defects. 
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4.5     Defect energies from Mott-Littleton 

Calculations 

The calculated intrinsic defect energies in SnO2 and In2O3 are presented in 

Tables 4.7 and 4.8. 

The rutile structure of SnO2 has only one octahedrally coordinated lattice site 

for cations and one trigonal site for anions. We confirm the prediction by Hines 

et al. [38] that the interstitial crystallographic site 4c, which is in the centre of 

an unoccupied oxygen octahedron, has a lower energy for an oxide ion 

compared to the 4g site explored by Freeman et al. [37], by about 0.27 eV. Of 

the two available cationic interstitial sites, the 4c site is more stable than 4g by 

2.44 eV.  

For In2O3, there are two symmetry-unique cation 6-coordinated lattice sites (the 

b site, which is a slightly trigonally compressed octahedral coordinated site, 

and the d site, which is a highly distorted octahedral coordinated site; there are 

three times as many d sites as there are b sites in the crystal) and only one 

anion site showing a tetrahedral coordination. The possible anion interstitial 

sites are 8a, 16c, and 24d in Wyckoff’s notation, which all feature 6-fold 

coordination by oxygen. Our calculations, as presented in Table 4.8, show that 

both anion and cation interstitials have lower energies in the 16c site. On 

relaxation, the anionic interstitial changes its coordination from octahedral to 

tetrahedral with the nearest lattice oxygen ions moving substantially outwards 

(by 0.349 Å) and the nearest cations inwards (by 0.126 Å for site b and by 0.339 

Å for site d). Compared to previous calculations, we predict a substantially 

lower energy for the oxygen at an interstitial site in In2O3 by ~ 5.0 eV compared 

to Warschkow and by ~ 1.2 eV compared to Walsh et al. This big difference, 

especially when compared to the former report, can perhaps be attributed to 

an incomplete relaxation (in this earlier work) of the lattice around the interstitial 

site (possibly, due to an appearance of a small barrier for the movement of next 

nearest neighbours with some sets of interatomic potentials). 

The oxygen vacancy energies are 26.64 eV and 22.59 eV for SnO2 and In2O3, 

respectively, based on an earlier more accurate simulation using a hybrid 
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quantum mechanical/molecular mechanical (QM/MM) approach reported by 

Buckeridge et al. [42] (Note, there is uncertainty in these values as they require 

a value for the second electron affinity of O, as discussed above if we are to 

make direct comparison with Mott Littleton values.) Our calculated values of 

24.02 eV and 23.16 eV for SnO2 and In2O3, respectively, are much closer to 

the DFT based estimates than those from previous atomistic simulations that 

predicted 19.39 eV for SnO2
 [37], and 20.99 eV for In2O3 [25]. 

Table 4.7 Intrinsic defect energies in SnO2. 

Defect Defect energy (eV) Wyckoff’s site 

P1 Present work Freeman [37]  

Oi'' -7.64 -11.35 -8.31 4g 

Oi''  -11.62  4c 

Sni˙˙˙˙ -72.91 -77.08  4g 

Sni˙˙˙˙  -79.52 -68.23 4c 

VO˙˙ 19.66 24.02 19.39 4f 

VSn'''' 89.58 98.04 87.48 2a 

Table 4.8 Intrinsic defect energies in In2O3. 

Defect  Defect energy (eV) Wyckoff’s 

site P1 Present work Walsh et al. [25] 

VO˙˙ 20.57  23.16  20.99 48e 

VIn''' 51.85  55.67  49.92 8b 

VIn''' 52.37  56.16  50.05 24d 

Oi'' -11.53 -15.33 -13.29 8a 

Oi'' -13.32 -15.82 -14.61 16c 

Oi'' -9.60 -12.86 -12.08 24d 

Ini˙˙˙ -37.01 -40.52 -35.57 8a 

Ini˙˙˙ -37.85 -41.68 -36.21 16c 

Ini˙˙˙ -36.18 -39.78 -34.89 24d 
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4.6     Oxygen Vacancy Formation 

The loss of oxygen from the lattice can be represented in Kröger–Vink notation 

[152] as 

OO
× → VO

∙∙ +
1

2
O2(g) + 2e′ .                                                   (4.1) 

Here the reaction is assumed to occur in an environment containing an excess 

of O2(g), which is often referred to “O-rich conditions” but approximately 

corresponds to the sample of interest being in air at ambient conditions. The 

neutral oxygen vacancy generated in the first step will provide two free 

electrons on ionisation. The energetics of this reduction process is given by: 

𝐸 = 𝐸[VO
∙∙] − 𝐴O

1−2 −
1

2
𝐷O2

+ 2𝐸e ,                                          (4.2) 

where 𝐸[VO
∙∙] is the oxygen vacancy defect energy, 𝐷O2

 is the oxygen molecule 

dissociation energy (5.136 eV [49]), 𝐴O
1−2 is the sum of the first and second 

electron affinities of oxygen, and 𝐸e is the energy of introducing an electron into 

the conduction band from the vacuum (electron affinity of the material). This 

description is valid for any oxide material. 

Alternatively, when the oxygen partial pressure is low, so that the sample of 

interest is in strongly reducing conditions (“O-poor conditions”), oxygen 

vacancy creation in SnO2 proceeds as: 

OO
× +

1

2
Sn(s) → VO

∙∙ +
1

2
SnO2(s) + 2e′ ,                                          (4.3) 

while the defect formation energy can be written as  

𝐸 = 𝐸[VO
∙∙] +

1

2
∆𝐻0(SnO2) −

1

2
𝐷O2

+ 2𝐸e − 𝐴O
1−2 ,                 (4.4) 

where ∆H0(SnO2) is the standard enthalpy of formation of SnO2. 

The calculated oxygen vacancy formation energy of SnO2 is 3.40 eV under O-

rich/Sn-poor condition and 0.36 eV under O-poor/Sn-rich condition. Freeman 

et al. [37] reported 3.65 eV for the O-rich conditions. If we include the correction 

discussed above their formation energy would shift down to 1.55 eV, 



4.6     Oxygen Vacancy Formation  

76 

significantly lower than the current result. Using periodic ab initio models with 

the PBE0 exchange and correlation density functional, Scanlon et al. [43] have 

reported the corresponding doubly charged oxygen vacancy formation energy 

to be ca. 6 eV under O-rich, and ca. 3.4 eV under O-poor conditions (extracted 

from Figure 2 of ref. [43]), which is somewhat different from the result of 

Ágoston et al. [153], who using the same density functional have reported the 

value of about 2.9 eV under O-poor conditions. More recently, Buckeridge et 

al. [42] have used hybrid QM/MM embedded-cluster calculations, and have 

obtained, with a meta-GGA hybrid BB1K exchange and correlation functional, 

the values of 5.24 eV under O-rich and 2.20 eV under O-poor conditions for the 

doubly charged oxygen vacancy. The energies of defect formation from the 

latter study are of course shifted from those in our study by the same amount 

as that reported above for the defect energies (the difference being due to the 

change in the reference point). Thus, our values are still underestimated by 

about 1.8 eV, although again an improvement on the older work; and given the 

uncertainty in several key terms it may be difficult to get significantly better 

agreement. 

Direct comparisons of our results with experiment are difficult to make, which 

is why we judge the accuracy of our method by comparison with other 

theoretical studies. We cannot derive defect transition levels, which are the 

most common properties used for comparison with experiment. The measured 

heat of reduction of SnO2 at atmospheric conditions, which should be 

comparable to O-rich conditions, is 4 eV [154]. This value should be compared 

with the formation energy of the oxygen vacancy in the neutral charge state, 

which unfortunately we cannot simulate accurately using the Born model and 

the Mott-Littleton approach. We note that the density functional theory studies 

mentioned above do produce results that compare well with the experimental 

value. 

For In2O3, the formation of the oxygen vacancy under In-rich/O-poor condition 

can be described as: 

OO
× +

2

3
In(s) → VO

∙∙ +
1

3
In2O3(s) + 2e′ ,                               (4.5) 
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and the oxygen vacancy formation energy: 

𝐸 = 𝐸[VO
∙∙] +

1

3
∆𝐻0(In2O3) −

1

2
𝐷O2

+ 2𝐸e − 𝐴O
1−2 .                    (4.6) 

We obtain the energies of 2.76 eV under O-rich/In-poor condition and -0.49 eV 

under O-poor/In-rich condition for In2O3. Compared with SnO2, the results are 

in similar correspondence with embedded-cluster based calculations by 

Buckeridge et al. (2.45 eV under O-rich and -0.75 eV under O-poor using BB1k). 

[42] Ágoston et al. [153] has reported the oxygen vacancy formation energy of 

1.2 eV under O-poor conditions using a hybrid HSE06 exchange and 

correlation functional. 

We note that the calculation of defect formation energies, such as those 

presented in this section, are routinely determined using electronic structure 

techniques such as DFT. Moreover, such approaches should give results that 

are more accurate than those obtained using classical models. While possible 

for many cases involving point defects at the dilute limit, computing defect 

energetics using DFT (or beyond) for larger scale systems such as solid 

solutions, extended surfaces, interfaces or grain boundaries and materials 

containing line defects becomes intractable. We have demonstrated that our 

interatomic potential model can give defect formation energies that show 

improved agreement with those obtained using DFT. We can therefore 

conclude that the approach will be suitable to study defects in extended 

systems, as the lower computational load offers significant advantages over 

most electronic structure techniques. Such studies will be reported in future 

work. We now further validate our method by studying intrinsic disorder in more 

detail, and by analysing tin substitution and complex formation in ITO. 

4.7     Frenkel and Schottky Defects 

Based on the calculated point defect formation energy (Tables 4.5 and 4.6) and 

the calculated lattice energy (E[SnO2] = −122.32 eV, E[In2O3] = −150.01 eV), 

we can predict the dominant mechanism of the intrinsic ionic disorder and 

defect formation. In Tables 4.9 and 4.10 we compare the relevant Frenkel and 

Schottky defects in SnO2 and In2O3. 
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An ion that leaves its lattice site and occupies a non-interacting interstitial site 

will form a Frenkel defect pair, whereas Schottky disorder comprises vacancies 

in stoichiometric proportions. The formation energy for anion and cation Frenkel 

defect pairs in SnO2 are calculated as: 

𝐸Anion Frenkel = 𝐸[Oi
''
] + 𝐸[VO

∙∙ ] ,                                             (4.7) 

𝐸Cation Frenkel = 𝐸[VSn
'''' ] + 𝐸[Sni

∙∙∙∙] .                                       (4.8) 

For Schottky defects, vacancies are removed in stoichiometric proportions to 

create a new formula unit of the compound, while for the anti-Schottky defect, 

one formula unit of the compound is added as stoichiometric interstitials: 

𝐸Schottky = 𝐸[VSn
'''' ] + 2𝐸[VO

∙∙ ] + 𝐸[SnO2] ,                                (4.9) 

𝐸Anti-Schottky = 𝐸[Sni
∙∙∙∙] + 2𝐸[Oi

''
] − 𝐸[SnO2] .                     (4.10) 

According to the calculations, we find that the primary type of the intrinsic 

disorder is the anion Frenkel pair in SnO2, which agrees with the prediction of 

Hines et al. [38], while Freeman and Catlow [37] found similar values for 

Schottky and Frankel energies, with that for the Schottky being slightly lower. 

Based on the lowest-energy anion and cation interstitials and vacancies, a 

similar conclusion can be drawn about the dominance of the anion Frenkel pair 

in In2O3. We note that the energies of the intrinsic disorder reactions in SnO2 

are high, indicating that there will be very low levels of thermally generated 

defects. The Frenkel energies in In2O3 are somewhat lower. 
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Table 4.9 Defect formation energy in SnO2. 

Defect  Defect energy per defect (eV)  

P1 Present work Freeman and Catlow [37] Hines et al. [38] 

Anion Frenkel  6.01 6.33 5.54 7.99 

Cation Frenkel  8.34 9.26 9.63  

Schottky  5.06 7.92 5.19 11.32 

Anti-Schottky 8.51 6.69 8.61  

Table 4.10 Defect formation energy in In2O3. 

Defect  Defect energy per defect (eV) 

P1 Present work Walsh et al. [25] 

Anion Frenkel 3.62 3.67 3.19 

Cation Frenkel 7.26 7.00 6.85 

Schottky 4.82 6.16 4.44 

Anti-Schottky 5.34 3.83 4.87 

4.8     Electron and Hole Reaction Energies 

ITO is a solid solution, in which Sn is doped into In2O3 at low concentrations, 

under which the electronic mechanism of charge compensation dominates: 

InIn
× + SnO2(s) → SnIn

∙ +
1

2
In2O3(s) +

1

4
O2(g) + e′ .            (4.11) 

The chemical potential of gaseous oxygen could shift the balance to favour 

formation of interstitial oxygen instead: 

InIn
× + SnO2(s) → SnIn

∙ +
1

2
In2O3(s) +

1

2
Oi

′′ .                          (4.12) 

The calculated energies of reactions (4.11) and (4.12) of -2.24eV and 0.05eV, 

however, clearly show the dominance of the electronic disorder, which will be 

further discussed in the next section (see Table 4.12 below for the relevant 

defect energies). We have assumed O-rich conditions in the above reactions; 

the corresponding energies for O-poor conditions are obtained by shifting the 

energy downwards by 0.86 eV. 

By combining the two reactions, the general reaction for the exchange of an 

electron in the conduction band for an oxygen interstitial is given by: 

e′ +
1

4
O2(g) →

1

2
Oi

′′ .                                           (4.13) 



4.9     Doping and Defect Cluster Formation in In2O3  

80 

Similar defect reactions can be written for both electron and hole carriers, in 

which they are charge compensated by ionic defects either under O-rich 

(cation-poor) or O-poor (cation-rich) conditions, as has been proposed in earlier 

studies on equilibrium between electronic and ionic defects of wide band gap 

materials. [155-157] 

The corresponding processes and their reaction energies are listed in Table 

4.11. In both materials, holes are unstable and tend to form point defects, with 

energies -1.32 eV for In2O3, and -1.90 eV for SnO2 under O-rich conditions. In 

contrast, electrons are stable in both SnO2 and In2O3, which confirms and 

rationalises the n-type nature of these materials corroborating further the 

methodology we have established in our previous studies on wide band-gap 

semiconductors. [42, 158]  

Table 4.11 Reaction Energies (ΔEf in eV) for processes, in which electron and hole carriers 
are charge compensated by ionic defects. 

 O-rich conditions ΔEf O-poor conditions ΔEf 

SnO2     

Holes h∙ +
1

2
OO

× →
1

2
VO

∙∙ +
1

4
O2 −1.90 h∙ +

1

2
OO

× +
1

4
Sn(s) →

1

2
VO

∙∙ +
1

4
SnO2 −3.42 

Electrons e′ +
1

4
O2(g) →

1

2
Oi

′′ 4.50 e′ +
1

4
SnSn

× →
1

4
VSn

′′′′ +
1

4
Sn(s) 5.48 

In2O3     

Holes h∙ +
1

2
OO

× →
1

2
VO

∙∙ +
1

4
O2 −1.32 h∙ +

1

2
OO

× +
1

3
In(s) →

1

2
VO

∙∙ +
1

6
In2O3 −2.95 

Electrons e′ +
1

4
O2(g) →

1

2
Oi

′′ 2.29 e′ +
1

3
InIn

× →
1

3
VIn

′′′ +
1

3
In(s) 5.28 

 

4.9     Doping and Defect Cluster Formation in 

In2O3 

To understand the balance of point defects and charge carriers in ITO in more 

detail, we will first consider the limit of infinite dilution where a Sn ion can 

occupy two cationic lattice sites 8b and 24d, in Wyckoff’s notation, and three 

interstitial sites including 8a, 16c (a lattice O site in the fluorite structure) and 

24d. The corresponding reactions (4.11) and (4.12) for Sn substituting on the 

cationic sites were presented above. Alternatively, we can consider Sn 
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occupying on interstitial sites in In2O3. Our calculation shows that, as with 

intrinsic interstitial defects, interstitial tin has a lower energy in the 16c site. 

These interstitial impurities can be compensated by oxygen interstitials 

according to (assuming O-rich conditions): 

Vi
×(In2O3)+SnO2(s) → Sni

∙∙∙∙ + 2Oi
′′,                               (4.14) 

or compensated by electron carriers: 

Vi
×(In2O3)+SnO2(s) → Sni

∙∙∙∙ + 4e′ + O2 .                          (4.15) 

The energies of these reactions are, however, high at 12.08 eV and 2.94 eV, 

respectively (see Table 4.12 for the relevant defect energies), which should be 

compared with 0.05 and -2.24 eV for the reactions (4.12) and (4.11). We 

therefore confirm that substitutional incorporation of Sn in In2O3 is much more 

favourable than interstitial incorporation, but in both cases compensation by 

electron carriers will dominate. 

A preference for the substitutional site has also been seen experimentally, but, 

intriguingly a study using Mössbauer spectroscopy [24] indicated that tin atoms 

tend to substitute for indium at the b-site rather than the d-site, despite there 

being three times more d than b sites. Our calculations show that the point 

defect energy of SnIn(b)˙ is only 0.01 eV lower than that of SnIn(d)˙. Although the 

energy ordering we obtain agrees with experiment, the difference is so small 

that it cannot be the source of the observed higher b-site occupation. 

Next, we consider formation of defect clusters involving Sn impurities in In2O3, 

which, while possibly affecting the performance of ITO in technological 

applications, may also change the balance in the relative energies of 

substitutional vs interstitial incorporation and, furthermore, the dominant 

compensation mechanism. While our results thus far indicate that electronic 

compensation is most likely, of the possible ionic species that could 

compensate, the most probable for both substitutional and interstitial Sn under 

oxygen rich conditions would be an interstitial oxygen. We recall that the 

interstitial oxygen in In2O3 is tetrahedrally coordinated by four cations, with one 

b-site (¼, ¼, ¼) cation and three d-site (x, 0, ¼) cations, as shown in Figure 

4.2. The next-nearest-neighbour cationic sites around the interstitial oxygen are 
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three b sites and nine d sites. We will consider defect clustering within the first 

and second coordination shells of the interstitial oxygen. 

Table 4.12 Extrinsic defect energies and complex binding energies in In2O3 as well as the 
corresponding Wyckoff’s site. We compare our results for elementary defects with those of 

Warschkow et al. [22] 

Defect Defect energy (eV) Binding energy 

(eV) 

Wyckoff’s site 

Present work Warschkow et al. [22] 

SnIn(b)˙ -39.35 -35.47  8b 

SnIn(d)˙ -39.34 -35.52  24d 

Sni˙˙˙˙ -76.94   8a 

Sni˙˙˙˙ -78.58   16c 

Sni˙˙˙˙ -76.30   24d 

[OiSni]˙˙ -98.21  -3.80  

[2OiSni] -116.82  -6.59  

[3OiSni] '' -134.32  -8.27  

Figure 4.2 Interstitial oxygen in In2O3. In ions are represented by the larger purple spheres 
while O ions are represented by the smaller red spheres. 

The binding energy of a cluster is calculated as the energy of the cluster less 

the energies of the isolated species comprising that cluster. The resulting 

defect binding energies of clusters involving Sn and O interstitial complexes, 

including up to three interstitial O, are given in Table 4.12, while those involving 
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substitutional Sn, with a ratio of up to four Sn to one O are listed in Table 4.13. 

For each cluster type of different Sn:O stoichiometry, only the most stable 

combinations are given. The full range of calculation results can be found in 

Appendix A. 

 Following the notation used by Warschkow et al. [22], we use the symbol “•”, 

to represent the first cationic shell and “-” for the second cationic shell. From 

the results in Table 4.12, we see that forming clusters between interstitial Sn 

and O lowers the energy significantly. We note, however, that, combining the 

energies of reactions (4.15) and twice that of (4.13) and the binding energy of 

the complex involving one interstitial O, the formation energy of the double 

donor complex is 3.71 eV, a considerable reduction over that of reaction (4.14), 

which compensates the interstitial Sn by two non-interacting interstitial O, but 

still much higher than the energies of the reactions involving substitutional Sn 

formation. Clusters involving more O interstitials result in even higher formation 

energies, indicating that, while cluster formation does lower the energy for the 

incorporation of interstitial Sn, substitutional Sn will remain the lower energy 

solution mode. 

For clusters of nearest-neighbour SnIn˙ and Oi'', the results show that 

substitutional tin has a lower energy in the d cation site over the b site. When 

substituting the same number of indium ions, the binding energies of clusters 

which contain SnIn(d)˙ are at least 0.4 eV lower than the energies of clusters 

only including SnIn(b)˙. Clustering of Sn proves to be stabilising from one to four 

substitutional Sn with binding energies of -1.54, -1.32, -1.10 and -0.78 eV per 

Sn ion. 

After taking into account the next-nearest-neighbour shell, we find a much 

lower  energy for the tin substituting for indium at d sites within the first 

coordination shell of the O interstitial forming (SnIn(d) •Oi) ', (2SnIn(d) •Oi) × and 

(3SnIn(d) •Oi)˙. As the latter proves to be most energetically favoured, we 

conclude that single electron donor complexes will donate electron charge 

carriers under thermodynamic equilibrium with up to three impurities per one 

electron. Therefore, a strategy to make doping more effective would require 

preventing Sn ions from clustering under oxygen poor conditions. Our 
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prediction of the Sn dominant occupation of d sites on the cationic sublattice 

corroborates the report of Warschkow et al. [22], who also found a strong d-

site preference; but as noted above it disagrees with the experimental 

Mossbauer data. 

Considering defect formation energies of complexes between substitutional Sn 

and interstitial O, we should account for all involved reactants as shown in 

equations (4.16) to (4.19): 

 InIn
× +

1

4
O2(g) + e′ + SnO2(s) → [SnIn

∙ Oi
′′]′ +

1

2
In2O3(s) ,             (4.16) 

 InIn
× + SnO2(s) →

1

2
[2SnIn

∙ Oi
′′]× +

1

2
In2O3(s) ,                                     (4.17) 

 InIn
× + SnO2(s) →

1

3
[3SnIn

∙ Oi
′′]∙ +

1

2
In2O3(s) +

1

12
O2(g) +

1

3
e′ ,      (4.18) 

 InIn
× + SnO2(s) →

1

4
[4SnIn

∙ Oi
′′]∙∙ +

1

2
In2O3(s) +

1

8
O2(g) +

1

2
e′ .       (4.19) 

The calculated reaction energies allow us to compare the stability of Sn in 

different complexes with the elementary substitutional site. We obtain 1.14, -

0.69, -1.80 and -1.87 eV for the respective reactions, which is, however, still 

above the SnIn formation energy of -2.24 eV. From these observations, we 

conclude that complexation of Sn with any available interstitial O will 

necessarily occur in Sn doped In2O3 under thermodynamic equilibrium at finite 

levels of doping while the equilibrium, while shift towards electrons rather than 

oxygen interstitials as a charge compensating species. 
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Table 4.13 SnIn and Oi complex binding energies in In2O3. We compare our results with those 
of Warschkow et al. [22] 

Sn:Oi 

ratio 

Defect cluster  Complex binding energy (eV) 

P1 Present work Warschkow 

et al. [22]  

1:1 

[SnIn•Oi]' 

(SnIn(d)•Oi)' -0.80 -1.54 -1.29 

(SnIn(b)•Oi)' -0.36 -1.19 -0.89 

(SnIn(b)-Oi)' -0.95 -0.93 -1.16 

(SnIn(d)-Oi)' -0.87 -0.85 -1.10 

2:1 

[2SnIn•Oi]× 

(2SnIn(d) •Oi)× -1.23 -2.64 -1.91 

(SnIn(b) •SnIn(d) •Oi)× -0.71 -2.26 -1.54 

(SnIn(b) -SnIn(d) •Oi)× -1.46 -2.23 -2.09 

(SnIn(d) -SnIn(d) •Oi)× -1.39 -2.15 -2.05 

(SnIn(b) -SnIn(b) •Oi)× -0.94 -1.74 -1.54 

(SnIn(d) -SnIn(b) •Oi)× -0.94 -1.73 -1.63 

(2SnIn(b) -Oi)× -1.69 -1.66 -2.08 

(SnIn(b) •SnIn(d) -Oi)× -1.61 -1.58 -2.00 

(2SnIn(d) -Oi)× -1.49 -1.50 -1.97 

3:1 

[3SnIn•Oi]˙ 

(3SnIn(d)•Oi)˙ -1.21 -3.31 -1.86 

(SnIn(b)•2SnIn(d) •Oi)˙ -0.67 -2.90 -1.49 

(SnIn(d) -2SnIn(d) •Oi)˙ -1.43 -2.89 -2.14 

(2SnIn(b) -SnIn(d) •Oi)˙ -1.91 -2.55 -2.35 

(SnIn(b)•SnIn(d)-SnIn(d) •Oi)˙ -1.81 -2.44 -2.31 

(2SnIn(d) -SnIn(d) • Oi)˙ -1.63 -2.37 -2.24 

(3SnIn(b) -Oi)˙ -2.20 -2.18 -2.55 

(2SnIn(b) •SnIn(d) -Oi)˙ -1.91 -2.01 -2.43 

(2SnIn(d) -SnIn(b) • Oi)˙ -1.29 -1.96 -1.88 

(SnIn(b) •2SnIn(d) -Oi)˙ -1.88 -1.85 -2.36 

(3SnIn(d) -Oi)˙ -1.88 -1.83 -2.33 

4:1 

[4SnIn•Oi] ˙˙ 

(SnIn(b)•3SnIn(d) •Oi)˙˙  -0.25 -3.12 -0.88 
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4.10     Conclusions 

In this Chapter, a new set of transferable pairwise interatomic potentials for 

SnO2 and In2O3 have been presented. The new potentials offer an 

improvement over the previously available models, in particular for the lattice 

and defect properties, and give defect formation energies comparable with 

those obtained using DFT. Using the newly developed potentials, we have 

investigated isolated intrinsic defects along with electron and hole formation; 

Sn impurities in In2O3 and effects of impurity clustering, and their 

thermodynamic stability. Our calculations show a significant improvement, 

compared to older parameterisations, of lattice energies and oxygen vacancy 

formation energies of both SnO2 and In2O3 that are in acceptable agreement 

with experiment and available QM/MM results [42] . The study of intrinsic 

defects reveals a lower energy for the formation of anion Frenkel pairs in both 

binary oxide materials, which, however, have higher energies than the 

formation of positively charged oxygen vacancies compensated by electrons 

and with oxygen loss. We show unambiguously the dominant electronic 

compensation mechanism stabilising Sn impurities at cation substitutional sites 

in In2O3. The study of impurity clustering with interstitial oxygen reveals a 

progressive stabilisation of Sn on cluster growth, which points to a possibly 

increasing role of the ionic charge compensation with the level of doping in 

In2O3. 

A summary of the work reported in this chapter has been published [159] and 

further studies of defects in In2O3 using quantum mechanical methods are 

reported in Chapter 7. 

  



Chapter 5 

Intrinsic point defects in ZnO 

5.1     Introduction 

As discussed in Chapter 1, ZnO is a wide-bandgap semiconductor with many 

applications including light-emitting diodes [160, 161], solar cells [162], 

piezoelectric devices [163] and thin-film transistors [164]. Native defects play a 

key role in the electrical and optical properties of ZnO, such as controlling 

doping, luminescence efficiency and minority carrier lifetime. Therefore, 

understanding the intrinsic point defects in ZnO is important for improving 

device applications. 

The unintentional n-type conductivity in ZnO has been traditionally attributed to 

the presence of native donor defects, such as the O vacancy (VO) and Zn 

interstitial (Zni). [50, 54, 165] However, most of these arguments were based 

on indirect evidence (e.g. that the electrical conductivity increases as the 

oxygen partial pressure decreases). Computational studies, however, indicate 

that the oxygen vacancy is a deep donor. [56-59, 62, 67, 166-169] Native 

acceptors such as the zinc vacancy (VZn) and oxygen interstitial (Oi) are 

considered to be sources of electrical compensation [170] and luminescence. 

[97, 171, 172] 

In this Chapter, Intrinsic point defects in ZnO are investigated using the hybrid 

QM/MM embedded cluster approach. The atomic and electronic structure, 

formation and ionisation energies of the point defects are determined from local 

minima on the potential energy landscape, which allows us to predict 

concentrations of point defects and carriers for a range of physically and 
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chemically relevant temperatures and oxygen partial pressures under 

thermodynamic equilibrium. 

In the following section we provide methodological and technical details of the 

calculations. 

5.2     Calculation Settings 

The hybrid QM/MM embedded cluster technique (Chapter 3.2.5) is employed 

to calculate bulk and defect energies in ZnO. In our QM/MM model, the inner 

cluster of 86 atoms of wurtzite ZnO containing the central defect and its 

surrounding atoms is treated with a QM method. We have employed three 

exchange and correlation functionals: the BB1k functional [117], which has 

been fitted to both thermochemical and kinetic data including 42% exact 

exchange; the PBE0 functional [118], which is frequently used in plane-wave 

basis calculations including 25% exact exchange; and the B97-2 functional 

[119], which has been fitted to a broad range of thermochemical date with 21% 

exact exchange. The outer region which contains 10460 atoms is treated with 

the MM method using interatomic potentials [120]. The specially designed local 

ECP taken from Buckeridge et al. [42] is used on cation sites in the interface 

between the QM and MM regions, as given in Table 3.1. 

The formation energies of defects are determined by the following reactions: 

Znzn
× → VZn

𝑞− + Zn(s) + 𝑞h+ ,                                                             (5.1) 

ZnO(s) → Oi
𝑞− + Zn(s) + 𝑞h+ ,                                                         (5.2) 

Zn(s) → Zni
𝑞+ + 𝑞e− ,                                                                         (5.3) 

OO
0 + Zn(s) → VO

𝑞+ + ZnO(s) + 𝑞e− ,                                               (5.4) 

for zinc rich/oxygen poor conditions, and 

Znzn
× +

1

2
O2(g) → VZn

𝑞− + ZnO(s) + 𝑞h+ ,                                        (5.5) 

1

2
O2(g) → Oi

𝑞− + 𝑞h+ ,                                                                       (5.6) 
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ZnO(s) → Zni
𝑞+ +

1

2
O2(g) + 𝑞e− ,                                                    (5.7) 

OO
0 → VO

𝑞+ +
1

2
O2(g) + 𝑞e− ,                                                             (5.8) 

for zinc poor/oxygen rich conditions.  

The formation energies of Schottky defects and its their counterparts can be 

determined from: 

Znzn
× +OO

0 → VZn + VO + ZnO(s) .                                                     (5.9) 

The chemical potentials of O2 molecular and single Zn atoms are calculated 

using GAMESS-UK with the corresponding basis set and density functional; 

the standard state energy of ZnO is derived from the experimental heat of 

formation [49]. 
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5.3     Ionization potential 

The calculated ionization potentials (IPs) which are the energy difference 

between the positively charged cluster and the neutral one and are given in 

Table 5.1. 

Table 5.1 Calculated ionization potentials (eV) of ZnO. 

Functional IPs 

BB1k 8.26 

PBE0 7.64 

B97-2 7.32 

Previous calculations 7.0-8.5 [81, 173-177] 

Experiment 6.9-7.8[150, 178, 179] 

 

The bulk ionization potential can be higher or lower than the surface IP but 

would be expected to be close for well-prepared / equilibrated experimental 

samples, subject to the surface band bending. Therefore, the agreement 

between our calculations and others in the literature and experiment is good. 

Of the three functionals used, BB1k results in the highest IPs, then PBE0, 

followed by B97-2, a trend which reflects the different accounts of electron 

localization in the functionals. The large calculated values of the IP position the 

VB deep below the vacuum level. Therefore, the hole formation energy is high, 

while the formation energy of the positively charged defect (e.g., oxygen 

vacancies) will be low when the Fermi level close to the VBM, which explains 

the observed difficulty in p-type doping ZnO, as discussed in detail  in 

references [155] and [157]. 
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5.4     Compact defect states and structures 

This Chapter focus on the four main intrinsic point defects of ZnO in their main 

charge states: (1) zinc interstitials, Zni, (2) oxygen vacancies, VO, (3) zinc 

vacancies, VZn and (4) oxygen interstitials, Oi. 

The electronic states and related structures of defects are discussed. 

Considering the perfect lattice as a reference, a point defect is characterised 

by its charge and spin. Both variables (or observables) are parameters in our 

calculations and are controlled by the nuclear charges and the number of 

electrons in the QM region. The QM software of our choice (GAMESS-UK) 

does not allow for relaxation of these parameters in contrast to many periodic 

QM codes. Following conventional terminology of semiconductor physics, 

defects that can donate electrons to the conduction band of the host material 

are called donors, and those that can accept electrons from, or donate holes to 

the valence band are called acceptors, respectively. To determine the ability of 

defects to donate or accept electrons, we calculate their ionisation potentials 

or electron affinities with respect to the conduction or valence bands, and refer 

to them as donor or accepter levels. We consider that a defect state is stable, 

if its donor and acceptor levels are not in the conduction and valence bands, 

respectively, otherwise, the defect would be in a resonance state and 

automatically ionise. 

In this section, we focus on traditional compact states of the defects, that are 

often termed deep (level) states. This account is complemented by the results 

and discussion of diffuse (so called shallow) defect states in section 5.5.  

5.4.1     Zn interstitial Zni 

The Zn interstitial is expected to be more stable at the octahedral site than at 

the tetrahedral site, as discussed in previous studies by Janotti and Van de 

Walle [58] and Sokol et al. [81]. Hence, we here only concentrate on the Zn 

interstitial at the octahedral site. 

The +2 state is below the VBM by 1.37-1.71 eV which can attract electrons (In 

Figure 5.1, black lines denote vertical electron ionization to the conduction band 
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minimum (CBM), red lines are hole ionization to the valence band maximum 

(VBM) – see section 3.4.3). The neutral interstitial has a lower coordination by 

electron rich O2- ions and forms a trigonal pyramid with the closest Zni–O 

separation distance of 1.99 Å and the two other distances of 2.01 and 2.02 Å 

(BB1k structures shown in Figure 5.2(a)). The ground state of the neutral 

interstitial is a singlet, for which the formation energy is 1.15 eV (B97-2), 1.14 

eV (PBE0) or 1.13 eV (BB1k) lower than triplet. On ionisation this nearly 

symmetric configuration is broken, with the Zn+ ion moving towards one of the 

lattice oxygens (2.01, 2.06 and 2.03 Å). The next nearest O ions move now 

towards the interstitial Zn (by 0.30, 0.32, and 0.41 Å), but do not approach close 

enough to coordinate to this ion directly by a dative bond (Figure 5.2(b)). Losing 

the second electron results in the next nearest O ions moving towards the 

interstitial Zn by 0.08 Å (Figure 5.2(c)). 

 

Figure 5.1 Optical energy levels of Zni in ZnO with respect to band edges, calculated using 
the BB1k, PBE0 and B97-2 density functional. (+2 singlet, +1 doublet, 0 singlet) 

 

Figure 5.2 Zn interstitial at octahedral site in charge state 0 (a), +1 (b) and +2 (c) in ZnO. 
(BB1k structures) 
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5.4.2     O vacancy VO 

The +2 state of the O vacancy formed by removing an O2- anion leaves no 

electrons remaining in the vacancy site. The positive Madelung potential of the 

vacancy therefore pushes occupied electronic levels around the defect below 

the VBM by ~1.42-1.44 eV as shown in Figure 5.3. This positively charged 

vacancy can trap an electron which would result in the formation of an F+ centre 

with the defect level in the band gap. The neutral state of the O vacancy is a 

conventional F-centre which has been identified in halide and oxide systems, 

where the Madelung potential trapped electrons at the anion vacancy sites. 

[127, 180]. 

For the neutral charge state, two electrons are trapped at the vacancy site, the 

four nearest Zn neighbours are displaced inward by 0.20-0.27 Å (Figure 5.4(a)). 

After removing two electrons form the vacancy, the four Zn atoms strongly relax 

outward by 0.21-0.23 Å as shown in Figure 5.4(c) (BB1k structures). 

 

Figure 5.3 Optical energy levels of VO in ZnO with respect to band edges, calculated using 
the BB1k, PBE0 and B97-2 density functional. (+2 singlet, +1 doublet, 0 singlet, 1- doublet) 

 

Figure 5.4 O vacancy in neutral (a), +1 (b) and +2 (c) charge states in ZnO. The spin density 
of the +1 state is indicated by isosurfaces 0.009, 0.005, 0.0025 au highlighted in yellow. 

(BB1k structures) 
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5.4.3     Zn vacancy VZn 

The Zn vacancy is stable in five charge states: -2, -1, 0, +1 and +2. A missing 

Zn2+ ion leaves the -2 state of the Zn vacancy with no electrons remaining in 

the vacant site because the Madelung potential destabilises the electron states 

of cation vacancies. In contrast to the F-centre, the neighbouring O ions 

strongly repel each other and relax outwards. 

In the -2 state, the two electrons are contributed by the original Zn ion to the 

VB and all nearest neighbour O ions retain their charge state -2. The four 

nearest neighbour O2- ions which belong to the same hexagonal ZnO sheets 

as the vacancy relaxed outward (one along the c-axis by 0.43 Å, and three in 

the ab plain by 0.04, 0.09 and 0.09 Å). 

In the -1 state, one of the four neighbour O ions binds a hole, forming a spin 

doublet. On ionisation of the -2 state, the hole localised on one of the oxygens 

of the hexagonal sheet (as shown in Figure 5.6) relaxed more than the other 

oxygen ions. 

For the neutral charge state, two holes are created on the nearest neighbour O 

ions. These two holes can couple to total spin 0, in a diamagnetic (closed-shell 

singlet) or antiferromagnetic (open-shell singlet) configuration; or a 

ferromagnetic coupling (triplet state) is realised with spin of 1 [81]. The 

formation energy (see section 3.4.2) of the relaxed open-shell singlet state is 

6.43 eV (B97-2), 6.96 eV (PBE0) and 7.09 eV (BB1k), which is 0.09 eV, 0.12 

eV and 0.005 eV higher than the ground state triplet. The spin density in the 

triplet state is predominantly localised on two oxygen ions from the same 

hexagonal sheet (as shown in Figure 5.4(a)) which also relaxed more than the 

ones without the holes. 

All the charge states mentioned above introduce donor energy levels in the 

band gap (Figure 5.5). The energy level of the neutral charge state is closer to 

the VBM, losing one more electron will result in the energy level of the +1 

charge state, which is 0.55 eV (B97-2) or 0.55 eV (PBE0) below VBM. 
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Figure 5.5 Optical energy levels of VZn in ZnO with respect to band edges, calculated using 
the BB1k, PBE0 and B97-2 density functional. (-2 singlet, -1 doublet,0 triplet, +1 doublet, +2 

singlet) 

 

Figure 5.6 Zn vacancy in 0 (a. triplet, b. singlet) -1 (c), and -2 (d) charge states in ZnO. The 
spin densities of the 0 and -1 state are indicated by isosurfaces of increasing transparency 
with three levels of ±0.1, 0.05, 0.025 eBohr-3 highlighted in yellow (+) and blue (-), we will 

adopt the same visualisation scheme in all following figures. (BB1k structures) 
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5.4.4     O interstitial Oi 

Two possible interstitial positions in ZnO are the octahedral and tetrahedral 

sites. We found that, instead of occupying either, the ground state configuration 

of the neutral oxygen interstitial is the split interstitial, which agrees with 

previous DFT calculations. [57, 58] 

The octahedral oxygen interstitial is stable in three charge states: -2, -1, and 0. 

In the -2 state, octahedral oxygen interstitial forms a trigonal pyramid structure 

as shown in Figure 5.8. A neutral oxygen interstitial in the triplet state at the 

octahedral site remain the trigonal pyramidal structure. After being excited in a 

singlet state, the atom relaxes into the split interstitial position as shown in 

Figure 5.9 (named O split interstitial 1). The ground state electronic 

configuration of the neutral split oxygen interstitial is a singlet, while the neutral 

octahedral oxygen interstitial is a triplet. The neutral oxygen interstitial at the 

tetrahedral site also relaxes into the split interstitial position as shown in Figure 

5.10 (named O split interstitial 2). 

The O split interstitial defect, also referred to as the O dumbbell interstitial [61, 

181], adopts three possible structures (1, 2 and 3) as shown in Figure 5.9, 

Figure 5.10 and Figure 5.11. 

In the neutral O split interstitial 1 configuration which is relaxed from the 

octahedral configuration (Figure 5.9), the calculated O-O distance is 1.48 Å, 

suggesting the formation of an O-O chemical bond, that is expected for a 

peroxy-species. Two of the nearest Zn become 5-coordinated and their 

distances to the split O are 0.14 and 0.16 Å larger than the equilibrium Zn-O 

distance in pure ZnO. Electron trapping at the split interstitial site causes the 

distance between the two split oxygens to increase to 2.13 Å and the two 5-

coordinated Zn to O increase by 0.06 and 0.08 Å compared to the equilibrium 

Zn-O distance. The O-O distance reduces to 1.32 Å when trapping a hole. 

The neutral O split interstitial 2 configuration (Figure 5.10) is relaxed from the 

tetrahedral interstitial, with the distance between the two split oxygens of 1.43 

Å. The distances from the four neighbour Zn ions to the split O are reduced by 

0.03 Å compared to their normal values. In the + charge state, the O-O distance 
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is 1.30 Å, the Zn-O distances are 0.06 Å larger than their normal values. In the 

-1 charge state, the distance between the two split oxygens increases to 2.15 

Å. 

The neutral O split interstitial 3 configuration (Figure 5.11) can be viewed as a 

rotated configuration of the split interstitial 2 configuration, with the distance 

between the two split oxygens of 1.44 Å. The split oxygen is coordinated to two 

Zn ions with the distances reduced by 0.02 and 0.03 Å compared to their 

normal values. In the + charge state, the O-O distance is 1.31 Å, the four Zn-O 

distances are 0.07, 0.07, 0.10 and 0.13 Å large than their normal values. In the 

-1 charge state, the distance between the two split oxygens increases to 2.14 

Å. 
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Figure 5.7 Optical energy levels of Oi in ZnO with respect to band edges, calculated using the 
BB1k, PBE0 and B97-2 density functional. 
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Figure 5.8 Oxygen interstitial at octahedral site in 0 (a) -1 (b), and -2 (c) charge states in ZnO. 
The spin densities of the 0 and -1 state are indicated by isosurfaces 0.1, 0.05, 0.025 au 

highlighted in yellow. (BB1k structures) 

  

Figure 5.9 Oxygen split interstitial 1 in 0 (a) -1 (b), and +1 (c) charge states in ZnO. The spin 
densities of the -1 and +1 state are indicated by isosurfaces 0.1, 0.05, 0.025 au highlighted in 

yellow. (BB1k structures) 

 

Figure 5.10 Oxygen split interstitial 2 in 0 (a) -1 (b), and +1 (c) charge states in ZnO. (BB1k 
structures) 
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Figure 5.11 Oxygen split interstitial 3 in 0 (a) -1 (b), and +1 (c) charge states in ZnO. (BB1k 
structures) 

5.5     Diffuse defect states 

To calculate the binding energies of electrons or holes using equation (3.30) - 

(3.32) in section 3.4.1, we take the computed value of 𝜀 (9.77) for ZnO from our 

interatomic forcefields, and experimental value of 𝑚∗ : 𝑚𝑒
∗ = 0.22𝑚𝑒  for 

electrons [42, 182, 183], and 𝑚ℎ
∗ = 1.29𝑚𝑒 for holes [182]. The binding energy 

for one or two diffuse electrons (to CBM) or holes (to VBM) are summarised in 

Table 5.2.  

Table 5.1 The binding energies (in eV) of the diffuse electrons and holes in ZnO. 

electrons Binding energy (eV) holes Binding energy (eV) 

e
- 

m*(H) for +1 -0.032 h
+ 

m*(H) for -1 -0.184 

e
- 

m*(H) for +2 -0.127 h
+ 

m*(H) for -2 -0.736 

2e
- 

m*(He) for +2 -0.185 2h
+ 

m*(He) for -2 -1.068 

2e
- 

m*(Hydride) for +1 -0.034 2 h
+ 

m*(Hydride) for -1 -0.194 

 

The calculated energies of compact and diffuse defect states (see section 3.4.1) 

for each defect and density functional are given in Table 5.3 to Table 5.6. The 

energies (in eV) are given for the Fermi energy at the CBM with the electron in 

the CB and the hole in the VB. 
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Table 5.2 The energies (in eV) of the compact and diffuse state of Zni in ZnO. 

Charge state  defect Functional 

BB1K B97-2 PBE0 

0 compact Zn
0 

i  4.63 4.67 3.92 

diffuse Zn
+ 

i + e
- 

m*(H) 2.93 4.14 3.38 

Zn
2+

 i + 2e
- 

m*(He) 1.37 3.67 2.86 

1+ compact Zn
+ 

i  2.96 4.17 3.41 

diffuse Zn
2+

 i + e
- 

m*(H) 1.43 3.73 2.92 

2+ compact Zn
2+

 i  1.56 3.05 3.86 

diffuse Zn
+ 

i + h
+ 

m*(H) 6.21 7.43 6.67 

Table 5.3 The Energies (in eV) of the compact and diffuse state of VO in ZnO. 

Charge state  defect Functional 

BB1K B97-2 PBE0 

0 compact V
0 

O 0.16 -0.13 -0.09 

diffuse V
+ 

O+ e
- 

m*(H) 0.88 1.16 1.27 

V
2+

O+ 2e
- 

m*(He) 0.89 1.87 1.94 

1+ compact V
+ 

O 0.91 1.19 1.30 

diffuse V
2+

O+ e
- 

m*(H) 0.94 1.93 2.00 

2+ compact V
2+

O  1.07 2.05 2.12 

diffuse V
+ 

O+ h
+ 

m*(H) 4.17 4.44 4.55 

1- compact V
- 

O 2.62 4.79 4.87 

diffuse V
+ 

O+ 2e
- 

m* (Hydride) 0.88 1.16 1.26 

Table 5.4 The Energies (in eV) of the compact and diffuse state of VZn in ZnO. 

Charge state  defect Functional 

BB1K B97-2 PBE0 

0 compact V
0 

Zn 7.09 6.35 6.94 

diffuse V
- 

Zn+ h
+ 

m*(H) 9.30 7.82 8.54 

V
2-

Zn+ 2h
+ 

m*(He) 10.91 8.66 9.48 

1- compact V
- 

Zn 6.05 4.56 5.28 

 V
2-

Zn+ h
+ 

m*(H) 7.80 5.55 6.38 

2- compact V
2-

Zn 5.10 2.85 3.68 

diffuse V
- 

Zn+ e
- 

m*(H) 6.02 4.53 5.25 
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Table 5.5 The Energies (in eV) of the compact and diffuse state of Oi in ZnO. 

Charge state  defect Functional 

BB1K B97-2 PBE0 

0 compact O
0 

i (oct) 7.62 7.74 7.58 

diffuse O
- 

i (oct)+ h
+ 

m*(H) 10.00 9.65 9.53 

O
2-

 i (oct)+ 2h
+ 

m*(He) 12.53 11.31 11.45 

0 compact O
0 

i (split 1) 5.72 5.98 5.69 

diffuse O
- 

i (split 1)+ h
+ 

m*(H) 9.75 9.34 9.22 

O
+ 

i (split 1)+ e
- 

m*(H) 6.95 7.88 7.65 

0 compact O
0 

i (split 2) 5.68 5.75 5.49 

diffuse O
- 

i (split 2)+ h
+ 

m*(H) 9.66 9.61 8.92 

O
+ 

i (split 2)+ e
- 

m*(H) 6.97 7.68 7.31 

0 compact O
0 

i (split 3) 5.79 5.86 5.72 

diffuse O
- 

i (split 3)+ h
+ 

m*(H) 9.62 9.20 8.93 

O
+ 

i (split 3)+ e
- 

m*(H) 7.03 7.40 7.79 

1- compact O
- 

i (oct) 6.75 6.39 6.28 

diffuse O
2-

 i (oct)+ h
+ 

m*(H) 9.43 8.20 8.34 

2- compact O
2-

 i (oct) 6.73 5.50 5.64 

diffuse O
- 

i (oct)+e
- 

m*(H) 6.71 6.36 6.25 
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5.6     Ionization energies as defect (transition) 

levels 

Understanding the vertical ionization potentials and electron affinities after 

knowing the defect formation energies of different oxidation states (charge 

states) and the transition levels between different charge states, can provide 

information on many defect processes that play a key role in light absorption 

and luminescence, and charge trapping. By comparing with the experimentally 

observed photoluminescence peaks and zero phonon lines (ZPL), the sources 

of defects that generate different optical signals can be identified, and the 

experimentally observed luminescence properties can be explained. 

Configurational coordinate diagrams (CC diagram, see section 3.4.3) are used 

to analyse the optical properties of the defects. In this section, the calculated 

ionisation energies for the full range of point defects and charge states of ZnO 

using the BB1k functional, which is expected to provide a better account of 

electron localisation and more accurate ionisation energies, are summarised in 

Table 5.7 (compact states) and Table 5.8 (diffuse states). The B97-2 and PBE0 

results are given in Table 5.9 for comparison. The resulting CC diagrams are 

given in section 5.7 to analyse the defect processes. 
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Table 5.6 Summary of calculated ionization energies for the full range of point defects and 
charge states in ZnO by BB1k (compact states). 

Summary of calculated ionisation energies 

Defect states BB1k 

EPL Eab ZPL Erel Erel* 

VZn (-2|-1)e -0.61 2.20 0.95 1.56 1.25 

VZn (-1|0)e 0.08 2.13 1.04 0.96 1.10 

VZn (0|+1)e 0.55 2.57 1.58 1.04 0.99 

  VZn (-1|-2)h 1.24 4.05 2.49 1.25 1.56 

VZn (0|-1)h 1.30 3.36 2.40 1.10 0.96 

VZn (+1|0)h 0.87 2.89 1.85 0.99 1.04 

VO (+1|+2)e -1.12 2.10 0.16 1.28 1.94 

VO (0|+1)e -0.48 2.21 0.75 1.23 1.46 

VO (-1|0)e -3.09 -2.20 -2.47 0.63 0.26 

VO (+2|+1)h 1.33 4.56 3.28 1.94 1.28 

VO (+1|0)h 1.23 3.92 2.68 1.46 1.23 

VO (0|-1)h 5.64 6.53 5.90 0.26 0.63 

Oi (-2|-1)e -2.03 1.37 0.02 2.05 1.35 

Oi (-1|0)e -0.39 1.71 0.88 1.27 0.83 

Oi (0|+1)e 0.94 2.61 1.71 0.77 0.90 

Oi (-1|-2)h 2.07 5.47 3.42 1.35 2.05 

Oi (0|-1)h 1.73 3.83 2.56 0.83 1.27 

Oi (+1|0)h 0.82 2.50 1.73 0.90 0.77 

Oi-split-1 (-1|0)e -2.96 1.96 -0.77 2.19 2.73 

Oi-split-1 (0|+1)e -0.21 2.62 1.26 1.47 1.37 

Oi-split-1 (0|-1)h 1.48 6.39 4.21 2.73 2.19 

Oi-split-1 (+1|0)h 0.81 3.65 2.18 1.37 1.47 

Oi-split-2 (-1|0)e -2.96  2.45  -0.73  2.23  3.18  

Oi-split-2 (0|+1)e -0.05  2.60  1.32  1.37  1.28  

Oi-split-2 (0|-1)h 0.99  6.40  4.17  3.18  2.23  

Oi-split-2 (+1|0)h 0.83  3.48  2.12  1.28  1.37  

Oi-split-3 (-1|0)e -2.99  2.45  -0.58  2.41  3.02  

Oi-split-3 (0|+1)e 0.03  2.75  1.27  1.24  1.48  

Oi-split-3 (0|-1)h 0.99  6.42  4.01  3.02  2.41  

Oi-split-3 (+1|0)h 0.68  3.41  2.16  1.48  1.24  

Zni (+1|+2)e -2.33 -0.80 -1.40 0.93 0.60 

Zni (0|+1)e -2.15 -1.09 -1.67 1.79 0.58 

Zni (+2|+1)h 4.23 5.77 4.84 0.60 0.93 

Zni (+1|0)h 4.53 5.58 5.11 0.58 1.79 
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VZnO (+1|+2)e 0.67  3.16  2.16  1.49  1.00  

VZnO (0|+1)e 0.36  2.45  1.49  1.14  0.95  

VZnO (-1|0)e -2.08  0.81  -0.85  1.23  1.66  

VZnO (-2|-1)e -3.81  -2.34  -2.97  0.84  0.64  

  VZnO (+2|+1)h 0.27  2.77  1.27  1.00  1.49  

VZnO (+1|0)h 0.99  3.08  1.94  0.95  1.14  

VZnO (0|-1)h 2.62  5.52  4.29  1.66  1.23  

VZnO (-1|-2)h 5.78  7.25  6.41  0.64  0.84  
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Table 5.7 Summary of calculated ionization energies for the full range of point defects and 
charge states in ZnO by BB1k (diffuse states). 

Summary of calculated ionisation energies 

Defect states BB1k 

EPL Eab ZPL Erel Erel* 

VZn (-2|-1)e
- 

m* -0.64 2.20 0.91 1.56 1.28 

  VZn (-1|-2) h
+ 

m* 1.05 4.05 2.31 1.25 1.74 

VZn (0|-1) h
+ 

m* 1.12 3.36 2.22 1.10 1.15 

VO (+1|+2) e
- 

m* -1.25 2.10 0.03 1.28 2.07 

VO (0|+1) e
- 

m* -0.51 2.21 0.72 1.23 1.49 

VO (+2|+1) h
+ 

m* 1.15 4.56 3.09 1.94 1.47 

VO (+1|0) h
+ 

m* 1.04 3.92 2.50 1.46 1.42 

Oi (-2|-1) e
- 

m* -2.07 1.37 -0.01 2.05 1.38 

Oi (-1|-2) h
+ 

m* 1.89 5.47 3.23 1.35 2.24 

Oi (0|-1) h
+ 

m* 1.55 3.83 2.37 0.83 1.45 

Oi-split-1 (0|+1) e
- 

m* -0.24 2.62 1.22 1.47 1.40 

Oi-split-1 (0|-1) h
+ 

m* 1.30 6.39 4.02 2.73 2.37 

Oi-split-2 (0|+1) e
- 

m* -0.08 2.60 1.29 1.37 1.31 

Oi-split-2 (0|-1) h
+ 

m* 0.80 6.40 3.98 3.18 2.41 

Oi-split-3 (0|+1) e
- 

m* 0.00 2.75 1.24 1.24 1.51 

Oi-split-3 (0|-1) h
+ 

m* 0.81 6.42 3.83 3.02 2.60 

.Zni (+1|+2) e
- 

m* -2.46 -0.80 -1.53 0.93 0.73 

Zni (0|+1) e
- 

m* -2.18 -1.09 -1.70 1.79 0.61 

VZnO (+1|+2) e
- 

m* 0.64  3.16  2.13 1.49  1.03 

VZnO (0|+1) e
- 

m* 0.33  2.45  1.46 1.14  0.99 

  VZnO (+2|+1) h
+ 

m* 0.09 2.77  1.09 1.00  1.67 

VZnO (+1|0) h
+ 

m* 0.80 3.08  1.76 0.95  1.32 
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Table 5.8 Summary of calculated ionization energies for the full range of point defects and 

charge states in ZnO by B97-2 and PBE0 (compact states). 

Summary of calculated ionisation energies 

Defect 

states 

B97-2 PBE0 

EPL Eab ZPL Erel Erel* EPL Eab ZPL Erel Erel* 

           

VZn (-2|-1)e 0.47 2.54 1.71 1.24 0.83 0.15 2.56 1.61 1.46 0.96 

VZn (-1|0)e 1.22 2.63 1.78 0.57 0.85 0.92 2.60 1.66 0.74 0.93 

VZn (0|+1)e 1.73 2.98 2.33 0.61 0.65 1.49 2.94 2.12 0.63 0.83 

VZn (-1|-2)h 0.90 2.97 1.73 0.83 1.24 0.88 3.29 1.83 0.96 1.46 

VZn (0|-1)h 0.81 2.22 1.65 0.85 0.57 0.84 2.52 1.78 0.93 0.74 

VZn (+1|0)h 0.45 1.71 1.10 0.65 0.61 0.49 1.95 1.32 0.83 0.63 

           

VO (+2|+3)e 2.26 4.86 3.59 1.33 1.27 2.07 4.88 3.54 1.46 1.35 

VO (+1|+2)e -0.38 2.69 0.86 1.24 1.82 -0.38 2.70 0.83 1.21 1.87 

VO (0|+1)e -1.83 2.68 1.32 3.15 1.37 -1.92 2.74 1.38 3.30 1.36 

VO (-1|0)e -2.06 -1.28 -1.48 0.58 0.20 -2.12 -1.35 -1.52 0.60 0.17 

VO (+3|+2)h -1.42 1.17 -0.16 1.27 1.33 -1.45 1.36 -0.10 1.35 1.46 

VO (+2|+1)h 0.75 3.81 2.57 1.82 1.24 0.74 3.82 2.61 1.87 1.21 

VO (+1|0)h 0.75 5.26 2.12 1.37 3.15 0.70 5.36 2.05 1.36 3.30 

VO (0|-1)h 4.72 5.50 4.92 0.20 0.58 4.78 5.56 4.96 0.17 0.60 

           

Oi (-2|-1)e -1.11 1.94 0.89 2.01 1.05 -1.27 1.81 0.64 1.91 1.17 

Oi (-1|0)e 0.19 2.03 1.35 1.16 0.68 0.11 2.01 1.30 1.19 0.71 

Oi (0|+1)e 1.44 3.23 2.22 0.79 1.01 1.47 3.21 2.25 0.78 0.96 

Oi (-1|-2)h 1.50 4.55 2.54 1.05 2.01 1.63 4.71 2.80 1.17 1.91 

Oi (0|-1)h 1.40 3.24 2.09 0.68 1.16 1.42 3.33 2.14 0.71 1.19 

Oi (+1|0)h 0.21 2.00 1.21 1.01 0.79 0.23 1.97 1.19 0.96 0.78 

           

Zni (+1|+2)e -1.30 0.17 -0.32 0.98 0.49 -1.39 0.10 -0.37 1.02 0.47 

Zni (0|+1)e -2.24 -0.17 -0.50 1.79 0.33 -2.30 -0.26 -0.51 1.79 0.25 

Zni (+2|+1)h 3.27 4.73 3.75 0.49 0.98 3.34 4.83 3.80 0.47 1.02 

Zni (+1|0)h 3.61 5.68 3.94 0.33 1.79 3.70 5.73 3.94 0.25 1.79 
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5.7     Defect processes 

As discussed in section 2.3.4, the common luminescence bands observed in 

ZnO are green luminescence (GL, 2.3-2.5 eV), yellow luminescence (YL, 

~2.1eV) and red luminescence (RL, ~1.8 eV) bands. The exact source of the 

intrinsic luminescence of ZnO due to native defects is still controversial.  

In this section, the relationship between the intrinsic point defects and GL, YL 

and RL is analysed. The calculated defect ionisation energies and the defect 

energy levels for the intrinsic point defects of ZnO can be used to compare with 

the experimental spectroscopy data. As in our previous work [42, 128], the 

BB1k functional is expected to provide a better account of electron localisation 

and more accurate ionisation energies, therefore, this section mainly focuses 

on the calculated results of the BB1k functional. The problem of conventional 

hybrid functionals using lower than 40% fraction of the HF exchange is 

insufficient localisation of a hole on the anionic sublattice of ionic and, more 

generally, heteropolar materials, which leads to a delocalisation of a hole over 

multiple centres in contradiction with experiment. 

The configuration-coordinate diagrams (see section 3.4.3) for four main 

intrinsic point defects of stable both compact and diffuse states are shown in 

Figure 5.12 (Zn interstitials), Figure 5.13 (O vacancies), Figure 5.14 (Zn 

vacancies) and Figure 5.15 (O interstitials), which shows not only the optical 

transitions, but also electrical processes, as interactions of defects with charge 

carriers.  

Taking the O vacancy as an example (Figure 5.13), we firstly plot the ground 

state defect VO
0 as an approximately parabolic curve. Based on the calculated 

EPL, Eab, ZPL, Erel* and Erel (Table 5.7 and 5.8), the VO
+ and VO

2+ are determined. 

When the Eab is positive (arrow up) and EPL is negative (arrow up), there will be 

a cross point. 

For the hydrogenic states in the diagram, it is convenient to consider a process 

of an ionisation in which charge carriers are lost to the band and as the defect 

core relaxes to its ground state (potential energy minimum), one or more 

charge carriers might get trapped leading to the formation of diffuse states 
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(hydrogenic, helium- or hydride-like). The corresponding diagram therefore 

would show the diffuse states lying below the potential energy minimum of the 

compact state around the equilibrium and crossing the energy curve (parabola) 

above the potential energy minimum of the state we ionise. 

5.7.1     Zn interstitial Zni 

From the optical energy levels of the Zn interstitial as shown in Figure 5.1, we 

know that only +2 charge state is stable. The negative values of EPL we 

calculate for the neutral and positively charged states of Zni (Table 5.9) indicate 

the non-radiation characteristics of the involved processes and the 

corresponding bounds on the thermal activation energies are rather wide. 

Look and Hemsky [55] reported that high energy electron irradiation in ZnO 

produces shallow donors at about 25-35 meV under the CB. Because the 

production rate is much higher for Zn-face (0001) than O-face (0001̅) irradiation, 

it has been concluded that this native shallower donor is related to a Zn-

sublattice defect, probably the interstitial Zni or a Zni related complex. We did 

not obtain such shallow Zni donors as stable defects. 

By thermal deep-level transient spectroscopy (DLTS) and Fourier transform 

infrared photocurrent (FTIR-PC) spectroscopy of ZnO thin films grown by 

pulsed-laser deposition (PLD), Frenzel et al. [184] observed commonly intrinsic 

deep defects E1 at 0.11 eV and E3 at 0.32 eV. By studying the behaviour of 

the peaks after thermal treatment, E1 is assigned to the first ionization level of 

Zn interstitial and E3 to the second ionization level of Zn interstitial. Brauer et 

al. [185] also assigned the E3 (0.31 eV) to the second ionization level of Zn 

interstitial. In contrast to Frenzel et al., Mtangi et al. [186, 187] studied the 

electrical properties of single crystal ZnO anneals in hydrogen, oxygen and 

argon atmosphere using deep-level transient spectroscopy (DLTS). The 

concentration of the E1 peak (0.12 eV) increased for O2 annealed sample and 

decreased after Ar and H2 annealing, which suggests that it is a Zn vacancy 

related or an oxygen interstitial related defect.  

The sum of first and second ionization energy of neutral state of Zni with two 

diffuse electrons, in contrast, is calculated to be 0.185 eV, which is in 
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agreement with the admittance spectroscopy measurements by Cordaro et al. 

[188]. They detected two donor levels T1 and T2 at ~0.17 and ~0.32 eV and 

related them to the second ionization of the Zn interstitial and the ionized 

oxygen vacancy.  

We calculated the first ionization energy of neutral state of Zni with two diffuse 

electrons at 0.058 eV in agreement with Hall effect studies. Hutson [189] has 

measured the Hall coefficient and the electrical conductivity of single crystals 

of ZnO and reported that the ionization energy is 0.051 eV for both hydrogen 

donors and zinc interstitial donors.  

 

Figure 5.12 Configuration-coordinate diagram for optical transitions involving the Zn 
interstitial in ZnO. 
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5.7.2     O vacancy VO 

As discussed in section 2.3.4, GL is the most commonly observed emission in 

ZnO which has been the most controversial topic. Some studies assign the 

green luminescence to the recombination of a hole with a singly ionised oxygen 

vacancy VO
+. [84, 86, 87, 190-192] Figure 5.13 shows our calculated 

configuration coordinate diagram for oxygen vacancies. We determine the 

emission peak for hole capture by the +1 states of VO at 1.33 eV above the 

VBM, which is therefore not responsible for the green emission. 

In contrast, we calculate the emission peak for hole capture by a negatively 

charged donor-acceptor pair (DAP) complex VO-VZn at 2.62 eV (Table 5.9), 

which is consistent with being the source of the blue luminescence. Studenikin 

and Cocivera [193] also assigned the change in PL colour from green to blue 

to a singly ionized oxygen vacancy with a zinc vacancy capture a hole. 

Deep levels that have been observed in ZnO are the defects E1, E2, E3 and 

E4 having thermal activation energies about 0.11-0.12, 0.10, 0.29-0.32 or 0.53-

0.57 eV, respectively. [194, 195] The origin of the E3 has often been explained 

as a structural defect, either Zn interstitial or O vacancy, or transition metal ions. 

Our calculations show that the E3 peak cannot be assigned to transitions solely 

involving the O vacancy or the Zn interstitial. 

 

Figure 5.13 Configuration-coordinate diagram for optical transitions involving the O vacancy 
in ZnO. 
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5.7.3     Zn vacancy VZn 

Here we will focus on the neutral and negative charge states of zinc vacancies 

as the optical transitions of positively charged zinc vacancies require V
2- 

Zn to trap 

3-4 holes rapidly, which is almost impossible unless the hole concentration is 

extremely high. The emission peak for capture of a hole by the -2 charge state 

is at 1.24 eV as shown in Figure 5.14, which is close to the 1.40 eV reported 

by Frodason et al. [196], but lower than the isolated Zn vacancy emission at 

~1.6 eV reported by Dong et al. using depth-resolved cathodoluminescence 

spectroscopy combined with positron annihilation spectroscopy (PAS). [197] 

As the valence band and the defect state have O 2p character, this is a p-p 

transition which should be forbidden. However, this transition may be allowed 

because of the large lattice relaxation, as occurs for hole capture by V
3- 

Ga in GaN. 

[198]  

Evans et al. [199] reported that the threshold energy to excite an electron from 

negatively charged VZn to the CB is ~2.5 eV by photo-EPR. Frodason et al. 

[196] calculated the Eab of 2.67 eV for V
- 

Zn using HSE. We calculate the Eab of 

the negatively charged VZn is 2.13 eV, which is lower than previous 

experimental and computational values. 

 

Figure 5.14 Configuration-coordinate diagram for optical transitions involving the Zn vacancy 
in ZnO. 
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5.7.4     O interstitial Oi 

The OL and RL emissions at 1.9–2.1 eV is commonly attributed to the presence 

of excess oxygen, although other hypotheses such as Li dopants [200, 201] 

have been proposed.  

Studenikin et al. [98] found that orange PL films can be obtained without doping 

the film with lithium and the OL was narrower than the one obtained from the 

lithium doped sample. They observed GL from oxygen deficient samples 

prepared by reductive annealing in forming gas and OL from oxygen rich films 

obtained by oxidative annealing. Wu et al. [99] also observed the OL 

disappeared and GL appeared due to the deficient of oxygen in the reducing 

atmosphere. They attributed the orange emission to oxygen interstitials. By 

annealing the ZnO nanowire arrays in reducing atmospheres, Greene et al. 

observed reduction of the OL which also confirmed the assignment of OL to 

oxygen interstitials.[202] 

From our calculations as shown in Figure 5.15 and 5.16, we find the emission 

peak for capture of a hole by the -2 charge state Oi at the octahedral site is 

2.07 eV which is the source of the red emissions. 

 

Figure 5.15 Configuration-coordinate diagram for optical transitions involving the O interstitial 
at octahedral site in ZnO. 
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Figure 5.16 Configuration-coordinate diagram for optical transitions involving the O interstitial 
at split sites in ZnO. 

In summary, we assign the blue luminescence to the emission peak for hole 

capture by the negatively charged VO-VZn complex, the red luminescence to 

the emission peak for hole capture by the -2 charge state Oi at the octahedral 

site. The Assignment of calculated ionization energies to previous experimental 

electrical properties are summarised in Table 5.10. 
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Table 5.9 Assignment of Calculated ionization energies of intrinsic point defects in ZnO using 
the BB1k hybrid functional to previous experimental electrical properties. 

Measurement Donor levels 

(eV) 

Experimental 

assignment 

Our assignment 

Admittance 

spectroscopy 

[188] 

~0.17 (T1)  the second ionization of the 

Zni  

the sum of first and 

second ionization 

energy of Zni with two 

diffuse electrons 

~0.32 (T2) ionized VO not observed 

DLTS [184] 0.11 (E1)  the first ionization of Zni not observed 

0.32 (E3) the second ionization of Zni not observed 

DLTS [185] 0.31 (E3) the second ionization of Zni not observed 

DLTS [186, 187] 0.12 (E1)  VZn or Oi not observed 

0.30 (E3) Transition metal ions not observed 

Hall-effect [55] 0.025-0.035 Zni not observed 

Hall-effect [189] 0.051 Zni and H the first ionization of Zni 

 

5.8     Defect and charge carriers under 

thermodynamic equilibrium 

5.8.1     Formation energies 

Diagrams of the calculated formation energies are shown in Figure 5.17 as a 

function of the Fermi energy for point defects in ZnO under oxygen rich and 

poor conditions that are conventionally used to illustrate thermodynamic defect 

transition levels. The calculated defect formation energies of point defects in 

ZnO are summarised in Table 5.11. 
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Figure 5.17 Formation energy of point defects in ZnO as a function of Fermi level relative to 
the valence band maximum (VBM) under Zn-rich and O-rich conditions. 
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Table 5.10 Calculated defect formation energies of intrinsic point defect in ZnO. 

Charge 

state 

Multiplicity 

states 

BB1k B97-2 PBE0 

  O rich O poor O rich O poor O rich O poor 

VO        

+2 singlet -2.10 -5.80 -1.12 -4.82 -1.05 -4.75 

+1 doublet 1.18 -2.52 1.46 -2.25 1.56 -2.14 

0 singlet 3.86 0.16 3.57 -0.13 3.62 -0.09 

0 triplet 6.86 3.15 6.19 2.49 6.30 2.60 

-1 doublet 9.77 6.06 8.49 4.79 8.57 4.87 

-1 quartet N/D N/D 11.46 7.76 11.62 7.92 

VZn        

-2 singlet 8.27 11.98 6.02 9.73 6.85 10.55 

-1 doublet 5.78 9.48 4.30 8.00 5.02 8.72 

0 singlet 3.38 7.09 2.73 6.43 3.25 6.96 

0 triplet N/D N/D 2.64 6.35 3.24 6.94 

+1 doublet 1.53 5.23 1.54 5.24 1.92 5.63 

+1 quartet N/D N/D 1.53 5.23 2.12 5.83 

+2 singlet 0.41 4.12 0.95 4.65 1.34 5.05 

+2 triplet N/D N/D 1.53 5.23 1.73 5.44 

+2 quintet N/D N/D 0.97 4.67 1.36 5.06 

Oi        

-2 singlet 9.90 13.60 8.69 12.37 8.81 12.51 

-1 doublet 6.48 10.18 6.13 9.83 6.01 9.71 

0 singlet N/D N/D 4.59 8.29 3.99 7.69 

0 triplet 3.92 7.62 4.04 7.74 3.87 7.58 

+1 doublet N/D N/D 3.59 7.30 2.99 6.69 

+1 quartet 2.19 5.89 2.83 6.53 2.68 6.390 

Oi_split1        

-1 doublet 6.23 9.93 5.82 9.53 5.70 9.41 

0 singlet 2.02 5.72 2.28 5.98 1.99 5.69 

+1 doublet -0.16 3.54 0.77 4.47 0.54 4.24 

Oi_split2        

-1 doublet 6.14 9.85 5.64 9.35 5.40 9.10 

0 singlet 1.97 5.68 2.05 5.75 1.78 5.49 

+1 doublet -0.14 3.56 0.57 4.27 0.21 3.91 
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Oi_split3        

-1 doublet 6.10 9.80 5.68 9.38 5.41 9.12 

0 singlet 2.09 5.79 2.16 5.86 2.02 5.72 

+1 doublet -0.08 3.63 0.68 4.38 0.30 4.00 

Zni        

+2 singlet -1.61 -5.31 0.69 -3.02 -0.12 -3.83 

+1 doublet 3.23 -0.48 4.44 0.74 3.68 -0.02 

0 singlet 8.34 4.63 8.38 4.67 7.63 3.92 

0 triplet 9.47 5.76 9.52 5.82 8.76 5.06 

VZnO        

+2 triplet 0.11 0.11 0.24 0.24 0.84 0.84 

+2 singlet N/D N/D N/D N/D 0.95 0.95 

+1 doublet 1.38 1.38 1.03 1.03 1.80 1.80 

0 singlet 3.32 3.32 2.23 2.23 3.12 3.12 

0 triplet N/D N/D 4.41 4.41 5.19 5.19 

-1 doublet 7.61 7.61 5.85 5.85 6.69 6.69 

-2 triplet 14.02 14.02 11.19 11.19 12.13 12.13 
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We find that VO is the most favourable native point defect for Fermi energies 

within the band gap under Zn-rich conditions. The VO is a deep donor of a 

negative U type for Fermi energies throughout the band gap, stabilising in the 

+2 charge state when the Fermi energy is above the valence band maximum 

(VBM) with a transition to the neutral state at the Fermi level of 2.35 eV. The 

formation energy of V
2+

 O  near the VBM is negative, indicating a spontaneous 

formation, which will suppress positive free charge carriers, or holes. 

For the neutral oxygen vacancy (Table 5.12), the formation energy of PBE0 

(3.62eV) in O-rich conditions agree well with Alkauskas and Pasquarello [203] 

who reported 3.57 eV using the PBEh-32 functional. While the 3.86 eV 

formation energy in BB1k is closer to the 4.1 eV found by Clark et al. [166], who 

used the local density approximation (LDA) with a Thomas-Fermi screened 

exchange (sX) and a similar result of Oba et al. [66] obtained using HSE, but 

~1 eV lower than the LDA values reported by Erhart et al.. [60, 61] 

The calculated (+2/0) charge transition level of 2.33 eV for PBE0 above the 

VBM agree with the value of 2.38 eV obtained by Alkauskas and Pasquarello 

[203], the ~2.4 eV by Agoston et al. [153] who also used PBE0 and 2.3 eV by 

Clark et al.. [166] However, with BB1k, the (+2/0) charge transition level is 

significantly shallower (2.98 eV above the VBM) than that of PBE0, which is 

surprisingly close to the 3eV reported by Zhang et al. [167] from their LDA 

calculations. 
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Table 5.11 Calculated formation energies of neutral oxygen vacancies in ZnO in O-rich and 
Zn-rich conditions and (+2/0) thermal transition levels with respect to the VBM, compared 

with previous calculations using a variety of functionals. 

 Ef (V
0 
O) (O-rich) Ef (V

0 
O) (O-poor) ϵ (+2/0) 

BB1k 3.86 0.16 2.98 

PBE0 3.62 -0.09 2.33 

sX [166] ~4.1 0.85 2.3 

CorrLDA+U [56, 58, 59] 7.22 3.72 2.2 

LDA [61] ~5.0 0.9 0.7 

LDA [167] 4.6 1.5 3 

CorrLDA [167] 5.5 2.4 4 

GGA+U [60] ~5.1 1.71 ~1.2 

HSE [66] ~4.1 ~1 ~2.4 

 

The VZn, as an important compensating defect in n-type ZnO, is a double 

acceptor. Under oxygen-rich/Zn-poor conditions, the doubly negatively charged 

Zn vacancy V
2- 

Zn is the dominant defect type when the Fermi level is close to the 

CBM with a low formation energy of 1.40 eV (BB1k) and -0.03 eV (PBE0) at 

the CBM. 

The level of (0/-) lies at 1.78 eV (PBE0) or 2.40 eV (BB1k) above the VBM, and 

(-/-2) level at 1.83 eV (PBE0) or 2.49 eV (BB1k), which are closer to the CBM 

compared to previous studies as shown in Table 5.13. This is due to the higher 

formation energies calculated for negatively charged defects. 
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Table 5.12 Thermal transition levels of zinc vacancies in ZnO with respect to the VBM, 
compared with previous calculations using a variety of functionals. 

 ϵ (0/-) ϵ (-/-2) 

BB1k 2.40 2.49 

PBE0 1.78 1.83 

sX [166] 0.7 2.3   

CorrLDA+U [56, 58, 59] 0.18 0.87 

LDA [61] -0.1 0.1 

LDA [167] -0.4 0.1 

CorrLDA [167] -0.5 0.0 

GGA+U [60] ~0.3 ~1.1 

HSE [66] ~0.7 ~2.6 

HSE06 [196] 1.40 1.96 

 

The ground state configuration of the neutral oxygen interstitial is the split 

interstitial Oi(split) instead of the octahedral site, which agrees with previous DFT 

calculations. [57, 58] Among three oxygen split interstitial configurations, the 

most stable is the oxygen split interstitial-2 with the formation energy of neutral 

state O
0 

i(split2) at 1.97 eV (BB1k), which is 0.05 eV lower than that of O
0 

i(split1) and 

0.12 eV lower than that of O
0 

i(split3). The formation energies of O
0 

i(split2) is 1.95 eV 

(BB1k) lower than that of O
0 

i(oct). The O interstitial is a deep acceptor when 

occupying the octahedral site, with transition levels (-/2-) at 2.80 eV (PBE0) 

and 3.42 eV (BB1k), and (0/-) at 2.14 eV (PBE0) and 2.56 eV (BB1k) above 

the VBM, which agree with the results of Lyons et al.. [67] 

The Zni is most stable in a +2 charge state for Fermi energies just above the 

VBM. This defect, however, remains a donor for Fermi energies spanning the 

whole band gap: the Zn interstitial will always donate its electrons to the 

conduction band, acting as a shallow donor. 
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5.8.2     Charge carrier and defect concentrations 

The self-consistent Fermi energy and equilibrium defect and carrier 

concentrations can be determined from the computed formation energies 

presented in Chapter 5.4 using a Fortran code ‘SC-FERMI”, as introduced in 

Chapter 3.4.4. [129] The computed self-consistent EF and equilibrium carrier 

and defect concentrations in ZnO as a function of T are shown in Figure 5.18. 

The range of temperatures is 0-1500 K, which encompasses common 

synthesis temperatures of ZnO and a majority of device operational 

temperatures. 

 

Figure 5.18 The calculated self-consistent Fermi energy (EF, relative to the VBM， black line) 

and equilibrium concentrations of electrons (n0, red line), holes (p0, blue line), oxygen 
vacancies ([VO], green line), oxygen interstitials ([Oi], purple line), zinc interstitials ([Zni], dark 
yellow line), zinc vacancies  ([VZn], cyan line), oxygen split interstitials ([Oi], brown line), zinc-

oxygen vacancy complexes ([VZn_O], orange line) in ZnO as a function of temperature, 
determined using the BB1k hybrid density functional, under O-poor and O-rich conditions. 
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Under O-rich conditions, EF remains deep in the band gap, between 1.58 and 

1.25 eV below the CBM. The carrier concentrations remain below 1015 cm-3 for 

T ≤ 1500K for PBE0 and B97-2 functionals. When using the BB1k functional, 

the [VO] is higher than that calculated using the other functionals as the 

transition level is shallower, meaning that the formation energy is lower at the 

self-consistent EF. This concentration of oxygen vacancies in the 2+ charge 

state results in an excess of electrons (which remains below 1016 cm-3 for T ≤ 

1500K). 

For O-poor conditions, the calculated Ef (VO) are significantly lower than those 

of other DFT studies. From such a low formation energy, we determine very 

high [VO] of the order of 1021 cm-3 for T > 500K. The n0  is 1.68×018 cm-3 for T 

= 827K which is in good agreement with that determined by Halliburton et al. 

[204] who reported the electron concentration of 1.5*1018 cm-3 for samples 

treated at 827K under Zn-rich conditions. 

We then investigated the equilibrium carrier and defect concentrations in ZnO 

as a function of the O partial pressure percent at 300K and 1000K (Figure 5.19).  

To compare our results to experiment, it is important to relate the theoretically 

defined O-rich and O-poor condition to the oxygen chemical potential under 

different temperature and partial pressure conditions. Following the method by 

Reuter and Scheffler [205], the chemical potential of oxygen at varying oxygen 

partial pressures at a given temperature can be calculated as: 

𝜇O(𝑇, 𝑝) = 𝜇O(𝑇, 𝑝0) +
1

2
𝑘𝑇 ln

𝑝

𝑝0
 .                                    (5.10) 

By setting the zero state of 𝜇O(𝑇, 𝑝) to be the total energy of oxygen at T=0 K, 

which is μO(0K, p0)=(1/2)EO2
total=0, the temperature dependence of oxygen 

chemical potential at a constant oxygen pressure p0 is defined as: 

𝜇O(𝑇, 𝑝0) =
1

2
[𝐻(𝑇, 𝑝0, 𝑂2) − 𝐻(0𝐾, 𝑝0, 𝑂2)] −

1

2
𝑇[𝑆(𝑇, 𝑝0, 𝑂2) − 𝑆(0𝐾, 𝑝0, 𝑂2)] . 

(5.11) 
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where H is the enthalpy and S the entropy. Based on the data from 

thermochemical tables [206], μO(T, p0) was calculated from 100 to 1500 K by 

Taylor et al. [207] and Reuter and Scheffler [205] and is shown in Table 5.14. 

Table 5.13 μO(T, p0) in the temperature range of 100 to 1500 K at  p0=1 atm in ZnO. 

Temperature /K μO(T, p0) /eV Temperature /K μO(T, p0) /eV 

100 -0.08eV 900 -0.9738eV 

200 -0.17eV 1000 -1.0990eV 

300 -0.27eV 1100 -1.2712eV 

400 -0.38eV 1200 -1.3998eV 

500 -0.50eV 1300 -1.5300eV 

600 -0.6109eV 1400 -1.6617eV 

700 -0.7295eV 1500 -1.7948eV 

800 -0.8505eV   

 

The equilibrium carrier and defect concentrations in ZnO as a function of the O 

partial pressure from 10-22 to 1 atm at 1000K are shown in Figure 5.19. 

Unlike Zhao et al. [208] who reported that ZnO exhibits weak n-type behaviour 

at low oxygen pressures and strong p-type at high oxygen pressures, we find 

that ZnO is strong n-type with electron concentration greater than hole 

concentration at high temperature and oxygen partial pressures. [VO] is the 

most dominant defect in ZnO under low O partial pressures, which agrees with 

the work of Tomlins et al. [209], which supports the predominance of oxygen 

vacancies at low O partial pressures. 
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Figure 5.19 The equilibrium concentrations of electrons (n0, red line), holes (p0, blue line), 
oxygen vacancies ([VO], green line), oxygen interstitials ([Oi], purple line), zinc interstitials 

([Zni], yellow line), zinc vacancies ([VZn], cyan line dark), oxygen split interstitials ([Oi], brown 
line), zinc-oxygen vacancy complexes ([VZn_O], orange line) in ZnO as a function of oxygen 

partial pressures, determined using the BB1k functional under 1000K. 
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5.9     Summary and Conclusion 

We have investigated the structures, compact and diffuse states, ionization 

energies, defect processes, formation energies and charge carrier and defect 

concentrations of the intrinsic point defects in ZnO from embedded calculations.  

By calculating formation energies of each defect in different charge states, 

oxygen vacancies are found to be the favourable defect in O-poor/Zn-rich 

conditions as a deep donor of a negative U type for Fermi energies throughout 

the band gap. Under O-rich/Zn-rich conditions, the dominate defect type 

switches from oxygen vacancies to zinc vacancies when the Fermi level is 

close to the conduction band. Zinc vacancies are stable in five charge states, 

while the Zn interstitial at the octahedral site is only stable in the +2 charge 

state and remains a donor for Fermi energies across the band gap. The ground 

state of the neutral O interstitial is the split interstitial, which is stable in three 

configurations, with the formation of an O-O chemical bond. 

It is proposed that the neutral state of Zn interstitial defect is responsible for T1 

donor level from the admittance spectroscopy measurements. The emission 

peak for hole capture by negatively charged VO-VZn complex will be the source 

of the blue luminescence. Oxygen interstitials at the octahedral site contribute 

to the experimentally observed red luminescence. Oxygen vacancies are found 

to be the dominate defects from the analysis of the self-consistent Fermi energy 

and equilibrium defect and carrier concentrations. In 2000, copper, the most 

abundant impurity in ZnO, was confirmed by experiment to be a prominent 

source of GL in this material.[169] All recent ab initio studies [210] agree that 

VO is not responsible for GL. In our view, if the remaining source of GL is in the 

bulk of the material, it must be associated with some still unknown defect 

complex(es).  

 



Chapter 6 

Lithium and hydrogen impurities in 

ZnO 

6.1     Introduction 

Undoped ZnO exhibits unintentional n-type conductivity which has been 

traditionally related to the observed sub-stoichiometry of ZnO and the presence 

of native donor defects. [50, 54, 165] However, to realise optoelectronic devices, 

it is important to make p-type ZnO which cannot be achieved via intrinsic doping. 

It has been argued that high concentrations of donor impurities in ZnO may 

compensate acceptors or give free electrons to the conduction band, which 

prevent p-type conductivity. [211] Following the earlier work by Catlow et al. 

[155-157], in section 5.8, we have shown that the fundamental difficulty with p 

doping on ZnO arises from the instability of holes with respect to oxygen 

vacancies. Therefore, it is important to understand the role of impurities in ZnO. 

Among a large number of candidates, lithium in group I species has received 

particular attention. 

Li is known to act as a major impurity in ZnO growth. [212] However, the 

location of the acceptor level of Li substitutional Zn (LiZn) remains controversial. 

Theoretical studies [75-77, 213] predicted LiZn to be a shallow acceptor due to 

the reduction of strain around the Li and coupling between the anion and cation 

orbitals. However, substitutional doping of Li remains difficult as lithium is very 

mobile and may also be located at an interstitial site as a shallow donor. 

Substitutional Li acceptors might therefore be self-compensated by coexisting 

Li interstitials. Experimental work using cathodoluminescence (CL), 
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photoconductivity (PC) and Hall-effect measurements reported acceptor state 

among 150 meV- 260meV. [78, 79] 

In contrast, instead of introducing a shallow level, other calculations [76, 80, 81] 

reported LiZn to be a deep acceptor, which is in agreement with experiment. [82] 

The Li acceptor level is at least 500 meV above the valence band and optically 

detected magnetic resonance (ODMR) showed that radiative recombination 

occurs with a deep state. [83] 

Hydrogen is often present in the crystal growth environment, and it is difficult 

to avoid its incorporation into the crystal during the crystal growth process. As 

an inherent impurity in ZnO, hydrogen impurities can have a strong effect on 

electrical properties. It is, therefore, necessary to understand the 

characteristics of hydrogen species in ZnO, not only from an academic point of 

view, but also for semiconductor applications.  

Hydrogen in ZnO, in both interstitial and substitutional forms, acts as a shallow 

donor in positive charged states, reported by first-principles calculations. [214] 

The hydrogen impurity supposedly contributes to n-type conductivity in ZnO.  

Hydrogen can also form complexes with acceptor dopants and cation 

vacancies. It has been found that intentional co-doping of Li with H impurities 

suppressed the formation of compensating interstitials, and greatly improves 

the solubility of Li acceptors by forming H-acceptor complexes. [75] 

In this Chapter, we report the properties of Li and H in both substitutional and 

interstitial forms and their complexes in ZnO using the QM/MM embedded 

cluster approach. We have employed three exchange and correlation 

functionals, B97-2, PBE0 and BB1k functionals. Calculation settings are the 

same as those discussed in Chapter 5.2. 
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6.2     Li-related defects 

6.2.1     Li substituting for Zn 

The formation energies of the Li substitutional are determined by following 

reactions: 

Li(s) + Znzn
× → LiZn

𝑞− + Zn(s) + 𝑞h+ ,                                       (6.1) 

under Zn-rich/ O-poor conditions. 

In the singly negative charged state, the distance from Li to the axial O is 1.874 

Å, and to the three nonaxial O the distances are 1.895, 1894 and 1.909 Å (using 

the BB1k functional). After binding a hole, the charge neutral state Li
0 

Zn is formed, 

with the O ion trapping the hole and with the Li ion moving from their perfect 

lattice position. There are two structural forms of Li
0 

Zn: axial and nonaxial. In the 

axial defect, the hole introduced by Li is fully localised on the axial O, using 

BB1k shown in Figure 6.1, while for B97-2, the hole is localised mainly on the 

axial O but also spreads to neighbouring O ions. As the BB1k functional is 

expected to provide a better account of electron localisation, we here focus on 

the structures optimised using the BB1k functional. The distance from the Li 

substitutional to the axial O increases by 0.271 Å, which is in agreement with 

experiment [215] and the calculations by Carvalho et al. [80] using hybrid 

density functional (HDF) based on the PBE0 form and 32% of the HF exchange. 

However, the Li-O bond elongation in our calculation is 14.5% which is less 

than that previously reported by Schirmer [215] of 40% and by Carvalho et al. 

[80] of 36%. Indeed, our results differ from several previous calculations. 

Wardle et al.[213] reported a Li-O distance of 1.92 Å without giving the hole’s 

location. Carvalho et al. [80] reported a Li-O distance for both the axial and 

nonaxial bonds of 2.01 Å using PBE with the hole distributed on four 

neighbouring oxygens. Again, without reporting the location of the hole, the 

B3LYP calculation of Hu and Pan [216] gives a Li-O distance of 1.99Å. The 

axial defect form was found by Schirmer [215] to be more stable than the 
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nonaxial, from analysis of the experimental results, suggesting the unpaired 

hole is stabilised at the axial O site as also found in our calculations. 

The calculated formation energies of LiZn are plotted in Figure. 6.2. From the 

optical energy level results (Figure 6.3), we found LiZn is stable in neutral and 

negative charge states. The (-1/0) transition level of LiZn is found to lie at 0.79 

eV (B97-2) from the valence band, which yields a deep acceptor level, which 

is in agreement with previous calculations of Sokol et al. [81] who reported 0.81 

eV using B97-1 and Carvalho et al. [76, 80] who reported the transition level at 

0.82 eV using HDF. Our results contrast with those of Lee and Chang [75, 76] 

who reported 0.04 eV, and Wardle et al. [213] who reported 0.25 eV, both using 

LDA method which suffers the consequences of its well-known underestimation 

of the band gap and delocalisation of the hole states. This deep acceptor level 

also agrees well with the electron spin resonance (ESR) results, suggesting an 

acceptor state of about 0.8 eV above the VBM.[95] Rauch et al. [217] also 

reported a deep LiZn acceptor state at 0.8 eV above the VBM identified in both 

EPR and PL. The computed ε(-1/0) using BB1k is however deeper (at 1.50 eV) 

than that obtained using B97-2 and PBE0 as shown in Figure 6.2. 
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Table 6.1 Calculated defect formation energies of LiZn in ZnO with the Fermi level at the VBM 
under Zn-rich conditions. 

Defect Charge state Formation energy (eV) 

B97-2 PBE0 BB1k 

LiZn 

 

0 1.35 1.64 1.78 

-1 2.14 2.49 3.28 

-2 7.16 7.67 9.30 

 

 

Figure 6.1 Li substitutional in -1 and 0 charge states in ZnO. The spin density of the neutral 
state is indicated by isosurfaces 0.1, 0.05, 0.025 au highlighted in yellow. 
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Figure 6.2 Formation energy of LiZn in ZnO as a function of Fermi level relative to the valence 
band maximum (VBM) under Zn-rich conditions. 

 

Figure 6.3 Optical energy levels of LiZn in ZnO with respect to band edges, calculated using 
the BB1k, PBE0 and B97-2 density functional. 
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6.2.2     Li interstitial 

Alternatively, Li may occupy an interstitial site. As mentioned in Chapter 5.4, 

there are two possible interstitial sites in ZnO, octahedral and tetrahedral. 

Hence, for the Li interstitial, both octahedral and tetrahedral sites are calculated. 

The formation energy of the Li interstitial is determined by the following reaction 

under Zn-rich/ O-poor conditions: 

Li(s) → Lii
𝑞+ + 𝑞e− .                                                           (6.2) 

The calculated formation energies of Li interstitials are shown in Table 6.2 and 

plotted in Figure 6.4. The formation energy of the Li interstitial in the  +1 charge 

state Li
1+

i  at the octahedral site (Oct) is -4.74 eV (BB1k), which is 0.8 eV lower 

than that at the tetrahedral site (Tet). The difference with B97-2 is 0.69 eV. The 

energy differences for both functionals are higher than the 0.54 eV reported by 

Lee and Chang [75] , and lower than the 0.9 eV reported by Wardle et al. [213], 

both using the LDA method.  

In the neutral charge state, the formation energy of the Li interstitial Li
0 

i  at the 

octahedral site is 0.83 eV (BB1k) or 0.78 eV (B97-2) lower than at the 

tetrahedral site, which is higher than the energy difference 0.62 eV reported by 

Carvalho et al. [80] and slightly lower than the 0.9 eV by Wardle et al. [213]. 

The energy of the neutral charge state is not well defined, as the defect will be 

auto ionised according to our calculations. The +1 charge state Lii with one 

hydrogenic electron is -1.33 eV (BB1k) or -0.25 eV (B97-2) at octahedral site, 

which is lower than the neutral compact state. 

At the octahedral site, in the +1 charge state, the Li ion moves towards three 

of the six neighbouring O atoms along the c axis, with the closest Li–O 

separation distance of 1.83 and the two other distances of 1.88 and 1.89 Å for 

both functionals, as shown in Figure 6.5(a)(b). For the neutral Li interstitial, the 

surrounding oxygens relax slightly outward (Figure 6.5 (c)(d)). 

For the Li interstitial at the tetrahedral site, the surrounding O relax inward with 

the distances of 1.69, 1.90, 1.92 and 1.93 Å in the +1 charge state (Figure 

6.5(e)(f)) for both functionals; Li is closer to the oxygen atom, repelling the Zn 
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atom. For the neutral state (Figure 6.5(g)(h)), the Li-O distance is slightly larger 

than that obtained for the +1 charge state. 

Table 6.2 Calculated defect formation energies of Lii in ZnO with the Fermi level at the VBM 
under Zn-rich conditions. 

charge 

state 

position  defect functional 

BB1K B97-2 

0 octahedral compact Li
0 

i (oct) 0.67 0.65 

diffuse Li
+ 

i (oct) + e
- 

m*(H) -1.33 -0.25 

tetrahedral compact Li
0 

i (tet) 1.50 1.50 

diffuse Li
+ 

i (tet) + e
- 

m*(H) -0.54 0.44 

+1 octahedral compact Li
+ 

i (oct) -4.74 -3.65 

tetrahedral compact Li
+ 

i (tet) -3.94 -2.96 

 

 

Figure 6.4 Formation energy of Lii in ZnO as a function of Fermi level relative to the valence 
band maximum (VBM) under Zn-rich conditions. 
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Figure 6.5 Li interstitial in+1 and 0 charge states in ZnO.  
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6.2.3     LiZn-Lii complexes and self-compensation 

When point defects are combined to form defect pairs, the formation energy 

may differ from those of the single defects. Here, we also investigated two types 

of LiZn-Lii complexes: one is the LiZn with the Lii at the octahedral site (LiZn-

Lii(Oct)); the other has the Lii at the tetrahedral site (LiZn-Lii(Tet)). 

The calculated formation energies of the complexes are shown in Table 6.3 

and plotted in Figure 6.6. The formation energy of the LiZn-Lii(Oct) in the +1 

charge state under Zn-rich is -3.18 eV (BB1k), which is 0.90 eV lower that of 

LiZn-Lii(Tet). In the neutral charge state, the formation energy of LiZn-Lii(Oct) is -

2.34 eV (BB1k), also 0.90 eV lower. For the B97-2 functional, the differences 

are 0.69 and 0.71 eV for the 0 and +1 charge states. The (+/0) transition levels 

of both LiZn-Lii(Oct) and LiZn-Lii(Tet) are found to lie at 0.84 eV from the valence 

band, which yields a deep donor level. 

For the neutral LiZn-Lii(Oct), the Li-Li distance is 2.143 Å with LiZn moving towards 

one of the nonaxial O neighbour at a distance of 1.798 Å (Figure 6.7(a)). In the 

+1 charge state, the nonaxial O traps a hole with the O-LiZn distance increasing 

by 0.101 Å, and the Li-Li distance decreasing by 0.041 Å (Figure 6.7(b)). Similar 

structures are also observed for LiZn-Lii(Tet), with the Li-Li distance decreasing 

from 2.199 Å in the neutral charge state (Figure 6.7(c)) to 2.151 Å in the +1 

charge state (Figure 6.7(d)). 

Table 6.3 Calculated defect formation energies of LiZn-Lii in ZnO with the Fermi level at the 
VBM under Zn-rich conditions. 

Defect Charge state Formation energy 

(eV) 

  B97-2 BB1k 

LiZn-Lii(Oct) 0 -2.22 -2.34 

 +1 -2.68 -3.18 

LiZn-Lii(Tet) 0 -1.53 -1.44 

 +1 -1.97 -2.28 
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Figure 6.6 Formation energy of LiZn-Lii in ZnO as a function of Fermi level relative to the 
valence band maximum (VBM) under Zn-rich conditions. 

 

Figure 6.7 LiZn-Lii in 0 and +1 charge states in ZnO using the BB1k density functional. 
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6.2.4     LiZn-VO complexes 

For the complexes of LiZn with VO, in the +1 charge state, the nearest three Zn 

neighbours of the vacant O are relaxed outward by 0.28 Å, with the 

neighbouring LiZn relaxed outward by 0.34 Å as shown in Figure 6.8. The 

distances from Li to three nonaxial O are 1.834, 1.834 and 1.841 Å using the 

BB1k functional. For the -1 charge state, two electrons are trapped at the 

vacancy site; the three Zn neighbours are displaced inward by 0.37Å, with the 

LiZn relaxed only slightly inward. 

The formation energies of LiZn-VO complexes in the -1, 0 and +1 charge states 

are shown in Figure 6.9. The LiZn-VO complex is stable in the +1 state with 

transition level (+/-) at 3.06 eV using PBE0. For BB1k, the transition is above 

the CBM. The complexes act as donors in ZnO. 
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Figure 6.8 LiZn-VO in +1 (left) and -1 (right) charge states in ZnO using the BB1k. 

  

Figure 6.9 Formation energy of LiZn-VO in ZnO as a function of Fermi level relative to the 
valence band maximum (VBM) under Zn-rich conditions. 
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6.2.5    Formation energies 

Based on above results, the formation energies of LiZn, Lii, LiZn-Lii, LiZn-VO and 

VO under Zn-rich conditions are summarised in Figure 6.10. We found that, the 

LiZn-Lii(Oct) complex has the lowest formation energy for the Fermi level near the 

CBM. The LiZn-Lii(Tet) complex has the next lowest formation energy, which is 

0.24 eV (B97-2) or 1.29 eV (BB1k) lower than single LiZn for the Fermi level 

near the CBM. The oxygen vacancy has a relatively high formation energy for 

the Fermi level near the CBM. The Lii(Oct) (B97-2) or LiZn-VO complex (BB1k) 

becomes more stable than the LiZn-Lii(Oct) complexes for the Fermi level in the 

middle of the band. When the Fermi level is near the VBM, the native oxygen 

vacancy becomes the dominant defect type. 

  

 

Figure 6.10 Formation energy of Li related defects in ZnO as a function of Fermi level relative 
to the valence band maximum (VBM). 

0 1 2 3 4
-6

-5

-4

-3

-2

-1

0

1

2

LiZn-VO

 LiZn-Lii(Oct)

LiZn  

Fermi energy relative to VBM (eV)

F
o
rm

a
ti
o
n
 e

n
e
rg

y
 (

e
V

)

B97-2 Zn-rich

VO  

 LiZn-Lii(Tet)

Lii(Oct)

Lii(Tet)

0 1 2 3 4
-6

-5

-4

-3

-2

-1

0

1

2

Fermi energy relative to VBM (eV)

F
o
rm

a
ti
o
n
 e

n
e
rg

y
 (

e
V

)

BB1k Zn-rich

LiZn  

 LiZn-Lii(Oct)

Lii(Oct)

LiZn-VO

VO  

Lii(Tet)

 LiZn-Lii(Tet)



6.3     H-related defects  

141 

6.3     H-related defects 

6.3.1     H interstitial Hi 

Hydrogen is one of the most common impurities in semiconductors. Hydrogen 

is ubiquitous and has a high diffusivity inside the semiconductor. H may act as 

a donor or acceptor depending on the Fermi level. However, van de Walle 

predicted that hydrogen is an important shallow donor in ZnO using LDA first-

principles calculations. [13] 

In addition to standard octahedral and tetrahedral interstitials, there are two 

possible positions for hydrogen bonding to the anion atom: the body centred 

(BC) site and the “antibonding” (AB) site 1, with two orientations, along the c 

axis (‖) and in the ab layer, nearly orthogonal to the c axis. (⊥) (as shown in 

Figure 6.11) – the nomenclature introduced by Van de Walle. [13] 

 

Figure 6.11 Hydrogen interstitial sites in ZnO. 

 

 

1 The term “antibonding” refers here to the geometry where the interstitial atom is 

located on the continuation of the bond rather than at the bond centre. 
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The formation energies of H interstitial are determined by the following reaction: 

1

2
H2(g) → Hi

𝑞+ + 𝑞e− .                                                      (6.3) 

The calculated formation energies of the H interstitial at the octahedral and 

tetrahedral sites are shown in Table 6.4. The H interstitial is stable in the neutral 

charge state with formation energies of 2.59 eV for Hi-oct and 3.20 eV for Hi-tet 

using BB1k. In the positive charge state, the octahedral interstitial relaxes into 

the AB⊥ site (Figure 6.12 (b)), and the tetrahedral interstitial relaxed into the 

AB‖ site (Figure 6.12 (d)). 

Table 6.4 Calculated defect formation energies of Hi at octahedral and tetrahedral sites in 
ZnO with the Fermi level at the VBM. 

 

Defect 

Charge state Formation energy (eV) 

B97-2 PBE0 BB1k 

Hi-oct -1 5.67 5.64 6.36 

Hi-oct 0 2.81 2.44 2.59 

Hi-oct +1 -2.29 -2.41 -3.10 

Hi-tet -1 6.33 6.12 7.00 

Hi-tet 0 3.22 2.89 3.20 

Hi-tet +1 -2.16 -2.49 -3.01 

 

 

Figure 6.12 H interstitial at octahedral and tetrahedral sites in charge state 0 (a)(c), +1 (b)(d) 
in ZnO. (BB1k structures) 
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The optical energy levels of H interstitials are given in Figure 6.13. The neutral 

H interstitials are stable at octahedral and tetrahedral sites, and positive charge 

states are stable at the body centred (BC) site and “antibonding” (AB) site. 

 The calculated formation energies of H interstitial in the +1 charge state are 

shown in Table 6.5. The BC‖ configuration is most stable using B97-2, PBE0 or 

BB1K with lowest energies: -2.42 eV (B97-2), -2.73 eV (PBE0) and -3.15 eV 

(BB1k), which is in agreement with previous theoretical studies by Wardle et al. 

[218, 219] using Local-spin-density-functional (LSDF), Limpijumnong and 

Zhang [220] using LDA, and Bang and Chang [221] who also used LDA, but 

differs from Van de Walle [13] who reported that the BC⊥ to be the most stable 

using LDA. Our result is, however, in agreement with some experimental 

results. Based on polarisation studies and first principle calculations, Lavrov et 

al. [222] proposed the interstitial H to be at the BC‖ site with an IR peak at 3611 

cm-1. Seager and Myers [223] also observed a similar peak. Jokela and 

McCluskey et al. [224] discovered a different IR peak at 3326 cm-1 of H which 

they attributed to the AB⊥ site. The formation energies of H+ are low enough to 

allow for large solubility of hydrogen in n-type ZnO. So, the experimental 

situation with attribution of vibrational spectroscopic features is still confused. 

Table 6.5 Calculated defect formation energies of Hi in +1 charge state in ZnO when the 
Fermi level at the VBM. 

 

Defect 

Formation energy (eV) 

B97-2 PBE0 BB1k LDA [13] LDA [220] LSDF [219] 

Hi (BC‖) -2.42 -2.73 -3.15 -1.82 X+0 X+0 

Hi (AB⊥) -2.24 -2.56 -3.08 -1.78 X+0.14 X+0.2 

Hi (AB‖) -2.19 -2.52 -3.02 -1.59 X+0.17 X+0.2 

Hi (BC⊥) -2.14 -2.45 -2.96 -1.84 X+0.15 X+0.2 
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Figure 6.13 Optical energy levels of Hi in ZnO with respect to band edges, calculated using 
the BB1k, PBE0 and B97-2 density functional. 
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The O-H distances of the H interstitial in ZnO are summarised in Table 6.6. For 

the AB⊥ configuration, the O-H distance is 0.977 Å (PBE0, Figure 6.14 (a)) or 

0.973 Å (BB1k, Figure 6.14 (b)), as the O atom moves outward from its lattice 

site, which results in the Zn-O distance being 20% longer than the equilibrium 

Zn-O distance. The O-H bond length is close to the length of an hydroxyl ion in 

NaOH which is 0.98 Å [225]. For the AB‖ configuration, the O-H distance is 

0.972 Å (PBE0, Figure 6.14 (c)) or 0.973 Å (BB1k, Figure 6.14 (d)). Four Zn 

neighbours of O are relaxed outward with the distance from the Zn atom along 

the c axis to the O atom being 13.4% longer than the equilibrium Zn-O distance. 

The Zn atom nearest to the H atom in the BC⊥ configuration is pushed away 

from its original lattice site along the Zn-O bond. The H-O distance is 0.956 Å 

(PBE0, Figure 6.14 (e)) or 0.950 Å (BB1k, Figure 6.14 (f)) and the Zn-O 

becomes 2.945 Å (PBE0) or 2.944 Å (BB1k). For the BC‖ configuration, the H-

O distance is 0.956 Å (PBE0, Figure 6.14 (g)) or 0.950 Å (BB1k, Figure 6.14 

(h)), the Zn atom also moves outward with the Zn-O distance at 3.045 Å (PBE0) 

or 3.042 Å (BB1k). 

Table 6.6 Calculated O-H distance of Hi in +1 charge state in ZnO with the Fermi level at the 
VBM. 

 

Defect 

O-H distance (Å) 

B97-2 PBE0 BB1k LDA [13] LDA [220] 

Hi (BC‖) 0.957 0.962 0.959 0.99 0.986 

Hi (AB⊥) 0.973 0.977 0.973 1.01 1.003 

Hi (AB‖) 0.972 0.973 0.972 1.01 1.003 

Hi (BC⊥) 0.953 0.956 0.950 0.99 0.982 
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Figure 6.14 Hydrogen interstitials at +1 charge state in ZnO. ( AB⊥(1st row),  AB‖ (2nd row), 

BC⊥(3rd row) and BC‖ (4th row). 
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6.3.2     H substitutional HO 

The formation energies of H substitutional are determined by following reaction 

under O poor conditions: 

1

2
H2(g) + Zn(s) + OO

0 → HO
𝑞+ + ZnO(s) + 𝑞e− ,                      (6.4) 

Here, we limit the investigation focussing on a single H substitution, but more 

H ions might be accommodated around the site.  

The optical level energies of the H substitutional are shown in Figure 6.16. We 

find that the H substitutional is stable in the +1 charge state. 

The calculated formation energies of the H substitutional are shown in Table 

6.7 and plotted in Figure 6.15. We find that HO
+ is 0.86 eV (B97-2), 0.55 eV 

(PBE0) or 0.58 eV (BB1k) lower than Hi
+ at BC‖ site, which is different from the 

results of Janotti and Van de Walle [214] who reported that the formation 

energy of HO
+ is ~0.1 eV higher than the formation energy of Hi

+ using LDA and 

LDA+U, and Oba et al. [66], who reported the formation at same level (~-2.2eV 

under O poor) using HSE. Our result is in good agreement with the Raman 

study of Koch et al. [226] who reported that HO is energetically favoured 

compared to Hi(BC).  

The +/0 transition level is 4.50 eV (B97-2) or 4.54 eV (PBE0) or 5.47 eV (BB1k) 

above VBM, while Oba et al. [66] reported the +/0 level near the conduction 

band. The HO
+ is stable in ZnO, and acts as a shallow donor, which agrees with 

previous experimental results by Lavrov [227] who identified HO as a shallow 

donor by Raman scattering and IR absorption spectroscopy.  
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Table 6.7 Calculated defect formation energies of HO in ZnO when the Fermi level is at the 
VBM under O-poor conditions. 

Charge state Formation energy (eV) 

 B97-2 PBE0 BB1k 

-1 6.47 6.50 7.82 

0 1.22 1.25 1.75 

+1 -3.28 -3.28 -3.73 

 

 

Figure 6.15 Formation energy of HO in ZnO as a function of Fermi level relative to the valence 
band maximum (VBM). 

 

0 1 2 3 4

-4

-2

0

2

4

6

8

10

+1

-1

0

F
o
rm

a
ti
o

n
 e

n
e

rg
y
 (

e
V

)

Fermi energy relative to VBM (eV)

B97-2 O-poor

0 1 2 3 4

-4

-2

0

2

4

6

8

10

+1

-1

0

F
o
rm

a
ti
o
n
 e

n
e
rg

y
 (

e
V

)

Fermi energy relative to VBM (eV)

PBE0 O-poor



6.4     LiZn-Hi complexes  

149 

 

Figure 6.16 Optical energy levels of HO in ZnO with respect to band edges, calculated using 
the BB1k density functional. 

6.4     LiZn-Hi complexes 

The formation energy of the LiZn-Hi complex is determined by the following 

reaction: 

Li(s) + Znzn
× +

1

2
H2(g) → LiZnHi + Zn(s) .                                       (6.5) 

under Zn rich/ O poor conditions. 

The binding energy is calculated from: 

𝐸𝑏(LiZn − H) = 𝐸𝑓(LiZn
− ) + 𝐸𝑓(Hi

+) − 𝐸𝑓( LiZnHi) .                       (6.6) 

The local structures of Li substitutional – H interstitial complexes are shown in 

Figure 6.17. The calculated formation energies and binding energies of Li 

substitutional – H interstitial complexes are shown in Table 6.8 and Table 6.9. 

Here we concentrate on the complexes of LiZn with nearby Hi. As with Hi, the 

complex with the H interstitial occupying the BC‖ site is stable using all three 

functionals with the lowest energies of -1.34 eV (B97-2), -1.15 eV (PBE0) and 

--1.10 eV (BB1k) under O poor condition, which is in agreement with previous 

theoretical studies by Lee and Chang [75] and Wardle et al. [213]. The binding 

energies are between 0.91-1.28 eV, which are within the range reported by Lee 

and Chang [75], indicating that H atoms tend to form neutral defect complexes 

with acceptors. 
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Based on the most stable H interstitial position, which is Hi(BC‖),we investigated 

the different charge states:-1, 0 and +1, using PBE0. The formation energies 

are shown in Table 6.10 and plotted in Figure 6.17. From the results, we found 

that, the Hi(BC‖), is stable in the  neutral charge state with the Fermi level across 

most of the gap and the (+1/0) transition level at 0.35 eV above the VBM. 

 

Figure 6.17 LiZn-Hi complexes in ZnO.  
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Table 6.8 Calculated defect formation energies of neutral LiZn-Hi in ZnO under Zn-rich 
conditions. 

Defect Formation energy (eV) 

 B97-2 PBE0 BB1k LDA [75] 

LiZn-Hi (BC‖) -1.34 -1.15 -1.10 -2.47 

LiZn-Hi (AB⊥) -1.22 -1.02 -0.93 -2.17 

LiZn-Hi (AB‖) -1.23 -1.07 -1.02 -1.96 

LiZn-Hi (BC⊥) -1.20 -1.00 -0.92 -2.36 

Table 6.9 Calculated binding energies of neutral LiZn-Hi in ZnO. 

Defect Binding energy (eV) 

B97-2 PBE0 BB1k LDA [75] 

LiZn-Hi (BC‖) 1.07 0.91 1.23 1.22 

LiZn-Hi (AB⊥) 1.12 0.96 1.13 0.71 

LiZn-Hi (AB‖) 1.19 1.05 1.28 0.92 

LiZn-Hi (BC⊥) 1.20 1.05 1.24 1.11 

Table 6.10 Calculated defect formation energies of LiZn-Hi(BC‖) in ZnO with the Fermi level at 
the VBM under Zn-rich conditions. 

Charge state Formation energy (eV) 

 PBE0 

-1 3.90 

0 -1.15 

+1 -1.50 

 

 

 Figure 6.18 Formation energy of LiZn-Hi (BC‖) in ZnO as a function of the Fermi level relative to 
the valence band maximum (VBM) using the PBE0 functional under Zn-rich conditions. 

0 1 2 3 4
-2

-1

0

1

2

3

4

+1

-1

0

F
o
rm

a
ti
o
n
 e

n
e
rg

y
 (

e
V

)

Fermi energy relative to VBM (eV)

LiZn-Hi(BC‖)    PBE0    Zn-rich



6.4     LiZn-Hi complexes  

152 

There are other possible complex configurations, including the complex with 

the Hi further from the LiZn. To investigate the influence of the Hi position on the 

defect properties, we present two examples for comparison. Figure 6.19, (a) 

shows the LiZn-Hi(AB⊥) configuration with Hi next to LiZn, while (b) gives the LiZn-

Hi(AB⊥)-2 configuration with Hi and LiZn bonded to the same oxygen but in an 

opposite direction. 

The defect formation energies are calculated using PBE0 as shown in Table 

6.11. We found that for both LiZn-Hi(AB ⊥ ) and LiZn-Hi(AB‖) complexes, the 

complexes with Hi further from the LiZn are less stable than the complexes with 

Hi adjacent to the LiZn, with formation energies 0.19-0.28 eV higher. Therefore, 

the LiZn-Hi tend to form the complexes with the defects adjacent to each other. 

Table 6.11 Calculated defect formation energies of LiZn-Hi(AB⊥) and LiZn-Hi(AB‖) in ZnO with the 

Fermi level at the VBM under Zn-rich conditions. 

Defect Formation energy (eV) 

 PBE0 

LiZn-Hi(AB⊥) -1.02 

LiZn-Hi(AB⊥)-2 -0.74 

LiZn-Hi(AB‖) -1.07 

LiZn-Hi(AB‖)-2 -0.88 
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Figure 6.19 LiZn-Hi complex in ZnO. 
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6.5     Summary and Conclusion 

The defect properties of Li or H doped ZnO with various defects have been 

studied by calculating the structures and defect formation energies using 

QM/MM approach, using three density functionals: B97-2, PBE0 or BB1K. 

The results from the formation energy calculations show that, LiZn acts as a 

deep acceptor in ZnO. Li interstitial at the octahedral site is more stable than at 

the tetrahedral site. The LiZn-Lii(Oct) complex has the lowest formation energy 

for the Fermi level near the CBM in O-poor conditions. The Lii(Oct) (B97-2) or 

LiZn-VO complex (BB1k) becomes more stable than the LiZn-Lii(Oct) complex for 

the Fermi level near the VBM. 

We identified that the H interstitial is most stable in BC‖ configuration in positive 

charge state with the energies of other configurations in the order BC⊥< AB‖ < 

AB⊥. Hi
 is stable in ZnO and acts as a shallow donor. 

The HO also acts as a shallow donor in the positive charge state in ZnO. We 

also found that, the formation energy of HO
+ is 0.55-0.86 eV lower than that of 

Hi
+ at the BC‖ site, indicating that HO

+ is more stable then Hi
+. 

For the complexes of LiZn with Hi, the most stable configurations are also the 

complexes with the Hi at the BC‖ site next to the LiZn. The complexes act as 

shallow donors in ZnO. 

  



Chapter 7 

Intrinsic point defects in In2O3 

7.1     Introduction 

As discussed in Chapter 2, In2O3 is an intrinsic n-type semiconductor which is 

one of the most frequently used TCO materials, and a large number of 

experimental and theoretical studies have been carried out to date on the 

material. However, the cause of the unintentional n-type conductivity in In2O3 

is still a subject of debate. 

In Chapter 4, we investigated the defect properties of In2O3 using an interatomic 

potential method, which allowed us to gain useful information about defect 

energies and structures. However, atomistic simulations based on interatomic 

potentials neglect the quantum aspects of the nuclear and electronic degrees of 

freedom, so that the electron structures and states cannot be calculated directly. 

Quantum Mechanical methods must be used to construct realistic models of the 

electronic structure of many-body systems. This Chapter therefore applies QM 

methods to obtain detailed information about the electronic structure of the intrinsic 

defects in various charge states; we also provide further analysis of their formation 

energies and their dependence on the position of the Fermi level which is beyond 

the scope of atomistic methods 

The commonly used QM approach to modelling defect formation in In2O3 is 

density functional theory (DFT) employing a plane-wave basis set under 

periodic boundary conditions, which, unfortunately, as we have noted, can 

suffer from finite-size effects. Moreover, as discussed earlier, the supercell 

approximation introduces artificial interactions between charged defects, which 
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need to be corrected for, but the optimum approach is still a matter of debate 

[228]. 

In this Chapter, the study of intrinsic point defects in In2O3 is presented using 

the QM/MM approach. The formation energies, transition levels and structures 

of all possible intrinsic point defects are investigated including oxygen vacancy 

(VO), indium vacancy (VIn), indium interstitial (Ini) and oxygen interstitial (Oi). 

7.2     Calculation Settings 

The hybrid QM/MM embedded cluster technique (Chapter 3.2.5) is employed 

to calculate bulk and defect energies in In2O3. In our QM/MM model, the inner 

cluster of 97 atoms of bixbyite In2O3 containing the central defect and its 

surrounding atoms is treated with a QM method. We have employed two 

exchange and correlation functionals, the PBE0 functional [118], which is 

frequently used in plane-wave basis calculations including 25% exact 

exchange; and B97-2 functional [119], which has been fitted to a broad range 

of thermochemical date with 21% exact exchange. Future studies will amply 

BB1k functionals on the most significant configurations identified in this work. 

The outer region which contains 9704 atoms is treated with the MM method 

using interatomic potentials [120]. Between the QM and MM regions, a 

specially designed local ECP (section 3.3.4) giving in Table 3.1 is placed on 

the cation sites within a range of 5 Å from the edge of the QM region. 
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7.3     Ionization potentials 

The calculated ionization potentials (IPs) as the energy difference between the 

positively charged cluster and the neutral one are given in Table 7.1. 

As discussed in Chapter 5.3, the bulk ionization potential can be higher or lower 

than the surface IP but would be expected to be close for well prepared / 

equilibrated experimental samples, subject to the surface band bending. 

Therefore, the agreement between our calculations and others in the literature 

and experiment is good. The large calculated values of the IP positions the VB 

deep below the vacuum level. 

Therefore, as with In2O3 hole formation has a high energy, while the formation 

energy of positively charged defect (e.g., oxygen vacancies) will be low when 

the Fermi level is close to the VBM, which explains the observed difficulty in p-

type doping In2O3. 

Table 7.1 Calculated ionization potentials (eV) of In2O3. 

Functional IPs 

PBE0 7.59 

B97-2 7.30 

Previous calculations 6.8-7.9 [42, 173, 174, 229] 

Experiment 7.0-7.7 [150, 151, 178] 
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7.4     Compact defect states and structures 

7.4.1     O vacancy VO 

The O ions in In2O3 are surrounded by four In ions with the In-O distances of 

2.09, 2.10, 2.12, and 2.20 Å. For the neutral charge state, two electrons are 

trapped at the vacancy site, two of the four nearest Zn neighbours are relaxed 

inward by 0.12 and 0.01Å but the two others are displaced outward by 0.10 Å 

as shown in Figure 7.2 (a).  

In the +2 charge state, after removal of two electrons to form the vacancy, the 

four In atoms strongly relax outward by 0.17, 0.12, 0.17 and 0.25 Å as shown 

in Figure 7.2 (c), which is similar with the case of VO in ZnO (section 5.4.2). 

 

Figure 7.1 Optical energy levels of VO in In2O3 with respect to band edges, calculated using 
the PBE0 and B97-2 density functional. 

 

Figure 7.2 O vacancy in In2O3 by PBE0. 
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7.3.2     In vacancy VIn 

There are two inequivalent indium sites in the In2O3 structure: the 8b site and 

the 24d site.  

For both inequivalent In sites, a missing In3+ ion leaves the -3 state of the indium 

vacancy with no electrons remaining in the vacant site as the Madelung 

potential destabilises the electron states of cation vacancies. In the -3 state, 

the three electrons contributed by the original In ion at the vacant site occupy 

the three nearest neighbour O ions. The six nearest neighbour O2- ions of the 

original vacant In ion relax outward as shown in Figure 7.4 (e) (f). 

The electron rich VIn
3- state can lose electrons from the surrounding O ions. In 

the -2 state, one of the three neighbour O ions binds a hole, forming a spin 

doublet as shown in Figure 7.4 (d) (i). In the -1 state, two of the O ions each 

bind a hole, forming a spin triplet (Figure 7.4 (c) and (h)), while in the neutral 

state, either all three O ions bind a hole each stabilising as a spin quadruplet 

(Figure 7.4 (b) (g)), or two O ions bind three holes resulting in a spin doublet 

(Figure 7.4 (a) (f)).  

All the charge states -3, -2, -1 and 0 introduce donor energy levels in the 

bandgap, as shown in Figure 7.3. 
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Figure 7.3 Optical energy levels of VIn in In2O3 with respect to band edges, calculated using 
the PBE0 and B97-2 density functional. 
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Figure 7.4 In vacancy in In2O3 at 8b site (left) and 24d site(right) by PBE0. The spin densities 
of the 0, -1, and -2 state are indicated by isosurfaces 0.1, 0.05, 0.025 au highlighted in 

yellow. 
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7.3.3     O interstitial Oi 

As with Ini, we only investigated the O interstitial at the 16c site, shown 

previously to be the most stable. 

A neutral oxygen interstitial in the triplet state at the 16c site remains at the site. 

After excitation to the singlet state, the atom relaxes into the split interstitial 

position. The ground state electronic configuration of the neutral split oxygen 

interstitial is a singlet, while the neutral 16c oxygen interstitial is a triplet. The 

formation energy of the neutral split oxygen interstitial under O-rich conditions 

is 1.79 (B97-2) or 1.47 eV (PBE0), while that of the neutral 16c oxygen 

interstitial is 3.85 (B97-2) or 3.86 eV (PBE0). 

The O interstitial in charge states -2, -1 and 0 introduce donor energy levels in 

the bandgap, calculated by B97-2 and PBE0, as shown in Figure 7.5. 

In the O split interstitial configuration (Figure 7.7), the calculated O-O distances 

are 1.489 Å for both functionals, suggesting the formation of an O-O chemical 

bond. 

 

Figure 7.5 Optical energy levels of Oi in In2O3 with respect to band edges, calculated using 
the PBE0 and B97-2 density functional. 
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Figure 7.6 Oxygen interstitial at 16c site in 0 (a), -1 (b) and -2 (c) charge states in In2O3 by 
PBE0. The spin densities of the 0 and -1 state are indicated by isosurfaces 0.1, 0.05, 0.025 

au highlighted in yellow. 

 

Figure 7.7 Split oxygen interstitial in 0 charge state in In2O3 by PBE0. 
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7.3.4     In interstitial Ini 

In In2O3, there are at least three possible interstitial sites, 8a, 16c or 24d. 

According to the results in Chapter 4.5, both cation and anion interstitials have 

the lowest defect energies at the 16c site, which agrees with previous DFT 

calculations [230]. Hence, here, we only concentrate on the In interstitial at the 

16c site. 

The local highest occupied state, +3 state is pushed below the VBM by 2.46-

2.47 eV (Figure 7.8) which can attract electrons. However, the electrons 

trapped on the Ini ion are delocalised. The Ini is close to three nearest O at a 

distance of 2.07 Å, and three other O of 2.18 Å (Figure 7.9 (d)). Trapping of 

electrons results in the neighbour O ions relaxing outward. In the neutral state, 

the Ini-O bond lengths have two groups of three at 2.10 Å and 2.64 Å (Figure 

7.9 (a)). 

 

 Figure 7.8 Optical energy levels of Ini in In2O3 with respect to band edges, calculated using 
the PBE0 and B97-2 density functional. 
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Figure 7.9 In interstitial at 16c site in 0 (a), +1 (b), +2 (c) and +3 (d) charge states in In2O3 by 
PBE0. The spin densities of the 0 and +1 states are indicated by isosurfaces 0.1, 0.05, 0.025 

au highlighted in yellow, +2 state is indicated by isosurfaces 0.005, 0.0025, 0.002 au 
highlighted in yellow. 
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7.5     Diffuse defect states 

To calculate the binding energies of electrons or holes using equation (3.30) - 

(3.32) in section 3.4.1, we take computed value of 𝜀 (9.77) for In2O3 from our 

interatomic forcefields, and experimental value of 𝑚∗ :𝑚𝑒
∗ = 0.22𝑚𝑒  [231] for 

electrons 𝑚ℎ
∗ = 0.6𝑚𝑒 [232-234] for holes. The binding energy for one or two 

diffuse electrons (to CBM) or holes (to VBM) for In2O3 are summarised in Table 

7.2. 

Table 7.2 The binding energies (in eV) of the diffuse electrons and holes in In2O3. 

electrons Binding energy (eV) holes Binding energy (eV) 

e
- 

m*(H) for +1 -0.037 h
+ 

m*(H) for -1 -0.100 

e
- 

m*(H) for +2 -0.146 h
+ 

m*(H) for -2 -0.399 

2e
- 

m*(He) for +2 -0.212 2h
+ 

m*(He) for -2 -0.578 

2e
- 

m*(Hydride) for +1 -0.039 2 h
+ 

m*(Hydride) for -1 -0.105 

 

The calculated energies of compact and diffuse defect states (see section 3.4.1) 

for each defect and density functional are given in Table 7.3 to Table 7.6. The 

energies (in eV) are given for the Fermi energy at the CBM with the electron in 

the CB and the hole in the VB. 

Table 7.3 The energies (in eV) of the compact and diffuse state of Ini in In2O3. 

charge state  defect functional 

B97-2 PBE0 

0 compact In
0 

i  5.90 5.27 

diffuse In
+ 

i + e
- 

m*(H) 3.06 2.37 

In
2+

 i + 2e
- 

m* (He) 1.27 0.69 

1+ compact In
+ 

i  3.10 2.40 

diffuse In
2+

 i + e
- 

m* (H) 1.34 0.76 

2+ compact In
2+

 i  1.48 0.90 

diffuse In
+ 

i + h
+ 

m*(H) 5.70 5.00 
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Table 7. 4 The Energies (in eV) of the compact and diffuse state of VO in In2O3. 

charge state  defect functional 

B97-2 PBE0 

0 compact V
0 

O 0.87 0.95 

diffuse V
+ 

O+ e
- 

m*(H) 0.41 0.36 

V
2+

O+ 2e
- 

m*(He) -0.27 0.01 

1+ compact V
+ 

O 0.44 0.39 

diffuse V
2+

O+ e
- 

m*(H) -0.20 0.07 

2+ compact V
2+

O  -0.05 3.04 

diffuse V
+ 

O+ h
+ 

m*(H) 0.21 2.99 

 

Table 7.5 The Energies (in eV) of the compact and diffuse state of Oi in In2O3. 

charge state  defect functional 

B97-2 PBE0 

0 compact O
0 

i  7.10 7.11 

diffuse O
- 

i + h
+ 

m*(H) 9.13 9.04 

O
2-

 i  +2 h
+ 

m*(He) 11.62 11.41 

1- compact O
- 

i  6.53 6.44 

diffuse O
2-

 i + h
+ 

m*(H) 9.10 8.89 

2- compact O
2-

 i  6.80 6.59 

diffuse O
- 

i  (+ e
- 

m*(H) 6.49 6.40 
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Table 7.6 The Energies (in eV) of the compact and diffuse state of VIn in In2O3. 

defect position charge state  defect functional 

B97-2 PBE0 

VIn-8b 0 compact V
0 

In 11.37 12.40 

diffuse V
- 

In+h
+ 

m*(H) 13.18 14.31 

V
2-

In+2h
2-

 i (He) 15.18 16.45 

1- compact V
- 

In 10.58 11.71 

 V
2-

In+ h
2-

 i (H) 12.66 13.93 

2- compact V
2-

In 10.35 11.63 

diffuse V
- 

In+e
- 

m*(H) 10.54 11.68 

3- compact V
3-

In 10.46 11.54 

diffuse V
2-

In+ e
- 

In (H) 10.21 11.48 

V
- 

In+2e
- 

In (Hydride) 10.54 11.68 

VIn-24d 

 

0 compact V
0 

In 11.02 12.06 

diffuse V
- 

In+h
+ 

m*(H) 13.10 14.29 

V
2-

In+2h
2-

 i (He) 15.28 16.46 

1- compact V
- 

In 10.50 11.68 

 V
2-

In+ h
2-

 i (H) 12.76 13.94 

2- compact V
2-

In 10.46 11.64 

diffuse V
- 

In+e
- 

m*(H) 10.47 11.65 

3- compact V
3-

In 10.38 11.66 

diffuse V
2-

In+ e
- 

In (H) 10.32 11.49 

V
- 

In+2e
- 

In (Hydride) 10.46 11.65 
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7.6     Formation energies 

The formation energies of defects are determined by following reactions: 

InIn
× → VIn

𝑞− + In(s) + 𝑞h+ ,                                                            (7.1) 

 
1

3
In2O3(s) → Oi

𝑞− +
2

3
In(s) + 𝑞h+ ,                                             (7.2) 

In(s) → Ini
𝑞+ + 𝑞e− ,                                                                        (7.3) 

OO
0 +

2

3
In(s) → VO

𝑞+ +
1

3
In2O3(s) + 𝑞e− ,                                   (7.4) 

for indium rich/oxygen poor conditions, and 

InIn
× +

3

4
O2(g) → VIn

𝑞− +
1

2
In2O3(s) + 𝑞h+ ,                                 (7.5) 

1

2
O2(g) → Oi

𝑞− + 𝑞h+ ,                                                                      (7.6) 

1

2
In2O3(s) → Ini

𝑞+ +
3

4
O2(g) + 𝑞e− ,                                             (7.7) 

OO
0 → VO

𝑞+ +
1

2
O2(g) + 𝑞e− ,                                                           (7.8) 

for indium poor/oxygen rich conditions. The chemical potentials of O2 molecular 

and single In atoms are calculated using GAMESS-UK with the corresponding 

basis set and density functional: the standard state energy of In2O3 is derived 

from the experimental heat of formation [49]. 

Figure 7.10 shows the formation energies as a function of the Fermi level for 

all above point defects in In2O3 for O-rich and O-poor conditions. 
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Figure 7.10 Formation energy of point defects in In2O3 as a function of Fermi level relative to 
the valence band maximum (VBM) under In-rich and O-rich conditions. 

The oxygen vacancy VO is stable in the +2 charge state for Fermi level positions 

across the gap. The VO is a shallow donor with the (+2/+) and (+/0) transition 

levels above the CBM. The formation energy of V
2+

 O  near VBM is negative, 

indicating a spontaneous formation, which will suppress positive free charge 

carriers, or holes.  

The formation energy of the neutral oxygen vacancy is 4.12 eV (B97-2) or 4.20 

eV (PBE0) in O-rich conditions which agrees well with Liu et al. [235] who 

reported 4.11 eV using the GGA+U and with those of Agoston et al. [153] using 

HSE06 functional, but is ~1.5 eV lower than the corrLDA+U results by 

Reunchan et al..[27] 

The formation energy of neutral VIn at the 8b site is 0.35 eV (B97-2) or 0.34 eV 

(PBE0) higher than that of the vacancy at the 24d site. This is lower than the 
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1eV reported by Chatratin et al. [236] using HSE with 28% HF mixing parameter, 

but higher than the ~0.1 eV calculated by Varley et al. [85] by HSE06 with 32% 

HF mixing parameter. For the 3- charge state, the difference is only 0.1 eV for 

both functionals, which is similar to the HSE results. 

We find that high-spin is more favourable than the low-spin state for the charge 

neutral state VIn at 24d. However, it is the opposite for neutral VIn at the 8b site. 

The transition levels of (0/-1), (-1/-2) and (-2/-3) are 1.91 eV, 2.48 eV, 2.81 eV 

(B97-2) and 2.02 eV, 2.61 eV, 2.62 eV (PBE0)  for VIn at 8b, and 2.19 eV, 2.62 

eV, 2.66 eV (B97-2) and 2.33 eV, 2.66 eV, 2.72 eV (PBE0)  for VIn at 24b, 

above the VBM. The formation energies of VIn are very high for the Fermi level 

in the gap, indicating that In vacancies are unlikely to be present. 

Ini is mostly stable in the +3 charge states for Fermi level position across the 

gap, with (+3/+2) transition level over CBM. In O-poor conditions, Ini acts as n-

type donor as it has low formation energy and positive charge state for the 

Fermi level close to the CBM. In O-rich conditions, its energy increases. When 

the Fermi level is close to the CBM, compensation by Oi defects occurs, as it 

has the lowest energy.  

The Oi at 16c acts as a very deep acceptor, with transition level (0/-) at 2.13 

eV (B97-2) or 2.03 eV (PBE0) above the VBM. The transition level (-/2-) is 

above the CBM. In the split interstitial configuration, the Oi is electrically neutral 

for the Fermi level within the gap. The formation energy of the neutral split 

oxygen interstitial under O-rich is 2.06 (B97-2) or 2.49 eV (PBE0) is lower than 

that of the neutral 16c oxygen interstitial. 
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7.7     Ionization energies as defect (transition) 

levels 

The calculated ionization energies (see section 3.4.3) for the full range of point 

defects and charge states in In2O3 are summarised in Table 7.7. 

There are numerous studies on the common luminescence bands observed in 

In2O3 including violet to green and orange to red bands. The source of violet to 

green in In2O3 is mainly reported as due to oxygen vacancies. [233, 237-239] 

The origin of the orange to red luminescence bands has been controversial. 

Mazzera et al. [237] observed a PL emission at ~630 mm (1.97 eV) in the In2O3 

nanowires. They concluded that this orange emission arises from the 

contribution of oxygen vacancies and assigned it to the intrinsic defects of 

interstitial oxygen, indium vacancy and anti-site oxygen.  In contrast, Gao and 

Wang [240] proposed that the 620 nm PL emission in the In2O3 nanobelts 

results from the recombination of a photoexcited hole with an electron occupied 

by the oxygen vacancy. From our calculations, we found the emission peak for 

capture of a hole by the +1 charge state VO is 2.14 eV (B97-2), by the +2 charge 

state Ini at octahedral site is 2.12 eV (B97-2), which might be the source of the 

orange emissions. We noted here that both PBE0 and B97-2 cannot reproduce 

good asymptotic behaviour of the Kohn-Sham potential. A more accurate 

functional such as BB1k is needed to reduce the one-electron self-interaction 

error in the traditional DFT formulations. 



7.7     Ionization energies as defect (transition) levels  

173 

Table 7.7 Summary of calculated ionization energies for the full range of point defects and 
charge states in In2O3 

Summary of calculated ionisation energies 

Defect 

states 

B97-2 PBE0 

EPL Eab ZPL Erel Erel* EPL Eab ZPL Erel Erel* 

VO           

VO (+1|+2)e -1.22 3.32 -0.50 0.73 3.91 -1.25 3.32 -0.18 1.07 3.50 

VO (0|+1)e -0.95 0.56 -0.43 0.53 0.99 -1.05 0.22 -0.56 0.50 0.78 

VO (+2|+1)h -0.62 3.92 3.20 3.81 0.73 -0.62 3.95 2.88 3.50 1.07 

VO (+1|0)h 2.14 3.65 3.13 0.99 0.53 2.48 1.05 3.26 0.78 0.50 

VIn 8b           

VIn (-3|-2)e -1.67 1.65 -0.11 1.56 1.76 -1.86 1.64 0.08 1.94 1.56 

VIn (-2|-1)e -0.81 1.42 0.22 1.03 1.20 -1.08 1.43 0.09 1.17 1.35 

VIn (-1|0)e 0.08 1.58 0.79 0.71 0.80 -0.14 1.60 0.68 0.83 0.92 

VIn (-2|-3)h 1.05 4.37 2.81 1.76 1.56 1.06 4.56 2.62 1.56 1.94 

VIn (-1|-2)h 1.28 3.51 2.48 1.20 1.03 1.27 3.78 2.61 1.35 1.17 

VIn (0|-1)h 1.12 2.62 1.91 0.80 0.71 1.10 2.84 2.02 0.92 0.83 

VIn 24d           

VIn (-3|-2)e -1.32 1.73 0.08 1.40 1.65 -1.55 1.78 -0.02 1.54 1.80 

VIn (-2|-1)e -0.64 1.51 0.04 0.68 1.47 -0.82 1.47 0.04 0.86 1.43 

VIn (-1|0)e 0.18 1.73 0.51 0.33 1.22 -0.04 1.70 0.37 0.41 1.33 

VIn (-2|-3)h 0.97 4.02 2.62 1.65 1.40 0.92 4.25 2.72 1.80 1.54 

VIn (-1|-2)h 1.19 3.34 2.66 1.47 0.68 1.23 3.52 2.66 1.43 0.86 

VIn (0|-1)h 0.97 2.52 2.19 1.22 0.33 1.00 2.74 2.33 1.33 0.41 

Oi 16c           

Oi (-2|-1)e -1.70 1.18 -0.27 1.43 1.45 -1.59 1.10 -0.15 1.45 1.25 

Oi (-1|0)e -0.21 1.64 0.57 0.78 1.07 -0.24 1.56 0.67 0.91 0.89 

Oi (-1|-2)h 1.52 4.40 2.97 1.45 1.43 1.60 4.29 2.85 1.25 1.45 

Oi (0|-1)h 1.06 2.91 2.13 1.07 0.78 1.14 2.94 2.03 0.89 0.91 

Ini 16c           

Ini (+2|+3)e -1.90 0.58 -0.31 1.58 0.90 -2.01 0.15 -1.07 0.94 1.23 

Ini (+1|+2)e -2.49 -0.72 -1.62 0.88 0.90 -2.84 -0.87 -1.50 1.34 0.63 

Ini (0|+1)e -3.08 -2.23 -2.80 0.28 0.57 -3.17 -2.34 -2.86 0.31 0.52 

Ini (+3|+2)h 2.12 4.60 3.01 0.90 1.58 2.55 4.71 3.77 1.23 0.94 

Ini (+2|+1)h 3.42 5.19 4.32 0.90 0.88 3.57 5.54 4.20 0.63 1.34 

Ini (+1|0)h 4.93 5.78 5.50 0.57 0.28 5.04 5.87 5.56 0.52 0.31 
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7.8     Summary and Conclusion 

The structure, defect states, ionization potentials and defect formation energies 

of intrinsic point defects including oxygen vacancy, indium vacancy of 8b and 

24d site, indium interstitial at 16c site and oxygen interstitial at 16c site in In2O3 

have been investigated using the QM/MM approach with two functionals, B97-

2 and PBE0.  

The ionization potentials calculated using both B97-2 and PBE0 are in good 

agreement with earlier studies. Compared to the hole carriers, the electron 

carriers will remain stable as the valence band is deep. 

We found that oxygen vacancies are shallow donors and indium vacancies at 

both 8b and 24d site are deep acceptors, with formation energy relatively high 

for Fermi level within the gap even under O-rich conditions. The oxygen 

interstitials at the 16c site are also deep acceptors, while the oxygen split 

interstitials are electrically neutral for the Fermi level within the gap. In 

interstitials at 16c are mostly stable in the +3 charge states for the Fermi level 

position across the gap. 

In Chapter 4.6, we have reported the oxygen vacancy defect formation 

energies determined using interatomic potential methods. Here, we calculated 

the defect formation energies of four intrinsic point defects in In2O3 using 

interatomic potential methods. By comparing the IP results to the PBE0 results 

obtained using the QM/MM approach, we concluded that the IP values are 

underestimated; the QM/MM approach give results that are more accurate than 

those obtained using classical models.  

Table 7.8 Defect formation energies of four intrinsic point defects in In2O3 using IP and 
QM/MM methods. 

Defect O rich O poor 

 QM/MM(PBE0) IP QM/MM(PBE0) IP 

Vo
2+ -1.94 2.76 -5.19 -0.49 

VIn
3-(8b) 14.77 23.45 19.64 28.32 

VIn
3-(24d) 14.88 23.93 19.76 28.81 

Oi
2- 8.74 16.19 11.99 12.94 

Ini
3+ -3.39 -4.33 -8.27 0.54 
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In this Chapter, we have presented the investigation on the intrinsic point 

defects in In2O3 have using B97-2 and PBE0 functionals. However, as 

discussed in Chapter 5 and 6, the BB1k functional is expected to provide a 

better account of electron localisation and more accurate ionisation energies. 

The calculations in this chapter therefore provide a preliminary study on which 

future work using the BB1k functional will build. 

  



Chapter 8 

Solid Solution of In2O3 and SnO2  

8.1     Introduction  

As discussed earlier, solid solutions, in which SnO2 is doped into In2O3 at lower 

concentrations are denoted as indium-tin oxide (ITO) and are efficient 

transparent conducting oxides. Nadaud et al. [241] studied the structure of ITO 

solid solutions, finding that the solubility of tin in indium oxide in ambient 

conditions is ~6%, and that the lattice parameter and oxygen/metal ratio 

increase with the tin doping concentration. Yamada et al. [242] investigated the 

doping mechanism of ITO prepared by the solid-state reaction method and 

explained that the repulsive force among tetravalent Sn with a higher effective 

charge than that of In3+ results in an increase in lattice constant. Gao et al. [243] 

achieved up to 6.4 at.% Sn doping concentrations using the physical vapor 

transport method. 

At greater concentrations of Sn, there is a switch from electronic to ionic 

mechanism of maintaining charge neutrality, which we intend to explore. 

Moreover, there is at least one partially ordered intermediate phase and there 

could be more unknown phases which would be of general interest in 

crystallography and mineralogy. Heward and Swenson [244] determined the 

In2O3 - SnO2 phase diagram in the region of 1000-1650°C using an electron 

probe microanalyzer (EPMA) and x-ray diffraction (XRD) analysis. The phase 

diagram (Fig.1 in ref [244]) is given in Figure 8.1. SnO2 was found to have a 

maximum solubility of 13.1 mol% in In2O3 at 1650 °C. Two intermediate phases, 

In4Sn3O12 and In2SnO5, were found to exist over the studied temperature range. 
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In this Chapter, we present a preliminary modelling study of the solid solutions 

of In2O3 and SnO2 using the IP from Chapter 4.3. The average properties of 

systems of different compositions have been calculated.  

 

Figure 8.1 Phase diagram of the In2O3 - SnO2 system. The solid triangles represent bulk 
compositions of samples used to obtain compositional data. [244] 

8.2     Structure Generation 

To simulate solid solutions of In2O3 and SnO2 in more realistic system sizes, 

supercells are used. In this study, both a 1×1×1 unit cell and 2×2×2 supercells 

of In2O3 have been firstly used. On analysing the results, we found that a 

supercell into which both In2O3 and SnO2 crystal structures can fit is needed to 

span the full stoichiometric range of the solid solution In2-xSnxO3+2x. Therefore, 

we additionally created an ideal supercell of SnO2 that can fit in both rutile and 

bixbyite structures. 

8.2.1    Supercell of bixbyite 

For each two substitutional tin cations doped onto indium ion lattice sites in the 

2×2×2 supercells of In2O3, a charge compensating oxygen interstitial needs to 

be introduced. As one In2O3 unit cell of 80 atoms contains 32 cations and 16 

oxygen interstitial sites. there are 128 oxygen interstitial sites and 256 cation 

sites that can be replaced in a 2×2×2 supercell. 
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The number of possible structures for every doping concentration that contains 

different defect clusters (two substitutional tin ions and one interstitial oxygen 

ion) is  

𝑁 =
𝑁𝑎𝑙𝑙!

(𝑁𝑎𝑙𝑙 − 𝑁𝑆𝑛)! 𝑁𝑆𝑛!
×

𝑀𝑎𝑙𝑙!

(𝑀 − 𝑀𝑂)! 𝑀𝑂!
 ,                                       (8.1) 

where N is the number of possible structures, 𝑁𝑎𝑙𝑙  and 𝑀𝑎𝑙𝑙  are the total 

numbers of cation and anion sites, 𝑁𝑆𝑛 and 𝑀𝑂 are the number of Sn and O 

dopants. 

For the supercell that contains only one defect cluster, the number of structures 

is 4,177,920 without taking into account symmetry. Introducing more defect 

clusters will result in a huge number of possible structures, which makes 

exhaustive simulations impossible. For example, the number of possible 

structures increases to 1.26×1017 after introducing three defect clusters into the 

2×2×2 supercell of In2O3. However, since the end-member system is symmetric, 

most structures are symmetrically equivalent. 

In the KLMC approach, discussed in chapter 3.5.3, an unbiased Monte Carlo 

method is applied to obtain random sampling results of SnO2 doping into In2O3 

supercells. KLMC restricts anions from swapping with cations. All cations 

including original indium ions and substitutional tin ions are allowed to randomly 

occupy the lattice cation sites. There are two different ways to set up the anion 

sites: one allows both lattice and interstitial O anions to occupy both lattice 

anion positions and the interstitial anion sites (R1), the other only allowed the 

O dopants to occupy the interstitial anion sites (R2). 

We firstly generated ~1000 unique structures for every tin dopant concentration 

in a 1×1×1 unit cell of In2O3 and performed energy optimisations using 

potentials listed in Table 4.1 which are designed to reproduce good lattice 

properties. The initial lattice parameters used are the parameters of In2O3. To 

provide relevant dopant concentrations in more realistic system sizes, we then 

further investigated the 2×2×2 supercells. We randomly generated ~10,000 

unique structures for ~60 out of 128 possible different tin dopant concentrations 

in the 2×2×2 supercells of In2O3. 
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8.2.2    Supercell of rutile  

Under ambient conditions, SnO2 adopts the rutile structure (Figure 8.2 (a)), 

In2O3 adopts the body-centred cubic bixbyite crystal structure (Figure 8.2 (g)) 

which can be viewed as a 2 ×2 ×2 supercell of the fluorite (Figure 8. 2 (e)(f)) 

lattice with one fourth of the anionic sites vacant. 

To create the ideal structure, firstly, we created a rotated √2 × √2 ×1 supercell 

of rutile structure as shown in Figure 8.2 (b). This structure can be viewed as a 

distorted fluorite type along the c axis with a significant displacement of oxygen 

atoms. Secondly, we created a 2 ×2 ×2 supercell of the rotated √2 × √2 ×1 

supercell of rutile structure as shown in Figure 8.2 (c). Now the structure can 

be viewed as a distorted bixbyite structure with cations lying on correlated 

positions. Finally, by taking into account all possible oxygen sites including 

original lattice sites (red balls) and interstitial sites (blue balls), the final 

structure (Figure 8.2 (d)) can fit in both rutile and bixbyite structures. 

We then started to simulate the solid solutions of In2O3 and SnO2 from the pure 

SnO2 end. For each two substitutional indium cations doped onto tin ion lattice 

sites, a charge compensating oxygen vacancy needs to be introduced. In the 

created supercell (Figure 8.2 (d)), there are 32 cation and 224 oxygen sites. 

The number of possible structures for the supercell that contains only one 

defect cluster (two substitutional indium ions and one vacancy oxygen ion) is 

111,104, without taking into account symmetry. The number of possible 

structures increases to 1.67×1012 after introducing three defect clusters into the 

supercell.  

We firstly generated ~1000 unique structures for every indium dopant 

concentration in the supercell of SnO2 and performed energy optimisations 

using potentials listed in Table 4.1. Because the created supercell is a distorted 

fluorite type along the c axis, to provide realistic lattice sizes, we then changed 

the lattice parameters of the supercell with the increase of the dopant 

concentrations. The new lattice parameter of the supercell is determined as: 

𝐿𝑠𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙 = 𝐿𝐼𝑛2𝑂3
+ (𝐿𝑆𝑛𝑂2

− 𝐿𝐼𝑛2𝑂3
) ×

𝑛𝑆𝑛

𝑁𝑎𝑙𝑙
 ,                                       (8.2) 
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where 𝐿𝐼𝑛2𝑂3
 is the lattice parameter of In2O3, 𝐿𝑆𝑛𝑂2

 is the lattice parameter of 

SnO2, 𝑛𝑆𝑛 is the number of Sn ions and 𝑁𝑎𝑙𝑙 is the total number of cation ions 

in the supercell. 

 

Figure 8.2 The displacive mechanism of transition from the rutile form to the bixbyite form. 
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8.3     Thermal Average Lattice Properties 

For the system of interest in thermodynamic equilibrium, observed properties 

can be calculated from our Monte Carlo sampling by 

〈𝐴〉 =
∑ 𝐴𝑖𝑖 ∙exp(−

∆𝐸𝑖
𝑘𝑇

)

∑ exp(−
∆𝐸𝑖
𝑘𝑇

)𝑖

) ,                                                               (8.3) 

where for configuration i Ai is the property value that will be statistically 

averaged (in this case, the lattice parameter), ∆𝐸𝑖 is the lattice energy related 

the lowest lattice energy found, T is the temperature, and k is the Boltzmann 

constant (the difference rather than the energy itself is used to reduce 

numerical problems arising from summing very small numbers). 

8.3.1    Supercell of bixbyite 

We firstly performed the optimisation calculations under constant volume, 

which was followed by constant volume optimisation, for both 1×1×1 and 2×2×2 

cells. The thermal average lattice parameter c is calculated at room 

temperature for the 1×1×1 unit cell with the R1 and R2 setups using equation 

8.3 and plotted in Figure 8.3 a, and for the 2×2×2 supercell with the R2 setup 

in Figure 8.3 b. The thermal average lattice parameter c ± 3σ (standard 

derivation) for the 2×2×2 supercell with the R2 setup are plotted in Figure 8.4. 

The full range of calculated thermal average lattice parameter c at 293K, 500k 

and 1000K can be found in Appendix B.1. The standard deviation at 293K, 

500k and 1000K can be found in Appendix B.2. 

The lattice parameter first increases then decreases with increasing tin dopant 

concentration. The expansion of the lattice at low dopant levels agree but not 

quantitatively with experimental results by Nadaud et al, [241] who found that 

the tin doping (up to 5-6 at.%) leads to the increase in the lattice constant. At 

higher doping concentration, although the lattice constants decrease with the 

doping concentration, the lattice still retains the bixbyite type even when there 

are no indium ions left in the lattice. Therefore, a more realistic structure that 

can fit in both rutile and bixbyite structures is required and is used in 

subsequent calculations. 
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Figure 8.3 Thermal average Lattice parameter c of solid solution of In2O3 and SnO2 in 

supercell of bixbyite at 293K. (a.1×1×1 unit cell, b. 2×2×2 supercell.) 

Figure 8.4 Thermal average Lattice parameter c with standard derivation of solid solution of 
In2O3 and SnO2 in  2×2×2 supercell of bixbyite at 293K,500K and 1000K. 
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8.3.2    Supercell of rutile  

To account for a more flexible structure in our simulation, we consider the a/c 

lattice parameter ratio. The value of a/c for the pure SnO2 rutile structure is 2.08 

and that of the pure In2O3 bixbyite structure is 1. The initial geometry 

optimisations over all concentrations used the rutile SnO2 lattice parameter. 

The resulting value of a/c plotted in Figure 8.5a shows that there is a trend of 

structural change from rutile to bixbyite, with the value dropping from 2.08 to 

1.53 for indium content varying from 0 at.% to 75 at.%. There is, however, still 

no bixbyite structure transition over the whole range. Therefore, we modified 

each individual initial lattice parameter based on the indium concentrations 

using Equation 8.2.  

The resultant a/c lattice parameter ratio is plotted in Figure 8.5b starting from 

2.08 (0 at.% Indium) which is the rutile value, reduced to 1.65-1.75 (25 at.% - 

56.25 at.%), and finally decreased to 1 with the indium content increased to 75 

at.%. The thermal average lattice parameters c ± 3σ (standard derivation) at 

293K, 500k and 1000K are plotted in Figure 8.6. The full range of calculated 

standard deviations at 293K, 500k and 1000K can be found in Table B.5 in 

Appendix B.2. 

As shown in Figure 8.7, the 5 most stable (lowest energy) structures out of 

~1000 of 75 at.% indium concentration are defective bixbyite structures. We 

note that the value of a/c increases for the indium concentration over 95 at.%, 

which indicate that there is a problem with the IP of In2O3, and a large sample 

of random structures might be required to obtain accurate results. 
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Figure 8.5 Thermal average lattice parameter factor a/c of solid solution of In2O3 and SnO2 in 
supercell of rutile. (a. original rutile lattice parameter, b. modified rutile lattice parameter using 

Equation 8.2.) 

Figure 8.6 Thermal average lattice parameter factor a/c with standard derivation of solid 
solution of In2O3 and SnO2 in supercell of rutile at 293K,500K and 1000K.. (modified rutile 

lattice parameter using Equation 8.2.) 
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Figure 8.7 Five lowest energy structures for the 75 at.% indium concentration.  
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8.4     Enthalpy of Mixing 

To investigate the phase behaviour of the solid solution with SnO2 doping into 

In2O3, the enthalpy of mixing is calculated. The enthalpy of mixing is defined as 

follows: 

∆𝐸𝑚𝑖𝑥 = 𝐸𝑎𝑣𝑒𝑟 − (𝑁 × 𝐸𝑆𝑛𝑂2
+ 𝑀 × 𝐸𝐼𝑛2𝑂3

)/(𝑁 + 𝑀/2) ,                      (8.4) 

where ∆𝐸mix  is the enthalpy of mixing, 𝐸aver  is the thermal average of total 

energies of mixing SnO2 into In2O3, or In2O3 into SnO2, 𝐸SnO2
and 𝐸In2O3

are the 

energies per formula unit of pure SnO2 and In2O3, respectively, N and M are 

the numbers of formula units of SnO2 and In2O3 contained in the supercell 

(N+M/2 = 32 (1×1×1  unit cell of bixbyite and supercell of rutile ) or 128 (2×2×2 

supercell of bixbyite)). 

For SnO2, the total lattice energy is -244.63 eV, the 𝐸𝑆𝑛𝑂2
 is -122.31 eV. For 

In2O3, the total lattice energy is -2400.18 eV, the 𝐸𝐼𝑛2𝑂3
 is -150.01eV. 

8.4.1    Supercell of bixbyite 

As mentioned, in the first stage, the optimisation calculations were performed 

under constant volume. We then fully relaxed the structures under constant 

pressure. The enthalpy of mixing SnO2 into In2O3 under both constant volume 

and constant pressure for the 1×1×1 unit cells with R1 and R2 setups are 

shown in Figure 8.7a, and 2×2×2 supercell with R2 setup in Figure 8.7b. The 

full range of calculation results including the thermal average of total energies 

and the enthalpy of mixing can be found in Appendices B.3 and B.4. 

From the following results, we found that the mixing energy of the solid solution  

decreases as the defect concentration increases for both 1×1×1 and 2×2×2 

cells, and there is little difference between constant volume and pressure 

conditions, which again suggests that the supercell we used is inappropriate. 
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Figure 8.8 Calculated mixing energy of solid solution of In2O3 and SnO2 in supercell of 
bixbyite. (a.1×1×1 unit cell, b. 2×2×2 supercell.) 

8.4.2    Supercell of rutile  

The calculated enthalpy of mixing of solid solution of In2O3 and SnO2 in a 

supercell of rutile using original and modified rutile lattice parameters is shown 

in Figure 8.8. 

For the system using the original rutile lattice parameters, the mixing energy 

firstly increased with the defect concentration and reach 0.36 when the indium 

content was 18.75 at.%. The mixing energy then decreased until the indium 

defect concentration reached 43.75 at.%. For the system setup using the 

modified rutile lattice parameters, the mixing energy shows three peaks at 

concentrations of 18.75-25 at.%, 56.25 at.% and 87.50 at.%, and two troughs 

at concentrations of 43.75 at.% and 75.00 -81.25 at.%. The peak at 18.75-25 

at.% represents the rutile structures, while the trough at 43.75 at.% suggests 

that there may exist one intermediate phase. This result gives a valuable insight 

into the structures of the solid solution of In2O3 and SnO2. 
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Figure 8.9 Calculated mixing energy of solid solution of In2O3 and SnO2 in supercell of rutile. 
(a. original rutile lattice parameters, b. modified rutile lattice parameters using Equation 8.2.) 
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8.5     Future Work and Conclusions 

The thermal average lattice structures and enthalpy of mixing of the solid 

solution of In2O3 and SnO2 have been explored in this chapter. A supercell that 

can fit both rutile and bixbyite structures has been used to provide a more 

realistic solid solution structure. We identify that low energy structures for high 

indium concentration are defective bixbyite structures. However, the results of 

the thermal average lattice parameters show that the IP of In2O3 is insufficient 

to offer bixbyite lattice properties, which is to be expected. The calculated 

enthalpy of mixing suggests that there may exist one intermediate phase. 

The work presented in this Chapter is a basic study for a difficult large scale 

project. As a preliminary work, the result gives a valuable insight into the 

structures of the solid solution of In2O3 and SnO2. In future, the IP of In2O3 may 

need further refinement.  Larger samples of random structures are required, 

and at least one partially ordered intermediate phase In4Sn3O12 is worthy of 

study. Moreover, at greater concentrations of Sn, the switch from electronic to 

ionic mechanism of maintaining the charge neutrality would be of general 

interest for the study of the solid solution of In2O3 and SnO2. The present work 

will, however, provide a good foundation for future study. 

  



Chapter 9 

Summary and Conclusions 

In this thesis, atomistic and quantum mechanical/molecular mechanical 

simulation techniques have been applied to investigate the defect properties of 

three main TCO materials, In2O3, SnO2 and ZnO. 

The energetics of point defects and intrinsic disorder in In2O3 and SnO2 have 

been calculated using the atomistic Mott-Littleton method as implemented in 

GULP - in the first section of results (Chapter 4). A new set of interatomic 

potentials was derived and applied which accurately reproduce physical and 

structural properties of the two binary oxides. The interatomic potential model, 

including a suitable approach to reproduce the fundamental band gaps, was 

shown to give reasonable intrinsic defect formation energies (in comparison 

with more accurate but computationally expensive electronic structure 

methods), indicating that the defect properties are modelled well. The approach 

will be suitable to study defects in extended systems, as the lower 

computational need offers significant advantages over most electronic 

structure techniques. 

Based on the calculated point defect formation energies and lattice energies, 

we predict the primary type of the intrinsic disorder is the anion Frenkel pair in 

both binary oxide materials. In both materials, holes are unstable and tend to 

form point defects; electrons are stable which confirms and rationalises the n-

type nature of these materials. The complexation of Sn with any available 

interstitial O will necessarily occur in Sn doped In2O3 under thermodynamic 

equilibrium at finite levels of doping, while the equilibrium shift towards 

electrons rather than oxygen interstitials as charge compensating species. 
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The intrinsic point defects in ZnO have been investigated using QM/MM 

embedded cluster approach using three density functionals: B97-2, PBE0 or 

BB1K in Chapter 5. The large calculated bulk IP indicate that the formation 

energy of positively charged defect will be low when the Fermi level is close to 

the VBM which explains the observed difficulty in p-type doping ZnO. In 

addition to the compact state, the defect can have a diffuse state. By 

considering both compact and diffuse states of the intrinsic point defects, the 

emission peak for the capture of a hole by the oxygen vacancy and zinc 

vacancy complex is 2.62 eV using BB1k, which allows us to assign this defect 

as the source of the blue luminescence. The red luminescence is related to the 

capture of a hole by the -2 charge state of Oi at the octahedral site. 

Defect energies were calculated under two conditions, oxygen rich/cation poor 

and oxygen poor/cation rich. Under oxygen poor conditions, we found oxygen 

vacancies displayed the lowest formation energy which therefore likely to 

dominate. Under oxygen rich conditions, the dominant defect changes into zinc 

vacancies. The computed self-consistent Fermi energy and equilibrium defect 

and carrier concentrations show that ZnO is strongly n-type with electron 

concentrations greater than that of the hole concentration at high temperature 

and oxygen partial pressures. Oxygen vacancies are the dominant defect in 

ZnO under low O partial pressures. 

In Chapters 6, we studied the properties of Li and H dopants in ZnO using the 

QM/MM embedded cluster approach. LiZn is stable in the 0 and -1 charge state, 

with the (-/0) transition level at 0.79 eV (B97-2) and 1.50 eV (BB1k) from the 

VB, which yields a deep acceptor level. The formation energy of Lii in the +1 

charge state at the octahedral site is 0.8 eV (BB1k) lower than that of 

tetrahedral site. The results for the LiZn-Lii(Oct) defect pairs also show that the 

complexes with Li interstitial at the octahedral site are stable. The (+/0) 

transition level of both LiZn-Lii(Oct) and LiZn-Lii(Tet) are found to lie at 0.84 eV (BB1k) 

from the valence band, which yields a deep donor level. For the complexes of 

LiZn with VO, the defect pair is stable in the +1 stable acting as a donor with the 

(+/-) transition above the CBM. 
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For the H related defects in ZnO, we calculated that the neutral Hi is stable at 

the octahedral site with the formation energy of 0.61 eV (BB1k) lower than that 

of tetrahedral site. In the +1 charge state, both the octahedral and tetrahedral 

interstitial relaxed into the antibonding site interstitial. Among four 

configurations, the positively charged Hi is stable at the BC‖ site. HO is 

energetically favoured compared to Hi(BC) with the formation energy of 0.58 eV 

(BB1k) lower in the  positive charge state. The (+/0) transition level of HO is 

5.47 eV (BB1k) above VBM (in the CB), which will be auto-ionised. Complexes 

of Hi with LiZn, are also stable with Hi at the BC‖ site and act as shallow donors 

in ZnO. 

Intrinsic point defects in In2O3 have been investigated using the QM/MM 

embedded cluster approach using B97-2 and PBE0 density functionals in 

Chapter 7. Under oxygen poor conditions, we found that the indium interstitial 

at 16c site is most stable for the Fermi level within the gap using PBE0. 

However, using B97-2, the dominant intrinsic point defect becomes the oxygen 

vacancy when the Fermi level is near the CBM. Under oxygen rich conditions, 

the dominant point defects for both PBE0 and B97-2 become neutral oxygen 

split interstitials for the Fermi level close to the conduction band. From the 

calculated ionization energies, we found that the emission peak for capture of 

a hole by the +1 charge state VO is 2.14 eV (B97-2), and by the +2 charge state 

Ini at octahedral site is 2.12 eV (B97-2), which might be the source of the 

orange emissions. 

Finally, in Chapter 8, the solid solutions of In2O3 and SnO2 have been 

investigated using the interatomic force field from Chapter 4. The unbiased 

Monte Carlo method is applied to obtain random sampling results. Firstly, we 

randomly generated ~10,000 unique structures for ~60 out of 128 possible 

different tin dopant concentrations in the 2×2×2 supercells of In2O3. After full 

relaxation, the thermal average lattice parameter still keeps the bixbyite type 

even though there are no remaining indium ions. A more realistic structure 

which can accommodate both In2O3 bixbyite and SnO2 rutile crystal structures 

is then used. ~1000 unique structures for every indium dopant concentration in 

the supercell of SnO2 have been generated. We found that the 5 most stable 

structures out of ~1000 of 75 at.% indium concentration are defective bixbyite 
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structures. The calculated enthalpy of mixing of the solid solution shows three 

peaks which indicate that there may exist at least one intermediate phase. 

In summary, the work presented in this thesis provided a detailed defect study 

of In2O3, SnO2 and ZnO. There are several areas that would be worthy of future 

research. 

In Chapter 5, we have studied the intrinsic point defect in ZnO. We assign the 

emission peak for the capture of a hole by the oxygen vacancy - zinc vacancy 

complex as the source of the blue luminescence; the capture of a hole by the -

2 charge state of Oi at the octahedral site as the source of the red luminescence. 

The transition responsible for the green luminescence (GL) was not identified. 

Copper, which is a natural and the most abundant impurity in ZnO was 

confirmed by experiment to be a prominent source of GL in this material.[169] 

Therefore, further QM/MM calculations on copper impurities in ZnO are needed 

to determine the source of the GL. 

We have confirmed that the fundamental difficulty with p doping on ZnO arises 

from the instability of holes with respect to oxygen vacancies. To understand 

the role of impurities in ZnO, we have studied the defect properties of Li and H 

impurities in ZnO. More possible impurities such as N, F, Al are needed to be 

calculated. 

It is necessary to follow on from the preliminary work on the intrinsic defects in 

In2O3 using QM/MM method in Chapter 7, as both PBE0 and B97-2 cannot 

reproduce good asymptotic behaviour of the Kohn-Sham potential, and a more 

accurate functional such as BB1k is needed to reduce the one-electron self-

interaction error in the traditional DFT formulations. 

Having established the preliminary study on the solid solutions In2O3 and SnO2, 

further work is needed to understand fully the defect properties of the solid 

solution. Initially, this work generated 1000 random structures for every indium 

dopant concentration in the supercell of SnO2; larger random structures are 

needed to provide more accurate results. As found in experimental studies, 

there are two intermediate phases In4Sn3O12 and In2SnO5 which could be 

investigated.  



Appendices 

A     SnIn and Oi complex binding energies in 

In2O3. 

The structures of oxygen interstitials in In2O3 is shown in Figure A.1. Fully range 

of calculation results of defect binding energies of clusters involving Sn and O 

interstitial complexes, including up to three interstitial O, are given in Table A.1. 

 

 

Figure A.1 Interstitial oxygen in In2O3. The interstitial O ion is represented by green spheres, 
lattice O ion are represented by red spheres, first neighbour In ions are represented by blue 

spheres while the second neighbour In ions are represented by purple spheres. 
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Table A.1 SnIn and Oi complex binding energies in In2O3. 

Sn:Oi ratio Defect cluster Indium 

position 

Complex binding 

energy (eV) 

1:1 [SnIn•Oi]' (SnIn(d)•Oi)' 9 -1.54 

 (SnIn(b)•Oi)' 2 -1.19 

 (SnIn(b)-Oi)' 30 -0.93 

 (SnIn(d)-Oi)' 24 -0.85 

  21 -0.67 

  27 -0.80 

2:1 [2SnIn•Oi]× (2SnIn(d) •Oi)× 9,10 -2.64 

 (SnIn(b) •SnIn(d) •Oi)× 2,9 -2.26 

 (SnIn(b) -SnIn(d) •Oi)× 30,11 -2.23 

  30,10 -2.08 

  30,9 -2.02 

 (SnIn(d) -SnIn(d) •Oi)× 24,9 -2.15 

  24,10 -2.05 

  21,10 -2.00 

  27,11 -1.99 

  24,11 -1.98 

  27,9 -1.91 

  27,10 -1.89 

  21,9 -1.86 

  21,11 -1.71 

 (SnIn(b) -SnIn(b) •Oi)× 2,30 -1.74 

 (SnIn(d) -SnIn(b) •Oi)× 2,27 -1.73 

  2,24 -1.62 

  2,21 -1.39 

 (2SnIn(b) -Oi)× 30,31 -1.66 

 (SnIn(b) •SnIn(d) -Oi)× 30,24 -1.58 

  30,28  -1.45 

  30,29 -1.45 

  30,21 -1.39 

  30,22 -1.39 

  30,27 -1.10 

  30,23 -1.04 

 (2SnIn(d) -Oi)× 30,26 -1.50 

  30,25 -1.31 

3:1 [3SnIn•Oi]˙ (3SnIn(d)•Oi)˙ 9,10,11 -3.31 

 (SnIn(b)•2SnIn(d) •Oi)˙ 2,9,10 -2.90 
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 (SnIn(d) -2SnIn(d) •Oi)˙ 9,10,24 -2.89 

  9,10,26 -2.80 

  9,10,25 -2.70 

  9,10,21 -2.70 

  9,10,28 -2.62 

  9,10,29 -2.62 

  9,10,22 -2.53 

  9,10,27 -2.53 

  9,10,23 -2.45 

 (2SnIn(b) -SnIn(d) •Oi)˙ 9,31,32 -2.55 

  9,30,32 -2.49 

  9,30,31 -2.36 

 (SnIn(b)•SnIn(d)-SnIn(d) •Oi)˙ 9,32,26 -2.44 

  9,32,25 -2.43 

  9,30,24 -2.40 

  9,31,24 -2.38 

  9,31,25 -2.36 

  9,32,24 -2.34 

  9,32,21 -2.31 

  9,32,27 -2.30 

  9,31,22 -2.29 

  9,32,28 -2.29 

  9,31,29 -2.25 

  9,30,22 -2.23 

  9,30,29 -2.19 

  9,32,23 -2.17 

  9,31,27 -2.14 

  9,30,26 -2.14 

  9,30,21 -2.11 

  9,32,22 -2.10 

  9,30,28 -2.09 

  9,32,29 -2.05 

  9,30,25 -2.03 

  9,31,26 -2.02 

  9,31,23 -2.01 

  9,31,21 -1.83 

  9,31,28 -1.80 

  9,30,27 -1.76 

  9,30,23 -1.67 
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 (2SnIn(d) -SnIn(d) • Oi)˙ 9,24,25 -2.37 

  9,29,24 -2.35 

  9,27,24 -2.31 

  9,24,26 -2.30 

  9,29,25 -2.29 

  9,28,24 -2.27 

  9,25,26 -2.22 

  9,29,26 -2.21 

  9,28,25 -2.19 

  9,22,26 -2.19 

  9,27,25 -2.17 

  9,27,26 -2.14 

  9,29,22 -2.13 

  9,21,25 -2.12 

  9,28,22 -2.11 

  9,28,26 -2.07 

  9,23,24 -2.07 

  9,22,24 -2.06 

  9,29,21 -2.05 

  9,21,22 -2.02 

  9,27,21 -2.00 

  9,22,25 -1.94 

  9,29,23 -1.94 

  9,21,24 -1.92 

  9,28,21 -1.92 

  9,22,23 -1.87 

  9,27,29 -1.87 

  9,28,29 -1.87 

  9,27,28 -1.81 

  9,28,23 -1.80 

  9,27,23 -1.78 

  9,21,26 -1.78 

  9,21,23 -1.76 

  9,23,25 -1.68 

  9,23,26 -1.64 

 (3SnIn(b) -Oi)˙ 30,31,32 -2.18 

 (2SnIn(b) •SnIn(d) -Oi)˙ 30,31,24 -2.01 

  30,31,29 -1.90 

  30,31,22 -1.89 
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  30,31,25 -1.819 

  30,31,26 -1.9 

  30,31,21 -1.55 

  30,31,27 -1.54 

  30,31,23 -1.54 

 (2SnIn(d) -SnIn(b) • Oi)˙ 2,27,24 -1.96 

  2,27,26 -1.95 

  2,27,25 -1.92 

  2,27,28 -1.81 

  2,24,25 -1.77 

  2,27,21 -1.72 

  2,27,22 -1.70 

  2,27,23 -1.64 

  2,21,25 -1.60 

  2,21,26 -1.35 

  2,21,22 -1.32 

  2,21,24 -1.30 

 (SnIn(b) •2SnIn(d) -Oi)˙ 30,24,26 -1.85 

  30,24,25 -1.66 

  30,25,26 -1.59 

  30,21,22 -1.57 

  30,27,24 -1.56 

  30,21,25 -1.52 

  30,28,29 -1.51 

  30,21,24 -1.49 

  30,27,26 -1.45 

  30,21,26 -1.42 

  30,27,21 -1.35 

  30,27,22 -1.32 

  30,21,23 -1.23 

  30,27,25 -1.23 

  30,22,23 -1.22 

  30,27,29 -1.15 

  30,27,28 -1.14 

  30,27,23 -0.91 

 (3SnIn(d) -Oi)˙ 24,25,28 -1.83 

  24,25,27 -1.80 

  24,25,29 -1.79 

  24,25,26 -1.72 
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  27,22,26 -1.67 

  27,21,25 -1.66 

  27,28,24 -1.60 

  27,28,25 -1.56 

  27,28,26 -1.56 

  21,22,27 -1.44 

  27,21,26 -1.40 

  21,22,28 -1.39 

  27,22,24 -1.38 

  27,21,24 -1.38 

  27,28,22 -1.37 

  21,22,29 -1.36 

  24,25,23 -1.35 

  24,25,21 -1.32 

  27,28,21 -1.32 

  27,22,25 -1.31 

  27,28,23 -1.29 

  27,23,26 -1.29 

  27,23,25 -1.28 

  21,22,23 -1.22 

  21,22,26 -1.18 

  21,22,25 -1.16 

  24,25,22 -1.02 

  27,28,29 -1.01 

  21,22,24 -0.87 

4:1 [4SnIn•Oi] ˙˙ (SnIn(b)•3SnIn(d) •Oi)˙˙  2,9,10,11 -3.12 
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B     Solid Solution of In2O3 and SnO2 Results 

B.1     Thermal Average Lattice Parameters 

Table B.1 Calculated thermal average lattice parameters of solid solution of In2O3 and SnO2 
in 111 unit cell of In2O3 under constant volume. 

Number of SnIn Thermal average lattice parameters (Å) 

 constant volume 

 293 K 500 K 1000 K 

 R1 R2 R1 R2 R1 R2 

2 10.1990 10.1333 10.1990 10.1332 10.1990 10.1376 

4 10.2005 10.135 10.2005 10.135 10.2005 10.1472 

6 10.2034 10.1484 10.2034 10.1482 10.2034 10.1527 

8 10.1797 10.1578 10.1797 10.1578 10.1797 10.1564 

10 10.1720 10.1474 10.1720 10.1474 10.1720 10.1559 

12 10.1863 10.1605 10.1863 10.1594 10.1863 10.1543 

14 10.1512 10.1446 10.1512 10.1446 10.1512 10.1493 

16 10.1546 10.1507 10.1546 10.1507 10.1545 10.1451 

18 10.1344 10.1379 10.1344 10.1379 10.1345 10.1378 

20 10.1344 10.1323 10.1344 10.1323 10.1344 10.1316 

22 10.1310 10.1234 10.1310 10.1234 10.1309 10.1239 

24 10.1148 10.1155 10.1148 10.1155 10.1149 10.1163 

26 10.1101 10.1061 10.1101 10.1061 10.1104 10.1092 

28 10.1089 10.1078 10.1089 10.1077 10.1089 10.1041 
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Table B.2 Calculated thermal average lattice parameters of solid solution of In2O3 and SnO2 
in 222 supercell of In2O3 under constant volume. 

Number of SnIn Thermal average lattice parameters (Å) 

 constant volume 

 293 K 500 K 1000 K 

20 20.2742 20.2742 20.2741 

30 20.2885 20.2882 20.2879 

40 20.2919 20.2919 20.2919 

50 20.2957 20.2957 20.2956 

60 20.2942 20.2942 20.2942 

70 20.2984 20.2984 20.2986 

80 20.2971 20.2971 20.2971 

90 20.2906 20.2906 20.2906 

100 20.2808 20.2808 20.2808 

110 20.2679 20.2679 20.2679 

120 20.2541 20.2541 20.2541 

130 20.2566 20.2565 20.2561 

140 20.2584 20.2584 20.2584 

150 20.2272 20.2272 20.2272 

160 20.2210 20.2210 20.2210 

170 20.2174 20.2174 20.2174 

180 20.2044 20.2044 20.2044 

200 20.1960 20.1960 20.1960 

210 20.1920 20.1920 20.1920 

220 20.1827 20.1831 20.1842 

230 20.1907 20.1907 20.1907 

240 20.2001 20.2001 20.2001 
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B.2     Standard Deviation 

Table B.3 Calculated standard deviation of solid solution of In2O3 and SnO2 in 111 unit cell of 
In2O3 at room temperature. 

Number 

of SnIn 

standard deviation at room temperature 

 constant volume constant pressure 

 R1 R2 R1 R2 

2 0.0000E+00 1.4061E-03 2.1431E-02 7.3306E-04 

4 0.0000E+00 1.6503E-02 5.2858E-05 6.6456E-03 

6 3.0518E-05 4.9679E-04 1.6514E-02 8.8678E-03 

8 4.3158E-05 1.0866E-02 4.0053E-03 1.1852E-02 

10 0.0000E+00 1.0136E-02 6.1035E-05 2.0613E-02 

12 0.0000E+00 N/A 2.2406E-02 7.4465E-03 

14 0.0000E+00 N/A 8.6317E-05 N/A 

16 4.3158E-05 N/A 6.1035E-05 4.4664E-03 

18 4.3158E-05 N/A 0.0000E+00 N/A 

20 0.0000E+00 6.2840E-04 6.5025E-04 7.2520E-03 

22 6.6721E-04 9.8794E-04 4.3158E-05 5.2148E-04 

24 1.0420E-02 1.6765E-02 0.0000E+00 2.3651E-03 

26 1.8407E-03 N/A 0.0000E+00 3.4527E-04 

28 4.3986E-03 3.9612E-03 4.9894E-03 1.3641E-02 

 

  



 

203 

Table B.4 Calculated standard deviation of solid solution of In2O3 and SnO2 in 222 supercell 
of In2O3 under constant volume (R2) at 273K, 500K and 1000K. 

number of SnIn standard deviation 

 293 K 500 K 1000 K 

20 2.0305E-05 1.5353E-04 6.3959E-04 

30 8.0956E-04 1.0356E-03 1.1427E-03 

40 0.0000E+00 0.0000E+00 4.1292E-07 

50 1.7026E-06 5.5529E-05 6.5349E-04 

60 0.0000E+00 0.0000E+00 2.3833E-07 

70 4.1383E-05 2.6558E-04 9.6154E-04 

80 N/A N/A 2.3833E-07 

90 N/A N/A N/A 

100 N/A 2.3833E-07 2.3833E-07 

110 N/A N/A N/A 

120 N/A N/A N/A 

130 1.4972E-04 5.9001E-04 1.4109E-03 

140 0.0000E+00 0.0000E+00 6.3079E-07 

150 8.2589E-07 3.7454E-05 5.2748E-04 

160 2.3833E-07 0.0000E+00 4.7686E-07 

170 N/A N/A 2.3833E-07 

180 N/A N/A N/A 

190 N/A N/A 3.4385E-06 

200 N/A N/A N/A 

210 N/A N/A N/A 

220 8.1313E-04 1.9354E-03 3.1484E-03 

230 0.0000E+00 0.0000E+00 2.3833E-07 

240 2.3833E-07 1.0115E-06 6.7304E-05 
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Table B.5 Calculated standard deviation of solid solution of In2O3 and SnO2 in supercell of 
rutile at room temperature. 

number of InSn standard deviation 

 293K 500K 1000K 

0 1.9774E-07 1.9774E-07 1.9774E-07 

2 3.1245E-03 3.3391E-03 3.9699E-03 

4 6.5911E-03 7.9114E-03 8.2231E-03 

6 5.7559E-07 5.2992E-05 2.4234E-03 

8 2.3721E-02 3.2604E-02 3.7536E-02 

10 N/A 2.0000E-08 1.8573E-06 

12 6.2665E-04 1.6889E-03 3.0105E-03 

14 4.7681E-03 9.6379E-03 1.4001E-02 

16 5.1788E-07 3.7222E-05 7.6384E-04 

18 2.5377E-07 8.5532E-05 5.2590E-03 

20 3.1111E-06 1.1930E-04 1.6817E-03 

22 N/A 2.3173E-07 6.5585E-05 

24 N/A 1.0000E-08 7.1872E-06 

26 N/A 1.4142E-08 3.7435E-06 

28 N/A N/A 6.1349E-06 

30 N/A N/A 1.4142E-0 

32 3.1916E-06 1.0835E-04 1.3041E-03 
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B.3     Thermal Average Lattice Energies 

Table B.6 Calculated mixing energy of solid solution of In2O3 and SnO2 in 111 unit cell of 
In2O3. 

Number of SnIn Thermal average lattice energy (eV) 

 constant volume constant pressure 

 R1 R2 R1 R2 

2 -2482.02 -2496.63 -2484.32 -2497.07 

4 -2581.21 -2594.56 -2583.65 -2593.85 

6 -2677.77 -2690.91 -2680.14 -2691.06 

8 -2775.44 -2788.12 -2778.98 -2788.61 

10 -2876.31 -2885.24 -2877.72 -2884.93 

12 -2975.04 -2981.89 -2977.72 -2982.58 

14 -3073.37 -3080.23 -3074.37 -3081.00 

16 -3172.70 -3178.21 -3178.04 -3177.88 

18 -3272.14 -3276.14 -3276.53 -3277.48 

20 -3371.45 -3375.21 -3370.65 -3375.38 

22 -3471.47 -3473.65 -3471.73 -3473.52 

24 -3571.72 -3572.53 -3571.08 -3572.77 

26 -3672.57 -3673.58 -3673.23 -3673.47 

28 -3773.58 -3773.75 -3773.55 -3773.62 
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Table B.7 Calculated mixing energy of solid solution of In2O3 and SnO2 222 supercell (R2). 

Number of SnIn Thermal average lattice energy 

 constant volume constant pressure 

10  -19682.76 

20 -20163.04 -20165.46 

30 -20644.64 -20646.66 

40 -21129.40 -21129.28 

50 -21612.60 -21611.32 

60 -22096.22 -22094.04 

70 -22577.50 -22582.67 

80 -23064.36 -23067.43 

90 -23553.82 -23546.09 

100 -24038.78 -24034.60 

110 -24525.97 -24524.55 

120 -25016.34 -25013.99 

130 -25497.43 -25498.45 

140 -25990.95 -25989.14 

150 -26483.82 -26483.49 

160 -26976.00 -26978.49 

170 -27471.80 -27472.70 

180 -27972.21 -27976.18 

200 -28969.54 -28971.26 

210 -29470.58  

220 -29973.92  

230 -30484.94  

240 -30997.45  
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B.4     Enthalpy of Mixing 

Table B.8 Calculated mixing energy of solid solution of In2O3 and SnO2 in 111 unit cell of 
In2O3. 

Number of SnIn Enthalpy of mixing (eV) 

 constant volume constant pressure 

 R1 R2 R1 R2 

2 0.40 -0.06 0.33 -0.07 

4 0.26 -0.16 0.18 -0.14 

6 0.20 -0.21 0.12 -0.22 

8 0.10 -0.30 -0.01 -0.31 

10 -0.09 -0.37 -0.14 -0.36 

12 -0.22 -0.44 -0.31 -0.46 

14 -0.34 -0.55 -0.37 -0.58 

16 -0.49 -0.66 -0.65 -0.65 

18 -0.64 -0.76 -0.77 -0.80 

20 -0.78 -0.90 -0.76 -0.91 

22 -0.95 -1.02 -0.96 -1.02 

24 -1.13 -1.15 -1.11 -1.16 

26 -1.32 -1.35 -1.34 -1.35 

28 -1.52 -1.53 -1.52 -1.52 
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Table B.9 Calculated mixing energy of solid solution of In2O3 and SnO2 222 supercell (R2). 

Number of SnIn Enthalpy of mixing (eV) 

 constant volume constant pressure 

10  -0.03 

20 -0.06 -0.07 

30 -0.09 -0.10 

40 -0.14 -0.14 

50 -0.18 -0.17 

60 -0.22 -0.21 

70 -0.25 -0.27 

80 -0.31 -0.32 

90 -0.37 -0.34 

100 -0.42 -0.40 

110 -0.47 -0.46 

120 -0.54 -0.53 

130 -0.57 -0.57 

140 -0.65 -0.64 

150 -0.73 -0.72 

160 -0.80 -0.81 

170 -0.89 -0.89 

180 -1.00 -1.01 

200 -1.20 -1.20 

210 -1.31  

220 -1.42  

230 -1.57  

240 -1.73  
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