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1 | INTRODUCTION

Abstract

Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous
group of disorders characterised by photoreceptor degeneration or dysfunction.
These disorders typically present with severe vision loss that can be progres-
sive, with disease onset ranging from congenital to late adulthood. The
advances in genetics, retinal imaging and molecular biology, have conspired to
create the ideal environment for establishing treatments for IRDs, with the first
approved gene therapy and the commencement of multiple clinical trials. The
scope of this review is to familiarise clinicians and scientists with the current
management and the prospects for novel therapies for: (1) macular dystro-
phies, (2) cone and cone-rod dystrophies, (3) cone dysfunction syndromes, (4)
Leber congenital amaurosis, (5) rod-cone dystrophies, (6) rod dysfunction syn-
dromes and (7) chorioretinal dystrophies. We also briefly summarise the inves-
tigated end points for the ongoing trials.
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progressive.” The stationary disorders (cone and rod
dysfunction syndromes) are congenital or early-infantile

The inherited retinal diseases (IRDs) are a large group of
clinically and genetically heterogeneous conditions
which constitute the leading cause of legal blindness in
England and Wales amongst working-age adults, and the
second commonest in childhood.' Inherited disorders are
classically divided into two sub-types: stationary® and

onset, and give rise to predominantly cone or rod dys-
function, whereas progressive cone dystrophy (COD),
cone-rod dystrophy (CORD), and rod-cone dystrophy
(RCD) are usually of later-onset. The exception being
Leber congenital amaurosis/early onset severe retinal
dystrophy (LCA/EOSRD), with the vast majority of
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affected individuals being legally blind from birth or early
infancy. Recent advances in molecular genetics, particu-
larly next generation sequencing (NGS), have greatly
improved molecular diagnosis, as the underlying causa-
tive genes and pathogenic variants can be identified in a
large proportion of patients.* Molecular genetic testing is
crucial for accurate diagnosis, prognostication, and for
the treatment prospects of targeted therapeutics.

Management of most forms of IRDs is symptomatic.
Correction of refractive error and clear media (eg, cata-
ract surgery), optimise visual potential and prevent
amblyopia. The age of disease onset influences manage-
ment. Infants with severe visual impairment may also
have delays or difficulties with speech, social skills,
and behaviour, highlighting the importance of a multi-
specialist approach. Access to low vision aids and assis-
tive technologies, educational and work-related support
and counselling, are all of paramount importance. The
molecular characterization of patients is the corner-
stone, in order to facilitate access to, and potential bene-
fit from, the ongoing advances in the field. The first
FDA- (Food and Drug Administration), EMA-
(European Medicine Agency) and TGA- (Therapeutics
Goods Administration) approved IRD gene therapy is
available for RPE65-associated retinopathy,™® and there
are multiple other trials exploring multiple avenues
underway for other IRDs. We have recently reviewed
the retinal imaging findings of IRDs,” and the clinical
phenotypes of: (1) macular dystrophies,® (2) COD and
CORD,’ (3) cone dysfunction syndromes® and (4) LCA/
EOSRD."

Herein we present the current management and the
prospects for novel therapies for: (1) macular dystrophies,
(2) COD and CORD, (3) cone dysfunction syndromes, (4)
LCA/EOSRD, (5) RCDs, (6) rod dysfunction syndromes
and (7) chorioretinal dystrophies. We also briefly summa-
rise the investigated end points for the ongoing therapeu-
tic trials, to help and guide clinicians through patient
stratification and clinical trial results.

2 | MACULARDYSTROPHIES
Macular dystrophies (MD) are a group of IRDs that
cause significant visual loss, most often as a result of
progressive macular atrophy. They are characterised by
bilateral, relatively symmetrical macular abnormalities
that significantly impair central visual function.'* While
the fundus findings may be predominantly located at
the central retina, in the majority of MD there is psycho-
physical, electrophysiological, or histopathological evi-
dence of more widespread generalised retinal
involvement.®
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2.1 | General management of MD

No specific curative treatment is available for MD. Current
management includes refractive correction, low visual aids
and educational support.? Tinted lenses (spectacles or con-
tact lenses) can help with disabling photophobia, improving
the quality of vision and ocular comfort.'? Over the last
decade, there have been multiple advances that now provide
us a better understanding of the molecular mechanism(s)
and associated pathophysiology underlying each subtype of
macular dystrophy. This has thereby facilitated the develop-
ment of therapeutic strategies to slow/halt progressive visual
loss, or potentially restore a degree of visual function."?

2.2 | Stargardt disease (STGD)
ABCA4-associated STGD (STGD1, ABCA4, OMIM 601691)
is the most common macular dystrophy. In addition to
general recommendations, patients are advised not to take
vitamin A supplements, due to toxic by-products of vita-
min A having a crucial role in retinal toxicity secondary to
ABCAA4-deficiency, and to limit UV exposure to potentially
slow disease progression, given the evidence of phototoxic-
ity in animal models and patients with STGD1.'**

Pharmacotherapy directly or indirectly targeting the visual
cycle has been developed, including the complement-
mediated response to accumulated by-products of the
visual cycle.'® Drugs such as soraprazan, emixustat, ALK-001,
LBS-008, STG-001, fenretinide and A1120 are visual cycle
modulators that impede formation (or enhance removal
[soraprazan]) of A2E and lipofuscin, by either slowing the
rate of vitamin A dimerization (ALK-001), or by competitive
inhibitory mechanisms on the retinal binding protein-4 (LBS-
008, STG-001, fenretinide and A1120), or by modulating the
activity of RPE65 (emixustat). Many of these drugs are in
Phase 1/2 or 3 trials (LBS-008: NCT03735810, emixustat:
NCT03772665 and NCT03033108, ALK-001: NCT02402660).
Avacincaptad pegol, a complement C5 inhibitor, is also being
investigated in a Phase 2 trial (NCT03364153), as it is an anti-
oxidant supplementation (saffron) (NCT01278277).

Pre-clinical studies in gene replacement that showed
phenotypic improvement in abca4~'~ mice have encour-
aged the development of human gene therapy trials'”'%;
currently employing a lentiviral vector (NCT01736592,
NCT01367444)."° Adeno-associated virus (AAV) has
many advantages over lentiviral vectors but has limited
cargo capacity; several strategies are being explored to try
and accommodate the large ABCA4 gene and thereby
commence AAV-based gene therapy trials.'”*®

In advanced disease, cell replacement strategies offer
potential benefit. The only Phase 1/2 clinical trial
(NCT01469832) of human embryonic stem cell (hESC)-
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derived retinal pigment epithelium (RPE) cells in STGD has
been completed.*®*" Findings from the U.K. site of this trial
identified subretinal hyperpigmentation consistent with the
survival of viable transplanted hESC-derived RPE cells. Bor-
derline improvements in visual acuity (VA) were noted in 4
of 12 patients; however, microperimetry did not demonstrate
evidence of functional benefit at 12 months. Further trials
are anticipated, including evaluation of combined RPE and
photoreceptor transplants, which are either derived from
hESCs or induced pluripotent stem cells (iPSC).

2.3 | Best disease (BD)

Best disease (BEST1, OMIM 607854) is the second com-
monest MD, and caused by dominant disease-causing
variants in BEST1. Recessive alleles in BEST1 cause auto-
somal recessive bestrophinopathy (ARB). Prognosis can
often be relatively good in BD. However, progressive
resorption of subretinal material can be associated with
slow central visual deterioration, unless BD is compli-
cated by choroidal neovascularization (CNV), which can
result in acute marked visual loss. Acute visual loss and
metamorphopsia, retinal haemorrhage and intraretinal
fluid should raise suspicion of CNV and investigation;
subretinal fluid (SRF) is unhelpful, given it is often
observed in BD not complicated by CNV (thereby SRF is
also not a useful indicator of CNV treatment response).
Treatment with anti-vascular endothelial growth factor
(VEGF) agents such as intravitreal bevacizumab has been
found to be very effective, with improvement in struc-
tural and functional measurements, in direct contrast to
observation alone.?* Unlike other causes of CNV, those
associated with IRD, often require limited injections, usu-
ally one or two are sufficient. Canine models of ARB have
been successfully rescued with AAV-mediated gene
replacement,”** and investigation of disease natural history
in humans has identified a wide window for intervention.?
Research avenues for BEST1-dominant disease are at pre-
sent limited. Human inducible pluripotent stem cell
(hiPSC)-derived RPE models from patients harbouring
autosomal dominant (AD) BESTI variants can potentially
determine whether the gene augmentation approach would
also be beneficial for dominant disease.*®

2.4 | X-linked retinoschisis (XLRS)

XLRS (RS1, OMIM 300839) is the most common form of
juvenile-onset retinal degeneration in males. It is tradi-
tionally classified under MD, given it primarily affects
the macula, with peripheral retinal involvement being
common. Prognosis is variable but can be relatively good
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in childhood if not complicated by retinal detachment
(RD), or vitreous haemorrhage (VH)—which are both
associated with a poor prognosis in childhood or adult-
hood.?”*® Carbonic anhydrase inhibitors (CAIs) have been
shown to be useful in managing schisis in XLRS.**** There
has also been a disconnect reported between VA improve-
ment and lack of structural change.*"

Intravitreal RSI gene replacement in knockout mice
has resulted in functional ERG improvement.*>** This
has led to two Phase 1/2 XLRS gene therapy trials
(NCT02416622 and NCTO02317887) delivering gene
replacement intravitreally. The former trial has ceased
due to ocular inflammation associated with intravitreal
delivery and lack of robust efficacy signals, while the lat-
ter has added additional agents to the standard oral ste-
roids used in subretinal gene supplementation trials to
address the uveitis adverse events.

2.5 | Pattern dystrophy (PD)

PD is an AD condition most often due to variants in
PRPH2 (PRPH2, OMIM 179605) with variable distribu-
tion of pigment deposition at the level of the RPE. Suc-
cessful integration and material transfer of donor- or
stem cell-derived cone photoreceptors in Prph2r¥/™?
murine models of the disease is promising.**

2.6 | Sorsby fundus dystrophy (SFD)

Sorsby fundus dystrophy (TIMP3, OMIM 188826) is a
rare AD drusen-associated MD often leading to bilateral
central visual loss in the fifth decade of life due to devel-
opment of atrophy with or without CNV. Prompt use of
anti-VEGF injections may improve outcome for SFD
complicated by CNV. Early attempts at treating SFD
involved oral vitamin A at 50000 IU/day, with a short-
term reversal of night blindness in patients at early stages
of disease.”> Due to the potential toxicity of long term
high dose Vitamin A and reports of lack of efficacy at
lower doses (15 000 IU/day) in advanced disease, vitamin
A is not a widely used treatment.*® Currently, no animal
or cell culture model capable of recapitulating human
SFD is available. Patient-derived iPSC-RPE models may
provide a suitable platform for investigating SFD.*’

3 | CONEDYSFUNCTION
SYNDROMES

The cone dysfunction syndromes (CDS) are stationary cone
disorders with congenital/early-infantile onset, variably
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characterised by reduced central vision, colour vision abnor-
malities, nystagmus, and photophobia. Several genes have
been implicated to date, associated with five distinct pheno-
types: achromatopsia (complete and incomplete), blue-cone
monochromatism, oligocone trichromacy, RGS9/R9AP-
associated retinopathy (“Bradyopsia”) and Bornholm eye
disease. Those with therapeutic avenues being explored are
discussed below.

3.1 | General management of CDS

No specific curative treatment is available for any CDS.
Optimal refractive correction, low visual aids, educa-
tional support, tinted lenses (spectacles or contact lenses)
can help symptomatic management, improving the qual-
ity of vision and ocular comfort.”> Ongoing and up-
coming gene therapy trials in CDS underline the impor-
tance of an accurate genetically confirmed diagnosis.

3.2 | Achromatopsia

Achromatopsia (ACHM) is the most common CDS
(1:30 000). It presents either at birth or early infancy, with
poor VA (20/120-20/200), pendular nystagmus, marked pho-
tophobia, and colour vision loss along all three axes of the
colour space.>*® Disease-causing variants in CNGB3 (OMIM
605080) and CNGA3 (OMIM 600053) together account for
the majority of ACHM,* with CNGB3 accounting for
40-50% of cases in Europe.***" The prevalence of each
GNAT2 (OMIM 139340)-, ATF6 (OMIM 605537)-, PDEGH
(OMIM 601190)-, and PDE6C (OMIM 600827)-associated
ACHM is approximately 2% of patients.*>*** It is a func-
tionally stationary disorder, and is believed to be associated
with a slow degeneration of the non-functional cones in a
minority of patients.”** Deep red tinted lenses can help
with disabling photophobia, by reducing rod saturation.'?

In CNGB3-ACHM, gene supplementation in a canine
model showed improved cone function and daylight
vision.*” Currently there are two ongoing Phase 1/2 gene
therapy trials (NCT03001310 and NCT02599922). A
canine study that explored ciliary neurotrophic factor
(CNTF) effects on cone photoreceptors had promising
efficacy.”® However, in humans, no measurably enhanced
cone function was observed, which may partly be due to
a species difference between human and canine CNGB3,
cone response to CNTF (NCT01648452).>

In CNGA3-ACHM, gene supplementation in a knock-
out CNGA3 mouse model has shown restoration of cone-
specific visual processing in the central nervous system.>”
Further investigation showed greater therapeutic benefit
(improvement of electroretinogram (ERG) amplitude) in
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younger mice, suggesting that age of treatment and the
extent of photoreceptor degeneration may affect outcome.™
In a naturally occurring CNGA3 mouse model, gene replace-
ment resulted in restoration of cone ERG responses,
improvement of VA and contrast sensitivity (CS), and halted
cone degeneration.> In a sheep model, similar intervention
lead to an improved cone ERG, with a sustained effect.>
Currently there are three ongoing Phase 1/2 gene therapy tri-
als (NCT03758404, NCT02935517 and NCT02610582).

In a Gnat2 (cpfl3) mouse model, gene supplementa-
tion was observed to improve cone-mediated ERGs and
optomotor behaviour; with a lasting effect for at least
7 months.>® A naturally occurring nonhuman primate
with a homozygous R565Q missense variant in PDE6C
may serve as a model for gene replacement in this form
of ACHM, but may also be helpful for cone cell transplan-
tation approaches.’’

3.3 | Blue cone monochromatism (BCM)
BCM is an X-linked condition characterised by an absence
of L and M wavelength-sensitive cone function, with fundus
examination revealing a myopic but otherwise normal ret-
ina.>>® The presenting symptoms can be similar to ACHM,
including photophobia, nystagmus, and decreased VA.2
Female carriers are asymptomatic. No proven treatment is
available. Current management includes optimal correction
of the often-observed refractive error (high myopia) and
tinted glasses/spectacles for the photoaversion (often with a
magenta tint). BCM is caused by variants in the red and
green opsin gene array OPNILW (OMIM 300822) and
OPNIMW (OMIM 300821), thereby affecting the
corresponding cones. The genetic mechanisms can be
broadly divided into three groups: (1) deletions confined to
the Locus Control Region (LCR), (2) OPNILW (encodes L-
cone opsin) and OPNIMW (encodes M-cone opsin)-related
variants, where in a 2-step process, often a single L-/M-
hybrid opsin gene is inactivated by a missense variant (p.
[C203R] being the commonest) and (3) specific combina-
tions of single nucleotide polymorphisms in exon 3 of L-/
M- opsins (“L/M interchange haplotypes”), which cause
aberrant splicing (LIAVA being one of the most common).

Exogenously expressed human opsins can regenerate
cone outer segments and rescue M-cone function in
Opnlmw™'"mice, thus providing a proof-of-concept gene
therapy in an animal model of BCM.>*%°

3.4 | Bornholm eye disease (BED)

BED is an X-linked cone dysfunction syndrome associated
with dichromacy and myopia, decreased VA, RPE thinning,
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and visible choroidal vessels in the posterior pole.>®!

Affected males have myopia, astigmatism and impaired VA
(often 20/40 to 20/80) from birth/early infancy, myopic
fundi, deuteranopia or protanopia, and reduced cone
responses on ERG.®""** Current management includes cor-
rect diagnosis, increasingly aided by molecular genetic test-
ing, and optimal correction of the refractive error. L/M
interchange haplotypes at polymorphic positions in exon
3 of the opsin genes (resulting from intermixing between
L- and M-opsin genes, OPNILW (OMIM 300822) and
OPNIMW (OMIM 300821), respectively) are the principal
underlying genetic basis of BED. Antisense oligonucleotide-
mediated exon skipping to abrogate some of these disease-
causing variants is being therapeutically explored for BED
and BCM; and are currently in clinical trial for other IRDs
including LCA-CEP290 and USH2A-associated retinopathy.

4 | CONE AND CONE-ROD
DYSTROPHIES

Progressive COD/CORD are characterised by cone photo-
receptor degeneration, which is often followed by subse-
quent rod photoreceptor loss.” These disorders typically
present with progressive loss of central vision, photopho-
bia and colour vision disturbance.®> Considerable pro-
gress has been made in elucidating the molecular
genetics and genotype-phenotype correlations associated
with these dystrophies, with disease-causing variants in
at least 30 genes implicated in this group of disorders.”°°

41 | General management of COD
and RCD

At present, there are no proven treatments for CODs and
CORDs that halt progression or restore lost vision. Molec-
ular diagnosis is an important step to facilitate genetic
counselling, advice on prognosis and participation in
anticipated clinical trials.” Animal models of disease
(murine and canine) in GUCAIA,*® PRPH2,°® ABCA4'®
and RPGR™ have shown significant increase in photore-
ceptor survival following gene-based therapies. Patients
with specific forms of COD/CORD can be advised to
adopt strategies, based on a knowledge of gene function or
investigation of animal models, to try to slow degeneration,
as presented below.

4.2 | AD GUCAIlA-associated COD/CORD

GUCAIA (GUCAIA, OMIM 600364) encodes guanylate
cyclase-activating protein-1 (GCAP1), which is required
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for retinal guanylate cyclase (RetGC) activation and
cGMP regeneration.”’ GCAPI contains three Ca’
+-binding motifs, structural alterations to which occur
in most disease-causing GUCAIA sequence variants.”
These result in persistent stimulation of RetGC, excess
cGMP levels in the dark and photoreceptor apoptosis
secondary to Ca** dysregulation.”>”* These include the
gain-of-function variants p.(Tyr99Cys), p.(Glul55Gly)
and p.(Aspl00Gly).® Sleeping with the lights on is
advocated by some clinicians for preventing accumula-
tion of cGMP, which otherwise occurs at night and
causes photoreceptor damage.” Knock out of the gain-
of-function variant may be a potential therapeutic
approach.

4.3 | AD GUCY2D-associated COD/CORD
GUCY2D variants (GUCY2D, OMIM 600179) are a com-
mon causes of AD COD and CORD.? Recessive GUCY2D
variants can cause LCA/EOSRD.” GUCY2D encodes the
photoreceptor enzyme guanylate cyclase 2D (GC-E;
RetGC), a component of the phototransduction cascade,
that is regulated by intracellular Ca®*-sensor proteins
such as GCAP1l. Somatic gene editing using AAV-
delivered CRISPR/Cas9 has been used to edit the
GUCY2D early coding sequence in mouse and macaque
photoreceptors in vivo, thereby knocking out retGC1
expression, and demonstrating promising results, altering
both retinal function and structure.”®

4.4 | Autosomal dominant PRPH2-
associated CORD

PRPH2 (PRPH2, OMIM 179605) is a three-exon gene
encoding peripherin-2, a cell surface glycoprotein in the
outer segment with an essential role in disc morpho-
genesis.”” CORD-associated variants in PRPH2 can be
attributed to the region encoding the second intradiscal
loop between its four transmembrane components. No
disease-specific treatment is available for PRPH2-CORD,

although interventions are being explored (Sec-
tion 2.5).78
4.5 | Autosomal recessive ABCA4-

associated COD/CORD

ABCA4-associated COD/CORD (ABCA4, OMIM 601691)
is the commonest cause of autosomal recessive
(AR) COD/CORD. Symptomatic onset of COD/CORD
usually occurs in childhood with a central scotoma and
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rapidly progressing macular atrophy.” The majority of
patients have rod involvement at presentation (CORD),
which is associated with a worse prognosis.** Light
avoidance using tinted spectacles may confer benefit in
ABCA4-associated  retinopathy by inhibiting A2E
production,*® which produces DNA-damaging epoxides.®
Vitamin A should also be avoided in ABCA4-associated
retinopathy as it may enhance A2E production and, there-
fore, disease progression.*> Human treatment trials of gene
replacement therapy are underway (NCT01367444). For
more details on therapeutic approaches for ABCA4 disease,
see the ABCA4 MD paragraph (Section 2.2).

4.6 | X-linked RPGR-associated
COD/CORD

Most disease-causing variants in RPGR (RPGR, OMIM
312610) result in RP,** but those leading to COD/-
CORD are preferentially sequestered at the 3’ end of
the open reading frame 15 (ORF15) region.*> RPGR-
associated CORD is characterised by central visual
loss, mild photophobia and myopia, and presents in
the second to fourth decade in affected males.*® RPGR
RP is discussed in Section 6.9; with three ongoing gene
therapy trials (NCT03252847, NCTO03116113 and
NCT03316560).

5 | RODDYSFUNCTION
SYNDROMES

Rod dysfunction syndromes are a genetically diverse
group of non-progressive primary dysfunctions of the rod
system, most commonly causing congenital stationary
night blindness (CSNB) — with abnormal fundi (Fundus
Albipunctatus (FA) and Oguchi Disease) or normal fundi
(complete and incomplete CSNB).*”

51 | General management of rod
dysfunction syndromes

Management of rod dysfunction syndromes is symptom-
atic, and as in other IRDs includes optimal refractive
correction, use of low vision aids as necessary, and opti-
mal access to educational and work-related opportuni-
ties. Low lighting exacerbates the severity of symptoms
experienced in this group of patients. Electrical lighting
and the use of bright screens, significantly improves
quality of life (QoL) and makes the disease less
debilitating.
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5.2 | Complete and incomplete
congenital stationary night blindness
(cCSNB/iCSNB)

In contrast to FA and Oguchi disease, cCSNB/iCSNB has
no distinctive fundus appearance with normal or myopic
fundi.*® cCSNB/iCSNB has a heterogeneous genetic back-
ground including AD, AR and X-linked, with variable VA
and night blindness.®” No specific treatment is available.

5.3 | Fundus Albipunctatus (FA)

FA is an AR disease characterised by multiple white sub-
retinal spots,® throughout the retina. FA has been attrib-
uted to variants in RDH5 (OMIM 601617), RLBP1 (OMIM
180090) and RPE65 (OMIM 180069).”° Development of
macular atrophy/cone dysfunction can be observed in
later stage disease.”’** No specific treatment is available.
Gene therapy is available for RPE65-retinal dystrophy but
has not been explored in FA.

6 | ROD-CONE DYSTROPHIES
Rod-cone dystrophies (RCDs) are a variable group of
inherited retinal conditions, both in terms of phenotype and
genotype, with a prevalence of 1/3000-1/4000 in the general
population.”® It is the most common IRD phenotype.

6.1 | General management of RCD

Management of most forms of RCD is symptomatic. The
two most common vision limiting complications are:
(1) cataract, (2) cystoid macular oedema (CMO). CMO is
most prevalent in patients with AD inheritance (71.4%
with CMO in at least one eye), followed by AR/sporadic
inheritance (58.9%) and least common in XL inheritance
(12.5%).°> Treatment approaches include: topical CAls,
oral CAls, periocular and intravitreal steroids, and intra-
vitreal anti-VEGF agents.”® There is no level 1 evidence
supporting topical/oral CAls use and reports have demon-
strated highly variable efficacy. In a 12-month retrospec-
tive study, with primary end point the reduction of central
macular thickness (CMT) on ocular coherence tomogra-
phy (OCT) of at least 11% between visits: 53.1% of patients
following treatment with topical dorzolamide and 41.2% of
patients following treatment with oral acetazolamide dem-
onstrated response.”” A prospective exploratory study dem-
onstrated both the safety and acceptability of serial
intravitreal aflibercept (ivA) in patients with RCD-CMO,
with 37.9% of patients responding to treatments via
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12 months. All patients demonstrating anatomical
response did so after their first injection.”® Beyond cataract
and CMO, orientation and mobility training combined
with low-vision aids such as night-vision goggles, flash-
lights and/or reverse telescopes can optimise residual
visual function in advance RP and increase patients'
independance.”

6.2 | RCD (retinitis pigmentosa)

RCDs are characterised by nyctalopia and gradual con-
striction of the visual field, with eventual loss of central
vision, progressing to legal blindness.'*>'°* RCD can be
inherited as an AD, AR or X linked trait. Due to the large
number of genes involved (>100 genes) the development
of genotype specific treatments is challenging.

Two neurotrophic, pharmacological approaches have
been explored that would potentially be relevant for all
genetic forms of RCD. CNTF-releasing encapsulated RPE
cell implant (NCT01530659) has been investigated in a
Phase 2/3 trial, with high-dose or low-dose implant. Nei-
ther study showed therapeutic benefit—with some patients
experiencing loss of retinal sensitivity that was reversible
on removal of the implant.'®* However, a pilot study using
adaptive optics imaging to investigate in vivo cone structure
in three patients with CNTF implants over a 24-month
period found that cone density remained stable in eyes with
a CNTF implant whereas there was continued cone loss in
untreated fellow eyes.'” A phase 1 trial (NCT03063021)
assessed the safety and tolerability of N-acetylcysteine
(NACQ) in patients with RP. NAC was well tolerated and
mean best-corrected VA (BCVA) significantly improved at
04, 0.5 and 0.2 letters/month in 600 mg (cohort 1),
1200 mg (cohort 2) and 1800 mg (cohort 3) cohorts, respec-
tively. There was no significant improvement in mean sen-
sitivity over time in cohorts 1 and 2, but there was in
cohort 3 (0.15 dB/month). There was no significant change
in mean ellipsoid zone (EZ) width in any cohort.'® A
randomised, placebo-controlled trial is needed to determine
if oral NAC can provide long-term stabilization and/or
improvement in visual function; plans are ongoing.

There is currently no proven specific gene-guided
treatment for RCD, but there are many ongoing trials;
prioritised studies are discussed below.

6.3 | MERTK-RCD

MERTK-RCD is a primary RPE disease, due to variants in
MER proto-oncogene, tyrosine kinase (MERTK) gene.
Proof-of-concept in a rodent disease model with various
viral vectors, suggested halting of degeneration and
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preservation of ERG responses.'®'% A subretinal AAV
phase 1 gene therapy trial (NCT01482195) in six patients
had limited efficacy after 2 years.'”” RPE transplantation
(hESC or iPSC-derived) is also under consideration for trial.
Investigation of disease natural history may help to better
stratify patients for future trials and optimal outcomes.

6.4 | MYO7A-RCD

MYO7A variants (MYO7A, OMIM 276903) cause com-
bined RCD and neurosensory hearing loss (Usher Syn-
drome 1B). The MYO7A gene is too large for the AAV
carrying capacity. Delivery with an equine infectious
anaemia virus-based lentiviral vector was successful in
the shakerl mouse model,'” and further investigated in
a phase 1/2 trial (NCT01505062), which was terminated
prematurely, due to review of clinical development plans
and priorities by the sponsor. Dual adeno-associated virus
vectors were efficient for the in vitro and in vivo expres-
sion of the oversized MYO7A gene,'” and is currently
being investigated for human trials (UshTher, https://
www.ushther.eu/).

6.5 | USH2A-RCD

USH2A variants (USH2A, OMIM 608400) cause either
combined RCD and neurosensory hearing loss (Usher Syn-
drome 2A) or isolated RCD - being the commonest cause
of autosomal recessive RCD. Antisense oligonucleotide-
mediated exon skipping to abrogate exon 13 disease-
causing variants is currently in phase 1/2 trial (STELLAR,
NCT03780257), and is administrated by intravitreal injec-
tion. Three-month interim analysis has been shared that
the treatment was well tolerated, with no serious adverse
events, and 2 out of 8 participants demonstrated a degree of
improvement. An ongoing international multi-centre study
is exploring disease natural history study, which will aid
ongoing therapeutic efforts (RUSH2A, NCT03146078)."'°

6.6 | PDE6B-RCD

PDE6B causes forms of AR RCD in mice, humans and
dogs, and rarely is associated with AD RCD and AD
CSNB. PDE6B (PDE6B, OMIM 180072) encodes the beta-
subunit of rod cGMP-phosphodiesterase, which is a key
enzyme specific for phototransduction activation in rod
photoreceptors. Animal models demonstrate a fast degen-
eration of the rods and early studies with subretinal AAV
in a murine model had limited efficacy."'’ In slower
degenerating mouse line and in dogs, with early
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treatment, a greater efficacy was observed.'''"* In
humans there is preservation of foveal structure and loss
of the surrounding (rod dominated) retina, with significant
constriction of the visual field.""* A phase 1/2 trial
(NCT03328130) is ongoing, employing AAV2/5-hPDE6B to
explore rod-directed gene augmentation. The primary out-
come of the trial is safety, with secondary outcome being
improvement in visual function, assessed by (1) mobility
test, (2) visual fields, (3) reading speed, and QoL measured
by QoL questionnaire National Eye Institute Visual Func-
tion Questionnaire (NEI VFQ-25).

6.7 | RLBPI-RCD

RLBP1 variants (RLBP1, OMIM 180090) cause a spectrum
of AR phenotypes. Nonclinical safety evaluation of
SCAAV8-RLBP1 (CPK850) in Rlbp1~/~ mice, targeting RPE
and Miiller cells, proved detectable mRNA expression,
dose-dependent intraocular inflammation and retinal thin-
ning."” An ongoing phase 1/2 gene therapy trial
(NCT03374657) is exploring safety, tolerability and efficacy
of subretinal administration of CPK850 in patients with
RLBPI-RCD. Primary outcome is safety with secondary
outcomes including: recovery of cone or rod function dur-
ing dark adaptation, automated static perimetry, CS, light-
adapted microperimetry, multifocal and full-field ERG,
reading speed, eye dominance, mobility testing (navigation
through a maze under varying light conditions), NEI-VFQ
25 and low luminance questionnaire (LLQ) scores.

6.8 | RHO-RCD

Rhodopsin (RHO, OMIM 180380) can cause a range of
(RCD) phenotypes, including typical RCD, sector RP,
pericentral RP and CSNB."'° The severity of RHO-associated
phenotypes varies significantly, from asymptomatic to
severe disease. A phase 1/2 trial evaluating the safety and
tolerability of antisense oligonucleotide therapy in subjects
with RCD secondary to the P23H variant in RHO is ongoing
(NCT04123626). Another phase 1/2 trial is also targeting
P23H RHO RCD with 12 months of treatment with oral
hydroxychloroquine (HCQ) (NCT04120883). The hypothe-
sis is that treatment with HCQ is safe and tolerable, and
may arrest progression of retinal degeneration by altering
the autophagy pathway in photoreceptors.

6.9 | RPGR-RCD

X-linked RCD is one of the most severe forms of RCD.'®
The most common cause is RPGR gene variants (RPGR,
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OMIM 312610), and several preclinical and clinical gene
augmentation trials focus on the disease. Successful AAV
gene augmentation has been performed in murine and
canine models, with preservation of photoreceptor nuclei
and inner/outer segments limited to treated areas.'!”''®
The arrest of disease progression was also achieved in late
stages of retinal degeneration in a canine model, suggesting
a wide therapeutic window."*® The ORF15 sequence con-
tained within this AAV vector in the canine trials had
ORF15 DNA sequence variations, that are likely due to the
repetitive purine nucleotides."® This mutability has been
overcome with codon optimised sequence,'*! and abbrevia-
tion of the repetitive sequence.'"’

Three Phase 1/2 clinical trials (NCT03316560,
NCT03252847 and NCT03116113) are using a submacular
injection of AAV-gene delivery. Early results of
NCT03116113 have been published. Eighteen patients were
treated during a dose escalation phase and followed for
6 months, with no notable safety concerns after subretinal
delivery of an AAV8 encoding codon-optimised human
RPGR (AAV8-coRPGR), apart from steroid-responsive
subretinal inflammation in patients at the higher doses,
thereby meeting the pre-specified primary safety end point.
In six patients, visual field improvements were noted at
1 month and maintained to the last point of follow-up.'**
NCT03252847 explores the safety and efficacy of
AAV5-RPGR with primary end-point the absence of safety
events, and secondary outcome measures being the improve-
ment in visual function, retinal sensitivity, functional vision
(mobility maze), and QoL improvement as measured by QoL
questionnaires. The nine-month data from the clinical trial,
demonstrated that the AAV5-RPGR was generally well toler-
ated and produced significant improvement in vision.
NCT03316560  investigates =~ AGTC-501  (rAAV2tYF-
GRK1-RPGR) with primary outcome the number of partici-
pants experiencing adverse events and clinically relevant
haematology/clinical chemistry parameters. Secondary out-
comes are changes from baseline in visual function by per-
imetry, VA by ETDRS, retinal structure by imaging and QoL
questionnaire. NCT04517149, a phase 1/2 trial, in contrast to
the previous studies, is designed to investigate the safety and
efficacy of a single intravitreal administration of AAV-RPGR
(4D-125) at two dose levels.

6.10 | RP2-RCD

RP2 (RP2, OMIM 300757) functions as GTPase-activating
protein (GAP) for a small GTPase (arl3) and has a signifi-
cant role in prenylated protein trafficking.'**'** The RP2
coding sequence is 1050 base pairs in size rendering it suit-
able for packaging in AAV. AAV8-RP2 was delivered to an
Rp2 knockout mouse, which in contrast to humans have
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predominantly cone degeneration, via subretinal injection
and demonstrated preservation of cone structure and func-
tion over an 18-month, with retinal toxicity demonstrated
at high doses.'* A recent study developed RP2 knockout
and patient-derived iPSC-derived retinal organoids as a
model of RP2-RCD. Following gene therapy using an
AAVS5 vector, they demonstrated increased outer nuclear
layer thickness and rhodopsin expression compared to con-
trols, supporting further investigation in a clinical trial.'*°

It has also been shown ex vivo, using RPE and 3D ret-
inal organoids derived from patients iPSCs with an RP2
premature stop mutation, that a read-through drug can
rescue RP2-associated cellular phenotypes — supporting
establishing a clinical trial.'*’

6.11 | Enhanced S-cone
syndrome (ESCS)

Enhanced S-cone syndrome (NR2E3, OMIM 604485) is a
rare slowly progressive AR form of retinal degeneration,
typically characterised by nummular pigment clumping at
the level of the RPE, often most plentiful around the tempo-
ral vascular arcades, caused by variants in the nuclear
receptor NR2E3."2%'2° NR2E3 plays a role in human retinal
photoreceptor differentiation and degeneration.** NR2E3
may serve as a genetic modifier and therapeutic agent to
potentially treat a range of retinal degenerative diseases.'*'
In patient-derived iPSCs, correction of NR2E3-associated
ESCS has been described using CRISPR-Cas9.'*

6.12 | Bietti crystalline corneoretinal
dystrophy (BCD)

BCD (CYP4V2, OMIM 608614) is an AR disease, with
similar clinical symptoms to other RCD, associated with
progressive RPE-choriocapillaris complex atrophy and
retinal crystals, which can disappear with disease progres-
sion, resulting in greater RPE disruption.’**"** No disease-
specific treatment is currently available. Reducing free cho-
lesterol by cyclodextrins or 3-tocopherol, and gene supple-
mentation therapy, were investigated in an iPSC model and
murine model, respectively, with promising results.'*>*¢

7 | LEBER CONGENITAL
AMAUROSIS (LCA) AND
EARLY-ONSET SEVERE RETINAL
DYSTROPHY (EOSRD)

Leber congenital amaurosis (LCA) and early-onset severe
retinal dystrophy (EOSRD) are characterised by severe
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congenital/early-onset visual loss, nystagmus and amau-
rotic pupils. Below we discuss genotypes with treatment
avenues being explored.

7.1 |
EOSRD

General management of LCA/

Management of most forms of LCA/EOSRD is symptom-
atic. The rate of visual loss varies, and some genes have
been associated with faster progression. Affected children
benefit from correction of refractive error, use of low
vision aids when possible, and optimal access to educa-
tional and work-related opportunities. Infants with
severe visual impairment may also have delays or diffi-
culties with speech, social skills and behaviour, highlight-
ing the importance of a multi-disciplinary approach.

7.2 | GUCY2D - LCA/EOSRD

Patients with GUCY2D - LCA/EOSRD (GUCY2D, OMIM
600179) often have relatively normal fundi with preserva-
tion of central macular architecture until late in adult-
hood, in contrast to most other LCA/EOSRD
genotypes."”” A phase 1/2 gene therapy trial
(NCT03920007) is ongoing for subretinal administration
of SAR439483.

7.3 | CEP290 - LCA/EOSRD

OCT studies of CEP290 — LCA/EOSRD (CEP290, OMIM
610142) have shown that despite profound cone dysfunc-
tion, the foveal architecture is structurally preserved until
the fourth decade of life in some patients.’**'** Phase 1/2
(AGN-151587 (EDIT-101), NCT03872479) and Phase 2/3
(sepofarsen (QR-110), NCT03913143), gene editing and
antisense oligonucleotide-mediated exon skipping trials,
respectively, are ongoing for patients with compound het-
erozygous or homozygous intron 26 variants (c.2991
+1655A>G) in the CEP290 gene. This specific intronic
variant is the most common disease-causing variant, hav-
ing been identified in at least one allele in 58-77% of
CEP290-LCA patients.'*14°

7.4 | RPE65 - LCA/EOSRD

RPE65-retinal dystrophy (RPE65, OMIM 180069) has
been at the centre of intensive research and therapeutic
efforts given the gene size, the severity of the disease and
the relative preservation of retinal structure."** There is
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an FDA- and EMA-approved gene therapy for RPE65-
retinal dystrophy (Luxturna (voretigene neparvovec-rzyl
(VN)-AAV), Spark Therapeutics), and an ongoing Phase
1/2 trial that has reported promising efficacy
(NCT02946879, AAV5 - OPTIRPE65). VN-AAV accom-
plished a multi-luminance mobility test (MLMT) lux
score change of 2.4 Ix at 4 years and maintained an aver-
age improvement in FST, reflecting more than a
2 log,¢(cd.s/m?) improvement in light sensitivity.'*?

7.5 | AIPL1-LCA

AIPL1 - LCA (AILP1, OMIM 604392) is a rare cause of
LCA (1-2% of the cases).'**'** Patients have no residual
outer retinal structure beyond the age of 4 years.>>'*> A
compassionate use gene therapy study is ongoing for
AIPLI-LCA, aiming to rescue structure in infants and
young children with residual structure.

8 | CHORIORETINAL
DYSTROPHIES
8.1 | Choroideremia (CHM)

CHM (CHM, OMIM 300390) is an X-linked IRD
characterised by degeneration of the choriocapillaris.
CHM is primarily an RPE disorder followed by photore-
ceptor degeneration.'*

Four Phase 1/2 gene therapy trials have been com-
pleted. A Phase 1/2 (NCT02341807) showed no benefit
employing AAV2-hCHM in high and low doses, despite
the vector being well tolerated. One (NCT01461213) pub-
lished results on six patients who were administered
fovea-involving, subretinal injections of the 1.9 kb human
REP] transgene packaged with a chicken f actin pro-
moter containing rAAV2 vector,"*” describing a good
safety profile. The 6-month data revealed modest, non-
statistically significant improvement in retinal sensitivi-
ties with a mean change of 2.3 dB. Gains in retinal sensi-
tivity were reported in five patients, while one patient,
who received an unplanned lower dose (maximum of
6 x 10° genome particles, compared to 1 x 10'° genome
particles in the other patients) owing to an intraoperative
surgical complication, had a mild reduction in retinal
sensitivity. Visual acuity improved by more than three
lines of ETDRS letters at 2 year follow-up in two patients
who had advanced disease; with improvements
maintained at 3.5 years follow-up."*® The same vector
was used in a subsequent trial (NCT02077361), but at a
higher dose of 1 x 10'! genome particles, and another six
male patients were treated.'*’ There was no statistically
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significant change in retinal sensitivity as detected by
microperimetry. The area of intact autofluorescence, used
as a surrogate for residual functioning retinal tissue, was
tracked longitudinally and found to decline over the
2 years of follow-up in both the treated and untreated
eyes, with no statistically significant difference between
these two groups. One treated eye had a >15 ETDRS let-
ter gain in their BCVA at 2 years (although this was also
seen in an untreated eye in a different patient). One
patient experienced a serious adverse event with the pres-
ence of hyperreflective intraretinal material that
improved with oral steroids, but a persistent defect in the
EZ ensued, with an eight ETDRS letter reduction in
BCVA. A third trial in six patients (NCT02553135) deliv-
ered the same vector under the guidance of microscope-
integrated intraoperative OCT (MIOCT)."*® Two patients
experienced substantial BCVA gains of 10 and 5 letters at
24 months, while the remaining four had stable BCVA.
There were two incidences of macular retinal hole forma-
tion, and there were no marked changes in retinal sensi-
tivity as assessed on microperimetry in the treated eyes.
A Phase III multicenter trial (NCT03496012) using the
same AAV2-REPI1 is ongoing.

Although aforementioned studies have provided
safety data and promising (albeit variable) results regard-
ing BCVA, whether the gene therapy product has had an
effect on rate of retinal degeneration in the condition is
not yet established. A Phase I trial (NCT04483440) is
investigating the intra-vitreal administration of the 4D-
110 drug product. 4D-110 comprises an AAV capsid vari-
ant (4D-R100) carrying a transgene encoding a codon-
optimised human CHM gene.

9 | EFFICACY END POINTS FOR
GENE THERAPY TRIALS

The phenotypic and genetic heterogeneity of IRDs, as
well as disease prevalence, creates significant challenges
in the characterization of disease natural history. Pro-
spective investigation of natural history should aim to
establish a greater understanding of pathogenesis, to
identify the window for therapeutic intervention and
characteristics for potential trial candidates, as well as to
investigate clinically meaningful end points and out-
comes for clinical trials. End points ideally need to be
easy to obtain, highly repeatable and reproducible, and
clinically relevant. The evolution of functional and struc-
tural assessment of the retina has created multiple poten-
tial measurements, which can serve as surrogates of
successful treatment - either improvement or slowing/
halting deterioration. Well-established outcomes such as
VA and ERG parameters may lack sensitivity to identify
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a biological effect of treatment, necessitating the use of
other (potentially novel) end points and require addi-
tional studies for their validation. Given the phenotypic
variability of the IRDs many end points may be disease-
specific, for example, measurement of the impact of pho-
tophobia in ACHM trials. It is important to be mindful
when considering end points that the primary goal of all
intervention is to have a positive impact on patients' QoL
and real-world function.

We identify three categories of measurement/tests:
(1) functional assessments - performance-based end
points, (2) structural assessments and (3) subjective
assessments. In the next paragraphs we briefly present
selected assessments and metrics, with relevant IRD
examples.

9.1 | Functional assessment -
Performance-based end points

Clinically meaningful end points of retinal function
include the mean change or mean rate of change of
BCVA, CS, retinal sensitivity (including topographic
analysis of the hill-of-vision volume), and electrophysio-
logical assessments. BCVA reflects the limits of dis-
tinguishing fine details at maximal black on white
contrast and reflects retinal function at the area with
which the patient fixates. It can be a less sensitive pri-
mary outcome for genotypes/phenotypes in which there
is preservation of normal foveal cone function (primary
fixation point), albeit until late in the disease process, for
example, CRD. In contrast, in conditions where the pre-
served retinal structure does not necessarily correlate to
central retinal function, BCVA may be a potentially
meaningful and sensitive outcome; including for ACHM
and certain LCA/EOSRD genotypes such as GUCY2D-,
CEP290- and RPE65-associated LCA."*”'*! Another pri-
mary aspect of central visual performance is CS that is an
approximation of the modulation transfer function of the
visual system and reflects the limits of distinguishing
grayscale differences. A full estimation of resolution
threshold of the CS function is time-consuming. The
Pelli-Robson chart is widely used and a well standardised
method of measuring CS, by fixing the target size close to
the peak of the CS function and assessing the contrast
threshold. It is not an ideal test for patients with signifi-
cantly low threshold (floor effect). More sophisticated
solutions include automated tests, with flexibility of test-
ing more frequencies, colour CS, different contrast spatial
frequencies, and measurements at photopic, mesopic and
scotopic light levels.

Retinal sensitivity is another important functional
measurement, including microperimetry, static or kinetic
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perimetry, and full-field stimulus testing (FST); FST
being of particular value in patients with low vision.'!
Two-colour perimetry can also be employed to help dis-
tinguish rod from cone function.'>® Microperimetry can
assess the foveal centre and may be easier for children to
perform due to the small number of stimuli presented
and the shorter testing time.'>> On the other hand per-
imetry can examine a greater retinal area, and might be
better suited for evaluation of disease where the periph-
eral retina first affected, such as RCD.'>* Retinal sensitiv-
ity can be evaluated (1) as a single metric of mean retinal
sensitivity, (2) using pointwise analysis or (3) volumetric
hill-of-vision measurement. In addition, defined retinal
areas can be evaluated, for example, the treated area.

Volumetric indices of retinal function can help visual-
ise and sensitively quantify treatment effect, as well as
natural history of IRDs."”® Visual field modelling and
analysis (VFMA; Office of Technology Transfer & Busi-
ness Development, Oregon Health & Science University,
Portland, OR),'*® models the hill of vision from perimetric
sensitivity data, and creates visual displays, and generates
volumetric indices, including the total volume (VTOT),
which represented the entire field tested, as well as the vol-
ume of defined areas (eg, central 1°, 5° and 10°). The vol-
ume represents the total sensitivity across the solid angle of
the base of the test grid for VTOT and the entire solid angle
of the defined degrees-radius circle selection.'>*"*> VFMA
allows focus on regions of interest and better visualization
of changes in sensitivity, which can also be used for the
creation of difference topographic maps.

The cost of novel therapeutics and the safety risks of
intervention create an urgent need to identify outcomes
that reflect real-life changes, with an impact on day-to-
day life. Such outcomes may need to be disease specific,
that is, relevant to the symptoms of the disease. One
likely outcome would be mobility, which can be assessed
using a configuration designed to measure the ability to
navigate obstacles in a maze-like environment under
varying light conditions. The main metric is the time
taken to travel a specific path. The ambient lighting con-
ditions can be adjusted depending on the disease. In RCD
and LCA/EOSRD, navigation is primarily tested under
low levels of luminance.'® In contrast, in conditions
such as ACHM and CORD, testing under high luminance
is more relevant. Validation of these assessments is nec-
essary, including randomization, multiple maze configu-
rations, and data collection from normally sighted
individuals. It should be noted than for VN-AAV
(Luxturna, Sparks Therapeutics) the improvement in the
multi-luminance mobility test was supported by improve-
ment in FST.'*

In conditions with photophobia, light sensitivity is
another outcome that can be employed. The patient is
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exposed to different levels of light stimulus and their
response is recorded, with quantifiable outcomes such as
height and area of the palpebral aperture,'*® and visual
photosensitivity thresholds (VPT)'; with required
validation again posing challenges.

9.2 | Structural assessment

Beyond functional improvement or stabilization, structural
assessment can be used for patient stratification and treat-
ment monitoring. In progressive disorders, halt of retinal
degeneration is an important potential outcome. Moreover,
it is part of a desired safety profile, with no acceleration in
anatomical loss due to intervention. Depending on the dis-
ease natural history, different outcomes and different imag-
ing modalities have been explored.

OCT evaluation of the residual photoreceptor area
(EZ) and of the diameter of the area (EZ width), have
being explored as outcomes measurements in RP and
LCA.'#119%161 1n MD and COD/CORD, quantification of
the area and the width of EZ loss, can serve as outcomes
and inclusion criteria.'®® Another metric that can be
derived from OCT is the thickness of individual layers.'®®
Outer nuclear layer (ONL)-foveal thickness has been fre-
quently used a surrogate measurement of the number of
foveal cones, even though studies employing adaptive
optics cellular imaging proved the lack of correlation of
ONL-foveal thickness and the actual number of foveal
cones in conditions such as ACHM.*'®*1%> The thick-
ness of individual layers can further be used for topo-
graphic map and for volume estimations. OCT can also
be employed intraoperatively for optimal treatment-
delivery in subretinal injections."®

FAF can also be used for the evaluation of structural
end points. The lack of signal correlated to loss of RPE,
has been proposed as a metric in MDs, including STGD,
and COD/CORD.'®*'%” In conditions such as CHM and
RP, where there is preserved foveal signal (intact foveal
structure), quantification of the foveal signal area can be
a meaningful measurement to monitor disease progres-
sion and halt of degeneration.'*®'*® A perifoveal ring of
increased signal on FAF is a non-specific finding that can
be observed in a variety of IRDs.'”® It is believed that it
represents dysfunctional photoreceptors, which can be
amenable to rescue.'®®!”! Beyond FAF, fluorescence life-
time imaging ophthalmoscopy (FLIO) is a developing
modality for further functional imaging, based on the
decay time of the fluorescent molecules, and therefore
FLIO is a promising tool to detect and assess varying met-
abolic states of different retinal areas.'”?

Adaptive optics scanning light ophthalmoscopy
(AOSLO) allows for non-invasive cellular imaging,

Clinical & Experimental Ophthalmology <>

GEORGIOU Er AL.

thereby helping to improve our understanding of IRDs.'”?

An increasing number of natural history studies and
ongoing/planned interventional clinical trials exploit
AOSLO both for participant selection, stratification and
monitoring treatment safety and efficacy.'”>"'”” Several
metrics are being investigated, including cone density,
peak cone density, Voronoi analysis of the regularity of
the mosaics and reflectivity.'”®

9.3 | Patient reported outcomes
Objective assessment of retinal function and structure
allows the clinician/researcher to recognise the biological
effect (or the lack) of treatment. However, the observed
changes, even if they reach statistical significance, may
not translate to being meaningful for the patient.
Standardised questionnaires have been developed and
validated to reflect different aspects of a patient's life.'”
The NEI VFQ-25 is a multidimensional questionnaire
designed to assess the impact of eye conditions/visual
problems (non-disease specific) on QoL, using 25 items
across 12 subscales, such as well-being/distress, ocular
pain, near, peripheral central and colour vision.'” The
Brief symptom inventory (BSI) assessing psychological
stress, is not specific for eye procedures, and is adminis-
tered as a questionnaire in an interview version. Several
groups have developed disease-specific questionnaires
such as a patient reported outcome (PRO) specific for a
CNGA3 study (A3-PRO),'® and specific questionnaires
for photoaversion in ACHM."® Open ended interviews
can collect direct patient feedback, which can evaluate
the patient's opinion towards treatment, different aspects of
the disease, challenges faced during and post intervention,
concerns and expectations.

10 | CONCLUDING REMARKS AND
FUTURE PROSPECTS

NGS-based approaches, typically using whole exome
sequencing (WES), have revolutionised genomic analysis;
however, not all pathogenic variants can be detected.
Complex structural changes, such as large deletions,
inversions, translocations and trinucleotide repeat expan-
sions, are mostly undetected with WES, while variants in
deep intronic or regulatory regions are not sequenced.'®'
Whole genome sequencing offers a comprehensive alter-
native for undiagnosed patients, but may be currently
rejected in favour of targeted genome re-sequencing due
to cost and efficiency. It is hoped that most patients will
be able to have a precise molecular diagnosis soon. The
growing field of clinical genetics has significantly
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contributed towards targeted screening, as well as for
patient counselling and advice on prognosis. Similarly,
advances in retinal imaging and retinal function testing
have improved knowledge of the relationship between
genotype and phenotype, which is key to identifying
treatment effects in clinical trials of novel therapies. Also,
the development of national strategies and guidelines

for

IRDs may further facilitate the translation of

the recent advancements into clinical practice. The
remaining challenge continues to be the demonstration
that novel therapies under investigation (or anticipated)
slow degeneration or improve function, in a safe,
durable, and patient-relevant fashion.
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