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ABSTRACT
Cognitive training has shown promising results for delivering im-
provements in human cognition related to attention, problem solv-
ing, reading comprehension and information retrieval. However,
two frequently cited problems in cognitive training literature are a
lack of user engagement with the training programme, and a failure
of developed skills to generalise to daily life. This paper introduces
a new cognitive training (CT) paradigm designed to address these
two limitations by combining the benefits of gamification, virtual
reality (VR), and affective adaptation in the development of an en-
gaging, ecologically valid, CT task. Additionally, it incorporates
facial electromyography (EMG) as a means of determining user af-
fect while engaged in the CT task. This information is then utilised
to dynamically adjust the game’s difficulty in real-time as users play,
with the aim of leading them into a state of flow. Affect recognition
rates of 64.1% and 76.2%, for valence and arousal respectively, were
achieved by classifying a DWT-Haar approximation of the input
signal using kNN. The affect-aware VR cognitive training interven-
tion was then evaluated with a control group of older adults. The
results obtained substantiate the notion that adaptation techniques
can lead to greater feelings of competence and a more appropriate
challenge of the user’s skills.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Computing methodologies→ Virtual reality;Machine learn-
ing.
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1 INTRODUCTION
Cognitive training (CT) has garnered considerable attention due
to the promising intervention outcomes it has provided for im-
proving cognitive skills such as attention, problem solving, reading
comprehension and information retrieval. Clinician-delivered or
computerised CT has been used for children with attention prob-
lems (ADHD) [39] and engagement in intellectually stimulating
lifestyle activities has been observed to help maintain cognitive
function into later life, via enhancement of cognitive reserve [60].
The aim of CT therefore is to deliver such benefits to cognition as
a targeted discrete intervention. However, to date, the numerous
studies and CT products, often commercially marketed as "brain
training" programmes or apps, have not been found to produce
clear evidence of benefit to cognition [41]. This failure has been
attributed to several factors. The first problem (P1) is that of ad-
herence to the CT programme; with traditional CT programmes
often having attrition rates exceeding 15% [66]. Prior studies have
indicated that participant adherence can decrease with increasing
intervention complexity and intensity [31], [14], with inhibition
due to poor task performance being a strong predictor for training
dropout [1]. These CT programmes are overly repetitive and fail to
address the motivational deficits often characteristic of older people
with memory difficulties [54]. Furthermore, it has been suggested
that a VR format may increase training adherence (when compared
to an on-paper equivalent task) in individuals with Mild Cognitive
Impairment (MCI) and dementia patients [33]. The second problem
(P2) is that the skills developed and the cognitive improvements
made during these training programmes do not transfer to daily
life. While the user might get better at playing the games, there
is little evidence that these skills will generalise beyond that [56].
Existing dynamic difficulty adjustment (DDA) models have histor-
ically relied on the player’s performance to infer what changes
in difficulty are appropriate. However, Pagulayan et al. point out
that a game’s evaluation factor ought to be the affective experience
provided by the gameplay, rather than user performance as in pro-
ductivity software [44]. Mishra et al. were also of the opinion that
the input channel for closed-loop games should include real-time
data from player interactions and behaviour, rather than just player
performance metrics [38].

The work presented in this paper introduces a novel CT pro-
gramme designed to address these two problems, with an ultimate
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goal of employing this CT environment for people with early stages
of dementia to support cognitive training. In keeping with other
approaches to CT, a game-based paradigm is used to enhance par-
ticipant enjoyment and thus increase adherence (addressing P1).
The use of VR to create simulated real-world environments within
which the CT game is enacted helps overcome the transfer problem
and facilitate extension of CT-generated gains to real life activities
(addressing P2). Additionally, the design of the CT task incorporates
an active control arm and an affective feedback loop that enables
the dynamic adjustment of the game’s difficulty (DDA), in real-
time, based on the player’s affective state [32] and their in-game
performance (addressing P1). The affective feedback loop is based
on measuring facial electromyography (EMG) signals related to the
nonverbal facial behaviour of the participants, and training super-
vised machine learning models with user self-reported affect labels.
The employment of facial EMG is due to three reasons: (i) other
physiological measures such as the galvanic skin response (GSR)
have been reported to provide extremely noisy signals in gaming
where the user is using a controller and moving around during the
game play [17]; (ii) it is widely acknowledged that the face is the
primary means for communicating affective and cognitive mental
states, including emotions, interest, agreement, comprehension,
concentration and intentions [3], [13]; and (iii) computer-vision
based analysis of facial expressions, despite its efficacy [53], [34], is
not appropriate in a VR context as the user’s face is mostly occluded
by the head-mounted display.

2 RELATEDWORK
2.1 Cognition, Memory and Affect
The bisection of memory into short-term-memory (STM) and long-
term-memory (LTM), first proposed by Hebb [26], represents the
core underlying division imposed in the taxonomy of cognitive
systems. The unitary notion of STM can be partitioned to recognise
a distinct cognitive system, working memory (WM), that is respon-
sible for temporarily storing task relevant information available for
manipulation. LTM can be divided into procedural (non-conscious)
memory, which underpins skills/habits/conditioning, and declar-
ative (consciously accessed) memory for storing facts and events
[59]. Declarative memory can be further separated into semantic
memory (SM), a store of facts about the world, and episodic mem-
ory (EM), the facility for re-experiencing events in the context in
which they originally occurred [63]. EM is widely considered as a
cognitive competence unique to humans. Unlike SM, it explicitly
encodes spatial, contextual and temporal information.

Neurological disorders such as attention-deficit/hyperactivity
disorder (ADHD) or dementia are associated with memory im-
pairments. Numerous studies have shown deficits in short-term
memory, long-term memory and coordination of multiple tasks
resulting from such disorders (e.g. see [2]). Therefore, the VR cog-
nitive training intervention developed for this work incorporates
both WM and EM training tasks.

WM capacity can be tested through a variety of tasks. These tasks
typically come in the form of a dual-task paradigm that combines
a measure of memory span (a STM test that involves immediate
recollection of an ordered list of items) with a simultaneous pro-
cessing task (e.g. see [18]). It has also been argued that WM reflects

the ability to maintain multiple, task-relevant, pieces of informa-
tion in the face of distracting irrelevant information [22]. The WM
training task implemented in this work draws on both of these
ideas. A wide variety of methods have been developed to assess EM
capacity, but not all produce consistent results [11]. For the purpose
of this work, the implemented EM training primarily focuses on
spatial memory (SM) tasks, as they engage the same regions of the
brain that EM requires [8]. SM tasks also proved to be a good fit
for the VR paradigm, where ecologically valid scenarios could be
presented to the user in an engaging manner.

Bennion et al. [4], in their study of the effect of emotion on mem-
ory, suggest that there is strong evidence to support the following
hypotheses: emotion usually enhances memory; when it does not,
its effect can be understood by the magnitude of elicited arousal
(with arousal benefiting memory up to a point, but then having a
detrimental influence); and when emotion facilitates the processing
of information, it also facilitates the retention of that information.
The general notion that arousal will enhance memory, up to a
point, was reinforced by Yeh et al. in their research of the effects of
negative affect on WM capacity [68]. They promote the idea of a
game that appropriately challenges users in order to activate their
attention, while avoiding negative emotional responses.

2.2 Affect and Gaming
Two domains, particularly relevant to this work, have shown promise
in recent literature for the application of affective computing meth-
ods. The first is the domain of cognitive training, which is motivated
by the strong relationship between emotions and cognitive perfor-
mance [23]. The second is the domain of video games, where the
interaction has been noted as a predominantly emotional one [67]
and therefore susceptible to affective adaptation – i.e., dynamically
changing the gameplay experience based on affective signals read
from the player.

Affective gaming can be realised through the use of biofeedback
techniques. However, for a game to be considered affective (and
not simply a biofeedback game), it must exploit this biological in-
formation to propagate affective feedback [5]. That is, the game
is an intelligent participant in the biofeedback loop. What distin-
guishes affective feedback from biofeedback is that the player is
not deliberately controlling their physiological responses in order
to influence gameplay.

There are numerous novel possibilities for emotive twists on
conventional gameplay experiences. For example, Reynolds and
Picard developed AffQuake [50], a modification to ID Software’s
Quake II that incorporated affective signals to alter gameplay in
a variety of ways (e.g. in StartleQuake, when a player becomes
startled, their avatar also becomes startled and jumps back). Valve
Corporation have also experimented with similar modifications to
their games: Half-Life 2 and Left 4 Dead 2 [7]. In these modifications,
the player’s stress level, measured as the electrical response of their
skin, determines the pace of the gameplay. Compared to conven-
tional gameplay, the use of VR in video games induces a greater
degree of engagement and immersion in players. This heightened
immersion, named presence (or the feeling of being there in the
virtual world), has been reported to directly impact the affective



states experienced by the player during gameplay – i.e., high levels
of presence induce more intense and vivid emotions [51].

2.3 Therapeutic Applications of Virtual Reality
In a systematic review of computerised cognitive training literature,
Hill et al. concluded that computerised CT is a viable intervention
for enhancing cognition in people withMCI [27]. Interestingly, they
found that for individuals with dementia, the only clinically mean-
ingful effect sizes were found in studies that utilised immersive
technology such as VR or the Nintendo Wii [27]. These findings
strongly support the idea that greater transference of cognitive
performance to daily life could be achieved through training on
ecologically valid tasks in VR.

Savulich et al. attempted to address the motivational deficits in
older populations with memory impairments through a novel mem-
ory game on an iPad “Game Show” which targeted EM as its cogni-
tive process [54]. The game was designed to have the same motiva-
tional properties typical of computer games (tutorials, stimulating
music, progression, etc.) and employed DDA with in-game perfor-
mance as a sole input. They conducted a randomised controlled
trial with 42 patients (aged 45 and over) diagnosed with amnestic
mild cognitive impairment, splitting the participants evenly into
a training and control group. Their results showed significant EM
improvements in the CT group, and suggested that gamification
enhanced participant motivation.

Gamito et al. investigated the effectiveness of VR for neuropsy-
chological rehabilitation [24] by developing a VR application for CT
which incorporated attention and memory tasks resembling daily
real-world activities. These tasks targeted WM, visuo-spatial ori-
entation, selective attention, recognition memory and calculation.
The training linearly increased in difficulty throughout the sessions.
This was employed in a study consisting of twenty stroke patients,
with a mean age of 55 years (SD = 13.5), who were randomly as-
signed between an intervention and control group. The results of
their study generally supported the efficacy of VR-based interven-
tions for CT, with significant benefits to memory and attention
functions observed in the intervention group (with the exception
that no significant improvement was seen in visual memory).

Optale et al. conducted a 6-month long randomised controlled pi-
lot study investigating the efficacy of their VR training intervention
in lessening cognitive decline and improving memory functions
[42]. The VR tasks asked the user to navigate a simple environment
and tested their capacity to recall the route they have taken and
their orientation, with a gradual, linear, increase in the complexity
of the stimuli. They recruited 36 elderly individuals (median age 80
years) with memory impairment and divided them into an experi-
mental group and an active control group (which received music
therapy sessions). Their results showed that participants in the
experimental group exhibited improvement in general cognitive
functioning and verbal memory, with the most significant effects
observed in long-term memory.

Despite their promising results, none of the reviewed studies
utilised affective feedback as part of their VR intervention, which is
themain focus of this work. Other VR applications for CT have been
proposed (e.g., [45], [20], [9]), however, these have not yet reached
the point of carrying out studies with their target population.

2.4 Emotion Sensing from Facial EMG
Computer-vision based analysis of facial nonverbal behaviour (fa-
cial actions or facial expressions) is not appropriate in a VR context
as the user’s face will be mostly occluded by the head-mounted
display (HMD). Cohn and Ekman in [13] provide a detailed review
about early studies that have used surface EMG to measure facial
muscle activity in relation to emotion and the evidence found in
terms of predictive correlation with self- and observer reported
emotion. Therefore, this work utilises facial electromyogram (EMG),
recorded from surface electrodes placed over regions of the user’s
face, to measure signals related to the affective facial behaviour of
the participants, using a novel device, Faceteq [35].

For extracting features from facial EMG, Jerritta et al. investi-
gated the application of higher order statistics (HOS) to derive a
set of facial EMG features for classifying Ekman’s six basic emo-
tional states [21]. They used audio-visual (video clips) stimuli to
induce emotional responses in participants, and employed a kNN
classifier with PCA as a dimensionality reduction technique. Their
results showed that the use of PCA prior to classification improved
the classifier’s accuracy, achieving an average classification rate of
69.5% across the six basic emotions (anger, disgust, fear, happiness,
sadness and surprise). Perusquia-Hernandez et al. [47] investigated
the recognition of spontaneous vs. posed smiles, using spatial and
temporal patterns of facial EMG. Due to the unbalanced nature of
the collected data, they undersampled the majority class to match
theminority class samples (as in [55]). The best classification results
for this 2-class problem, obtained using spatial-temporal features
with a Gaussian kernel SVM, range from 85.23% to 96.43% (across
participants), using a 70/30 training/validation data split. Soon et
al. developed an application for speech recognition based on facial
EMG. Three participants were asked to say a series of numeric (spo-
ken in Malay and English) and command words (spoken in English).
Temporal features were extracted from a DWT-Haar approxima-
tion of the input signal. Four different classifiers were evaluated:
Random Forest, Linear Discriminant Analysis, Naive Bayes and
Multilayer Perceptron. Classification results were obtained through
a cross-validation scheme with a 66/34 training/validation data
split. Random Forest provided the best overall performance with
temporal features achieving 64.7%, 49%, and 41.8% inMalay, English,
and command words respectively.

3 STUDY DESIGN
3.1 Game Design
Two separate virtual environments were developed, a virtual su-
permarket and a virtual multi-room museum (see Fig. 1 and Fig. 2).
These locales provided the setting for the WM and EM tasks re-
spectively, and were selected to promote the ecological validity of
the intervention, i.e., both environments are likely to be familiar
to the older target population and, in the case of the supermar-
ket, to reflect a daily activity. The underlying hypothesis was that
by setting the tasks in highly immersive virtual re-creations of
real-world environments and having users perform practical tasks
(e.g. collecting products from a shopping list and interacting with
displays in a museum) the acquired cognitive skills would better
generalise to daily life.



Figure 1: The custom virtual supermarket environment, in
which WM tasks were carried out, and player interaction
with this environment.

In the initial phase of the work, a fixed difficulty framework
was implemented for both the WM and EM tasks consisting of
three difficulty levels (easy, medium and hard). This was designed
with the purpose of eliciting a range of emotional responses from
study participants and, thus, generating a balanced dataset. These
difficulty levels differed in the cognitive load required from the
participant (e.g. shorter/longer shopping lists in the supermarket,
less/more display locations to remember in the museum).

Both tasks employ the same annotation and EMG logging scheme.
EMG data is recorded from when the task starts. After every 45
seconds of gameplay (a time period arrived at through pilot tests)
the recording is paused and written out to a log file (created for that
segment). When this occurs, the game environment fades to black
and the affective slider (see Fig. ) (implemented in VR to mitigate
gameplay disruption), is displayed to the player. Players interact
with the slider using a VR laser pointer and, when they are happy
with their selection (which should best describe the average affect
experienced by the player during the preceding 45 seconds of game-
play), press a confirmation button to append the arousal/valence
values to the associated EMG log. Gameplay and EMG recording
then resumes. This process repeats until the timer runs out.

Putze et al. performed a systematic investigation into the effects
of interrupting the VR experience through a questionnaire either
inside or outside of VR [49]. Their results showed that administer-
ing questionnaires in VR reduces the Break in Presence without
affecting the self-reported player experience. This motivated our de-
cision to collect the labels during gameplay. The use of the affective
slider was motivated by its facility for expeditious annotation and
its interpretability. We therefore decided that obtaining these labels
inside VR will better represent the range of emotions experienced
at different points during gameplay (while the experience is still
fresh). Score tracking and a leaderboard (staples of gamification)
were also included for both tasks.

A heads-up-display (HUD) was included that enabled the player
to track their current score, time left and other task specific infor-
mation. Together, the inclusion of these elements was intended
to draw the player’s focus away from the novelty of VR (thereby
mitigating the expected positive bias in the dataset) onto their task
performance. To further associate player performance and emo-
tional response, audio-visual stimuli were added in response to
correct (bell ringing sound and confetti explosion) and incorrect
(buzzing sound and red X) answers.

3.1.1 Working Memory Task. The goal of the WM task is to find a
(randomly generated) array of products in a virtual supermarket
(see Fig. 1), placing each product in a shopping basket. The products

Figure 2: The custom, multi-room, virtual museum environ-
ment, in which EM tasks are carried out. More rooms are un-
locked as the difficulty level increases. Green arrowmarkers
indicating which displays are to be remembered during the
encoding phase. Bottom right: visual feedback for correct
answer during the retrieval phase.

are specified to the player at the start of each round through the
HUD. Each product on the shopping list is displayed on the HUD
(as an image and text description) for 1 second, with a 500 ms in-
terval. Players are challenged to remember remaining items on the
shopping list (stored in WM), while they actively search for each
product. The number of products to be collected is determined by
the difficulty level. The medium difficulty tasks users with finding
7 products, this is intended to be the most engaging and balanced
difficulty for most users (based on Miller’s magic number seven,
plus or minus two [36]). The easy and hard difficulties task users
with finding 2 and 12 products respectively. These difficulties were
designed to increase the likelihood of inducing negative affect in
users, i.e., calm-negative on easy (bored due to insufficient chal-
lenge) and energetic-negative on hard (frustrated due to excessive
challenge). The specific number of products for each difficulty level
was determined through pilot testing and feedback. For each correct
item collected, 5 points are added to the player’s score. Collecting
an item that was not on the shopping list reduces the player’s score
by 4. Therefore, while the player is incentivised to carry out the
task quickly, the priority is to ensure that no mistakes are made.
The random generation of shopping lists promotes the task’s re-
playability, maintaining the emphasis on short-term WM (rather
than remembering the shopping lists from previous attempts) on
repeated playthroughs.

3.1.2 Episodic Memory Task. The EM task takes place in a multi-
room virtual museum environment (see Fig. 2). The core task is
divided into two consecutive phases: encoding (storage of informa-
tion, such that it can be distinguished from other distinct pieces
of information) and retrieval (recognition of previously stored in-
formation) [64]. In the encoding phase, players are asked to search
for one or more displays at randomly generated locations in the
museum. Players interact with marked displays in this phase using
a laser pointer. On doing so, the age of the display is shown to
the player. This interaction can take place at a distance, allowing a
greater degree of spatial context to be encoded. After all the marked



Figure 3: Prototype Faceteq sensing HMD foam insert and
how it is placed in the HTC Vive.

displays have been interacted with, the game transitions to the re-
trieval phase removing the marked displays from the museum, and
teleporting the player back to the museum entrance.

In the retrieval phase, players are tasked with placing a subset
of the displays they interacted with during the encoding phase
back in their original positions. The player uses the laser pointer to
indicate where in the environment (from a selection of highlighted
zones) they think it was located. On completion of the retrieval
phase, a short bonus phase is initiated. Players are shown three
displays they have interacted with and are asked which of them
is the oldest/youngest. This textual (age) recall is not randomised,
and players who can efficiently store the information in their LTM
should perform better over repeated sessions.

3.2 Data Acquisition
After the study procedure and protocol was approved by Cam-
bridge’s Department of Computer Science and Technology Ethics
Committee, 18 participants (5 female and 13 male, ranging in age
from 20 to 37) volunteered to engage in the EMG data acquisition
study, by wearing the HTC Vive VR headset with Faceteq sensing
HMD foam insert (see Fig. ). 6 of these participants engaged in a
preliminary pilot study, while the data collected from the remaining
12 formed the final annotated facial EMG dataset.

The participants were first acquainted with the research goals
of the study through an information sheet and verbal introduc-
tion. They were introduced to the meaning of arousal and valence,
and shown the affective slider annotation scheme (see Fig. 3.1).
The EMG recording sessions lasted for 3 minutes and 45 seconds,
of which there were six in total (one per difficulty level, for both
the WM and EM tasks). Half of the participants played through
the difficulty levels in reverse order (hard-to-easy) to reduce the
likelihood of the collected data being skewed positive (as in [55]).
The hypothesis here is based on the concept of the difficulty curve,
the idea that, for an optimal experience, a game’s difficulty should
progress in a manner consistent with real-world skill acquisition
(easy challenges during the cognitive stage, moderate challenges
during the associative stage, and more difficult challenges during
the autonomous stage) [6]. By delivering challenges to the player
in a reversed order, it is expected that they will experience nega-
tive affect more frequently (e.g. frustration early on, and boredom
towards the end).

Participants were given a two minute break between gameplay
sessions, allowing them to return to a neutral affective state. During
these breaks, participants were asked to give an affective label that

best summed up that session (using Russell’s circumplex model
[52]). A short informal interview was conducted, after the EMG
data collection and all other results from the study were recorded,
with the following questions.

• Which of the two environments did you prefer spending
time in?

• Which of the two tasks did you find more engaging?
• Did you experience any discomfort during the session and,
if you have prior experience of VR, was the addition of the
Faceteq sensor off-putting in any way?

• To what extent, if any, did the annotation scheme affect your
gameplay experience?

3.3 Findings
The majority of participants (10/12) expressed a preference for the
museum environment over the supermarket, with many responses
indicating that the supermarket felt more mundane as it is an envi-
ronment they are overly familiar with in the real world. This may
point to a trade-off between ecological validity and engagement
in the choice of cognitive training environment. Responses were
evenly split when it came to task preference, with many stating
they preferred the EM task as it had more gameplay variety, while
others appreciated the more naturalistic interactions in the WM
task. The response to the Faceteq sensor was positive. None of the
participants indicated that they experienced any motion sickness or
that the sensor was off-putting. Of the nine participants with prior
VR experience, five particpants responded that they weren’t aware
of the sensor once they started playing, two participants responded
that they there were aware of the sensor but it had no significant
impact on their engagement, and two participants (self-identified
regular VR users) stated that the ADC box attached to the back of
the HMD (see Fig. 3.2) served as a counterweight to the front-heavy
HTC Vive. Most participants (7/12) stated that the in-game anno-
tation scheme was mildly disruptive to the gameplay experience,
while others either found it did not affect their experience (3/12) or
found it very disruptive (2/12).

4 SYSTEM EVALUATION
This evaluation aims to investigate whether and how the devel-
oped CT environment and the overall system (with its modules for
sensing, feature extraction and affect recognition) work together.

4.1 EMG Feature Extraction
4.1.1 Pre-processing. Sousa and Tavares noted, in their review of
EMG normalisation methods [58], that the voltage potential of sur-
face EMG depends on several factors, varying between individuals
and also over time within an individual. Baseline normalisation
(removal) is a viable strategy to respond to these issues, having
seen use in numerous studies on a variety of physiological signals
(e.g., [70]). The user’s baseline was read during the first 45 seconds
of gameplay as at this point the novelty of VR had diminished to
some extent, and the activities during the early-game are typically
less arousing (e.g. reading shopping list, and looking at displays).

4.1.2 Feature Extraction. After baseline normalisation, the input
signal was processed usingDWT [69]. The choice ofmotherwavelet



Figure 4: List of time and time-frequency domain features
extracted from the DWT approximation of the signal.

for signal approximation was informed by the work of Phinyomark
et al. [48]. They found that, for the purpose of denoising, coif5,
Haar (db1), bior1.1 and rbio1.1 are the most suitable. A preliminary
evaluation with our dataset showed that each of these wavelets
resulted in very similar classification improvements (around +5% to
+7% accuracy depending on the classifier). Therefore, going forward,
the presented results are based on the DWT-Haar approximation
of the EMG signal due to its efficient computation. A significant
number of studies, in the domain of facial EMG classification, have
shown temporal features to be the most informative [25, 30, 47, 57].
Based on these findings, the time and time-frequency domain fea-
tures were extracted from the DWT approximation of the signal.
These are shown in Fig. 4 (see [61] for mathematical definitions).
Extracting this many features, from eight EMG channels, results in
a high dimensional (8 * 14 = 112) dataset.

4.1.3 Feature Selection. Due to the dimensionality of the dataset,
it was considered pertinent to include a feature selection step prior
to classification. The strategy employed here was inspired by the
work of Clerico et al. [12], who utilised the minimal-redundancy-
maximal-relevance criterion (mRMR) [46] to select the best fea-
tures in an EMG affective gaming context. mRMR attempts to find
optimal features, based on mutual information, through forward
selection. The greatest classification improvement was achieved
by selecting the best 30 features, identified by mRMR (around +3%
to +5% accuracy depending on the classifier). These features were
distributed among different muscle groups with the top 30 ranking
made up of 10 features from users’ eyes, 9 from their mouth, 7 from
their eyebrows, and 3 from their corrugator supercilii.

4.1.4 Findings. SSC was the most common feature in the ranking,
being extracted from all muscle groups bar the corrugator supercilii.
SSC, extracted from the right eye sensor, was also computed to
be the second most informative feature in the ranking. This was
accompanied by MMAV1 extracted from the right mouth sensor
(1st) and ZC extracted from the left mouth sensor (3rd), in a top
three that scored significantly higher (by a factor of at least 3) than

Figure 5: Classification accuracies for kNN, SVM and LDA
for positive valence vs. negative valence and high arousal vs.
low arousal. Results are obtained using leave-one-subject-
out cross-validation strategy.

the remaining 27 features. Interestingly, extracted RMS features
were considered relatively uninformative despite it being regularly
cited as one in facial EMG emotion recognition research (e.g. [25,
30]). Though deviations in expected results, such as this, may be
attributed to the fact that physical expressions of affect in peoples’
faces are likely to be impacted by the VR headset.

4.2 Affect Classification
4.2.1 Classification. First the original (-1 to +1 continuous) va-
lence/arousal labels were truncated into one of four emotion la-
bels: energetic-positive (high valence, high arousal); calm-positive
(high valence, low arousal); energetic-negative (low valence, high
arousal); calm-negative (low valence, low arousal). This allows emo-
tion recognition to be framed as a 4-class classification problem.
Three classifiers, which have been utilised to varying degrees of
success in existing facial EMG literature [25, 30, 47, 57], SVMs (with
Gaussian kernel); kNN (with various values for k); and LDA were
evaluated using the (subject-independent) leave-one-subject-out
(LOSO) cross-validation strategy. The best classification results for
each classifier can be seen in Fig. 5. The kNN (k = 4) offered the
best arousal classification rate (76.2%), and the best classification
rate on the combined valence/arousal 4-class classification problem
(68.8%). LDA yielded the best valence classification rate (64.1%), but
fell behind kNN on the 4-class classification problem (65.9%). The
Gaussian SVM generally underperformed, though by investigating
different kernels and further tuning hyperparameters, this could
be improved in future work.

4.2.2 Findings. The most noticeable discrepancy between the la-
bels acquired in-game and those acquired post-game, was a consis-
tently lower annotated value for arousal in the post-game interview.
This manifested as a significantly lower classification accuracy for
arousal when using the post-game labels as the four classes (around
-15% to -19% depending on the classifier), while valence classifica-
tion remained comparable. This suggests that the primary benefit
of acquiring affective labels in-game is a more reliable estimate
of the intensity of emotions. Placing participants in a reversed
difficulty group had the desired effect of inducing negative affect
more frequently (resulting in a more balanced dataset), with that
group accounting for approximately 61% of energetic-negative and
67% of calm-negative annotations. A notable difference between
how our classification results were arrived at compared to those



discussed in similar works (section 3.3), is that these results were
computed using the (subject-independent) leave-one-subject-out
(LOSO) cross-validation strategy.

5 INTERVENTION EVALUATION
The goal of this evaluation was to gather qualitative feedback from
the target population (older adults) to examine the potential benefits
of utilising affective adaptation for CT and gather insights for
defining future research steps.

5.1 Affective Feedback Loop Integration
The system integrated here relies on both affect sensing and player
performance as a data point, due to its exhibited value in existing
DDA solutions and to offset the (classification) inaccuracies in the
model (i.e. to avoid fixing what is not broken [28]). The number
of difficulty levels in this new adaptive version of the game was
increased from three (easy-medium-hard) to ten (10-point scale).
This allows for more subtle transitions in difficulty to avoid the
player becoming overly conscious of the adaptation (and poten-
tially feeling ‘cheated’ by it [28]). Every 45 seconds (in place of the
annotation interface from the previous study) the player’s affect is
classified in real-time based on incoming facial EMG signals. The
following DDA rules, encompassing both player affect and perfor-
mance, govern how the difficulty is adapted:

[Calm-Negative + :Perfect Score]: Increment difficulty by 2;
[Calm-Negative + Imperfect Score] or [Positive Valence + Perfect
Score]: Increment difficulty by 1;
[Positive Valence + Imperfect Score]: No change in difficulty;
[Negative Score] or [Energetic-Negative + Imperfect Score]: Decre-
ment difficulty by 1;
[Energetic-Negative + Negative Score]: Decrement difficulty by 2.

This rule set was arrived at following a short testing period
with pilot participants. For instance, in the [Calm-Negative + Per-
fect Score] case, it is hypothesised that the player is not enjoying
the game as valence is negative, and is likely bored as they are
in a non-energetic state, and the score is perfect, so the level is
increased by two. Instead, [Positive Valence + Perfect Score] leads
to a smaller increment of one in order to gradually maximise the
cognitive challenge provided by the game, while minimising the
risk of disrupting the player’s engagement (as indicated by the
positive valence score). In the best-case execution, the adaptation
is intended to lead players to a flow state [16], where they are
faced with tasks that they have a chance of completing through
application of their skills. In addition to being a signifier of high
engagement, being in a state of flow has been shown to improve
cognitive performance [23].

5.2 Evaluation Study
The protocol for the evaluation study was largely similar to the
previous study, with a few notable exceptions. 6 participants (4
female and 2 male, ranging in age from 60 to 100), with no history
of cognitive impairment, volunteered to engage in this evaluation
study. The recruitment of this older control group was facilitated
by the researchers from The University of Cambridge’s Department

of Neuroscience. None of the participants played video games with
any degree of regularity and only one had prior experience of VR.
Participants started by completing a battery of standardised cog-
nitive tests [10, 15, 37, 40, 43, 62, 65] (administered by the Clinical
Neuroscience researchers). This enabled accurate characterisation
of the sample and the investigation of correlations between the
standardised tests and the new VR paradigm. The time taken to
administer these tests averaged at about 1 hour.

Participants were given an explanation of the task goals and
time to practice in the VR environment prior to starting the session
proper. They played both an adaptive and non-adaptive (linearly
increasing difficulty) version of the game (without being told which
version is which), in two, fifteen minute, gameplay sessions (7 min-
utes and 30 seconds for both WM and EM tasks). To mitigate any
order effects bias in the evaluation of the adaptive and non-adaptive
versions, half of the participants played the adaptive version first,
while the other half played the non-adaptive version first. Partici-
pants’ subjective experience (i.e. immersion, engagement, and flow)
with the VR training intervention was evaluated using the in-game
and post-game components of the game experience questionnaire
(GEQ) [29].

Each session was concluded with an informal interview that
took place after all other results from the study were recorded. The
contents of this interview was the same as in the first study, with
the exception of an additional question on the impact of the in-
game affective annotation during the first study. Participation in the
study lasted for about 2 hours and 15 minutes on average (includ-
ing breaks). Immediately after playing each version (adaptive/non-
adaptive) of the game, participants reported on their feelings of
competence, sensory and imaginative immersion, flow, tension,
challenge, negative affect, and positive affect by completing the in-
game module of the GEQ. Each of these categories is represented by
a series of sub-components in the questionnaire, a numeric value is
then computed for each by averaging across their sub-component
values. The accumulated responses can be found in Table 1. Finally,
when both gameplay sessions were complete, the participants filled
out the post-game module of the GEQ [29]. This gave participants
the opportunity to think and reflect on the experience as a whole.
The accumulated results, similarly calculated by averaging across
their sub-components in the questionnaire, are provided in Table 2.

5.3 Findings
Looking at Table 1, while the response to both versions of the game
can generally be described as positive, there are a few noteworthy
differences. The two standout differences are the increased feeling
of competence and the decreased feeling of challenge while play-
ing the adaptive version of the game. The noteworthy increase in
competence is particularly encouraging as it relates to one of the
key deficiencies identified with existing cognitive training inter-
ventions, the drop-off in user engagement [56]. In their research
of intrinsic motivation, Deci and Ryan argue that structures that
enable feelings of competence during action can enhance intrinsic
motivation for that action [19]. This increased feeling of compe-
tence, brought about through affective adaptation, highlights the
potential of adaptive techniques in motivating users to engage with
cognitive training interventions. However, specific aspects related



PID P1 P2 P3 P4 P5 P6 Mean
Game Version Ad NAd Ad NAd Ad NAd Ad NAd Ad NAd Ad NAd Ad NAd
Competence 2 1 3 2.5 2.5 0.5 3 2 2 2 3 2 2.58 1.67

Sensory and Imaginative Immersion 4 3 4 4 3 2 3 3 2 3 4 4 3.33 3.17
Flow 3.5 3.5 4 3.5 3 2 3 3 2 3 3.5 2 3.17 2.83

Tension 2 3.5 0.5 0.5 0 2 0 0.5 2 0 0.5 1.5 0.83 1.33
Challenge 4 4 2.5 3 3 4 3.5 4 1 3 2 3.5 2.67 3.58

Negative Affect 1.5 3 0 0.5 0 1 0 0 0.5 0 0 0 0.33 0.75
Positive Affect 2.5 1.5 3.5 3.5 3 2 2.5 2 1.5 3 3 2.5 2.67 2.42

Table 1: In-game GEQ [29] module responses for each participant (P) represented with participant ID (PID), for Adaptive (Ad)
and Non-Adaptive (NAd) versions of the game. Values are on a scale of 0 (not at all) to 4 (extremely), and were calculated by
averaging across their respective components.

PID P1 P2 P3 P4 P5 P6 Mean
Positive 2.4 2.6 1.4 1.6 2 2.8 2.13
Negative 0.33 0 0 0 0 0.33 0.11
Tired 1 0.5 0 2.5 0 0 0.67
R2R 1 1 0.33 0.33 0.33 1.66 0.78

Table 2: Post-game GEQ module responses for each partici-
pant (P) on a scale of 0 (not at all) to 4 (extremely), calculated
by averaging across their respective components. R2R refers
to Return to Reality.

to intrinsic motivation were not included in the questionnaires em-
ployed in our studies. For more insightful conclusions on intrinsic
motivation, relevant aspects should be investigated explicitly in
future studies.

While the drop in challenge is not unequivocally positive, the
decrease to a more neutral value in the adaptive version, along
with the slight increase in flow (which describes a state of high
engagement), suggests that participants are being met with more
appropriate challenges that they can overcome using their skills
[16] (potentially explaining the slight increase in positive affect,
and decrease in negative affect while playing the adaptive version).
The largely positive responses provided for the post-game module
of the GEQ as seen in Table 2, in conjunction with those recorded
by the in-game module, are promising indicators that gamification
and VR can play a role in increasing engagement with cognitive
interventions in older adults.

Another area of interest for this evaluation was to what extent
the WM and EM tasks, implemented in VR, engaged the intended
cognitive abilities of the participants. This was examined by looking
for correlations between how participants performed (relative to
each other) in the standardised tests and the VR tasks. Positive
correlations, calculated using Spearman’s rank-order correlation
(rho), were found between the performance rankings of participants
in the VR paradigm and closely related standardized tests. Most
notably, high positive correlations were found between the Trail
Making Test [62], which examines executive functioning (a superset
of WM), and the WM task in VR (rho=+0.60), and between the 4
Mountains test (a short SM test) and the EM task in VR (rho=+0.74).

In the post-session interview, all 6 participants stated their pref-
erence for the museum environment (finding the supermarket more

mundane). The overall consensus was, however, that the environ-
ments they would prefer would match those in the real-world. 5
participants preferred the EM task, stating that while they found it
to be more complex, the greater variety it offered was a motivating
factor for them to return to it and improve. This may point to task
variety being an important factor in maintaining user engagement
in cognitive training. All 6 participants responded that they felt
no motion sickness during the study. 4 out of the 6 participants
indicated that they felt no facial discomfort, while 2 participants,
who wore glasses throughout the study, felt a bit of pressure on
their face towards the end. This was likely a result of the slightly
thicker face cushion used with the Faceteq prototype.

6 SUMMARY AND CONCLUSION
This work investigated the development of an affect-aware VR
game for cognitive training using facial EMG signals for affect
classification. Classification rates of 64.1% and 76.2%, for valence
and arousal respectively, were achieved through a combination of
DWT-Haar filtering, temporal feature extraction, feature selection,
and kNN classification. The promise of DDA in the development
of more engaging cognitive training was substantiated through a
small-scale user study with older adults.

The qualitative feedback garnered over the course of the study
pointed to a notable increase in feelings of competency and partici-
pants being more appropriately challenged. Participant feedback
relating to both the adaptive and non-adaptive versions of the game
was largely positive. This response lends credence to the notion
that gamification and VR are viable tools for improving engagement
in cognitive training with older adults. The findings here should be
qualified by reiterating an inherent limitation of the study. Six par-
ticipants is a small user group for an evaluation study and should
be expanded in future research to fully determine the veracity of
these findings.
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