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Abstract

Background: Platform trials improve the efficiency of the drug development process through flexible features such
as adding and dropping arms as evidence emerges. The benefits and practical challenges of implementing novel
trial designs have been discussed widely in the literature, yet less consideration has been given to the statistical
implications of adding arms.

Main: We explain different statistical considerations that arise from allowing new research interventions to be
added in for ongoing studies. We present recent methodology development on addressing these issues and
illustrate design and analysis approaches that might be enhanced to provide robust inference from platform trials.
We also discuss the implication of changing the control arm, how patient eligibility for different arms may
complicate the trial design and analysis, and how operational bias may arise when revealing some results of the
trials. Lastly, we comment on the appropriateness and the application of platform trials in phase II and phase III
settings, as well as publicly versus industry-funded trials.

Conclusion: Platform trials provide great opportunities for improving the efficiency of evaluating interventions.
Although several statistical issues are present, there are a range of methods available that allow robust and efficient
design and analysis of these trials.
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Background
Platform trial designs offer an innovative approach to in-
crease the efficiency of the drug development process
with great potential to positively change the conduct of
clinical trials. This approach allows adding and dropping
research arms throughout the course of an interven-
tional study via protocol amendments. Esserman et al.
described that “Amendments to already-approved proto-
cols are faster and more efficient, avoiding the need for

repeated review of all study procedures, creating a seam-
less process that avoids disruption of enrolment as drugs
enter and leave the trial [1].” This shows that the overall
time and the cost spent on evaluating new interventions
might be reduced when there is a relevant platform trial.
From the perspective of patients, participating in a plat-
form trial may lead to a higher chance of receiving an
experimental treatment which may be appealing and
lead to higher recruitment.
The benefits of a platform approach are most prevail-

ing for disease areas where (i) there are multiple candi-
date treatments and new ones being developed, (ii) the
recruitment rate can support a platform trial, and (iii) an
informative endpoint is observed relatively quickly that
can be used to make adaptations (for adaptive platform
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trials). The features and advantages of platform trials
have been recently illustrated by trials for COVID-19 [2,
3]. Trial examples that have considered a platform ap-
proach include RECOVERY [4] that evaluates a range of
potential treatments for hospitalized patients with sus-
pected or confirmed COVID-19, and PRINCIPLE [5] that
evaluates treatments for older people with symptoms of
possible COVID-19.
Nevertheless, allowing adding of new research compari-

sons increases the operational burdens and complexities
of trial conduct [6–11]. The challenges in developing and
implementing novel clinical trial designs have also been
discussed in a wider context [12–15]. In the statistical lit-
erature, methodological aspects of dropping arms have
been well explored [16–25]. The issues arising from add-
ing new research comparisons remain less considered. To
the best of our knowledge, Cohen et al. [26] is the only re-
view focused on adding arms. They identified seven publi-
cations that discussed methodological considerations
when adding arms to ongoing trials, and eight confirma-
tory two-arm trials that have added a treatment arm (most
were not in the initial plan of the trials). From the prac-
tical perspective, Schiavone et al. [6] have presented some
(non-statistical) criteria for decision-making when adding
new arms.
Here, we focus on phase II and phase III trials that

compare the benefits between the research interventions
and a control arm (with either placebo, active control, or
standard of care as the treatment) for one patient popu-
lation and a single disease. We do not specifically con-
sider trials that involve multiple subgroups such as
basket trials, umbrella trials, and adaptive enrichment
trials, though we expect most of the arguments would
be similar when adding new arms to these types of stud-
ies. For brevity, we define “new research comparisons”
as the inference about the comparisons between the
newly added interventions and the control treatment. By
treatment effect, we refer to the difference between the
treatment effect of one research intervention and the
treatment of the control arm. We do not consider the
implications of comparisons between different research
interventions.
With the increased recent use of platform trial designs

and additional methodology work considering statistical
issues, it is timely to review the impact on statistical in-
ference of adding arms. In this paper, we discuss some
additional issues, such as changing the treatment of the
control arm and how patient eligibility would complicate
the trial design and analysis, which have not been previ-
ously covered by Cohen et al. [26]; we also summarize
some recent relevant work. In addition, we cover recent
insights from the more generic statistical literature that
pave the way for future methods for platform trials.
Lastly, we remark how statistical considerations may

vary when using the platform trial approach for phase II
and phase III trial settings, as well as from the perspec-
tive of publicly and industry-funded studies.

Background of trial settings
We consider a randomized trial that initially explores
the inference about at least one research comparison
relative to a common control group. After the study has
commenced but before the end of recruitment, a new
intervention is added allowing a new research compari-
son following this amendment. We refer to stage 1 and
stage 2 as before and after the new arm is added to the
study, respectively. Each research comparison has an as-
sociated null hypothesis representing no true treatment
effect.

Issues in the use of platform trials
The presence of time trends
One of the potential concerns when implementing plat-
form trials is that the effect of a treatment (either an
intervention or the treatment of the control arm) may
vary with time, since their lifetime is often longer than
fixed trials. This happens for example when there is a
learning curve amongst the study personnel or when
usual care in general practice changes with time. Some
authors [27] described this change as a chronological
bias, and others describe this as a time trend. It causes
issues in making inference when the estimate of each
mean is not consistent in the sense that the bias might
not be offset when computing the mean difference. We
note that in fixed trials that have long durations, this is
also a concern, unless the assumption that arms are
affected equally holds. It could be more of an issue when
an arm is added and the analysis approach naively
compared all data on the control arm with the new arm.
We discuss the impact of such a trend on the inference
about the new research comparison in the “Analysis
approaches” section.

Impact of adding arms on the initial research
comparisons
Another potential problem of implementing platform
trials arises from the fact that the initial research com-
parison does not account for the fact that new interven-
tions have been added to the trial. More specifically, a
change in the trial design may lead to different treat-
ment effects in stages 1 and 2 if stage 1 and stage 2 pa-
tients respond differently to a treatment (either one of
the initial interventions or the control treatment). This
may be due to the fact that a different “type” of patients
participate in stage 2, e.g. these patients were not happy
with the initial treatment options but are willing to par-
ticipate now that a new option is available. Conse-
quently, the estimates of treatment effects and of the
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variances of the estimates may be affected, leading to a
spurious result for the investigation.

Inference about the initial research comparisons
Valid inference is of major concern to regulatory author-
ities, and hence, buy-in by regulatory authorities to the
inferential approach taken at the outset of a platform de-
sign is paramount. In this section, we focus on the infer-
ence about the initial research comparisons. We delegate
the discussion on the inference about the new research
comparisons to the next section.
There have been methods proposed to account for the

variability of treatment effect being affected by adding
new arms. Elm et al. [28] find that a linear model adjust-
ing for a stage effect outperforms a simple t test and an
adaptive combination test for trials with a normal end-
point. Potentially, the varying variability in the responses
across different stages might be resolved by using a ro-
bust variance estimator in the test statistics. The work
by Rosenblum and van der Laan [29] indicates that for
an unbiased estimate of treatment effect, using a sand-
wich estimator to estimate the variance of treatment ef-
fect when the analysis model is misspecified could
preserve the type I error rate at the nominal value
asymptotically. However, they show by simulation that
this approach leads to a smaller power compared to
using the true population model. Other approaches
worth considering have been proposed by Chow et al.
[30] and Yang et al. [31], who study the inference when
the target population deviates following a protocol
amendment. Specifically, Chow et al. [30] explore mea-
sures that reflect the differences between the actual
population and the original target population whereas
Yang et al. [31] focus on the binary outcomes and
propose estimates that link the response rates of popula-
tions following protocol amendment.
Alternatively, one may consider a randomization-

based test (see, e.g. Cox and Reid [32], section 2.2.5), es-
pecially when the properties of the analytical estimates
(of the treatment effect and its variance) are of concern.
The notion of randomization-based inference is that
under the null hypothesis, i.e. when there is no true
treatment effect, the observed difference between the
treatment and the control group is due to the random
allocation. Specifically, the null hypothesis states that the
distribution of the responses of one group is the same as
that of another group. Simulation is used to construct a
reference distribution of a test statistic under the null
scenario. Given an observed test statistic, i.e. computed
using the observed data, this reference distribution is
used for testing the null hypothesis in a way similar to
the standard t test. We note that for testing the initial
research comparison using this approach, care is needed
when generating the reference distribution since it also

requires the assumption that responses are independent
and identically distributed. In particular, the reference
distribution needs to reflect the random allocation se-
quences of stage one and of stage two for the initial
arms, which implicitly would account for the presence of
the newly added arm. This approach may not be
favoured over other approaches based on a parametric
model since the latter would have higher power when
their assumptions are met. However, it is unclear which
approach is better in the context of platform trials when
the responses of the same arm across the two stages
could come from different distributions.

Inference about the new research comparison
Additional research comparisons have a profound im-
pact on the characteristics of a platform study, and con-
sequently, careful considerations, in partnership with
regulatory agencies, should be given to aspects such as
analysis and error rate control.

Analysis approaches
We now discuss the inference about the new research
comparison. Recall that the control arm has responses in
both stages 1 and 2, whereas the new arm has responses
only in stage 2. Options for the analysis are (1) use the
control data of both stages and (2) use only the control
data of stage 2. In the ideal situation, i.e. there is no time
trend and the distributions of stage 1 and stage 2 re-
sponses are known and identical, option 1 would in-
crease the precision of the estimate due to the smaller
estimated variance for the estimated effect of the control
treatment. Assuming known variance parameter for the
normal outcome, Lee and Wason [33] show that given a
treatment effect, the gain in the marginal power of op-
tion 1 depends on the timing of adding arm: the increase
in the marginal power is relatively larger when the arm
was added at an earlier time point than at a later time
point. However, when there is a trend in the study, op-
tion 1 leads to bias in estimation that consequently
causes the type I error rate and the marginal power to
deviate from the corresponding nominal values, whilst
the root mean squared error of the estimated treatment
effect is smaller than that from option 2 when the time
trend is not too large. Many might think that option 1
can increase the marginal power of the hypothesis test,
but some researchers [33–35] have highlighted that the
gain in the power would not be possible with a strict
control of type I error rate when the rejection boundary
of the standard two-arm trial is used. This indicates that
the benefit of option 1 is more appealing when aiming
to use the trial data for generating exploratory evidence
about the efficacy of treatments (e.g. through building
predictive models which trade bias for a reduction in
variance), but not when a strict control of error rates is
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required for the inference of the trial population. As dis-
cussed in the “Conclusion” section, this may present a
barrier to use in registration trials.
In contrast, option 2 may yield inference that is more

robust to time trends. For example, advancement in
usual healthcare may affect the baseline characteristics
of patients as well as how they respond to a treatment;
improvement in diagnosis procedures may lead to the
enrolment of patients who are more representative than
those enrolled in the past. These inherent factors may
cause concern about the similarity between stage 1 and
stage 2 patients, though randomization could potentially
minimize the impact of these uncontrollable factors if
the effect over time is the same across all arms. How-
ever, as the randomization procedure used in platform
trials generally changes when a new arm is added, the
patients of the newly added arm may not be comparable
to the patients of the control arm who were randomized
in stage 1. Since stage two patients are randomized to all
arms during the same period, using only the control data
of stage 2 patients in the analysis about the new research
comparison is likely to lead to more reliable conclusions
than using option 1.
We note that option 1 is analogous to using historical

control data in a two-arm randomized controlled trial
[34–44], where Bayesian approaches have been explored
to study the gain in utilizing the historical control data,
and option 2 to using only the collected data from that
trial. Moreover, option 1 might be more beneficial if
some randomization procedures can maintain the bal-
ance in patient characteristics and responses across dif-
ferent stages. Future work is required to explore this in
the spirit that is similar to Feng and Liu [45], who as-
sume the responses of populations across different stages
are associated with some known covariates in their pro-
posal of group sequential test procedure.

Error rate of the new comparisons
For the type I error rate of the new research comparison,
the same rate as the initial comparison may be used as
in the STAMPEDE trial [46]. This is legitimate when the
research comparisons are treated as independent re-
search investigations, with a type I error rate pre-
specified for each hypothesis. The whole platform trial
can be thought of as a multi-faceted tool that evaluates
multiple interventions simultaneously and in a continu-
ous manner whenever new interventions are ready for
the evaluation. The only inconsistency with a platform
trial being thought of in this way is that the data of the
control group is utilized in all research comparisons that
are active over the same period. This shared control
group means that test statistics are positively correlated,
which actually reduces the total chance of making at
least one type I error compared to if the trials were run

separately with distinct control groups, though the over-
all error rate is still larger than the individual type I error
rate of each test. The drawback is that if the responses
of the control group in a platform trial are such that one
of the null hypotheses is rejected incorrectly, it is likely
that other hypotheses would also be rejected incorrectly.
Proponents of adjusting the rejection boundary for

testing multiple hypotheses often illustrate the issue with
a measure that describes the total chance of making any
type I error, e.g. family-wise error rate (FWER) and per-
comparison error rate. When we consider platform trials
as a whole, adjustment for multiplicity can be challen-
ging since the number of research comparisons varies
with time and it can be hard to envisage the frequency
and the timing of adding arms. As the conventional ap-
proaches require the grouping of hypotheses for which
we wish to control the FWER, which is defined as the
chance of rejecting at least one null hypothesis, it might
not be straightforward to extend the grouping of hy-
potheses to cover for the new research comparisons.
Moreover, the control of error rate depends on the allo-
cation ratio, the rules of dropping intervention arms,
and whether all intervention arms finish recruitment at
about the same time. Currently, there is no explicit guid-
ance or framework on how this should be achieved in
the setting of platform trials. Investigating different ways
of grouping the hypotheses and their implication on the
goal of the trial (or power) and with different procedures
such as p value combination approaches [47–50] and
closed-testing procedures [51] are an area for future
research.
Wason et al. [52] have explored the impact of adding

new arms on the FWER in a two-stage setting using a
design that allows for early stopping. Without adjusting
the rejection boundaries of the testing procedure, they
find that adding new arms causes an inflation of the
FWER over the nominal value. For trials that do not
allow for early stopping, Choodari-Oskooei et al. [53]
show that the standard Dunnett’s test can be extended
to control the FWER when a new arm is added in for
stage 2. The idea is to adjust the correlated test statistics
by a factor that reflects the size of the shared control
group that are used in all research comparisons. This is
analogous to considering a multi-arm design with some
of the intervention arms are delayed for recruitment.
Bennett and Mander [54] explore the control of the
FWER comprehensively. They consider maintaining the
same marginal power for each research comparison and
adjusting the rejection boundary in light of having a lar-
ger sample size per arm when a new intervention is
added. They also propose algorithms to compute the al-
location ratio when all arms finish recruiting at the same
time point and at different time points respectively.
These recent works focus only on the initial design of
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platform trials when new interventions are added. They
do not explore the feature of dropping arms within the
platform designs of more than two stages. Burnett et al.
[55] on the other hand use a conditional error approach
in the spirit of Magirr et al. [56] to achieve FWER con-
trol when adding arms to a platform trial that also al-
lows dropping of arms. Such an approach can lead to
conservative inference when many arms are added to an
ongoing trial.
We remind readers that when the number of hypoth-

eses is large, some approaches (e.g. Bonferroni correc-
tion) may lead to strict rejection thresholds and
unacceptably low power. The control of false discovery
rate (FDR), which is defined as the proportion of
rejected null hypotheses that are false, might be more
appropriate for situations where the number of hypoth-
eses is large. Examples of multiple testing methods that
control FDR include the Benjamini and Hochberg pro-
cedure [57], the Benjamini and Yekutieli procedure [58],
and the adaptive Benjamini and Hochberg procedure
[59]. Most of the current approaches estimate and con-
trol the FDR at the design stage, assuming all test statis-
tics are available at the end of the trial. This may not be
appropriate for platform trials where new research com-
parisons are added in a sequential manner. Nevertheless,
some researchers have proposed approaches that aim to
resolve this limitation in recent years by considering a
scenario where each hypothesis is tested in a sequential
manner and without the knowledge of other hypotheses
that would arise in another period of time [60, 61]. The
solution is based on the idea of using a budget function
that describes the error rate. Specifically, the budget [62]
is spent when a hypothesis is not rejected, and a return
is added to the budget when a hypothesis is rejected.
Robertson and Wason [63] have compared several of
these approaches by simulation studies, with a platform
trial as one of the illustrations.
Regulatory agencies have taken different views regard-

ing the question of controlling FWER and pairwise error
rates following broadly the reasoning outlined in Wood-
cock and LaVange [64]. At the same time controlling for
FDR was not broadly accepted by regulators at the time
of writing.

Practical considerations
Changing the control arm
We now discuss the possibility of a change of treatment
in the control arm of a platform trial. In addition to
gradual changes over time, replacing the treatment in
the control arm with another treatment could cause a
step change. For instance, when an intervention is found
to be definitively more effective than the current treat-
ment of the control arm, there would be ethical con-
cerns in light of not replacing the control treatment for

the future patients in the trial. However, if the control
treatment is replaced, that may make redundant the pa-
tients who were recruited before the transition, even if
the trial was suspended whilst the transition takes place.
Moreover, the research question may need to be

broadened or revised if the control treatment has chan-
ged, e.g. “compare the effectiveness of treatment X to
control treatment 1” is broadened to “compare the ef-
fectiveness of treatment X to the treatments of the con-
trol arm (either control treatment 1 or other new
control treatments that emerge during the active period
of treatment X)”. A stratified analysis might be consid-
ered here, where the data of an intervention and the
control arms is stratified according to the time when
there is a change to the design (either when the com-
parator is changed, or a new arm is added). In other
words, all available data are used to compare the re-
search intervention with each control respectively, which
may lead to several heterogeneous estimated treatment
effects for a research comparison (depending on how
many changes have been made to the design and the na-
ture of the control treatments). In this case, a hierarch-
ical modelling approach [65] might be appropriate to
provide robust inference in the sense of doing a network
meta-analysis. Investigating analysis approaches as such
is an area for future research. Note that if the interest
lies in comparing the intervention to the new control
treatment only, the discussion in the “Analysis ap-
proaches” section applies analogously, where the new
control treatment can be considered as the added arm
whilst the intervention arm consists of two groups: be-
fore and after the introduction of new control treatment.

Patient inclusion and exclusion criteria
It is possible that some patients are not eligible for all
interventions (due to unacceptable safety risks in some
patient subgroups for example). With multi-arm designs,
although it may cause difficulties in interpretation and
challenges in estimating the correlation structure of the
test statistics, the analysis plan can describe how the in-
formation from such patients be utilized when making
an inference. For platform trials, it is not obvious how
this problem might be overcome when patients are re-
cruited continuously to the control arm: including pa-
tients with such background in a standard analysis may
distort the inference (see the discussion in the “Impact
of adding arms on the initial research comparisons” sec-
tion); excluding them may increase the risk of having se-
lection bias. Moreover, excluding the responses of these
patients in the analysis of the initial comparison would
mean recruitment of more patients who have the same
trait to the patients in stage one is required. This may
cause complications in managing the control arm as well
as its required sample size for a particular period, since
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the sample size is dependent on the prevalence rate of
patients with such complications. Investigating how best
to utilize comparable patients in the analysis and com-
pute the required sample size are areas for future
research.
Trials that have encountered such a challenge include

the RECOVERY [4], RECOVERY-RS [66], and STAMPE
DE [46]. These trials use a randomization system that is
capable of randomizing patients between a limited sub-
set of treatments according to the patient background
and labelling these patients for the purpose of the
analysis.

Randomization: allocation ratio
As discussed, the inference about a research comparison
can be distorted when the differences in the characteris-
tics of the comparator groups are not accounted for in
the analysis. Randomization can minimize bias caused
by the presence of confounding factors (i.e. unobserved
variables that affect how patients respond to treatments)
in advance of data analysis when the allocation ratio is
preserved in terms of patient ordering. The recently pro-
posed error rate control frameworks [53, 54] allow un-
equal allocation ratios when new arms are added. Yet,
no one has explored how best to choose the unequal ra-
tio in favour of the new arms under various settings or
from the perspective of stakeholders.
To our knowledge, many platform trials (e.g. EVD

[67], ISPY-2 [68], GMB Agile [69], and REMAP-CAP
[70]) have included response adaptive randomization
rules [71–73]. Some of the Bayesian response adaptive
randomization rules aim to randomize more patients to
the putatively superior arms based on the trend of the
accrued data in a trial, but their applications to real trials
have raised some controversies [74–78], some of which
are partly due to the drawbacks of some algorithms and/
or the risk of experiencing an unknown time trend in
the trial [79]. Nevertheless, Ventz et al. [80] have com-
pared several randomization procedures for trials that
add arms in more details. Apart from discussing a bal-
anced randomization algorithm and two data-driven
randomization algorithms, Ventz et al. [80] incorporate
early stopping rules into the trial designs (which main-
tain the type I error rate of each research comparison)
and introduce a Bootstrap procedure for making infer-
ence when the latter two algorithms are implemented.
The idea of employing a Bootstrap procedure is to over-
come the challenges in specifying analytical distributions
for the estimates when the allocation ratio is data-
driven; such a procedure can produce confidence inter-
vals of an estimate and is one of the approaches for con-
ducting a randomization-based test that is discussed in
the “Inference about the initial research comparisons”
section.

Future work would be useful for evaluating the robust-
ness of data-driven randomization approaches when there
is a non-negligible time trend in platform trials in a similar
way to the work of Jiang et al. [81], who explore the pres-
ence of time trend in a two-arm setting when Bayesian re-
sponse adaptive randomization is employed. Comparisons
with other non-adaptive randomization methods, such as
minimization and block randomization, may also be made
to evaluate the trade-off of various aspects, e.g. patient
benefit and complexity in implementation. Minimizing the
presence of other biases, such as selection bias and contam-
ination bias (which is defined as the bias in inference due to
control patients who are non-eligible for a particular inter-
vention arm being included in the analysis of that arm),
from the perspective of randomization is also an important
area for future research, for the reason discussed in the “Pa-
tient inclusion and exclusion criteria” section. The ERDO
framework [82] and other approaches [83] might be ex-
tended to provide guidance on selecting a randomization
procedure for implementation in platform trials.

Operational bias due to observed result of some
interventions
Another challenge in platform trials could be that re-
vealing the results of the initial interventions may risk
operational bias, due to continuous recruitment of pa-
tients to the control arm. Depending on early results in
the trial, the recruitment approach may change, and the
way of intervention delivery or the measurement of re-
sponses may be affected. Consequently, the patients re-
cruited before and after the result dissemination may be
different, leading to the issues mentioned in the preced-
ing discussion. It could also be the case that when the
characteristics of the control treatment are revealed,
some concerns about research comparisons that are ac-
tive in recruitment may arise, for example, if the ob-
served effect of the control treatment is lower than that
assumed in the sample size calculation of other research
comparisons. This observed effect could be due to a ran-
dom chance, but the trial team may conclude that other
research comparisons might be underpowered or over-
powered. Subsequently, a revision of the design may lead
to a change in design, e.g. revision of the sample size to
match the observed characteristics of the control treat-
ment. A pragmatic approach to avoid some of these is-
sues might be as follows: pre-specify rules at the design
stage, e.g. sample size recalculation [84–86] when new
arms are added using the promising zone design [87],
and exploration of different scenarios by simulation to
ensure that the error rate control is within the accept-
able limits of the platform trials. Future work is required
to extend the methodology for sample size re-estimation
in such a direction since most of the approaches are
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applicable to fixed trial designs in a blinded or unblind
manner [88].
Despite the fact that operational bias is difficult to be

minimized in practice, one may conduct sensitivity ana-
lysis to explore the robustness of the design amend-
ments (e.g. sample size calculation or randomization
approaches) and the finding of the research comparisons
by simulation study. We note that the reporting guide-
lines [89–91] developed for randomized trials that use
adaptive designs might provide useful principles that are
applicable to publishing the result of the research com-
parisons that have finished recruitment. Examples in-
clude reporting of methods used to account for changes
made in the trial in the analysis, methods to control for
operational biases that might arise from results being
available, and how randomization methods were updated
during the trial after interim analyses.

Trade-off between costs, benefits, and risk
We have presented what statistical adjustments are
required when adding arms to ongoing trials through
a platform approach. Apart from the potential risk of
the negative impact on ongoing comparisons, the
trade-off between costs, benefits, and operational
challenges would play an important role in making
the decision, even if it is established that adding arms
to an ongoing trial is feasible in principle. Lee et al.
[92] show that interim observation or results of the
initial research comparisons might support the
decision-making process. For instance, the interim ob-
servation of the initial arms may suggest that it is not
worth adding in a new research arm. An extension to
this framework might be to account for the disease’s
prevalence as well as for different types of outcomes,
with or without follow-up requirements.
The other option that may be more favourable in

terms of practicality is to conduct another trial. In some
cases, the simplicity in trial management (e.g. financial
and staffing are predictable in trials that use fixed de-
signs) can be more appealing than the, potentially,
marginal benefit of adding new arms. Moreover, in-
vestigators have the flexibility in choosing how the
new trial is being conducted and save the effort in
researching and evaluating ongoing trials that seem
relevant. Another reason why conducting a new trial
might be favoured is that there could be a perceived
hierarchy in the interventions. Taking the recent out-
break of Covid-19 as an example, whilst there are lots
of drugs that potentially could be repurposed, there
was consensus that two of them are most promising.
So, instead of adding arms to ongoing studies, the
clinical teams of some trials [93, 94] have decided to
start a new study with different centres.

Conclusion
In this paper, we have reviewed statistical issues that
arise in platform clinical trials, which allow new research
arms to be added whilst the trial is in process. The bene-
fits of this approach are compelling: it allows a quicker
evaluation of new interventions whilst benefiting from
much of the statistical efficiency gained by multi-arm
multi-stage trials. However, there are statistical complex-
ities that cause issues with bias in the estimation, type I
error, power, or interpretability of the trial.
The platform approach has clear benefits in both

phase II and III settings. Many of the statistical issues
we have explored in the paper will apply differently in a
phase III trial compared to a phase II trial. In a phase III
setting, where the aim is to provide confirmatory evi-
dence for a new intervention, ensuring control of the
type I error rate and reducing the chance and impact of
bias will be high priorities. Although these are still im-
portant concerns in phase II settings, investigators may
be more willing than regulators to apply/accept methods
that risk inflation of error rate or statistical bias. Thus,
the efficiency provided in a phase III platform trial may
be more from operational efficiency compared to phase
II where gains in both operational and statistical effi-
ciency are possible.
Similarly, there might be differences in platform tri-

als that are sponsored by a public sector institution
and ones sponsored by industry. Regulatory issues will
be more present in the latter—we refer the reader to
the FDA draft guidance on master protocols for some
further illustration of regulatory viewpoints [95]. Tri-
als led by academic or public sector institutions will
still need to follow this guidance if they are testing
drugs: some concerns may be lessened, however, if
trial results are not to be used for drug registration
purposes. Several regulatory agencies provide design
consultation advice, and this would be a useful route
to take for researchers proposing a platform trial for
registration purposes.
We have concentrated on frequentist concepts such as

bias and type I error rate. Bayesian methods [96–98] are
increasingly being utilized in the design and/or analysis
of clinical trials; if a purely Bayesian analysis is being
performed, then some statistical concerns may be less-
ened. However, even in a Bayesian trial that considers
both the Bayesian design (e.g. Bayesian group sequential or
multi-arm multi-stage designs [99–104], Bayesian sample
size calculation [105–108], and adaptive randomization
[109–113]) and analysis approaches [114], it is common to
consider the chance of incorrectly recommending an inef-
fective treatment and to be interested in the estimated
treatment effect from trial data alone. In this case, many of
the statistical issues we discuss are still applicable. Further
consideration of Bayesian versus frequentist approaches for
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specific statistical aspects in the context of adding arm is an
interesting area for future work.
We have focused primarily on the statistical aspects of

adding arms in this work. The optimal timing of adding
and dropping arms in platform trials depends on the
clinical context, the nature of the interventions, and the
capability of stakeholders in delivering the amendments.
It could be that a new arm is only added when an exist-
ing intervention arm is dropped, or the decision is inde-
pendent of other adaptations. Adding and dropping
arms too quickly may increase implementation complex-
ity (and also increase the risk of type I or II errors)
whereas acting slowly may reduce the benefits of these
adaptive features. Practical guidance on deciding the
timing of adding and dropping arms would help increase
the uptake of the platform trial approach.
In conclusion, platform trials that allow adding of new

arms provide great opportunities for improving the effi-
ciency of evaluating interventions. Although several stat-
istical issues are present, there are a range of methods
available that allow robust and efficient design and ana-
lysis of these trials. Future research will undoubtedly add
more and better methods to maximize the benefits pro-
vided by platform trials.
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