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First-passage and first-exit times of a Bessel-like stochastic process
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We study a stochastic process Xt related to the Bessel and the Rayleigh processes, with various
applications in physics, chemistry, biology, economics, finance and other fields. The stochastic
differential equation is dXt = (nD/Xt)dt+

√

2DdWt, where Wt is the Wiener process. Due to the
singularity of the drift term for Xt = 0, different natures of boundary at the origin arise depending
on the real parameter n: entrance, exit, and regular. For each of them we calculate analytically and
numerically the probability density functions of first-passage times or first-exit times. Nontrivial
behaviour is observed in the case of a regular boundary.

PACS numbers: 02.50.Ey, 05.10.Gg, 05.10.Ln, 05.40.Jc

I. INTRODUCTION

In the theory of stochastic processes, the first-hitting
time is defined as the time when a certain condition is ful-
filled by the random variable of interest for the first time;
it is random itself and a particular case of a stopping
time. We speak of a first-passage time when the random
variable reaches a certain level for the first time, and of a
first-exit time when it leaves a certain interval for the first
time. A standard example of a first-passage time prob-
lem is the decision of an investor to buy or sell a stock
when its fluctuating price reaches a certain threshold.
However, first-passage times play an important role also
in chemical physics; early examples are given by mod-
els describing the dissociation of diatomic molecules as
a first-passage time problem, where dissociation occurs
if a certain critical energy level is reached through colli-
sions [1–3]. A view on diffusion in fluids based on first-
passage times has been proposed by Munakata [4], where
self-diffusion is measured via the first-passage time with
respect to a boundary marked by a sphere centered at
the original position of a labeled particle. Problems like
neuron dynamics, self-organized criticality or dynamics
of spin systems can be viewed as first-passage processes
in one dimension [5]. The first-passage problem is closely
connected to persistence, which is the probability that a
random variable does not leave a certain region up to
a certain time, i.e. the complementary event to a first-
passage at the same time. The problem of persistence in
spatially extended nonequilibrium systems has attracted
great interest both theoretically and experimentally, see
Majumdar [6] and references included therein, where per-
sistence is defined as the probability that for an arbitrary
nonequilibrium field φ(r, t) the quantity φ(r, t)−〈φ(r, t)〉
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does not change sign. The nonequilibrium field can also
be a scalar or tensorial order parameter field. Yurke et
al. [7] have measured the probability that the local or-
der parameter in a twisted nematic liquid crystal sys-
tem has not switched its state up to a time t. Persis-
tence phenomena have also been studied in the context
of phase-ordering dynamics [8, 9], diffusion fields [10],
and reaction-diffusion systems [11]. All these systems
share the characteristic property that persistence, and
hence also the distribution of first-passage times, follows
a power law with some non-trivial exponent. However, in
the literature that we have read, the reference point with
respect to which persistence was measured has always
been zero. In this work we shall consider the first-passage
or first-exit problem with respect to a certain level b for
a stochastic process that may or may not be able to cross
the origin, depending on the nature of the boundary at
zero.
Our model can be described by the stochastic differen-

tial equation

dXt =
nD

Xt
dt+

√
2DdWt, (1)

where Wt is the Wiener process with zero mean

〈Wt〉 = 0, (2)

and the autocovariance function

〈WtWt′〉 = min(t, t′), (3)

the constant diffusion coefficient D is positive, and the
real parameter n controls the relative strength of the drift
and diffusion terms of the model.
Except for n = 0 the origin Xt = 0 is a singular point,

the nature of which depends on the value of n. Intuitively
one might think that the stochastic process cannot cross
the origin for a non-zero n: it should be bounded to the
interval (0,∞) or (−∞, 0) depending on the initial value
x0 of the process. As we shall see later, this is only true
for a certain range of n.
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For n = 0 the process is nothing but the Wiener pro-
cess. The probability density function (PDF) of the first-
passage time of a certain level b at time T starting at x0

is well known,

f(T ) =
|b− x0|T−3/2

√
4πD

exp

[

− (b− x0)
2

4DT

]

. (4)

This result can be derived, for example, in an elegant
way by a simple scaling argument [12]. For long times
one obtains from Eq. (4) a power law f(T ) ∝ T−3/2.
For nonzero n the situation is not so simple any more.

For n < 1 Bray [13] obtained a result for the PDF of
the first time to hit the origin, which for long times
is a power law too, f(T ) ∝ T−(3−n)/2; see also below.
The persistence probability is then simply the probabil-
ity that no hit has occurred in the time span T , that is

1 −
∫ T

0
f(T ′) dT ′ =

∫∞

T
f(T ′) dT ′ and is again a power

law, with exponent −(1− n)/2.
In this paper we consider a more general problem. We

ask for the first time to leave the interval (0, b) either by
crossing the upper boundary b or by hitting the origin, if
the nature of the singularity allows the latter event. Cor-
respondingly we calculate the first-passage time distribu-
tion with respect to the upper bondary b or the first-exit
time distribution for the interval (0, b).
The PDF is determined as the solution of a bound-

ary value problem, which is a Sturm-Liouville eigenvalue
problem. On the semi-infinite interval (0,∞) the problem
has a continuous spectrum, whereas on the finite interval
(0, b) the spectrum is discrete.
The paper is organized as follows. In Sec. II we shortly

explain the scientific relevance of our process and discuss
its relation to other model processes. The main results
of the paper are presented in Secs. III and IV. In Sec. III
we analyze the nature of the singular point at the ori-
gin, which depends on the value of n. First we adopt
a heuristic approach by Bray [13], then we present a
more sophisticated analysis following a scheme proposed
by Feller [14]. In Sec. IV we calculate the PDFs of the
first-passage time or of the first-exit time; we derive the
backward Kolmogorov equation, formulate the boundary
value problem, which is of Sturm-Liouville type, and give
the general solutions for different ranges of n. We con-
clude Sec. IV giving a short description of a numerical
simulation method and comparing the analytical results
with those from simulation.

II. PHYSICAL MOTIVATION AND RELATED

MODELS

First we remark that Eq. (1), setting n = d−1−U/D,
governs the dynamics of the radial component of the posi-
tion of a random walker in a logarithmic potential U log x
in dimension d or of a free random walker in an effective
dimension d′ = d − U/D, which may have noninteger
values [13]. In this context it appears natural to assume
x > 0, and for free diffusion U = 0 to restrict to n > −1.

Eq. (1) appears in various physical, chemical and bio-
logical problems. The context in which the relevance of
Eq. (1) arises will now be explained starting from generic
considerations and then proceeding further with specific
physical problems. Godrèche and Luck [15] introduced
a classification of stochastic processes into a group with
“narrow” distributions, where all moments are finite, and
“broad” distributions, where PDFs exhibit a power-law
decay, and hence only a finite number of moments con-
verge. The PDFs of the persistence, and therewith also
of the first-passage time, will decay respectively either
faster than any power law or algebraically, depending on
the nature of the process imposed by its distribution.
The motion of atoms in a one-dimensional optical lat-

tice formed by two counterpropagating laser beams with
linear perpendicular polarization was studied by a similar
equation in the high momentum region, where the mo-
mentum takes the role of the stochastic variable x [16].
The Barkhausen noise was described phenomenologi-

cally by a model where the domain wall velocity as a
function of the magnetization is also described by a sim-
ilar Langevin equation if the demagnetizing factor is ne-
glected [17, 18]. The magnetization takes the role of time.
Fogedby and Metzler, the former of which had already

analyzed the generic Langevin equation before [19, 20],
have applied the model to study the variable size of a
DNA “bubble” [21], which emerges when at a certain
temperature hydrogen bonds connecting base pairs from
the opposite strands of the double helix are broken. The
bubble size is measured by the number of broken bonds;
in a continuum limit the discrete number of broken bonds
can be replaced by a continuous variable x and, according
to the Poland-Scheraga model [22], the free energy of the
system can be approximated for small bubble sizes as

F ≈ ckBT log x, (5)

where c is a positive constant. Equilibrium is reached for
a minimum of the free energy and the dynamics follows
the Langevin equation

dx

dt
= −D

dF
dx

+ ξ(t), (6)

where ξ(t) is a thermal noise assumed to be Gaussian
with autocovariance 〈ξ(t)ξ(t′)〉 = 2DkBTδ(t− t′).
A similar model was employed studying the translo-

cation of a polymer through a pore, where the number
of monomers on one side is chosen as the “translocation
coordinate” [23].
An interesting application of the model was found by

Bray [13], who showed that persistence and nonequi-
librium critical dynamics are related in the context of
the two-dimensional XY -model with non-conserved or-
der parameter, where the critical temperature is the tem-
perature TKT of the Kosterlitz-Thouless phase transition.
The dynamics of a vortex-antivortex pair can be mapped
to a one-dimensional Langevin equation corresponding to
Eq. (1) by a series of transformations.
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It is impossible for us to discuss comprehensively all
the publications dealing with similar models because too
many of them exist. The list becomes even longer con-
sidering Eq. (1) as a special case of several different more
general types of stochastic process.
On the one hand it is a special Rayleigh process [24,

25],

dXt =
(

µ−1X
−1
t + µ1Xt

)

dt+ σdWt, (7)

where µ−1, µ1 and σ are constants. Setting µ−1 = nD,

µ1 = 0 and σ =
√
2D results in Eq. (1), while setting

µ−1 = 0 reproduces the radial Ornstein-Uhlenbeck pro-
cess in one dimension [26]. Using methods of classical Lie
group symmetry analysis, it was shown that the Rayleigh
process belongs to a maximal invariance group with six
parameters whose member equations can be reduced to
the standard diffusion equation by appropriate changes
of variables, thus leading to the analytical solutions of
these equations [27–29].
The Rayleigh process is widely employed in physics,

economics, finance, and other fields, e.g. biometry [30].
In physics, Eq. (7) appears e.g. within non-abelian gauge
theories in the framework of stochastic quantization [31].
In economics, Eq. (7) appears e.g. as a special case of a
more general diffusion process whose stationary solution
has been proposed to model the distribution of the profit
rate of firms [32]. In finance, the applications usually
employ the form of the generalized Bessel process, which
is introduced below.
On the other hand our process can be mapped onto

the Bessel process

dYt = adt+ b
√

YtdWt (8)

via the transformation Yt = X2
t : multiplying Eq. (1)

with Xt, interpreting the stochastic integral in the Itō
sense and using Itō’s lemma, one recovers Eq. (8) with

a = 2µ−1 + σ2 = 2(n + 1)D and b = 2σ =
√
8D, where

we have assumed Yt ≥ 0.
In finance, extensions of the Black-Scholes-Merton

(BSM) option pricing formula [33, 34] based on diffusion
processes where the volatility is a function of the under-
lying, called constant elasticity of variance or Cox pro-
cesses [35], reduce to a more general Bessel process with
an additional term proportional to Yt in the drift, corre-
sponding to the Raleigh process, by means of a non-linear
transformation and a measure change. The generalized
Bessel process

dYt = (a0 + a1Yt)dt+ bY β
t dWt (9)

describes the underlying stock price in the BSM lognor-
mal model with β = 1, a0 = 0 and a1 > 0, the short
interest rate in the Vasicek model [36] with β = 0, a0 > 0
and a1 < 0, and the short interest rate in the Cox-
Ingersoll-Ross short rate model [37] with β = 1/2, a0 > 0
and a1 < 0 (when a1 < 0 the process is called mean-
reverting). These models with three adjustable parame-
ters are all solvable. A general solution was proposed for

a larger family of models with up to seven parameters;
it has a similar structure as the BSM formula, the most
notable difference being that error functions are replaced
by confluent hypergeometric functions [38].
Eq. (9) is used to describe the underlying with β = 1

or β = 1/2 and a0 = 0 also when pricing path-dependent
options, e.g. barrier and lookback [39–42] or Asiatic op-
tions [43]. In this context the cumulative probability
distribution F (T ) of the first-passage times of an upper
barrier, i.e. the probability that the barrier is reached
within a time T , is the probability that an up-and-in, or
knock-in, option is valid at its maturity T (here the bar-
rier is an entry point), while 1− F (T ) is the probability
that an up-and-out, or knock-out, option is valid at T
(here the barrier is an exit point). In both cases a valid
barrier option behaves as a European option; thus F (T )
is the probability that at maturity an up-and-in option
behaves as a European option, and 1−F (T ) is the prob-
ability that at maturity an up-and-out option behaves
as a European option. These considerations lead to one
approach (among others) to price barrier options.

III. THE NATURE OF THE SINGULAR POINT

AT THE ORIGIN

The quantity we are interested in is the first-passage
time with respect to a certain level b, when the initial
value x satisfies 0 < x < b. Clearly, the upper limit of
the process is the artificially set absorbing boundary at
x = b. It requires some effort to understand the nature
of the lower boundary x = 0, which is a singular point of
the stochastic differential equation. We shall first adopt
the heuristic argumentation by Bray [13] and then apply
a more sophisticated classification scheme proposed by
Feller [14].

A. Heuristic arguments

The Fokker-Planck equation corresponding to the
stochastic differential equation (1) is

∂p(x, t)

∂t
= − ∂

∂x

[

nD

x
p(x, t)

]

+D
∂2p(x, t)

∂x2
. (10)

This does not depend on whether Eq. (1) is interpreted
in the Itō or Stratonovich sense because in our case the
noise is additive, i.e. independent of x [44]. We restrict
to x ≥ 0, the case x ≤ 0 being symmetric to the pre-
vious one. The general solution of the Fokker-Planck
equation (10) requires the knowledge of two linearly in-
dependent solutions. Using the separation ansatz [13]

p(x, t) = x(1+n)/2Rk(x)e
−Dk2t (11)

one gets the Bessel differential equation

d2Rk

dx2
+

1

x

dRk

dx
+

(

k2 − ν2

x2

)

Rk = 0, (12)
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where ν = (1 − n)/2, whose solutions are the Bessel
functions of the first kind Jν(kx) and of the second kind
Yν(kx).
For non-integer ν also Jν(kx) and J−ν(kx) are linearly

independent, and we can use J−ν instead of Yν . In this
case the general solution of Eq. (10) can be written as

p(x, t) = x1−ν

∫ ∞

0

[A(k)Jν(kx) +B(k)J−ν(kx)]

× e−Dk2t dk, (13)

where the coefficients A(k) and B(k) are to be deter-
mined by initial and boundary conditions.
The Bessel function of the first kind is given by [45]

Jν(kx) =
∞
∑

l=0

(−1)l

l! Γ(l+ ν + 1)

(

kx

2

)2l+ν

. (14)

Denoting the contributions to p(x, t) coming from Jν and
J−ν by pν(x, t) and p−ν(x, t) respectively, we can use
Eq. (14) to write Eq. (13) in the form

p(x, t) = pν(x, t) + p−ν(x, t)

=

∞
∑

l=0

[

clν(t)x
2l+1 + cl−ν(t)x

2l+n
]

, (15)

with

clν(t) =

∫ ∞

0

A(k)
(−1)l(k/2)2l+ν

l! Γ(l+ ν + 1)
e−Dk2t dk

cl−ν(t) =

∫ ∞

0

B(k)
(−1)l(k/2)2l−ν

l! Γ(l− ν + 1)
e−Dk2t dk. (16)

The behaviour of the PDF for x → 0+ is determined by
the leading order terms and thus, approaching zero, we
find

p(x, t) ∼ c0ν(t)x+ c0−ν(t)x
n. (17)

For 1 < n the leading order term is c0ν(t)x and the next
to leading order term is c0−ν(t)x

n. For −1 < n ≤ 1 it
is vice versa. For n ≤ −1 the contribution from J−ν

has a non-normalizable singularity at the origin; see also
below. Introducing the probability current density

j(x, t) = D

(

n

x
− ∂

∂x

)

p(x, t), (18)

the Fokker-Planck equation (10) can be written in the
form

∂tp+ ∂xj = 0. (19)

Terms proportional to xn do not contribute to j(x, t),
and so we arrive at

j(x, t) ∼ c0ν(t)D(n− 1), (20)

which holds in leading order for x → 0+.

For 1 < n the coefficient c0ν(t) is positive because in
this case c0ν(t) = limx→0+ p(x, t)/x, and correspondingly
j(x, t) > 0 near the origin.
For −1 < n ≤ 1 this is not true in general, see Eq. (17).

The characterization can be made clearer imposing spe-
cific boundary conditions.
For example, absorbing boundary conditions at x =

0 require limx→0+ p(x, t) = 0 and limx→0+ j(x, t) < 0.
For −1 < n ≤ 0 the former condition can be fulfilled
only setting B(k) = 0. A(k) is determined by the initial
condition. Observing the orthogonality relation [46]

δ(α− β) = α

∫ ∞

0

kJν(αk)Jν(βk) dk, (21)

which holds for ν > −1/2, i.e. for n < 2, we see that
choosing A(k) such that

p(x, t) = x1−νxν
0

∫ ∞

0

kJν(kx0)Jν(kx)e
−Dk2t dk (22)

fulfills the initial condition p(x, 0) = δ(x− x0).
The integral in Eq. (22) can be explicitly evaluated [47]

with the result

p(x, t) = x1−νxν
0

1

2Dt
exp

(

−x2 + x2
0

4Dt

)

Iν

( xx0

2Dt

)

, (23)

given already by Bray [13]. Here Iν is the modified Bessel
function of the first kind defined by

Iν(x) =
∞
∑

k=0

1

k! Γ(k + ν + 1)

(x

2

)ν+2k

. (24)

Since in this case B(x) = 0, which implies that also
c−ν = 0, we have limx→0+ p(x, t)/x = cν(t) > 0, and
from Eq. (20) it follows that j(0+, t) < 0 as required.
Note that the case of free diffusion (n = 0, i.e., ν =

1/2) with an absorbing boundary condition imposed at
the origin is included in Eq. (23). A short calculation
gives the well known result which can be obtained, e.g.,
by the mirror method.
As already shown by Karlin and Taylor [48], for n ≤ 1

total absorption at the origin occurs in finite time. Cor-
respondingly, in this case there exists a stationary solu-
tion of the Fokker-Planck equation which is a Dirac delta
function δ(x); see also Alfarano et al. [32]. Formally this
can be seen as follows. Observe that Eq. (10) admits sta-
tionary solutions p̃s(x) ∝ xn whith n ≤ 1 that are not
normalizable at the origin. Using the concept of weak
normalization introduced by Senf et al. [49], it can be
shown that the weakly normalized version of p̃s(x) is just
a Dirac delta distribution, pws (x) = δ(x), in the sense
that

∫

S p
w
s (x)ϕ(x)dx = ϕ(x0), where ϕ(x) is a test func-

tion and x0 is included in the support S.
More insight into the qualitative behaviour of the sys-

tem near and at the origin is provided by the classification
scheme of Feller which is discussed in the next subsection.
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B. Formal classification

The modern classification of the boundaries of diffusion
processes has been developed by Feller [14] and is based
on semigroup operator arguments. We shall now briefly
review the necessary theory for the boundary classifica-
tion employing the notation of Karlin and Taylor [48] in
order to be able to classify the origin for our process.
In the following let Xt be a process defined on the

interval I = (l, r), where the two endpoints can be both
finite or infinite. Also let the process start at the initial
value X0 = x, and a and b be two finite real numbers
such that the inequality l < a < x < b < r holds. We
shall consider regular diffusion processes in the interior of
I, i.e. processes for which the first-passage time Ty with
respect to an arbitrary level y in the interior of I is finite
with a positive probability

P (Ty < ∞|X0 = x) > 0. (25)

The three central quantities are

u(x) = P (Tb < Ta|X0 = x), (26)

v(x) = 〈T ∗|X0 = x〉, (27)

w(x) =

〈

∫ T∗

0

g(Xs)ds|X0 = x

〉

, (28)

where g is an arbitrary functional of the stochastic pro-
cess, and we have defined T ∗ = Ta,b = min{Ta, Tb}. It
can be shown [48] that under certain conditions these
quantities satisfy the boundary value problems

Lu(x) = 0, u(a) = 0, u(b)= 1, (29)

Lv(x) = −1, v(a) = 0, v(b) = 0, (30)

Lw(x) = −g(x), w(a) = 0, w(b)= 0, (31)

with the differential operator L acting on a function f(x)
as follows:

Lf(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x). (32)

The proof for u(x) invokes the law of total probability
and uses a Taylor expansion to the second order around
x of the functional u(Xh) at a small instant of time h.
The proof for w(x) uses a similar procedure, and finally
the case v(x) follows as a special case of w(x) by setting
g(x) ≡ 1.
The differential operator given by Eq. (32) can be writ-

ten as

Lf(x) =
1

2
σ2(x)

(

2µ(x)

σ2(x)
f ′(x) + f ′′(x)

)

=
1

2m(x)

d

dx

[

1

s(x)

df(x)

dx

]

(33)

with

s(x) = exp

[

−
∫ x 2µ(ξ)

σ2(ξ)
dξ

]

(34)

(the lower integration boundary is not indicated because
it is arbitrary) and the speed density

m(x) =
1

σ2(x)s(x)
. (35)

Introducing the scale function

S(x) =

∫ x

s(η) dη (36)

and the speed function

M(x) =

∫ x

m(η) dη, (37)

Eq. (33) can be rewritten in the form

Lf(x) =
1

2

d

dM(x)

[

df(x)

dS(x)

]

. (38)

The definitions given by Eqs. (34–37) naturally induce
measures of closed intervals J = [c, d]: the scale measure

S[J ] = S[c, d] = S(d)− S(c) =

∫ d

c

s(x) dx, (39)

and the speed measure

M [J ] = M [c, d] = M(d)−M(c) =

∫ d

c

m(x) dx. (40)

These measures are fundamental for the classification of
diffusion processes. The scale measure for an infinites-
imal interval J = [x, x + dx] is written symbolically as
S[dx] = S(x + dx) − S(x) = dS(x) = s(x)dx, and the
same applies for the speed measure.
Then Eqs. (29) and (31) can be easily integrated first

with respect to the speed measure and thereafter with
respect to the scale measure. Using the notation intro-
duced above, the solutions can be expressed in compact
form as

u(x) =
S[a, x]

S[a, b]
, (41)

and herewith

w(x) = 2

{

u(x)

∫ a

x

S[η, b]g(η) dM(η)

+[1− u(x)]

∫ a

x

S[a, η]g(η) dM(η)

}

. (42)

The solution of Eq. (30) follows again from the special
case of g(x) ≡ 1 in Eq. (42).
In the following only those definitions relevant for our

classification will be mentioned, and not every proof can
be given in detail. The book by Karlin and Taylor [48] is
excellent for a deeper understanding. For the classifica-
tion of the left boundary l of a process, the procedure is
to regard u(x) and v(x) in the limit a → l. An analogous
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approach is employed for the right boundary; however
we shall only be interested in the left boundary, which in
our case is the zero level.
The first definition which is important for the under-

standing of whether a boundary can be reached is the
attractiveness. A left boundary is called attractive if
S(l, x] := lima→l S[a, x] < ∞ for some x ∈ (l, r). If
the scale measure S(l, x] is finite for some x ∈ (l, r), this
is also true for all x in this interval. Hence it follows di-
rectly from Eq. (41) that P (Tl ≤ Tb|X0 = x) > 0 for all
l < x < b < r, i.e. there is a positive probability that the
left boundary is reached before the level b in the interior
of the interval, provided that the former is finite.
The next question is whether a boundary is attain-

able in finite time. This can be measured by lima→l v(x),
which is the expectation value of the first exit time from
the interval (l, b). Provided that the boundary is attrac-
tive, and using the solution v(x) given by setting g(x) ≡ 1
in Eq. (42), it can be shown that it suffices to check
whether a certain functional called Σ(l) is finite in order
to establish the attainability of the boundary. Hence a
left boundary is said to be attainable if it is attractive
and the functional

Σ(l) :=

∫ x

l

S(l, ξ] dM(ξ) =

∫ x

l

M [η, x] dS(η) (43)

is finite, otherwise it is said to be unattainable. Similarily
one can define

N(l) :=

∫ x

l

M(l, ξ] dS(ξ) =

∫ x

l

S[η, x] dM(η). (44)

The classification of the left boundary of a process is
based on whether the functionals S(l, x], M(l, x], Σ(l),
and N(l) are finite or not. These functionals are not
independent of each other and some combinations are
impossible; for example an attainable boundary is always
attractive.
Using Feller’s terminology, four types of boundaries

can be distinguished. A process can both enter or leave
from a regular boundary. The criteria for a left boundary
to be regular are S(l, x] < ∞ and M(l, x] < ∞. In the
case of an exit boundary it is impossible to reach any inte-
rior state b if the starting point approaches l. A boundary
is an exit boundary if Σ(l) < ∞ and M(l, x] = ∞. An
entrance boundary cannot be reached from the interior
of the state space, but it is possible to consider processes
beginning there. It suffices to show that S(l, x] = ∞
while N(l) < ∞ to prove that l is an entrance bound-
ary. Finally, a natural or Feller boundary can neither be
reached in finite mean time nor be the starting point of
a process, and the corresponding criteria are Σ(l) = ∞
and N(l) = ∞.
We are now able to classify the zero level of our pro-

cess. The first step is to check the attractivity. The pa-
rameters determining our process are µ(x) = nD/x and
σ2(x) = 2D. Since the scaling function only depends on
the upper integration limit, we can choose the lower limit

in a convenient way such that

s(η) = exp

(

−
∫ η

1

n

z
dz

)

= η−n. (45)

Then the scale measure of interest is

S(0, x] = lim
a→0

∫ x

a

η−n dη

=

{

1
1−n

(

x1−n − lima→0 a
1−n

)

for n 6= 1,

log x− lima→0 log a for n = 1,
(46)

and thus the origin is attractive (S(0, x] < ∞) for n < 1,
and non-attractive (S(0, x] = ∞) for n ≥ 1.
The speed density of the process is

m(η) =
ηn

2D
, (47)

and we can evaluate the speed measure of an interval
(0, x] as

M(0, x] =
1

2D
lim
a→0

∫ x

a

ηn dη

=

{

1
2D(n+1)

(

xn+1 − lima→0 a
n+1

)

for n 6= −1,
1
2D (log x− lima→0 log a) for n = −1.

(48)

Hence we haveM(0, x] < ∞ for n > −1 andM(0, x] = ∞
for n ≤ −1. We now have established the nature of the
zero level for n < 1: if n ≤ −1 the origin is an exit bound-
ary and in the case −1 < n < 1 it is a regular boundary.
A regular boundary in the origin is the most complicated
case. Karlin and Taylor [48] describe a regular boundary
as follows:

For a regular boundary a variety of boundary
behaviour can be prescribed in a consistent
way, including the contingencies of complete
absorption or reflecting, elastic or sticky bar-
rier phenomena, and even the possibility of
the particle (path), when attaining the bound-
ary point, waiting there for an exponentially
distributed duration followed by a jump into
the interior of the state space according to a
specified probability distribution function. In
the latter event, the process only exhibits con-
tinuous sample paths over the interior of the
state space.

The last step is to compute N(0) for the classification
of the case n ≥ 1. Using Eq. (44) we get

N(0) =

∫ x

0

S[η, x] dM(η)

=

∫ x

0

(
∫ x

η

s(ξ) dξ

)

m(η) dη

=
1

2D

∫ x

0

(
∫ x

η

ξ−n dξ

)

ηn dη. (49)
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It is easy to show that this double integral is always finite,
and thus the origin is an entrance boundary for n ≥ 1.
Summarizing, the nature of the boundary at zero has

the following behaviour: exit if n ∈ (−∞,−1], regular if
n ∈ (−1, 1), and entrance if n ∈ [1,∞).

IV. FIRST-PASSAGE AND FIRST-EXIT TIMES

A. Heuristic approach to first-passage times

In a somewhat heuristic approach the first-passage (or
first-exit) time PDF to leave an interval (l, r) can be writ-

ten as f(T ) = −Ġ(T ) [50], where

G(T ) =

∫ b

a

p(x, T ) dx (50)

is the probability that the particle is at time T in (a, b)
when it has started at zero time at x0 and we have calcu-
lated the PDF p(x, t) imposing absorbing boundary con-
ditions on those boundaries where the particle can leave
the interval. Writing the Fokker-Planck, or forward Kol-
mogorov, equation in the form ∂tp + ∂xj = 0 we have
readily

Ġ(T ) = −j(x, T )
∣

∣

∣

b

a
. (51)

If the upper boundary is a natural boundary at ∞,
j(∞, T ) = 0, and we are interested in hits at the origin
we have f(T ) = −j(0, T ). For our problem the probabil-
ity current density at the origin has been calculated in
Sec. III A. From Eqs. (20) and (23) one obtains

f(T ) =
1

Γ(ν)

(

x2
0

4D

)ν

T−(ν+1) exp

(

− x2
0

4DT

)

. (52)

For long times this is a power law f(T ) ∝ T−(3−n)/2 [13].
The result was obtained solving the Fokker-Planck

equation (10) on the semi-infinite interval (0,∞) with
an absorbing boundary condition at x = 0 and the initial
condition at x = x0, and it is restricted to n < 1, i.e.
ν > 0. The spectrum of this boundary value problem is
continuous.
However, if we are interested in the first time to leave

a finite interval, we have to solve a boundary value prob-
lem with, for example, absorbing boundary conditions at
both ends of the interval which typically has a discrete
spectrum. We find it preferable to adopt a more formal
approach, based on the backward Kolmogorov equation.
The boundary value problem can then be transformed to
a canonical Sturm-Liouville problem and systematically
solved.

B. The backward Kolmogorov equation

In this section we use a special Fokker-Planck tech-
nique proposed by Kearney and Majumdar [51] to ob-
tain a differential equation for the first-passage time PDF

in Laplace space. Their method is very powerful, be-
cause the boundary conditions can be easily established
in Laplace space and the functional V [Xt] can be chosen
such that different relevant quantities can be computed.
Therefore we present the application of this method to
our problem in some detail.
Considering a stochastic process starting at X0 = x

governed by the stochastic differential equation (1), we
are interested in the PDF f(Tb, x) of the first-passage
time Tb with respect to a certain level b, i.e. the time
when the process has reached the level b for the first
time. First of all we define an arbitrary functional V [Xt]
by

T =

∫ Tb

0

V [Xt] dt. (53)

T can have several meanings; in the special case V [Xt] ≡
1 it is simply the first-passage time Tb. The strategy is to
find a differential equation in Laplace space for f(T, x).
The Laplace transform of f(T, x) with respect to T is
given by

f̃(s, x) = LT [f(T, x)](s)

=

∫ ∞

0

f(T, x)e−sT dT = 〈e−sT 〉T , (54)

where s ∈ C. Splitting the interval [0, Tb] into a small
interval [0,∆t] and an interval (∆t, Tb], we can expand
the integral over the small interval to first order in ∆t:

∫ ∆t

0

V [Xt] dt = V [x]∆t + o(∆t). (55)

Thus Eq. (53) becomes

T = V [x]∆t +

∫ Tb

∆t

V [Xt] dt =: T1 + T2. (56)

Inserting Eq. (56) into Eq. (54) gives

f̃(s, x) = 〈e−sT 〉T = 〈e−sT1e−sT2〉T

=

∫ ∞

0

f(T, x)e−sT1e−sT2 dT. (57)

If we split the interval [0, Tb] as described above, we must
take into account that we also split our trajectory in two,
where the starting point of the second part, y := X∆t =
x + ∆x, is random itself. Therefore the PDF takes the
form

f(T, x) =

∫ b

0

f(T1, x)f(T2, y) dy

=

∫ b−x

−x

f(T1, x)f(T2, x+∆x) d(∆x). (58)

Inserting this into Eq. (57) and taking into account that
T1 is constant, and hence dT = dT2, we obtain

f̃(s, x) = e−sV [x]∆t〈f̃(s, x+∆x)〉∆x, (59)
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where the average is done over all realizations of ∆x.
With Taylor expansions around x of e−sV [x]∆t to the first
order and of f̃(s, x + ∆x) to the second order, Eq. (59)
becomes

f̃(s, x) = (1− sV [x]∆t)

×
[

f̃(s, x) +
∂f̃(s, x)

∂x
〈∆x〉+ 1

2

∂2f̃(s, x)

∂x2
〈∆x2〉

]

. (60)

In a first order approach

∆x =
nD

x
∆t+

√
2D∆Wt, (61)

where ∆Wt = Wt+∆t −Wt, and thus, using Eq. (2),

〈∆x〉 = nD

x
∆t. (62)

Then the mean value of 〈∆x2〉 is, making again use of
the zero mean property of the Wiener process, as well as
of its autocorrelation function given in Eq. (3),

〈∆x2〉 = 2D∆t+ o(∆t). (63)

Finally, putting V [Xt] ≡ 1, we get the desired backward
Kolmogorov equation for the first passage time PDF in
Laplace space:

∂2f̃(s, x)

∂x2
+

n

x

∂f̃(s, x)

∂x
− s

D
f̃(s, x) = 0. (64)

C. Formulation of the boundary value problem

We now proceed to the formulation of the boundary
value problems corresponding to the solutions of the first-
passage time PDFs, distinguishing between the three
classes of boundaries the origin can belong to, as dis-
cussed in Sec. III. On the right side we impose an ab-
sorbing boundary at b: the first-passage time vanishes
for x → b−, i.e., f(T, x → b−) = δ(T ). Inserting this into
Eq. (54) gives

lim
x→b−

f̃(s, x) = 1. (65)

The simplest case is if the zero level is an entrance
boundary, i.e. n ≥ 1. Starting from an inititial value
X0 = x > 0, the zero level can never be reached, which
corresponds to a reflecting wall at the origin. Applying
standard arguments for reflecting boundaries [50], the
corresponding boundary condition is

lim
x→0+

∂f̃(s, x)

∂x
= 0. (66)

For n ≤ −1 the origin is an exit boundary. This means
that it is impossible to reach any interior point of the
state space if the initial point approaches the origin. This

means that we have an absorbing boundary correspond-
ing to

lim
x→0+

f̃(s, x) = 1, (67)

and the first-passage time with respect to x = b will di-
verge. Instead of the first-passage time the analysis of the
previous section resulting in the backward Kolmogorov
equation (64) together with the boundary conditions (65)
and (67) gives the first-exit time from the interval (0, b).
In the case of a regular boundary, which happens for

−1 < n < 1, the behaviour is the most complicated.
The process can both reach and leave the boundary zero,
which means that also zero crossings are possible and the
support of the process is the whole real axis. The first-
exit time from (0, b) is again given by the same boundary
condition problem as in the case of the exit boundary.
For the sake of simplicity we rename f̃(s, x) =: y(x).

Restricting the process to the positive half axis, our
boundary value problem for the three kinds of bound-
ary in the origin reads

y′′(x) +
n

x
y′(x) − s

D
y(x) = 0, (68)

Ay(0) +By(a) = c, (69)

where

y(x) =

(

y(x)
y′(x)

)

, B =

(

0 0
1 0

)

. (70)

An absorbing boundary at zero corresponds to

A =

(

1 0
0 0

)

, c =

(

1
1

)

, (71)

whereas a reflecting boundary at zero corresponds to

A =

(

0 1
0 0

)

, c =

(

0
1

)

. (72)

Multiplying Eq. (68) with the integrating factor
exp

(∫

n
xdx

)

leads to

− (xny′)′ = − s

D
xny. (73)

This is the canonical Sturm-Liouville form [52]

− (py′)′ + qy = λwy, (74)

with p(x) = xn, the weighting function w(x) = xn,
q(x) ≡ 0, and the spectral parameter λ = −s/D.
We now observe that u := y − 1 transforms the ho-

mogeneous problem (68) with inhomogeneous boundary
conditions (69) into an inhomogeneous problem with ho-
mogeneous boundary conditions

−(pu′)′ = λwu + λw, (75)

Au(0) +Bu(a) = 0, (76)
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where u(x) = (u(x), u′(x))
T
, and the two possible

choices of A and c correspond to the Dirichlet problem
and the Dirichlet-Neumann problem, respectively. This
is easier to solve, since it determines a self-adjoint oper-
ator L defined by

Lu =
1

w
[−(pu′)′] (77)

in the weighted Hilbert space H = L2(J,w), where we
have defined the open interval J = (0, b). This operator
is not to be confused with the Laplace transformation
operator LT in Eq. (54), which can be recognized from
the index indicating the transformed variable.
This can be seen as follows. Let u, v ∈ H ; then the

inner product is given by 〈u, v〉 =
∫ b

0
ūvw dx; taking into

account that u and v satisfy the homogeneous boundary
conditions (76), we get after integrating twice by parts

〈u,Lv〉 = −
∫ b

0

ū(pv′)′ dx

=
[

p(vū′ − ūv′)
]b

0
−
∫ b

0

(pū′)′v dx

= 〈Lu, v〉. (78)

Using the definition from Eq. (77) the boundary value
problem given by Eqs. (68–69) can be simplified to

(L − λ1)u = λ, (79)

Au(0) +Bu(b) = 0. (80)

D. Formal solution of the boundary value problem

We now exploit the property that the homogeneous
boundary value problem with homogeneous boundary
conditions

(L − α1)u = 0, (81)

Au(0) +Bu(b) = 0, (82)

has nontrivial solutions uk with eigenvalues αk, k ∈ N,

Luk = αkuk. (83)

Because L is self-adjoint, the eigenvalues αk are real and
the eigenfunctions uk form an orthonormal basis of H .
Furthermore αk > 0 holds, since αk = 〈uk,Luk〉. Hence
the solution u of the inhomogeneous problem given by
Eqs. (79) and (80) can be expressed through an expansion
in this basis,

u =

∞
∑

k=1

ckuk, (84)

with ck = 〈uk, u〉. Inserting u = 1 gives the normal-
ization,

∑∞
k=1〈uk, 1〉uk = 1. The coefficients ck can be

derived from Eq. (79):

〈uk,Lu〉 − 〈uk, λu〉 = 〈uk, λ〉. (85)

Again, making use of the definition of a self-adjoint oper-
ator, we can pull L into the first component of the inner
product. Employing Eq. (83) we get

ck =
〈uk, λ〉
αk − λ

. (86)

The solution of the inhomogeneous problem reads

u =

∞
∑

k=1

〈uk, λ〉
αk − λ

uk. (87)

Because the eigenfunctions uk do not depend on λ =
−s/D and the Laplace transformation is a linear opera-
tion we obtain the inverse Laplace transform of y = 1+u
as

y(T, x) = L−1
s [y(s, x)](T )

= L−1
s [1] +

∞
∑

k=1

〈uk, 1〉uk L−1
s

[

λ

αk − λ

]

(88)

= δ(T )+

∞
∑

k=1

〈uk, 1〉uk[αkDe−αkDT −δ(T )].

Since the uk are normalized the two delta functions can-
cel out. Returning to our original notation, we write the
final result for the first-passage time (or first-exit time
when appropriate) PDF as

f(T, x) =
∞
∑

k=1

〈uk, 1〉ukαkDe−αkDT . (89)

Of course, this PDF is normalized to 1: knowing that
αk > 0 we have

∫ ∞

0

f(T, x) dT =

∞
∑

k=1

〈uk, 1〉ukαkD

∫ ∞

0

e−αkDT dT

=

∞
∑

k=1

〈uk, 1〉uk = 1. (90)

We are now able to solve the specific boundary value
problems for the three different kinds of boundaries at
zero.

E. Comparison of theory and simulation

1. Simulation method

To simulate the processXt that fulfills Eq. (1), we have
used the Euler-Maruyama method [53–56], which in this
case with an additive noise is identical to the higher-
order Milstein method [54–56]. A generic autonomous
stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt (91)
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can be integrated between two successive times tn and
tn+1, giving

Xn+1 = Xn +

∫ tn+1

tn

µ(Xt) dt+

∫ tn+1

tn

σ(Xt) dWt, (92)

where Xn is short for Xtn . The approximation of the
integrands to their value in tn,

µ(Xt) ≈ µ(Xn),

σ(Xt) ≈ σ(Xn), (93)

yields the Euler method for the Itō case, called Euler-
Maruyama [53],

Xn+1 = Xn + µ(Xn)∆t+ σ(Xn)∆Wn, (94)

where ∆t = tn+1 − tn and ∆Wn = Wn+1 − Wn ∼
N(0,∆t) ∼

√
∆tN(0, 1), i.e. ∆Wn it is a normal random

variable with PDF

p(w) =
1√
2π∆t

exp

(

− w2

2∆t

)

. (95)

The Euler-Maruyama method has strong order of con-
vergence 1/2. The Milstein method raises this to 1
adding to the right-hand side of Eq. (94) the correc-
tion 1

2σ(Xn)σ
′(Xn)[(∆Wn)

2 − ∆t], where σ′(Xn) =
dσ(x)/dx|x=Xn

. However, for an additive noise this
derivative vanishes and so here the correction is zero.
Schemes with order higher than 1 contain further terms
some of which are nonzero also for additive noise, though
many cancel out with respect to the general case, called
multiplicative [44], where σ depends on Xt.
The approximation of the noise term as

σ(Xt) ≈
σ(Xn) + σ(Xn+1)

2
(96)

or as

σ(Xt) ≈ σ

(

Xn +Xn+1

2

)

(97)

yields the corresponding method for the Stratonovich
case; if σ is continuous, both Eqs. (96) and (97) lead
to the same limit for ∆t → 0. This results in an implicit
method, where to compute Xn+1 it is required to esti-
mate it before; the predictor-corrector approach where
Xn+1 in Eq. (96) or (97) is approximated by Eq. (94)
for the Itō case is known by the name of Euler-Heun or
Heun [54, 55]. As already observed at the beginning of
Sec. III A with respect to the Fokker-Planck equation,
both the Itō and the Stratonovich convention lead to the
same result when the noise is additive as here. Inter-
estingly the Milstein scheme represents both the order 1
strong Itō-Taylor approximation and the order 1 strong
Stratonovich-Taylor approximation, i.e. even in the mul-
tiplicative case it coincides for both kinds of stochastic
integral.

In other words, the choice of Xt within the discretiza-
tion interval [Xn, Xn+1] affects the outcome of the inte-
gration only as far as the dependence of the noise term
σ on Xt is concerned, because the covariation of Xt and
of the Wiener process Wt driving the stochastic integral
is not zero, [Xt,Wt] 6= 0 [57] (unfortunately closed in-
tervals and covariations share the same notation). The
choice of Xt ∈ [Xn, Xn+1] has no influence on the in-
tegration of the drift term µ with respect to t, and the
choice of t ∈ [tn, tn+1] does not matter for either µ or σ
if they depend on t, as [t, t] = 0 and [t,Wt] = 0; in the
three latter cases the same limit results for ∆t → 0.

Eq. (94) can be implemented straightforwardly in code.
However, measuring the first-passage time with respect
to a certain level needs a further refinement, since there is
a finite hitting probability during each discretized time
interval ∆t, and thus the first-passage time is overesti-
mated. An analytic expression for the probability that
the process hits the level b during a discretization interval
∆t was found by Mannella [58]. If we introduce the abre-
viations µn = µ(Xn), µb = µ(b) and µ′

b = dµ(x)/dx|x=b,
the hitting probability reads

P (hit) = exp

{

− µ′
b

2D
(

e2µ
′

b
∆t − 1

)

×
[

Xn+1 − b+ (Xn − b)eµ
′

b
∆t − µb

µ′
b

]2

+
1

4D∆t

[

Xn+1 −
(

Xn +
µn + µn+1

2
∆t

)]2
}

. (98)

We can now summarize the simulation algorithm. We
draw a Gaussian random number ∆Wn using e.g. the
Box-Muller method [59] and propagate the process Xn

by a time step ∆t. If the propagated value exceeds the
level b for the first time, i.e. Xn+1 > b, the process is
terminated. Otherwise we check for missed hits in the
discretization interval by drawing a uniformly distributed
random number U ∈ [0, 1) and accepting the hitting hy-
pothesis if P (hit) > U ; this fulfills the second terminating
condition. In both cases the first-passage time is set to
tn, i.e. the value before the propagation.

In the case of an entrance boundary a further refine-
ment of the simulation algorithm is possible. Knowing
that the zero level can never be reached from the interior
of the state space of the process, it is clear that negative
values in the simulations must result from discretization
errors. If this is the case we can reduce the time step
until the propagated value of the process is positive.

2. Entrance boundary

As we know from the classification of the origin, we
have an entrance boundary for n ≥ 1 (i.e. ν ≤ 0). The
general solution of the homogeneous differential equa-
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tion (81) is

u(x) = xν
[

AJν
(√

αx
)

+BYν

(√
αx

)]

, (99)

where Jν and Yν are the Bessel functions of the first and
second kind, respectively.
Exploiting J ′

ν(x) = Jν−1(x)− (ν/x)Jν (x) and an anal-
ogous formula for Yν [46], we obtain the derivative

u′(x) =
√
αxν

[

AJν−1

(√
αx

)

+BYν−1

(√
αx

)]

. (100)

The relevant boundary conditions for f̃(s, x) given by
Eqs. (65) and (66) transform to u(b) = 0 (absorption
at x = b) and limx→0 u

′(x) = 0 (reflection at x = 0),
respectively.
To evaluate the eigenfunctions in the case of negative

and integer ν one can use the symmetry relation [46]

J−ν(z) = (−1)νJν(z), (101)

which holds for integer ν, to see that the first term in
Eq. (100) goes to zero for x → 0, because its leading
order term behaves as x. Since the Bessel functions of
second kind diverge as x → 0, the reflecting boundary
condition can be fulfilled only if B = 0.
The absorbing boundary condition at x = b determines

the eigenvalues of the problem by the requirement that
Jν(

√
αkb) = 0. Denoting the kth zero of Jν(x) by jk

we thus have uk(x) = Ak x
νJν (jkx/b). The constant Ak

is determined by the condition 〈uk, ul〉 = δkl. Remem-
ber that the brackets denote the scalar product in the
weighted Hilbert space with weigth w = xn. Observing
the orthogonality relation [45]

∫ b

0

Jν

(

jk
x

b

)

Jν

(

jl
x

b

)

x dx =
1

2
b2J2

ν+1(jk) δkl (102)

one obtains Ak =
√
2 b−1 /Jν+1(jk), so that

uk(x) =
√
2 b−1 xνJν

(

jk
x

b

)

/Jν+1(jk). (103)

We can further compute [47]

〈uk, 1〉 =
√
2 b1−ν

jk

[

(jk/2)
ν−1

Γ(ν)Jν+1(jk)
− Jν−1(jk)

Jν+1(jk)

]

. (104)

For integer ν a recurrence relation Jν+1(x) + Jν−1(x) =
2νJν(x)/x holds, which, evaluated at the kth zero of Jν ,
delivers Jν−1(jk) = −Jν+1(jk). Hence Eq. (104) simpli-
fies to

〈uk, 1〉 =
√
2 b1−ν

jk

[

(jk/2)
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FIG. 3: First exit time PDF f(T0,b) when the origin is a regu-
lar boundary imposed to be absorbing. The parameter n, the
starting position x, and the upper boundary b are given in the
insets; the diffusion coefficient D is 1. The analytical results
(lines) are perfectly covered by the normalized histograms ob-
tained from simulation (circles).

It is also possible to impose a reflecting boundary con-
dition at the origin, and hence the eigenfunctions are
computed in the same way as in the case of an entrance
boundary, of course inserting the respective value of n.
For a few values of n in the range 0 < n < 1 we have
compared the theoretical curves resulting from the as-
sumption that the origin is reflecting with histograms
from simulations where we have allowed zero crossings;
see the squares in Fig. 4. It appears that for small times
there is a good agreement, whereas for larger times there
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are differences: the maxima of the histograms are higher
than predicted by the theory, and the tails obtained by
simulations are flatter than the theoretical tails. So we
can clearly conclude that the origin is not naturally re-
flecting for this range of n, but, as one can see in Fig. 4,
total reflection is approached when n is approaching the
limit where the origin is an entrance boundary, namely
n = 1.
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FIG. 4: First passage time PDF f(Tb) when the origin is
a regular boundary imposed to be reflecting. The parame-
ter n, the starting position x, and the upper boundary b are
given in the insets; the diffusion coefficient D is 1. The ana-
lytical results (lines) are perfectly covered by the normalized
histograms obtained from simulation (circles). Mismatching
simulation results (squares) arise if zero crossings are allowed.

To explain this phenomenon we recall what we have
mentioned earlier: one might think intuitively that zero
crossings are not possible for non-zero values of n since
the drift term explodes near the origin, and the latter
either reflects or absorbs the process for all times. How-
ever, applying Feller’s formal classification scheme one
can see that zero-crossings are actually allowed for a reg-
ular boundary at the origin, i.e. −1 < n < 1. This is
further confirmed by Fig. 5.
Knowing this and the fact that according to Karlin

and Taylor [48] a process can spend a finite time in the
vicinity of a regular boundary, we can explain the plots
qualitatively. The paths that are able to escape the in-
fluence of the origin will quickly hit the boundary b fol-
lowing the same rules as for the entrance boundary; they
are basically driven by the drift term. The deviation in
the tail of the PDFs is due to the positive amount of
time spent in the vicinity of the origin, which is called
the sticky boundary phenomenon [48], and to the mul-
tiple zero crossings. Fig. 6 shows a logarithmic plot of
the first-passage time PDFs obtained by simulations, and
one can see that the latter are heavy-tailed, i.e. they ex-
hibit a power-law decay for long times. This is in contrast
to the exponential decay obtained for the other types of
boundary.
However, there is a good agreement between theory

and simulation if we impose a reflecting origin in the
simulation too, meaning that we consider the origin as a
hard reflecting wall; see the circles in Fig. 4.
For −1 < n < 0 the first-passage times diverge if we

do not impose any artificial boundary condition, since
the drift term is always negative if Xt > 0 and positive if
Xt < 0, meaning that the process is always attracted, but
not totally absorbed, by the origin. On the other hand,
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FIG. 5: PDFs of the stochastic process X(t) at t = 3 from
simulation with different integration time step ∆t for n = 0.5
(left) and n = 1.0 (right); the starting position x0 and the
diffusion coefficient D are 1. For n = 0.5 the peak in the
negative domain increases with decreasing time step, whereas
for n = 1 it decreases. This suggests that in the latter case,
where the origin is an entrance boundary, the zero crossings
are an artifact due to the discretization of time, whereas in
the former case, where the origin is regular, the zero crossings
are genuine.
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FIG. 6: Normalized histograms of first-passage times with
respect to the level b obtained by simulation when the origin is
a regular boundary. The parameter n, the starting position x,
and the upper boundary b are given in the inset; the diffusion
coefficient D is 1. The tails can be fitted by power laws with
exponents -1.11 and -1.17, respectively.

imposing total absorption at the origin corresponds to
the computation of the PDF of the first-exit times as
shown in Fig. 3.

It is interesting to note that the case n = 0, i.e. the
Wiener process, belongs to this class. The origin is not
a singular point and the first-passage time PDF with re-
spect to a level b starting at x0 is given by Eq. (4), which
for long times is a power law with exponent −3/2.
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V. CONCLUSIONS

We have computed first-passage and first-exit time
PDFs for a stochastic process with applications in many
physical, chemical, biological, economical and financial
problems. Depending on the nature of the boundary
at the origin, we have found analytical solutions for the
first-passage and first-exit time PDFs for all cases, ex-
cept for the first-passage time PDF in the case of a reg-
ular boundary at the origin. In the latter case we have
found an analytical solution for the first-exit time PDF
and approximations for the first-passage time PDF for
short times. For this specific stochastic process regularity
of the boundary at zero can include behaviours ranging
from total absorption to total reflection, with intermedi-
ate behaviours like elastic and sticky boundaries [48]. It
is interesting that sticky boundaries may be applied e.g.
to simulate the partial adsorption of polymer molecules
to walls and for the modeling of solvent quality [61]. In
possible future projects this could be investigated more
thoroughly and regarded from the perspective of interac-
tions between molecules and boundary surfaces, which is
closely connected to another project of two of us [62, 63],
where discotic liquid crystals confined in cylindric geome-
tries [64] are studied via molecular dynamics simulations.
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Appendix

We prove the Fourier-Bessel expansion given in
Eq. (112). If a function f(z) is represented in an orthog-
onal basis of Bessel functions of the first kind Jν(jkz),
where jk is the kth zero of Jν(z), i.e. Jν(jk) = 0,

f(z) =

∞
∑

k=1

ckJν(jkz), (114)

and the orthogonality relation is given by Eq. (102), the
lth coefficient cl can be obtained from the scalar product
of f(z) with the lth basis set element Jν(jlz),

∫ 1

0

Jν(jlz)f(z)z dz =
∞
∑

k=1

ck

∫ 1

0

Jν(jkz)Jν(jlz)z dz

=

∞
∑

k=1

ck
2
J2
ν+1(jk)δlk

=
cl
2
J2
ν+1(jl), (115)

resulting in

ck =
2

J2
ν+1(jk)

∫ 1

0

Jν(jkz)f(z)z dz =
2Ik

J2
ν+1(jk)

. (116)

For f(z) = z−ν

Ik =

∫ 1

0

Jν(jkz)z
1−ν dz. (117)

In order to exploit the equation [65]

∫

Jν(z)z
1−ν dz = −Jν−1(z)z

1−ν, (118)

we substitute jkz = α and get

Ik = jν−2
k

∫ jk

0

Jν(α)α
1−ν dα

= jν−2
k

[

−Jν−1(α)α
1−ν

]jk

0

= jν−2
k

[

lim
α→0

Jν−1(α)α
1−ν − Jν−1(jk)j

1−ν
k

]

.(119)

The limit is

lim
α→0

α1−νJν−1(α) = lim
α→0

α1−ν
∞
∑

l=0

(−1)l

l! Γ(l+ ν)

(α

2

)2l+ν−1

=

∞
∑

l=0

(−1)l 21−ν−2l

l! Γ(l+ ν)
lim
α→0

α2l

=
21−ν

Γ(ν)
, (120)

yielding

Ik = jν−2
k

[

21−ν

Γ(ν)
− Jν−1(jk)

jν−1
k

]

. (121)

Thus

z−ν =

∞
∑

k=1

[

(2/jk)
2−ν

Γ(ν)
− 2Jν−1(jk)

jk

]

Jν(jkz)

J2
ν+1(jk)

. (122)

Subtracting the Fourier-Bessel expansion of zν ,
Eq. (111), the second term in square braces
cancels out because of the recurrence identity
Jν−1(jk) + Jν+1(jk) = 2νJν(jk)/jk = 0 that we
have already used to simplify Eq. (104) to Eq. (105).
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