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Abstract 

This thesis presents the investigation, development, and estimation of two 

personalised procedures for thoracic cancer therapy in Shenzhen, China and two 

projects were carried out: (1) respiratory motion management of a lung tumour, and 

(2) the application of a three-dimensional (3D) printing technique for post-

mastectomy irradiation. 

For the first project, all subjects attended sessions of free-breathing (FB) and 

personalised vocal coaching (VC) for respiratory regulation. Thoracic and 

abdominal breathing signals were extracted from the subjects’ surface area then 

estimated as kernel density estimation (KDE) for motion visualisation. The mutual 

information (MI) and correlation coefficient (CC) calculated from KDEs indicate the 

variation in the relationship between the two signals. From the 1D signal, through 

VC, the variation of cycle time and the signal value of end-of-exhale/inhale increased 

in the patient group but decreased in volunteers. Mixed results were presented on 

KDE and MI. 

Compared with FB, VC improves movement consistency between the two 

signals in eight of eleven subjects by increasing MI. The fixed instruction method 

showed no improvement for day-to-day variation, while the daily generated 

instruction enhanced the respiratory regularity in three of five volunteers. VC 

addresses the variation of the single signal, while the outcome of the two signals, 

thoracic and abdominal signals, requires further interpretation. 

The second project aims to address both the enhancement of the skin dose and 

avoidance of hotspots of critical organs, focusing on improving irradiative treatment 

for post-mastectomy patients. A 3D-printed bolus was presented as a solution for the 

air gap between the bolus and skin. The results showed no evidence of significant 

skin dose enhancement with the printed bolus. Additionally, an air gap larger than 5 

mm was evident in all patients. Until a solution for complete bolus adhesion is found, 

this customised bolus is not suitable for clinical use. 
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Impact 

The data collected in this thesis have the potential to raise awareness about 

personalised procedures in the management of thoracic tumours. In the process of 

this project, participating patients perceived differences in the effect between a 

personalised procedure and a conventional method. For the personalised procedure, 

patients followed vocal instruction, of the same waveform as free-breathing, during 

radiotherapy, requiring no extra time. Thus, the expected treatment time does not 

increase compared to the conventional method. During the process, a contactless 

camera was used as the input source. Patients thus experienced minimal discomfort 

during the recording of their breathing motion.  

Regarding the bolus study, medical physicists should construct a customised 

bolus for patients during the period between the CT simulation scan and the first 

treatment day. This period differs for individual patients. 

For medical staffs, a user-friendly workflow has been created for both vocal 

coaching and customised bolus studies. Several types of software are required for 

steps between gaining the CT images to obtaining bolus products, as well as for post-

processing (utilisation of the DICOM file converter and 3D model tool, for example). 

Special software knowledge and skills are often required for its operation, resulting 

in additional time and effort to be put in by medical physicists. In circumstances in 

which time is limiting, obliging medical physicists to apply the presented procedures 

is likely impractical. With MATLAB software packages, producing workflow can 

be as simple as drawing a region of interest on the target image. The same holds true 

for vocal coaching, where personalised vocal instruction is generated immediately 

after free-breathing is recorded. Medical staffs found learning and operating the 

software required for vocal coaching easy. 

For medical facilities, it is inexpensive to perform these advanced treatment 

procedures. For vocal coaching in the study, commercial surrogate systems were 

replaced using Microsoft Kinect, which allowed the total price for building a 

surrogate system to be reduced to around 200 USD. The system is purchasable by 

every hospital. In the bolus study, the customised bolus can be manufactured 
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overnight; thus, for hospitals, as compared to ordering the same product from a third 

company, it is time-saving and productivity-increasing. Overall, the proposed 

procedures are within a reasonable price for hospital use.  
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Preface 

Structure of this thesis 

The thesis is comprised of two personalised cancer treatment projects with 

Shenzhen People’s Hospital. In terms of the organisation of the thesis, the 

rationale, literature review, and aim of the study for each topic of the project are 

illustrated in their own chapters. 

The remainder of the thesis is organised as follows. Chapters 1 and 2 illustrate 

the research on real-time respiratory motion modelling. Chapter 1 presents an 

investigation of the respiratory motion model. A motion model was constructed 

with various surrogate input signals and regression approaches to assess the 

accuracy of internal motion estimation. The results indicated the proper region 

for the source of the surface surrogate used in Chapter 2. 

Chapter 2 introduces a new method for breathing regulation. The stability of the 

breathing patterns was evaluated by investigating different instruction 

protocols. The aim was to develop a simple approach to decrease respiratory 

variation. The results demonstrated the relationship between internal motion 

and external movement, which resulted in a simple method being developed for 

breathing regulation. 

Chapter 3 presents an integrated investigation of a 3D-printed bolus. It describes 

the detailed workflow from the verification of the printed material under 

dosimetry experiments to the feasibility of its clinical use by evaluating its 

adhesion with the surface. 

Finally, Chapter 4 presents the impacts of the overall findings of this thesis.  
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Chapter 1 

Investigation of the respiratory motion 

model: A case study 

 

Research aims and contribution 

To evaluate the potential of the respiratory motion model to improve the accuracy of 

motion estimation, the objectives of this project were as follows: 

• To re-examine the result of a previously published article on respiratory 

motion management which introduces the concept of this chapter and pertains 

to the assessment of the respiratory motion model. By making use of dynamic 

images, our research aims to investigate the correlation between the external 

surface and internal motion. 

• To compare the motion estimation outcome from different respiratory signals. 

The internal motion is difficult to monitor during treatment, resulting in 

difficult internal location pinpointing. However, it is relatively simple to 

monitor surface movement involved with different breathing signals. The 

regression model allows the bridging of the respiratory signals (input) and 

internal location (output). The comparison between the estimated results and 

actual results is an important stage in signal selection for further studies. 

Simply stated, the result reveals the best surrogate for motion modelling. 

• To evaluate the feasibility of advanced regression methods for internal 

respiratory estimation. Following the results of the aims in the aforementioned 

paragraph, motion estimation is improved by using whole-surface signals. To 

avoid over-fitting the regression model, there is a need to apply advanced 

approaches to reduce the system’s dimensions. The quantitative result within 

different regression approaches reveals the feasibility of using whole-surface 

signal and the result reveals the best regression method for motion modelling. 

I was in collaboration with the Centre for Medical Image Computing (CMIC) 
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at University College London for this study. My work was to inspect the respiratory 

model motion presented by Wilms’ article [1] and I adapted the current program 

which is developed by CMIC to meet the purpose of this study. In addition, Wilms’ 

method was compared with other related studies in this study. 

 

1.1 Background 

In thoracic and upper abdominal radiotherapy, respiratory induced organ motion is 

a source of uncertainty that affects the accuracy of radiotherapy planning and 

delivery and thus is of critical concern. Respiratory motion can lead to the 

mismatching of tumour location from planning to therapy [2] [3]. Uncertain 

respiratory motion causes both under-prescribed doses for the target region (a 

tumour) and over-irradiation of the unwanted area (surrounding healthy tissue). Post-

treatment radiation complications such as radiation pneumonitis can occur, with 29% 

of lung cancer patients developing at least grade 2 pneumonitis after receiving 

conformal radiation therapy [4]. For a more precise treatment, a number of motion 

compensation techniques are applied as a technical solution to minimise the negative 

impact of respiratory motion [5]. 

Current respiratory motion-compensated techniques exhibit several 

disadvantages. For example, breath-hold is not suitable for patients with 

dysfunctional breathing and the risk of pneumothorax increases when implementing 

fiducial markers. In addition, current image modalities do not possess the ability to 

monitor tumour motion during treatment. The air in the lungs and the ribs of the chest 

cavity are the natural boundaries for transmitting ultrasound. This reason leads to 

very limited soft tissue ultrasound images from the chest. X-rays can capture the 

entire chest area, but the low contrast between the tumour and the surrounding soft 

tissues is a problem in distinguishing the respiratory movement of the tumour. 

Therefore, indirect methods to estimate internal motion are needed for respiratory 

compensation.  

A respiratory motion model is a potential candidate for such a purpose since 

internal motion can be estimated from the selected external breathing signals. The 

major advantage of using a motion model is the ability to overcome irregular 

breathing cycles. The breathing cycle is presented as the average motion within the 
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scanning session, which is unable to deal with variations in the breathing cycle itself. 

In contrast, a respiratory motion model is able to overcome this problem by 

monitoring the subtle changes in breathing signals and for this reason, motion models 

have received substantial attention. However, accurate motion estimation requires a 

clear input respiratory signal without other noise from physical movement [1], a 

proper regression approach to bridge the input surrogate and the internal motion. The 

following two chapters present the result of the motion model, a novel method to 

monitor external respiratory motion, and the technique applied to regularise the 

breathing cycle. 

 

1.2 Rationale 

This work aims to develop an advanced method to estimate internal respiratory 

motion. With better knowledge of internal motion, it is possible to more accurately 

track the tumour and deliver the exact dose as required during treatment. However, 

direct monitoring of internal motion radiotherapy is challenging. Real-time 

monitoring is less practical due to poor image contrast to separate the tumour and 

healthy tissue and low images frame rates from imaging devices. In order to improve 

treatment quality, an indirect motion estimation method is introduced. The results 

demonstrated that only small differences (estimated error:3mm <) in motion 

estimations were observed when applying 1D surrogates, which means to establish 

a linear relationship between internal tumour motion and one or more surrogate 

signals using the best fit line, that allows internal motion to be estimated from 

external respiratory signals [1]. The model includes three components: respiratory 

signals, movement data, and statistically sound regression approaches. 

Major concerns relating to motion model methods include proper external signal 

selection and regression approach selection, which play an important role in the 

estimated outcome. Currently, motion models are usually constructed using 4DCT, 

which is criticised for its demonstration of the average breathing cycle in the 

recording session. Briefly, 4DCT is incapable of illustrating the variation of each 

breathing cycle. In order to investigate the breathing variation in each cycle, instead 

of just the average breathing cycle, this work introduced dynamic MR images for 

further analysis. 
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According to Low’s research [5], two respiratory signals are sufficient to 

improve the estimated accuracy of internal motion. The study focuses on whole-

surface respiratory monitoring for multiple signals for motion estimation. The aim 

of our work is to re-examine the workflow presented in Wilms’ article [7] to evaluate 

the estimation of internal motion by using various respiratory signals and related 

regression approaches. The results of this study lead to suggestions for signal 

selection and regression options for respiratory motion models. 

1.2.1 Respiratory motion management 

• Tumour margin 

To improve the understanding of the overall influence of respiratory motion, it is 

crucial to define tumour motion. The definition of tumour volume plays a critical 

role in radiotherapy. According to the International Commission on Radiation Units 

and Measurements (ICRU), reports 50 [8] and 62 [9], tumour volume is defined as 

follows: 

1. Gross Target Volume (GTV): GTV is defined as a visualised tumour 

volume following a clinical examination, such as computed tomography 

(CT) or magnetic resonance imaging (MRI). Delineation of the GTV is a 

critical process in radiotherapy. Other target volumes are extended from 

the GTV when an unwanted blurring of the image blurs the tumour 

contour, which enlarges the GTV into surrounding healthy tissue. Along 

with obtaining improved breathing information, it is also beneficial to 

clarify the GTV. 

2. Clinical Target Volume (CTV): CTV involves a suspected microscopic 

margin around the GTV. The range of the CTV is determined using 

previous pathological studies and patient-specific conditions according 

to the oncologist’s experience. 

3. Internal Target Volume (ITV): ITV highlights a crucial spot for moving 

tumours, especially thoracic and upper abdominal tumours. The ITV is 

defined as the CTV and its physiologically internal margin. Thus, the ITV 

encompasses changes in the shape and size of the CTV during physical 
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movement caused by heartbeats, the breathing cycle, or random muscle 

contractions. This description indicates that the ITV is related to dynamic 

serial images taken over a period of time, and thus, the delineation of the 

ITV is barely viable with only conventional 3D image approaches. 

4. Planning Target Volume (PTV): PTV includes ITV and added 

mechanical uncertainty (from both the beam delivery system and setup 

error). To ensure a positive treatment outcome. PTV must not receive less 

than the prescribed dose 

 

Figure 1.1: Demonstration of tumour volume definition by ICRU 62. [b] Comparison 

of conventional and modified ITVs. In conventional 3D RT, the ITV should 

cover all the marginal of the CTV that might irradiate excess normal tissue. 

With a motion compensation technique (for example, gating [b2] or 

tracking/modelling [b3]), the ITV can be shaped with superior knowledge 

of tumour movement. 

 

• Technical solutions for respiratory motion management 

Breath-hold (BH) and deep inhale breath-hold (DIBH) are generally regarded as the 

easiest and simplest approaches to respiratory motion immobilisation [4, 11]. DIBH 

is a patient-friendly approach requiring minimal coaching with significant benefits, 

one of the important ones being that it pulls critical organs (for example, the heart or 

spinal cord) away from the hot-spot, thereby potentially reducing radiation toxicity. 

However, there has been some doubt as to whether patients are typically capable of 

holding their breath for more than 30 seconds; in particular, those who suffer from 

pulmonary dysfunction. For this reason, DIBH appears to be inadequate in a number 

of clinical situations (for example, tomotherapy and arch therapy). Furthermore, 

intra-fraction variations of 1.4–2.5 mm will certainly involve a larger volume of 

normal tissue to accommodate a realistic PTV [4]. Therefore, when BH and DIBH 

are used, intra-fraction variation is involved. 
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For a superior dose distribution, direct or indirect knowledge of the tumour 

location in each breathing cycle becomes critical; thus, ideally, tumour tracking will 

be the best method of motion compensation. The idea of tumour tracking is that if a 

tumour shifts, then the motion can be accurately detected and followed, providing 

migratory information with medical images. However, limited apparatuses exist for 

tumour tracking. A fluoroscope is a popular choice, according to TG76 [5,12-21], 

demonstrating a group of studies have been presented. But the poor tissue-tumour 

contrast when using a fluoroscope makes this approach unfeasible. As an alternative, 

radiopaque fiducial implants can be embedded near or inside a tumour, but the 

difficulty with such implants is twofold. First, physicians are reluctant to implant 

fiducial markers for the purpose of radiographic or fluoroscopic tumour localisation 

because of the risk of complications during and after biopsy, including infectious 

complications and pneumothorax. As shown in various studies, needle induced 

pneumothorax ranges between 8% and 38% [22]. The second issue with fiducial 

implants is the uncertainty associated with their placement in the lungs. Residual 

migrations of fiducial markers have been reported [23] and these fiducial implants 

became unreliable when they were dislocated from the target locations where they 

were originally situated. Therefore, some non-invasive strategies have been 

developed to deal with the estimation of respiratory motion, as well as to safeguard 

patients from potential risks and complications. 

As a consequence, indirect tumour-localising methods currently rely on 

breathing signals as surrogates for internal motion, interplay the position of the 

internal tumour motion with breathing signals. Indirect localisation methods require 

the attachment of devices, known as surrogates, to monitor the respiration-induced 

physiological change. It is assumed that a perfect relationship exists between the 

external and internal motions. Respiratory gating leads to higher robustness and 

reliability in each breathing cycle through the imaging of data from a selected 

window, according to breathing surrogates. Theoretically, gated treatment 

verification could increase both setup and residual migration reduction, resulting in 

an approximate PTV and CTV [24]. Furthermore, it is compatible with most patients 

after regularised breathing cycle training, and many types of surrogate systems exist 

for different breathing information. These include spirometer [22,25] for lung 
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volume, and electromagnetic tracking systems[26], optical tracking systems [27], 

and respiratory belts [28] for the displacement of the chest or abdomen, which have 

been investigated for certain applications. However, gated treatment has the 

predictable consequence of increasing treatment time, so the optimisation of both 

time and accuracy is required. The respiratory motion model is presented as a 

possible solution [29]. 

In this study, we addressed the following question: If multiple surrogates can be 

generated from the skin surface, do they estimate tumour location more effectively 

with a high-dimensional system? Verification of the degree of freedom is a crucial 

step in the motion model. The second question we addressed was the following: Can 

we modify the current signal to improve the overall system? Some results 

demonstrated the importance of a signal’s gradient, which may have a positive 

influence on the estimated accuracy. This could potentially provide us with another 

method for enhancing the model’s computational efficiency. 

Compared with multivariate regression approaches, we attempted to minimise 

the portion of signal components when the estimated errors were still accepted, 

which shows that the rest of the signal can be ignored. In this chapter, we present an 

investigation of a single case study by following the concept of Wilms, which his 

concepts is to compare the feasibility of the motion model using various regression 

approaches. 

The major difficulties of respiratory motion estimation arise from intra-cycle 

variation, also referred to as hysteresis, specifically, the path of respiration-induced 

motion may change from inhalation to exhalation. Most current surrogate devices 

(e.g., the spirometer or thoracic-abdominal belt) can only generate 1D signals. 

However, if a 1D surrogate has a perfect relationship with the internal motion, the 

motion model can still provide an accurate estimation [30,31]. 

 

• Internal-external relationship 

Koch [32] demonstrated that skin markers have the strongest correlation with 

internal landmarks and are direction-dependent. The volunteers and patients in the 

study had surface markers placed on their skin, which provided an improved 

technique in which the internal landmarks in the thoracic cavity and skin movement 
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were monitored simultaneously, overcoming the limited scanning area for 4DCT. In 

general, SI motion correlated more with lower markers near the abdomen 

(correlation coefficient [CC] = 0.89), whereas AP motion correlated more with 

markers on the chest (CC = 0.72). However, the overall correlation of internal 

landmarks with skin fiducials was not always strong. The study concluded that 

effective tracking of respiration might rely on a combination of multiple sources of 

signals or other physiological parameters. Therefore, limitation to single-channel 

surrogates may preclude proper motion estimation. A similar outcome was reported 

by Fayad [33], where some internal landmarks were independent of skin motion. 

That is, a single signal was not sufficient to depict the entire internal path. However, 

Koch selected specific markers on the skin, and full skin information available was 

not taken into account. Furthermore, Koch was able to demonstrate the relationship 

between multiple markers with internal targets and highlight the skin sources to 

describe internal motion. Notably, the number of dimensions of a signal determines 

the degrees of freedom in the corresponding model. Following the conclusion of 

Koch, a 1D signal is not suitable for complete modelling of internal motion.  

To extend the signal dimensions, derivative signals generated from raw signals 

have been investigated to study motion models, and time deviation or gradients of 

spirometers have been integrated for estimation. Low et al. [5] were highly original 

in their approaches. Tidal volume and airflow were used as surrogate signals, and 

the path of landmarks could be described by the linear function of tidal volume and 

airflow. A good agreement existed between the motion model and 4DCT image 

(average discrepancy = 0.75 mm). The model was also robust over a period of weeks. 

This research demonstrated that consideration of the gradient of the surrogate was 

key when extending the number of surrogates. Nevertheless, the use of spirometers 

may not be universally applied to all patients as it is limited by patient condition. 

Because skin surrogates can generate multi-dimensional signals suitable for 

informing the finer manipulations required for respiratory motion modelling, signals 

from different locations are occasionally highly correlated with one another, which 

may result in a motion model suffering from over-fitting [34]. Over-fitting is a 

phenomenon where the number of predictors grows to be too large and sample data 

are likely to fit the model perfectly, but will nevertheless fail to predict new outcomes 

well. 
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 Hence, a situation arises in which the complexity of the overall system should 

be simplified to avoid unwanted over-fitting events. Wilms demonstrated different 

correspondence approaches for a motion model with multiple skin inputs. Using the 

database of 4DCT and 4DMR, the virtual surrogate signals can be generated to 

simulate real respiratory behaviour. In the report, a spirometer, a thoracic-abdominal 

belt, and range image (skin surface) were used. The report concluded that using a 

reduced-dimension approach instead of the ordinary least square (OLS), although 

not necessary in all cases, may help to reduce over-fitting in the case of very high-

dimensional signals, by lessening the complexity when reducing the dimension. 

However, some cases in the report used the 4DCT or 4DMR where images from 

4DCT are already processed by averaging every breathing cycle and analysing inter-

cycle variance is difficult and a similar situation which exists for 4DMR may 

increase errors when tracking landmarks. 

Our study utilised 2D+t MR series images with an improved spatial resolution 

to track internal landmarks. Although LR motion cannot be tracked, it is negligible 

in most cases, and there is, therefore, sufficient resolution for inter-cycle analysis. 

Wilms’ work inspired the principle idea, that is through reducing dimensions, 

thereby simplifying the complexity, the problem of over-fitting can be solved. The 

major aim of this chapter is to evaluate Wilms’ article, which provides an extensive 

discussion of the evaluation of various types of common breathing signals and 

different regression approaches for internal motion estimation. The study offers a 

comprehensive framework for examining the feasibility of each scenario, using both 

4DCT and 4DMR as image sources. Using the images from both 4DCT and 4DMR, 

the data set covered intra- and inter-cycles and a detailed framework was presented 

for correspondence-modelling based on multivariate regression. The major outcome 

of this study was the generation of simulated multiple surrogate signals (spirometry, 

abdominal belt, and diaphragm movement) from 4D images.  

Furthermore, the signal gradients were calculated for other input breathing 

signals. The results demonstrated that no significant differences in motion 

estimations were observed when applying 1D surrogates. The results highlighted that 

the application of 2D breathing signals, including the signals with their gradients, 

may be necessary for an accurate motion model since the accuracy of internal motion 

estimation was improved as the number of surrogate channels increased. Finally, no 
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significant differences were observed between motion models calculated using 

corresponding methods.  

Overall, the selection of breathing signal played a more crucial role than 

regression approaches for internal motion estimation. Although Wilms extensively 

investigated motion models and obtained conclusive results, the image source was 

actually an issue, particularly because of intra-cycle variation. The 4DCT images, 

sorted by the breathing phase, illustrated the average breathing cycle during 

recording. However, subtle changes in a single cycle were lost in the process and 

could no longer be observed. This may have led to estimation uncertainty due to  

 

Figure 1.2: Workflow of motion model evaluation. 

 

slight variations. For 4DMR images, although intra-cycle variation could be 

accounted for, temporal resolution was 0.5s per frame while the spatial resolution 

was merely 3.91 x 10 mm. Such poor resolution obscured the fine movement of 

internal landmarks, which may have decreased the effectiveness of the regression 

approach. 

In the present study, 2D+t MR with high spatial and temporal solution in the 

selected slice was used for a large FOV and landmark points within the body required 
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to define this research clearly. The left/right (LR) motion was assumed to be 

negligible for the assessment of the motion model as there was minimal LR motion 

in most patients. However, future work will investigate the feasibility of extending 

capture from 2D to 3D to register all internal motion during breathing. The aim of 

the present study is to evaluate different surrogate input and regression approaches 

for motion estimation. Hence, we present a case study of dynamic MR with finer 

scanning parameters. 

1.3 Materials and Methods 

1.3.1 Image data 

First, we recorded a dynamic MR series of a free-breathing volunteer. To maintain a 

high spatial and temporal resolution in our work, 2D sagittal slices with a pixel size 

of 0.94 x 0.94 mm and a rate of four frames per second for 300 frames were used. 

The resulting image has a resolution much higher than those used in Wilms’ work 

(pixel size of 3.91 x 10 mm and 2 frames per second rate in AP/SI ). The coverage 

of dynamic imaging ranged over nearly the full body trunk (from the upper lung to 

the middle pelvis structure). Figure 1.3 [a] shows the first frame of the series. 

 

1.3.2 Generating virtual surrogates 

Because the skin measurements were derived from MR images, our method was 

similar to Wilms’ work where the additional surrogate signals were required to be 

synchronised with the source images [30, 35]. There is a misleading time for two 

data results in incorrect external-internal relationships, but the motion model with 

single-source data is able to overcome this problem. Moreover, the wide coverage of 

MR images is capable of covering the entire surface; that is, virtual surrogates, 

referring to the indirect respiratory movement monitoring by series clinical images,  

can be generated either from the thoracic belt or Real-time Position Management 

(RPM) in the abdomen for the investigation of the feasibility of each surrogate for 

the motion model. The virtual surrogates can be directly interpreted into the current 

surrogate system. 

In this study, the skin surface was automatically detected using Otsu’s method 

[36] on the images, in which clustering-based image thresholding was performed 



 36 

automatically. Otsu methods can compute a single intensity threshold that separates 

pixels into two groups with the lowest variation within each group. The series images 

were then re-sorted into the new axes: AP axis, and acquisition time (Fig. 1.3 [b1]). 

There was a clear respiration-induced waveform in the re-binned image for the 

subsequent external change, and later, two major clusters can be observed on the 

intensity histogram (Fig. 1.3 [c]). The skin, which contains an amount of fat tissue, 

could be separated from other organs by using the Otsu’s method as fat tissue 

generates a high-intensity signal, allowing separation by automatic binary 

segmentation. The dynamics MR image shows greater intensity from the fat, whereas 

the skin surface contributes to the creation of a weaker signal. Poor signals make it 

difficult to capture movement. Therefore, a signal from the skin could not be detected 

in this section 

 

Figure 1.3: Example of Otsu’s method for signal generation. [a] Demonstrates the 

selected slice as the virtual surrogate. [b1] and [b2] are the selected slices 

aligned by time. [b2] shows the result of Otsu segmentation. [c] illustrates 

the intensity histogram of [b1]. 

 

Figure 1.3 [a] shows the selected slice, which after being manipulated by AP and 
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time dimensions is shown in [b1]; figure 1.3 [c] shows a histogram of non-zero 

intensity for the demonstration image [b1], in which the threshold computed by the 

Otsu’s method is shown as a red line. The image intensity distribution can be 

separated into two groups: high intensity (fat) and low intensity (other tissue).  

Figure 1.3 [b2] shows the result of high-intensity mask processing, where after 

masking, the image was converted to binary. Detecting the first nonzero voxel form 

anterior boundary became the displacement of the skin surface (see the brown arrow 

in Fig. 1.3 [b2]). After we divided the full skin into five equal segments, we reduced 

the noise from the MRI by averaging the signal to generate five virtual surrogate 

signals. The gradient of each signal was also calculated, giving a total of ten 

surrogate signals. OLS-1 is a single surrogate signal from the abdominal segment 

(Pseudo-RPM is to mirror the respiratory surrogate of RPM system) while  

 

Figure 1.4: Signal from abdominal segment and its gradient. [a] shows the skin 

detection of the first frame. The OLS-1 [b1] signal was from the yellow box 

in [a] and the OLS-5 [b2] signal was the average displacement from the 

yellow box and all the red boxes. 

 

OLS-1G is the signal from the abdominal segment plus its gradient. Because of the 

limitations in time and spatial resolution inherent in MR, the virtual signal for the 

signal row appeared to be discrete. To simulate the surrogate signals as more realistic 
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events, each signal was averaged from five segments for them to be smooth and 

continuous. OLS-5 represents the averaged signals from all 5 segments  (full skin 

monitoring), while OSL-5G represents and all signals and their gradients. 

 

1.3.3 Image registration 

The result of the image registration shows the vector field, which illustrates the entire 

respiratory motion. Compared with landmark tracking, which focuses on selected 

points, the image registration method is straightforward, comparing the difference 

between the target image and reference image, for analysis using image processing. 

In terms of regression, computation of the vector field is less computed than 

advancing pixel-by-pixel when estimating internal motion, where the internal motion 

was computed from the frames using B-spline-based deformable image registration 

[37], which is an intensity-based deformable image registration method that has 

recently become a powerful tool in image processing. The package used for 

registration, NIFTYREG, was developed by the Translational Imaging Group with 

the Centre for Medical Image Computing at University College London, United 

Kingdom [38]. 

Intensity-based registration estimates the deformation from all image voxels. 

Not only does every voxel contribute information about the deformation, but it also 

accelerates computing in the transfer process. The basic procedure of deformable 

image registration consists of three parts: similarity measurement, transformation, 

and optimisation. The goal of registration is to minimise the cost function between 

the two images and regulate transformation. 

 

 F = (1−α)S(If ,T(Im))+αR(T(Im)) (1.1) 

 

The general form of image-based registration is shown in Eq. 1.1, where If is the 

fixed image (target image or reference image), which is the goal of transformation; 

Im serves to move the image (floating image); F refers to the cost function for 

registration, which seeks for minima during the process; T donates to the 

transformation of the image; S is the similarity metric between the fixed image and 
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the transformed moving image; R represents a smoothing term to remove the 

unwanted deformed field from Im; and α is the weighting parameter defining the 

trade-off between the similarity measure and regularisation of the transformation.  

For this study, the core registration session was conducted by free-form 

deformation (FFD) based on a B-spline. A basic framework of the registration 

process is initiated with the transformation of moving the image. After mapping 

deforms the moving image to the coordinate space of the fixed image, the outcome 

of the cost function can be calculated. The current cost function shows the fitness of 

the mapping. The optimiser sets new transformation parameters according to this 

measure, and the iteration loop is repeated until convergence. 

The purpose of applying image registration is to create the vector for internal 

movement. In this case, the registered result brings the vector field, which incited 

the regional movement of human tissue during respiration. It is one of three-part to 

build motion model.  Then, regression aspects bridge external signal (virtual 

surrogate) and internal motion (vector field after registration) to complete the entire 

motion model. 

1.3.4 Multivariate regression aspects 

The multiple input surrogate signals may lead to the over-fitting of the motion model. 

Furthermore, different surrogates may contain similar information and are, therefore, 

redundant. The regression approaches were described in Wilms’ article. Decreasing 

the dimensions of the multiple surrogate signals allows for the simplification of the 

complexity of the overall model, by removing similar respiratory signals from the 

input matrix, as well as highlighting the critical components in external and/or 

internal motion [1].  

 

1.3.5 Assessment of respiratory motion models 

1. Ordinary least squares 

OLS, or so-called linear least squares, is an approach for estimating the 

unknown parameters in a linear regression model. From here on, X is the 

predictor of the surrogate signal matrix; Y represents the response; and the B-

splined fields are represented by Y ∈ R2m and X ∈ Rn·sur , where m denotes the 
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number of control points of an image. 

 

X = [S1,S2,...,Sn]        (1.2) 

Y = [V1(t),V2(t),...,Vn(t)]       (1.3) 

In the common context of OLS, the least-square solution for 

Y = XB+ε           (1.4) 

2. Principal component regression 

In principle, OLS can be applied usefully with numerous input/output 

variable. In some scenarios involving highly complex models, however, over-

fitting may occur. There may be only a few underlying or latent factors that 

account for most of the variation in the response, and PCR is an efficient 

method to remove noises from the input function in multivariate regression. In 

principal component analysis (PCA), high-dimensional data are simplified by 

translocating coordinates to approach variance and covariance maxima and 

minima, respectively, which requires uncorrelated raw data to avoid the 

problem of high redundancy. The function of the PCR is to regress the output 

function by including only selected principal components. Principal 

component regression is a standard linear regression model that uses 

dimensionality reduction, with little loss of information, based on PCA 

performed on the surrogate measurements first. 

3. Partial least squares 

When comparing PLS with PCR, PLS is found to be similar to PCR with 

the difference that the response is not considered. Principal component 

regression addresses only the uncorrelated signals in the observed (input 

signal/surrogate signals in the research) part and does not involve further 

processes to determine the expected outcome. Dimensionality reduction is not 

guaranteed to be successful. While for PLS, the core process involves 

consideration of both the surrogate data and the internal vector field with latent 

variables. The general idea of PLS is to try to extract these latent factors, 
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account for manifest variations as accurately as possible while simultaneously 

model the responses accurately. For this reason, the acronym PLS has also 

been taken to mean projection to a latent structure. 

The scores of observation and prediction were chosen so that the 

relationship between successive pairs of scores was as strong as possible. In 

principle, this is similar to a robust form of redundancy analysis, seeking 

directions in the factor space that are associated with high variations in 

responses, but biasing them towards directions that are accurately predicted. 

Because no gold standard exists for motion estimation, the estimated error 

becomes the proper criterion; this is the difference between the actual location 

and estimated motion by the surrogate. The core task is to focus on the various 

surrogate signal(s), and different correspondence approaches for motion 

estimation. This study proceeded along two independent paths: surrogate 

generation and internal motion monitoring. The method of signal production 

is described in subsection 1.3.2.  

There were four surrogate signals in this study: OLS-1 (abdominal 

movement), OLS-1G (abdominal movement with its signal gradient), OLS-5 

(average of all movements from the surface), and OLS-5G (average of all 

movements from the surface with its signal gradient). Internal motion makes 

use of the vector field from image registration. In this assumption, if the series 

images perfectly align with the reference images, the vector field from the B-

splined registration can be considered the internal motion. The first 100 frames 

serve for the train frame to establish the motion model, and the other 200 

frames serve for evaluation when comparing estimation outcomes from the 

models. There are three correspondence approaches in the complete task, 

namely OLS for all four surrogates and PCR and PLS for OLS-5G. 
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Figure 1.5: The demonstration of PCR and PLS methods.  

(1) For PCR, X is decomposed into score (T), load (P) and residual (E) through the 

PCA model. The matrix T contains the original data in the rotated coordinate 

system (the variance displayed in each dimension is the largest). Then, an OLS 

model is established between the matrix T and Y variables. 

(2) In the case of PLS. Both X and Y are broken down into their scores and loads. 

PLS does not find the eigenvalues and eigenvectors of the X variable, like PCA, 

but finds the maximum covariance between T and U (score matrix).  

 

The evaluation of the motion model used five manually selected 

landmarks which are clear in full image series. The mismatch errors between 

the test frame and estimation outcome are criteria to judge the reliably of each 
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approach. Another criterion is the target compensation time. This parameter 

represents the duration of estimation for which the error is less than a setup 

goal, measured to within 1 mm. In this study, the portion of test frames in 

which the estimated errors were lower than the setup goal was defined as the 

target compensation time. A longer compensation time meant more stable 

approaches for motion estimation. 

 

 

Figure 1.6: Five target landmarks for evaluating registration and motion compensation 

results. 

 

1.4 Result: Assessment of respiratory motion 

estimation 

1.4.1 Virtual breathing signals 

The selection of surrogate signals is based on their quality. If a signal contains a large 

amount of noise, that signal is not suitable for use in building the motion model. At 

first glance, all the signals seem to reflect periodic changes induced by respiratory 

movement. Hence, the Otsu mask approach appears to be successful in deriving skin 

surface displacement as surrogate signals. 

In this case, Seg. 5 (abdominal movement), a pseudo-RPM, demonstrated great 

potential and is commonly used as the surrogate source as it is within a significant 

displacement of all other sources, to get a  less noisy signal, whilst being poorly 

correlated with Seg.1 to Seg.4  (CC = 0.38 ±0.24, <0.6). On the other hand, Seg. 1 
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(thoracic movement) showed high correlation (CC = 0.74 ±0.32, >0.6), indicating 

that there is a phase mismatch between them. Breathing pattern mismatching, which 

is the phase difference between thorax and abdomen, agrees with the assumption that 

people normally breathe using two major methods: thoracic breathing and abdominal 

breathing. In analysing the surrogate signals (displacement motion for all 5 seg) 

using PCA, the summation of the first two principal components described nearly 

99% (76.8% and 22.2% for first and second components, respectively) of the 

movement variance in all virtual surrogate signals. The first component was 

correlated with Seg. 5 (CC = 0.98), and the second component was correlated with 

Seg. 1 (CC = 0.91). These two principal components represented the vast majority 

of surrogate data. Therefore, it can be concluded that the two principal waveforms 

form the entire surface motion. The other three signals are produced by mixtures of 

these two components. Based on the PCA test, the volunteer presented in Fig. 1.6 

showed normal abdominal breathing. 

The frequency analysis of the first 15 and last 15 seconds of the respiratory 

rhythm change during MR scanning is presented in Fig 1.7. The major finding 

revealed that the first 15 seconds of signals (blue) were more irregular and faster, 

showing wide and short peaks with mixed frequencies while the last 15 seconds 

(red), showed sharp peaks with a single frequency component (0.44 Hz). The 

changing breathing cycle may accommodate various regression coefficients for the 

correspondence model and provides us with a guide for large test cases. In addition, 

this finding that indicates an anxious patient led us to assume that a relaxed breathing 

pattern was more regular, which is evaluated in Chapter 2. 

For this frequency analysis, the dominant frequency was 0.44 Hz (i.e., 26.5 

cycles/minute for all monitoring time, despite the normal rate is around 12 to 18 

cycles/minute [11]). Possible reasons for the fast breathing rate are the volunteer 

being anxious (as opposed to claustrophobic) or MR coils compressing the 

movement of the chest wall, thereby limiting the volume of the thoracic cavity. In 

this latter case, the volunteer would be required to raise their breathing cycle to take 

insufficient air. Given that this breathing rate was relatively fast and shallow, slight 

internal movements of this case were retained for later motion evaluation. 
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Figure 1.7: Components represent the portion of the original surrogate signals for 5 

region. 

 

Figure 1.8: Five virtual respiratory signals from five equal-length skin regions from 

superior to inferior of a volunteer, with a duration of 75 s (i.e., a total of 300 

frames). All signals are normalised, with zero as the minimised value. 

Among them, Seg. 5 (signal of abdominal movement) is considered a 

pseudo-RPM and requires further analysis. Clear baseline shifting is 

observed in Seg. 1 (signal of thoracic movement) Such shifting means that 

the relationship between external movement and internal motion may 

change, resulting in uncertainty of the motion model if only these signals 

are used.  

 

0

20

40

60

80

100

1 2 3 4 5

integrated eigen components 



 46 

 

Figure 1.9: Frequency analysis of Seg. 5. The blue and red spectrum represent the 

frequency of the first 15 seconds and the last 15 seconds signals. The 

respiratory rhythm shifted from irregular to more regular, showing a 

sharp peak of major frequency for the red spectrum. 

 

The phase of Seg. 5 was ahead of the phase of the other signals, implying that 

SI motion was faster than AP motion for each cycle. Phase shifts were assessed 

between all five virtual skin signals, using manually determined end-points for 

exhalation. With 95% confidence intervals for all phase differences from all virtual 

surrogates, there were significant phase shifts between Seg. 5 and Seg. 1, 2, and 3 (p 

< 0.01, T-test). Seg. 5 was further ahead of the end-of-exhale point than the thoracic 

region (mean = 0.17 s) in a statistically significant manner (p < 0.01, T-test). When 

comparing mean displacements from the first 10% (7.5 s) of the session with the last 

10%, all sections except for Seg. 5 (which decreased by 0.3 cm) increased by 

between 0.21 and 0.83 cm. The increased mean displacement illustrated thoracic 

cavity enlargement through relaxation. Providing that the correlation of the surrogate 

internal field is constant, the initial session may not have provided a proper surrogate 

signal recording time in this case. However, This result provides us with a useful 

parameter that can be used to set up a phantom for physical testing. For example, the 

cycle time of chest movement (15 cycles/min) and the displacement of internal 

markers (6mm in SI movement). These parameters can help establish a simulated 

chest model for quantitative analysis in further research. The programmatic phantom 

is able to move as setting up.  By understanding the parameters of internal and 

external motion, we can eliminate the noise of uncertain signals and focus on the 

evaluation of the regression model. 

 



 47 

1.4.2 Lung landmark tracking 

The internal motion of selected landmarks is tracked by template tracking across 

total dynamic frames. The standard starting point is the location of frame 6, a 

reference image for the next session. Frame 6 corresponds to the end-of-exhale point, 

which is seen as a relatively reproducible location in each cycle. 

Initially, we supposed that landmark 1 (L1) displayed the longest mean 

trajectory because of its location near the diaphragm. However, the volunteer in 

question had a rapid respiratory rate, and thus the migration of the diaphragm was 

not as expected, compared with normal free-breathing people with normal 

respiratory rate. In contrast, landmark 5 (L5), located in the posterior middle lung, 

showed the largest mean and maximum displacement of all landmarks (max. 2D 

displacement for 5.13 mm). In Fig. 1.8, the end-of-exhale point of the surrogate does 

not agree with L1 and landmark 2 (L2). The end-of-exhale points of L1 and L2 occur 

0.25 seconds after the surrogate signal. x.  This result shows the latency between 

external movement and the internal landmark motion.  

 

 

 

 

 

 

 

 

 

Table 1.1: The mean 2D Euclidean, SI, and AP distance for each of the target 

landmarks (in mm) and the regression coefficient for the evaluation of 

hysteresis. 

 

 

 L1 L2 L3 L4 L5 

2D 2.21± 

3.12 

2.23± 

2.45 

2.51± 

3.58 

2.77± 

1.78 

3.45± 

4.32 

SI 1.90± 

1.45 

1.82± 

1.25 

1.93± 

1.87 

1.93± 

1.55 

2.67± 

2.51 

AP 
0.76± 

1.02 

0.83± 

0.98 

1.22± 

1.10 

1.74± 

0.43 

2.07± 

1.73 

R2 0.43 0.22 0.05 0.07 0.68 
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Figure 1.10 demonstrates the hysteresis of the target landmarks. Without 

hysteresis, the trajectory would have been a straight line. Hence, the level of 

hysteresis in each landmark was evaluated from the R2 value of simple linear 

regression. The R2 results in Table 1.1 show that all landmarks travel with different 

levels of hysteresis. The results also agree with the idea that the distance of the 

landmarks to the diaphragm has an influence on hysteresis behaviour. The 

contraction of the muscles of respiration during inhalation flattens the diaphragm, 

drawing it downwards, thus altering the distance to landmarks, which in turn 

increases the complexity of the internal trajectory (owing to other forces behind 

respiration increasing). The longer distance from the diaphragm to landmark, the less 

consistent between AP/SI landmark movement can be observed. Even if all R2 values 

for L1, L2, and L5 within the lower thoracic cavity are not high, there tends to be 

less intra-cycle variation in landmark 3 (L3) and landmark 4 (L4).  

Interestingly, L5 travels in a roughly linear path, hinting at the potential 

correlation between the two directions (SI/AP), and the correlation would not be 

counter to the construction of a motion-compensated model. The paths of the other 

landmarks show typical hysteresis with an elliptical trajectory. Among them, L4 

displays the strongest hysteresis, demonstrating that the phase between the two 

directions (SI/AP), has a 50% delay. The different pathways of inhaling and exhaling 

for these landmarks may challenge the respiratory model due to phase incoherence 

in the AP axis. Hysteresis effects typically lead to a phase difference. Phase shift 

analysis along the SI axis was accessed between Seg. 5 and the landmark trajectories, 

which, as was the case for the surrogate, were manually selected at the end-of-exhale 

point.  

Moreover, there was no statistical significance in phase shift with Seg. 5 in four 

of five landmark trajectories (with the exception of L2, p < 0.01, remaining 

trajectories had a mean of p = 0.36, T-test), whereas the mean phase shift for Seg. 5 

was 0.03 and 0.01 s for L4 and L5, respectively. It was assumed that the motion of 

these landmarks largely corresponded with abdominal surface movement. However, 

the phase difference varied highly in the AP axis. All of the landmarks in SI 

movement demonstrated strong correlation with Seg. 5. The mean directional phase 

shifts of all landmarks in the SI axis were phase-matched with the Seg. 5 signal 

within a smaller shifting time than the rate frame error (0.25 seconds). By contrast, 
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the AP phase of Seg. 5 was faster (AP movement occurs earlier than SI movement) 

and was coupled with a large phase delay from target landmarks. Moreover, this 

result showed strong linear regression in phase shift in a given situation (R2 = 0.39 

and 0.96 with and without L5, respectively, with ordinary least squares method). 

This result was not conclusive, and thus investigation of how the phase shifts in 

relation to the two directions (SI/AP) is worthy of further analysis. 

 

 

Figure 1.10: An example of the continuous trajectory of five target landmarks within a 

volunteer. The trajectories were a wide variety of shapes, consisting of both 

wider (L2, L3, and L4) and narrower (L1 and L5) elliptical trajectories. 

The trajectories matched with the R2 in Table 1.1. The lesser R2 value led to 

a circle-like trajectory, indicating more hysteresis. 

 

Moreover, there was no statistical significance in phase shift with Seg. 5 in four 

of five landmark trajectories (with the exception of L2, p < 0.01, remaining 

trajectories had a mean of p = 0.36, T-test), whereas the mean phase shift for Seg. 5 

was 0.03 and 0.01 s for L4 and L5, respectively. It was assumed that the motion of 

these landmarks largely corresponded with abdominal surface movement. However, 

the phase difference varied highly in the AP axis. All of the landmarks in SI 

movement demonstrated strong correlation with Seg. 5. The mean directional phase 

shifts of all landmarks in the SI axis were phase-matched with the Seg. 5 signal 

within a smaller shifting time than the rate frame error (0.25 seconds). By contrast, 

the AP phase of Seg. 5 was faster (AP movement occurs earlier than SI movement) 

and was coupled with a large phase delay from target landmarks. Moreover, this 

result showed strong linear regression in phase shift in a given situation (R2 = 0.39 
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and 0.96 with and without L5, respectively, with ordinary least squares method). 

This result was not conclusive, and thus investigation of how the phase shifts in 

relation to the two directions (SI/AP) is worthy of further analysis. 

We observed a strong relationship between abdominal movement (Seg. 5) and 

internal SI motion. Linear regression analysis revealed a strong relationship between 

the Seg. 5 (Pseudo-RPM) signal and landmark motion in the SI axis, although their 

displacement variation was not large (<2mm). 

When all the data were combined for analysis, the first-order linear regression 

(R2) value was 0.90, and the SI motion in the thorax, which corresponded highly with 

the abdominal muscle, was driven by the diaphragm. This outcome provided a 

positive confirmation that monitoring the abdomen is an appropriate approach for 

determining the source of a surrogate. It is encouraging that the greatest directional 

movement, in the SI axis, can be well-correlated. In the AP axis, the R2 value for L4, 

0.07, approximated to zero while the R2 value for L5, 0.68, showed a moderate 

regression. The low mean R2 value of 0.18 can be considered a non-relationship for 

these combined data. 

The gradient of surrogates revealed a considerable potential for use as additional 

signals. By following Low’s idea (of making use of a signal with its time deviation), 

the gradient of (Seg. 5) pseudo-RPM lifts the mean R2 value to 0.55 with landmark   

R2 value L1 L2 L3 L4 L5 

Seg5 (SI/AP) 0.88/0.24 0.91/0.12 0.91/0.07 0.90/0.00 0.89/0.49 

Seg1 (AP) 0.53 0.38 0.3 0.06 0.1 

Seg5-G (AP) 0.33 0.59 0.71 0.81 0.33 

 

Table 1.2: R2 value of the linear regression of surrogate and landmark trajectories. 

 

AP movement (Table 1.2). L3 and L4 showed a weak linear relationship and 

provided a large improvement by Seg5-G (>0.6). L5 goes a specific spot of all, which 

only decreases the R2 value with the pseudo-RPMs gradient (between Seg5 AP to 

Seg-G). From another viewpoint, hysteresis is an inevitable challenge in motion 
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modelling because of the different forces that occur during the breathing cycle. 

Hence, the use of only a single surrogate input is insufficient. Linear regression 

analysis was also performed to assess the relationship between Seg. 1 and thoracic 

movement, which may become a surrogate with the use of a thoracic belt. The R2 

value was 0.41 for the AP trajectory. A weak correlation, average R2  as 0.27, was 

found between Seg. 1 and all AP axes 

Using landmarks in frame 6 as location benchmarks, the mean 2D Euclidean, 

superior-inferior, and anterior-posterior distances of all target landmarks were 2.64, 

2.05, and 1.32 mm, respectively, and the maximum displacement of all the landmarks 

was 6.82, 6.22, and 4.47 mm, respectively. Table 1 lists the basic displacement 

information of target structures. Furthermore, the value from the linear regression of 

the AP/SI path was used to judge the hysteresis of target landmarks. If no hysteresis 

exists, the R2 value should approach 1. 

1.4.3 Image registration 

Image registration presents the outcome of internal motion. The quality of the 

registration has a critical influence on motion modelling. In this study, the image 

registration used frame 6 as a reference image, which was the end-of-exhale point, 

which is considered less location variance than other breathing phases. The image 

registration conducted for the first 100 frames provided the training frames to obtain 

the internal motion vector fields. We focused on the internal motion of the lungs and 

evaluated the results according to the target registration error.  

Because of susceptibility effects, the boundary between solid tissue and air 

introduced noise to the images. Fortunately, L1 exhibited an excellent correlation 

with Seg. 5, as well as less hysteresis, which might overcome the leading error from 

the registration; 16% of the registered error was beyond the pixel size for L1, whereas 

there were no errors larger than this for the other landmarks. There was a significant 

registration error in various direction s for L1 (p < 0.01,T-test). For group analysis, 

the test results were significant (p < 0.01,ANOVA) for both the 2D and 1D error of 

L1 and other landmarks, whereas we found an undistinguished difference (p = 0.02, 

0.02, and 0.03 for 2D, SI, and AP, respectively,T-test) when we excluded L1. A 

possible reason for the larger registration error is the location of L1 extremely 

proximal to the diaphragm. 
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The registered error was phase-dependent. In Fig. 1.11, the red dots indicate 

when the 2D error became larger than the pixel size (0.94 mm). There seemed to be 

a tendency for most of the significant errors to occur at the beginning of exhalation, 

coupled with 15 of 16 large error frames of L1. However, this was only observed for 

the first 15 seconds and may have resulted from an irregular breathing cycle during 

the initial period of acquisition. 

 

 

Figure 1.11: Images of the registration results. The transformed frames 10 and 100 are 

shown. Three horizontal lines are used to visualise the accuracy of the 

registration. Slight mismatches for the diaphragm (blue line) can be seen. 

L2 (yellow line) and L4 (green line) aligned with the correct expectation. 

The modelling results were not homogeneous. 
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Figure 1.12: Examples of registration images for L1. Images were re-binned in a single dimension (SI or AP axis) across time. A clear semi-periodic 

change of L1 was noticed in both SI [a1] and AP [b1]. If registration was conducted perfectly, the re-binned images formed a straight line 

without a visible shift. However, the small ripple in the middle of the SI registration image [a2] implies that the target landmarks were 

misaligned. Such an effect was also visible in corresponding frames of the AP image [b2]. 
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Figure 1.13: The error is greater than the pixel size with the surrogate signal   

      (> 0.935 mm). 

1.4.4 Motion model estimation 

There were four surrogate signals (OLS-1, OLS-1G, OLS-5, and OLS-5G) with three 

correspondence approaches (OLS, PCR, and PLS) for the evaluation of the motion 

model. The last 200 frames were for the assessment of the five selected landmarks. 

Table 1.3 presents the error of landmarks between test frames and estimation of 

models. To evaluate the mean errors between different surrogates, regression 

approaches, paired t-tests, and one-way analysis of variance (ANOVA) with a strict 

significance level of 1% (p < 0.01) were conducted by pairing or grouping landmark-

variated mean values. 

Model None OLS-1 OLS-1G OLS-5 OLS-5G PCR PLS 

2D 2.86±

6.71 

1.19± 

3.54 

1.04± 

2.62 

0.99±  

2.93 

0.77± 

2.72 

0.74± 

2.64 

0.74± 

2.64 

SI 2.15±

5.48 

0.41± 

1.69 

0.33± 

1.4 

0.6± 

2.7 

0.52± 

2.18 

0.5± 

2.09 

0.51± 

2.09 

AP 1.53±

4.47 

1.03± 

3.53 

0.94± 

2.62 

0.68± 

2.88 

0.48± 

1.79 

0.46± 

1.72 

0.46± 

1.72 

t% 4.9±4 45.5±6 43.7±15 52.4±11 69.3±22 70.7±24 70.7±24 

 

Table 1.3: The mean Euclidean 2D error, SI error, and AP error for each of the 

different models evaluated (in mm) and target compensated period (%). 
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Briefly, the input surrogates with gradients and advanced regression approaches 

resulted in improved motion estimation. The results of all approaches reported in 

Table 1.3 show the potential of using a gradient as a surrogate, a high-dimensional 

surrogate signal, and varying multivariate regression methods. Most illustrative of 

this fact is the comparison of OLS-1 (as the common used surrogate signal, like RPM 

system) with other surrogate signals. The following section discusses different 

variables. First, the simplest approach, OLS-1, effectively ameliorates motion 

estimation in a 2D and SI axis with 58% and 80% improvements with non-fit data, 

respectively, but shows a limited improvement in the AP axis of 32%. A 2D 

maximum error produced a similar result to that of AP, suggesting that the overall 

2D error was reduced along with AP because of the minimal SI error observed. The 

majority of the estimated errors were associated with a correlation between the 

landmark’s path and the surrogate signals. For this section, an extreme R2 value 

(0.9/0.18) for the pseudo-RPM in the SI and AP axes associated with the OLS-1 

result was noted. Therefore, it can be supposed that if the target tumour displays 

motion in a single axis motion (craniocaudal displacement), one channel is sufficient 

as an abdominal belt surrogate for dynamic correspondence. 

The selection of the input surrogate plays a crucial role in overall modelling. 

Because there was more surface information, the overall error was marginally 

reduced. The OLS-5 generally compensated more than the signal region source, 

OLS1, by fitting a setup goal in the AP axis. The 2D and AP errors required more 

effective management because their errors (of 68% and 56%, respectively) increased 

in tandem with non-fitting data. The accurate estimation contributed to a relatively 

strong regression, which may have come from Seg. 1 along the AP axis. Seg. 1 shows 

a better correlation in Table 1.2. For displacement signals alone, full skin monitoring 

is a superior type of management than using a single source. 

In addition, over-fitting seemed to enhance the SI error. Because the total 

number of surrogates was not large (n=10), over-correlation did not greatly impact 

the overall error. This could also explain the growing maximum SI error in OLS-5, 

preventing the complete application of the pure displacement surrogate signal. This 

effect was assumed to become more evident as the full skin source was separated 

into more signal sources; that is, increasing total system dimensions. In an opposite 

scenario, however, a thorax-dominant breathing volunteer may require a change of 
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viewpoint and region of interest when the experiment was being designed. Moreover, 

if the respiratory phase does not mismatch between the thorax and abdomen, the 

degrading degree of freedom would not only result in a poor AP assessment but also 

a stronger over-fitting effect. 

The gradient is capable of compensating for AP motion. By pairing non-

gradient signals with gradient-involved groups, it was evident that the original 

signals (with gradients) accounted for all 2D estimations by effecting significant 

compensation in the AP axis. All directional errors decreased; among them, OLS-

1G was the simplest input surrogate (possessing two degrees of freedom) that was 

able to cope with AP movement. This also shows that a non-imaged surrogate using 

spirometry or an abdominal belt with a 1D signal can still address the hysteresis 

problem by adding a time deviation factor to the surrogate signals. This conclusion 

was similar to the one arrived at in Low’s report. In an OLS-5 group, OLS-5G 

improved the 2D error by 22.2% with OLS-5. The AP error in OLS-5G was a crucial 

finding in this context, minimising the maximum error of all OLS to under 2 mm. 

Signals with gradients were able to enhance overall motion estimation efficiently. 

For reduced-dimension approaches with full surrogate signal inputs, limited error 

reduction improvements were seen. The results of both PCR and PLS showed no 

statistical significance (p < 0.01,T-test). Furthermore, there was no significant 

difference in either mean errors or maximal errors with the three correspondence 

approaches used in this work. 

As shown in Fig. 1.12, the input portions of the components were extremely similar. 

However, it seems that low-dimensional systems allowed for the same accuracy as 

those of high dimension. In this test, the systemic dimensions can be reduced to four 

in PCR and PLS and maintain a strong overall correlation, whereas to achieve a 

similar outcome in OLS, ten systemic dimensions are required. Another standard for 

evaluating different approaches is the target-compensated period, which illuminates 

an agreement with error estimation. The non-fit landmarks accounted for 

approximately 5% of the testing time. Because of the significant baseline shift, as 

shown in Fig. 1.13, the baseline of the respiratory trajectory had drifted, leading to a 

high error. For the 1D surrogate signal, adjustment of the compensated trajectory 

reached 46% of the time to reach the target, meaning 46% motion in image series 

can be compensated; a time that represents more than half of the breathing cycle is 
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impractical for advanced treatment. The best result (for PCR/PLS) would be 

approximately 70% of the time to reach the target: 55% more time than OLS-1. 

Although shifts in the baseline caused the trajectory to move from the previous 

centre, the motion model was still able to cope with the dislocation from the change 

in breathing behaviour. The target-compensated period strongly agrees with the 

estimated errors for both 2D and AP (R2 = 0.91 and 0.92, respectively). The 

hysteresis dilemma arises predominantly from the phase-pattern mismatch in the AP 

axis, leading to major uncertainty in the overall compensation. When improving AP 

movement estimation, more time can result in higher precision. Despite the fact that 

most landmarks could be targeted, the increasing standard deviation suggested that 

at least one of the landmarks did not fit with the others. The model became 

increasingly inconsistent with reduced-dimension regression approaches. 

In the SI axis, the phase was prior to that of the general signal, and thus OLS-

1G was in advance of the phase of the pseudo-RPM in order to fit its movement 

pattern. For AP motion, OLS-5 raised its baseline to meet the real conditions. Both 

of these characteristics vanished for the other surrogate combinations. 

 

Figure 1.14: Components represent the portion of the original surrogate signals for 5 

region inputs with their gradients. When comparing PCR with PLS as an 

explanation of multiple dimensions, it was noted that there was a small 

difference between the approaches. The difference for the first four 

components was less than 1.5%, which is nearly the same value for the 

first component. 
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Figure 1.15: Errors of the three regression approaches. The error of OLS-1 is clearly 

displayed, as well as motion induced-factors, namely poor comparison 

with a striking breathing pattern. OLS-1G and PCR gave similar 

outcomes; the regular pattern was reduced as breathing influence 

decreased. With more efficient corresponding approaches, the error 

distribution became increasingly Gaussian (R2 = 0.60, 0.96, and 0.97 for 

OLS-1, OLS-1G, and PCR, respectively) in Fig. 1.13 [b], which seems to 

derive from random noise rather than being a poor correlation. When 

pairing OLS-1G and PCR, the smaller median of PCR was considered to 

produce a superior estimation. 

 

1.5 Discussion and Conclusion 

The motion model is a feasible method for respiratory motion compensation in 

thoracic and upper abdominal radiotherapy. In this chapter, we evaluated the 

workflow presented by Wilms’ article for motion estimation from a single image 

source, which relies on image registration and various multivariate regression 

approaches. Virtual surrogates were used as the input signals, and the virtual 

surrogate signals generated from the dynamic images ensure that there is no time-

shifting between any two modalities. Incorrect time-shifting leads to an uncertain 

external-internal motion relationship and an incorrect motion model while 

unforeseen system latency compounds this problem [40]. 

 

[a] [b] 
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A rapid breathing cycle in this study was observed from the breathing signals, 

implying shallow breathing of the subjects as opposed to spontaneous breathing. The 

relationship between the surrogate internal landmarks may not be typical; this 

condition has seldom been reported in previous research. Lee [41] reported that the 

correlation between internal and external motion changes when subjects’ breathing 

changes from free-breathing to biofeedback-guided breathing. In our study, the 

breathing cycle was found to change across the scanning session, as shown in the 

frequency spectrum; such a rapid breathing cycle may be explained by the MR coils 

the subject was wearing. The accuracy of motion estimation depends on the accuracy 

of the training data. 

In our study, the correlation between virtual surrogate signals and the selected 

landmarks is in agreement with previous research [32,33,41]. A very strong 

correlation between abdominal movement and internal SI motion and a relatively 

strong correlation between thoracic movement and internal AP motion were 

observed, and these findings represent strong motives for the acquisition of both 

thoracic and abdominal breathing signals. 

The signal gradients permitted a large improvement in correlation with the axis. 

This finding agrees with Low’s idea that motion compensation can be achieved with 

a 1D surrogate signal with its time deviation. In his study, input surrogates are used, 

namely volume and flow from a spirometer. Wilms presented a comparable idea to 

a 1D signal in the form of a time derivative. The reported differences in motion 

estimation are statistically significant (p<0.01,T-test) compared with estimation 

using the 1D signal alone. Without the whole-surface image, the current surrogate 

systems (RPM, belt, and spirometry) are able to compensate for internal motion. 

This study highlighted the importance of multiple input surrogate signals as the 

solution for the estimation of hysteresis. The difficulty in the correlation of hysteresis 

derived from the respiratory phase mismatch between surrogate signals and target 

landmarks. Non-single-channel surrogates can reduce estimation errors at different 

levels according to how the secondary surrogates correlate with the internal AP path 

of the landmark. This concept has been proven is that the usage of displacement and 

gradient perform a good internal estimation with the motion model [42].   
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Both signals with time deviated (gradient), and full skin-monitoring could 

compensate for AP movement as well as improve overall estimation by providing 

more corresponding information about internal motion and systematically increasing 

the field of view (FOV). However, many similar surrogate signals for 

correspondence may lead to over-fitting, which generates adverse effects such as 

increasing the maximum overall error. Proper control over the number of systemic 

dimensions is another critical issue for multiple surrogate input motion models. This  

Figure 1.16 shows an oblique ellipse with a positive rotation of the trajectory of 

the L5 angle, whereas the other four landmarks are analogous to an ellipse with 

negative rotation. The landmark on the elliptical trajectory moved anticlockwise, 

meaning that the phase in the AP axis changed faster than in the SI axis. This phase 

mismatch could cause poor compensation because the pseudo-RPM had the smallest 

phase of all in this test, as shown in Fig. 1.15. This finding illustrated the importance 

of including different types of trajectory when modelling internal motion. 

The reduced dimension approaches can effectively reduce estimation errors, 

although the nature and magnitude of the errors across different approaches were not 

evident. Nevertheless, one particular finding was that the motion of the AP motion 

was earlier and the movement of SI in L5 did not correlate well with the compressed  

dimensions. Only surrogates with a gradient of more than one dimension can address 

this type of path.  

 

 

 

Figure 1.16: Demonstration of the trajectory of L5 (in mm). The red star in Fig 1.14 [a] 

marks the location of frame 6, the reference spot for the whole test. 

[a] [b] 
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Figure 1.17: Example of the movement of L5. Violet lines are the true trajectories in 

both directions. Fig. 1.15 [a] shows that the real phase arrives earlier than 

that of the surrogate signals; hence, OLS-1 and OLS-5 cannot simulate a 

realistic breathing pattern. OLS-1G brings a gradient signal with a 

smaller phase than the displacement signal, which successfully moves a 

full cycle ahead. However, this property did not appear to be unique to 

OLS-5G and PCR/PLS. During AP estimation, a very large shift in the 

baseline was a problem. This data did not reveal sufficient useful 

information about the abdominal region to allow the full skin surrogate to 

complete the depicted movement. 

 

The major limitation of this study is it is a single case report and is therefore not 

representative of the clinical evidence of the nature of the population at large. 

Furthermore, the number of surrogates was insufficient to induce noticeable over-

fitting events, and the number of surrogates will highlight the largest difference 

between OLS and PCR/PLS, which was not clearly revealed in our work. In addition, 

the intra-variance analysis could not be performed because single images were 

acquired. 

 We assumed that the difference produced by each approach would be evident. 

Our future work will extend to both volunteers and patients as well as developing a 

subpopulation model. However, this aim would require the development of an 

advanced respiratory surrogate device. Although our results indicated that most of 

the surrogates considered here are equally suitable for motion estimation purposes, 

[a] [b] 
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patient-specific differences exist. Therefore, surrogate simulations and the proposed 

framework could be used to determine optimal patient-specific surrogates (and 

positions) during treatment planning. 

This study revealed that using the entire surface surrogate with advanced 

regression approaches is feasible for the compensation of respiratory motion, but a 

location-specific trajectory (L5) was also observed. Therefore, the breathing signal 

with gradients was used to determine the optimal surrogate source for internal motion 

compensation. 

. 
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Chapter 2 

A novel approach to evaluate the effect 

of personalised vocal instruction on the 

regularity of respiration 

 

• Publication 

Chuang, C. S., Xu, R., Li, X., Royle, G., Fan, J. Bar, E., & McClelland, J. A¨ 

novel approach to evaluate personalised vocal instruction on the regularity of 

respiration. In preparation. 

• Conference presentation 

Chuang, C. S., Xu, R., Li, X., Royle, G., & McClelland, J. (2018). OC-0525: 

An evaluation of vocal instruction for external respiratory motion using kernel 

density estimation. Radiotherapy and Oncology, 127, S277S278. 

 

Research aims and contribution 

• To develop a cheap contactless image system to monitor respiratory surface 

movement with clinical accuracy. The system has to meet the following 

requirements: the camera has to be easy to set up, and the set up involves no 

time costs for treatment rooms; the breathing waveform must be fully recorded 

without any breaks to represent the continuous breathing signals, and the total 

costs of the setting up of this new system should be much lower than currently 

available clinical products. 

• To compare the variations in breathing patterns between free-breathing and 

vocal-coached subjects. The interaction of thoracic and abdominal breathing 

signals must be easily observed, which means that the observers should be able 

to distinguish the variations of breathing patterns. The different breathing 
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patterns can be quantified for further analysis and comparison. 

• To evaluate the feasibility of adapting personalised vocal instructions for 

respiratory regularisation. By following the result of the aim in the previous 

paragraph, the vocal coaching methods should result in a higher similarity 

across daily breathing patterns. The quantitative result across different 

recording days reveals the feasibility of vocal coaching. 

I worked together with a radiation oncologist at Shenzhen People’s Hospital to 

develop an efficient method to regularise the variation in intra-breathing cycles in 

the clinical environment, spending about a full year, including five months in the 

clinical area for data recording, at the department of radiation oncology of Shenzhen 

People’s hospital and assisting in the development of an economical and accurate 

breathing motion management method. I was involved in the development of 

surrogate systems and the recruitment of volunteers from Tsinghua University. I also 

recorded the breathing sessions of both volunteers and patients and tested the 

developed surrogate system using a low-cost depth camera (Kinect). 

 

The novelty of the work 

The investigation of the influence of vocal instruction by whole-surface monitoring 

presents the first combination of vocal coaching and a contactless surrogate system 

with a biofeedback approach. It has been proven that breathing variation reduces 

with biofeedback methods, but this technique is limited by its long setup time. To 

overcome the time-consuming preparation of wearable devices in the visual 

feedback approach, this study presents a complete contactless biofeedback system. 

Specifically, there is no wearable device or marker placement during either recording 

or audio-guiding. This method allows treatment-room operation at full capacity 

while reducing the uncertainty of respiratory motion. 

 

2.1 Rationale 

This work aims to investigate an optimised method for stabilising respiratory motion 

as an irregular breathing motion has a negative influence on treatment planning 
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[2][3]. In order to improve treatment quality, respiratory regulation procedures were 

introduced during the treatment process. Among all motion management methods, 

biofeedback received particular attention due to its simplicity and 

straightforwardness. Patients were able to follow visual and vocal instruction to 

breathe during imaging and treatment sessions, with the aim of reducing the variation 

of respiratory motion from one session to another. 

A major concern with regards to biofeedback is the time consumed by the 

setting up of the monitoring system and patient training, which negatively impacts 

its feasibility in the treatment room. Another concern is that currently available 

commercial respiratory monitoring products are relatively expensive and difficult to 

install in the treatment room. There is also a lack of knowledge about external 

respiratory signals, and at present, the signal is usually acquired from a single area, 

such as the abdomen or thorax, which may not be sufficient to describe the entire 

motion of areas surrounding the tumour. 

The study introduces a rapid-setup vocal-coaching approach in a clinical 

environment. To expedite the setup time, a contactless camera, which is a 

commercial product for entertainment, was used to monitor movements from the 

entire skin surface and overcome the limitation of a single signal. By following the 

computer-generated personalised breathing waveform, patients were able to follow 

vocal instruction to guide them on how to breathe and improve respiratory regularity. 

Furthermore, since patients were guided by vocal sounds rather than virtual reality 

goggles, which was applied for visual feedback, the positioning time for each patient 

should be reduced, and the number of patients accommodated in each treatment room 

should be maximised. The results of this study may be beneficial to hospitals, as well 

as patients. 

 

2.1.1 Vocal coaching 

Respiration-driven organ motion is a critical concern in radiotherapy. Current 

technical solutions for respiratory motion compensation are 4DCT [5,12,43], 

respiratory gating [22,44], and DIBH [8,9], as reported by the American Association 

of Physicists in Medicine Task Group 76 [11]. However, most techniques rely on the 

assumption of the reproducibility of the breathing cycle. The variation of intra-
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fractional motion results in image artefacts for 4DCT [44], cone-beam CT [45], and 

PET [46]. For the day-to-day variability in motion, discrepancies in variation lead to 

a large margin of error or unwanted dose distribution, and regularising the breathing 

cycle can reduce these discrepancies. 

Venkats approached this idea by combining a personalised breathing waveform 

[47] with audiovisual biofeedback. With the RPM system, the breathing waveform 

of a specific patient was captured, and a personalised waveform was computed to 

guide the patient’s subsequent breathing by following the audiovisual biofeedback 

system. The patient viewed a path on the screen and heard ascending, and descending 

tones played, which represented inhaling and exhaling, respectively, to guide them 

on how to breathe. The results showed a root mean square displacement of 0.08 cm 

and periods 0.2 s longer than in the target waveforms, whereas, with free-breathing 

(FB), the root mean square displacement was 0.016 cm with periods 0.77 s longer 

than in the target waveforms. The paper concluded that biofeedback with 

personalised waveform reduces variation in breathing. 

More studies have concluded that the biofeedback approach is feasible. Yu [48] 

investigated the difference between the audio- and visual-only feedback. The results 

showed that there was no significant difference between the methods, implying that 

the audio-only mode has clinical potential because it is more time-efficient. Baba 

[49] made use of an electronic metronome to instruct volunteers. Their research 

applied the concept of personalised instruction of a given individual’s breathing 

cycle. The instructed cycle was derived from the mean FB cycle for each individual. 

This personalised audio coaching improved breathing cycle stability within the 

volunteer group. To apply the visual feedback method, the installation of visual 

devices such as virtual reality goggles or reflection mirrors is required, which may 

be challenging for some departments with high patient throughput. Several 

approaches can be found in the literature addressing irregular respiratory motion with 

breathing guidance, audio and/or visual feedback technique (e.g., the overview by 

Pollock [50]). However, the same limitation existed as in the aforementioned studies 

in that the RPM system only presents 1D signals.  

Feedback requires a breathing signal as the surrogate, and one of the surrogate 

signals is acquired from the surface motion of the abdomen. Commercial surface 

imaging devices are generally expensive and thus, to reduce costs, some groups have 
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investigated the use of the Kinect camera. The University of Surrey has performed a 

series of research studies on this topic and have shown that the Kinect performed 

similarly to other surrogate systems [51,52] but generated multiple signals from the 

breathing movement of the thoracic-abdominal surface. Dual Kinect systems for 

whole-surface imaging were also investigated to reduce the artefacts of PET imaging 

[53].  

The aforementioned studies only applied single signals as surrogates— 

predominantly the abdominal displacement signal. No research has been performed 

to investigate the correlation between multiple surface signals and changes in their 

relationship during breathing. 

Lee presented systemic biofeedback with personalised waveform studies 

[39,40,55]. The main breakthrough of these studies is the application of internal 

images. The same experimental framework was performed in each study where the 

breathing patterns with RPM for FB were recorded for the volunteers. The 

individual-specific guiding waves were then computed and displayed on a reflecting 

mirror, and the respiratory paths were followed. The benefit of visual feedback is 

twofold: first, the correlation between abdominal movement and 2D tumour motion 

improved by 11% with visual feedback (absolute mean correlation = 0.59), which 

was higher than the correlation obtained with FB (absolute mean correlation = 0.53). 

This finding implies that the superior model motion can be achieved with a higher 

external-internal correlation. Second, the visual feedback improved intra-fraction 

tumour motion consistency by 34% in displacement (0.2 cm and 0.13 cm in FB and 

feedback, respectively) and by 73% in periods (0.98 s and 0.3 s in FB and feedback, 

respectively) when compared with FB. Regarding interactional differences, visual 

feedback improved tumour motion consistency by 42% in displacement (0.11cm and 

0.06 cm in FB and visual feedback, respectively) and by 74% in periods (data not 

presented) when compared with FB. These outcomes reveal the effectiveness of 

using biofeedback methods for breathing stabilisation. 

Lee performed a series of studies to demonstrate the advantages of applying a 

personalised waveform to guide each individual, but the study outcomes were 

foreseen as it was well known that there is a high correlation (a CC of up to 0.9) 

between abdominal movement and SI tumour motion, as presented in previous 

research [32, 56]. The improvement of correlation in the SI axis may be redundant 



 69 

since a poor correlation still existed between the abdomen movement and the AP 

axis of internal motion when the biofeedback method was used. Therefore, the 

performance of 1D surrogates is limited even with patient-specific biofeedback.  

This chapter investigates the variation of 2D breathing signals by instructing 

volunteers to follow a vocal coaching technique and presents a novel method for 

evaluating the impact of breathing guidance by analysing two external breathing 

signals—one corresponding to the abdomen and the other to the thorax—as well as 

the relationship between the two signals. This is based on the hypothesis that the 

motion of the tumour and other internal anatomy is affected by both abdominal and 

thoracic motion. Therefore, a more consistent relationship between the signals 

implies less variability in internal motion, whereas a more variable relationship 

between the signals implies more variability in internal motion. This study assesses 

the impact of audio coaching on both volunteers and breast cancer patients who were 

treated at the Shenzhen People’s Hospital in China. 

 

2.2 Materials and Methods 

2.2.1 Respiratory monitoring system setup 

• Select surrogates 

The source of external movement relies on the selection of the surrogate system. The 

RPM system is a common option for processing this type of study, but it only delivers 

1D signals, normally from the displacement of the abdomen. Since the use of both 

thoracic and abdominal movement is more accurate for motion models as a result in 

Chapter 1, the surface scanner was our first choice. 

Due to the rapid development of optical devices over the last few decades, full 

skin monitoring has generated much interest among researchers, and this approach 

has advantages in regards to multiple signal inputs and patient cooperation. Hughes 

[27] noted that signals from the VisionRT stereo camera are strongly correlated with 

signals from a spirometer, showing that surface monitoring may become another 

potential surrogate system. In 2010, a breakthrough product, the Xbox Kinect, which 

is a low-cost infrared camera that uses stereo structure light measurement, was 

released by Microsoft. Systemic research studies that demonstrated positive 
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outcomes of using the Kinect have been conducted by the University of Surrey 

[51,57–59], constituting further evidence that the Kinect is in good agreement with 

other surrogates (e.g., the RPM).  

Moreover, the skin surface can be divided into abdominal or thoracic regions 

by Eigen images to simplify complete signals. Such information may be used to 

inform the development of motion correction and motion estimation strategies in 

diagnostic and therapeutic imaging. When evaluating the accuracy, most Kinect tests 

are on static objects, and there had been case reports showing that environmental 

lighting or texture of surfaces may have an adverse effect on Kinect readouts. 

Therefore, there is still a concern that errors may be enhanced when working in an 

exam room. To solve this problem, an additional aim of this project was to combine 

the Kinect with other modalities to transform it into an effective surrogate device. 

In this study, surface displacement was measured from the surrogate signals for 

the detection of internal motion. Surface measurement was performed using the 

Microsoft Kinect V2, which has been validated as a highly accurate depth camera 

with considerable coverage. The latest model of the Kinect is a time-of-flight camera, 

capable of measuring the distance by measuring the phase shift between emitted and 

reflected infrared light. The Kinect performed with a measurement error of 0.1 mm 

in a range of 0.8 to 1.2 m from the camera. The advantages of using the Kinect are 

its low costs, mobility, and capacity for contactless measurement. Five healthy male 

volunteers and six post-mastectomy female patients were enrolled in the study, and 

all subjects were asked to remove their clothes and place their arms under their heads 

to reduce the influence of the infrared signal reflected by the texture of their clothing. 

The patients were referred from the calibrated oncologist. This study was approved 

by the ethical committee and local government. The Kinect V2 was placed on a 

tripod approximately 100 cm obliquely above the subject’s surface. Studies have 

shown that the measurement error is minimal, less than 1 mm, at this range [58]. 

 

2.2.2 Breathing recording sessions 

Comparing FB with experiment design sessions is a critical task as the results 

reflect the feasibly of breathing control approaches. Each volunteer went through 
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Figure 2.1: Workflow of the personalised vocal coaching evaluation 

 

two types of sessions, free-breathing (FB) and vocal coaching (VC), on the same day 

for three recording days within a week. Every recording day, volunteers went 

through the two breathing sessions in a fixed order, first FB, then VC. In the FB 

session, the volunteers were told to breathe freely, as if they were at rest, for 4 

minutes, which was a sufficient duration for their breathing cycle to achieve a relaxed 

rhythm (R). This was based on the assumption that people breathe more regularly 

when they are relaxed. In the VC sessions, the volunteers received customised 

computer-assisted breathing instructions. They received one VC sessions (VC1) on 

the first day and two VC sessions (VC1 and VC2) on the second and third days. The 

vocal instructions for VC1 were generated using the average breathing cycle from 

the FB session of the first day; our study found that number of inhales and exhales 

were unequal for most of the volunteers. For VC2, the vocal instructions were 

generated using the FB signals of the same day. The purpose of the different VC 

sessions is to investigate the robustness of the breathing pattern following VC1. To 
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minimise the inconvenience of the patients’ treatment, the recording workflow for 

patients was simplified to achieve a duration of only two days. Patients only recorded 

one minute FB each day for two days and one minute VC for one day. The respiration 

recording scheme is shown in Fig. 2.2. 

 

 

Figure 2.2: Schematic of the recording workflow for volunteers and patients. The 

volunteers received 2 VC sessions on Days 2 and 3. VC1 (orange) was the 

instructions generated following the Day 1 FB. The instructions of the VC2 

series (yellow and green) was generated from the FB on the same day. 

Specifically, VC2-1 was created from the FB session from day 2. The 

simplified patients' protocol was reduced to 2 days. 

 

 

2.2.3 Signal extraction 

In contrast to other studies [11], the surrogate signals in this study could be used after 

experiments, and the recorded data were serial frames of the depth image. To reduce 

the variation in the breathing signals, the manual region of interest (ROI) selection 

was not considered. Furthermore, the primary aim was to compare both abdominal 

and thoracic signals internally between various conditions, so post-processing was 

necessary. The presented workflow in Fig 2.3 was adopted from Tahavoris’ work 

[58]. To extract the breathing signals from the Kinect images, the following 

workflow was applied. 

1. Image acquisition: Image collection was performed at 30 frames per second. Each 
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pixel in each frame contained the distance from the Kinect to the subject’s surface, 

as illustrated in Fig. 2.3[a]. This is referred to as the depth image. 

2. Background subtraction: Because of the experimental setup, the Kinect required 

daily repositioning, leading to a subtle setup mismatch. To handle this problem, 

background scans (in which no subject was present in the room) of 500 frames 

(16.7 sec) were collected before the daily experiment and averaged to form a 

background image. The background image was subtracted from the first frame of 

the subject’s depth image to create a subject mask, as illustrated in Fig. 2.3(b). 

This mask was applied to all depth images, thereby ensuring that volunteers and 

patients were the only objects in the depth image for further analysis. 

3. ROI: To measure thoracic and abdominal movement, ROIs on the subject’s 

surface were manually selected. The rectangular ROIs on the surface image were 

placed within a range from the armpits to the hips to capture both movements, as 

illustrated in Fig. 2.3 [a]. From the first principal component, PC1, the scale of 

motion on the surface could be displayed as the value of the first PC in each pixel, 

also known as the Eigen image (Fig. 2.3[c]). 

4. PCA: For the first 1800 frames (60 seconds) of FB data, each pixel inside the 

mask (Fig. 2.3[b]) was realigned into a 2D matrix (distance-time). To extract the 

highest variance of motion for each pixel, PCA was performed on the 2D matrix. 

5. Binary segmentation of PC1: Subsequently, the first Eigen image was segmented 

into two zones using Otsus’ method (binary segmentation) [27]. Otsus’ method 

performs binary segmentation by separating the histogram of the target image’s 

grayscale. This way, it is possible to separate thoracic and abdominal motion. 

From the binary segmentation, a mask was created (Fig. 2.3[d]) and applied to the 

collected depth images. 

Breathing signals: To extract the breathing curves from the processed depth 

images, several further steps were required. First, each pixel of each frame was 

subtracted from the corresponding pixel value measured in the first frame. This 

way, each pixel represented the displacement from frame 1. Second, the 

displacement per frame was averaged for thoracic and abdominal pixels 

separately. Third, the median of the displacement values (to avoid the baseline 

shifting from a cough as well as other subtle movements) was subtracted from  
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Figure 2.3: Workflow for the image segmentation. [a] A single frame of a subject’s surface depth image. The grayscale indicated the distance from the 

Kinect to the surface. The left side of the image is the head direction. The dashed box indicates the chosen ROI. [b] The mask used for 

background subtraction. [c] The first Eigen image (PC1) from the first minute (1800 frames) of the FB session, used to segment the motion 

into thoracic and abdominal signals components. [d] The result of binary segmentation of PC1. The white region (mainly abdomen) 

represents the major moving part, whereas the grey region is for minor movement (thorax)

[  ] [  ] 

[  ] [  ] 



 75 

6. the two respiratory signals for each session. The signal extraction process was 

conducted for every session. The final result (Fig. 2.3 [d]) was visually checked 

to verify the output signals generated from the target region. The optimal mask 

possessed a clear boundary at the lower rib to separate the thorax and abdomen. 

 

2.2.4 Breathing signal comparison between FB and VC 

This research introduced new quantitative methods to compare the two breathing 

signals from different sessions. 

 

2.2.4.1 Assessment of breathing regularity 

To assess how vocal instruction improves breathing regularity, we analysed the 

abdominal movement breathing curve. We chose only to assess the abdominal signal 

because of it being the major source of external movement for most people during 

movement and that it is mainly used by other motion monitoring systems. The vocal 

instructions were generated from the abdominal signal. For all breathing signals, the 

cycle time was found for each cycle, and the standard deviation (SD) of the cycle 

times was used as a measure of regularity. Furthermore, we investigated the SD of 

the displacement of the end-of-inhale and end-of-exhale positions. 

 

2.2.4.2 Evaluation of the relationship between abdominal and thoracic 

breathing curves 

Kernel density estimation (KDE) was used to visualise the relationship between the 

thoracic and abdominal signals. We followed the procedure proposed by Alnowami 

[60], which is briefly described here. First, 2D KDE was estimated from the 

abdominal and thoracic breathing curves. For any displacement x, the KDE is given 

by 

 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾[

𝑥−𝑥𝑖

ℎ
]𝑖=1 [

𝑦−𝑦𝑖

ℎ
]            (2.1) 

where x1, x2,..., xn (y1, y2,..., yn) are locations on the breathing curves for 
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abdomen/thorax, n is the sample size (7200 and 1800 for FB and VC sessions, 

respectively), K is a Gaussian kernel smoothing function, and h is the bandwidth of 

0.05 mm. The respiratory trajectory was visualised by plotting thoracic versus 

abdominal PDFs as a colour map for each session. A new method, which was 

introduced by our team to compare the variation of 2D breathing signals and was 

presented at the Estro congress in 2018. To evaluate the difference between the two 

sessions, the Correlation Coefficient (CC) between KDE maps was calculated, which 

is a great advantage for this method.  The probability density functions (PDFs) of 

the thoracic and abdominal movement were estimated from the projection of the 2D 

KDE. Comparing with linear interpolation, KDE offers better data smoothing.  

For the volunteer group, in addition to the FB, VC1 and VC2 sessions, the 

resting state respiration, R, was investigated. The R session was derived from the 

last 30 seconds of the FB session. This was based on the assumption that breathing 

progresses more regularly when the subject is relaxed. The CC was calculated for 

the FB, R, and VC1 sessions separately. For each of these sessions, the CCs between 

Day 1 and Day 2, Day 1 and Day 3, and Day 2 and Day 3 were calculated and 

averaged. For VC2, the CC between Day 2 and Day 3 was calculated. For CCs with 

a value close to 1, breathing patterns between the two sessions are similar. The 

correlation of the breathing pattern between two sessions was evaluated as the 

similarity of the corresponding KDEs. Due to the simplified patients' protocol and 

unforeseen incidents in the treatment room, only one session of VC was conducted. 

Therefore, the difference between the two sessions was not evaluated. 

 

• Mutual information 

Mutual information (MI) is a measure of the shared information between two random 

variables. Liu presented a similar concept for measuring asymmetric chest 

movement [61]. MI was calculated using the result of PDFs as follows: 
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where Px and Py are the PDFs from
 
the abdominal and thoracic movement, the 

projection from the 2D KDE. Pxy describes the joint probability distribution. In this 

study, the relationship between two breathing signals (KDE) is more consistent. The 

altered phase-shifting between two signals, the changed baseline and varied 

amplitude of breathing cycle increased the variation in two signals, indicating a 

broad KDE. Following this step, the lower MI is estimated. Therefore, the aim is to 

improve MI with VC methods. 

 

2.3 Results 

2.3.1 Single respiratory motion curve 

Figure 2.4 shows the SD of the cycle time, the signal value of the end-of-inhale, and 

the location of the end-of-exhale for different sessions to compare the vocal-

coaching effect for a single respiratory signal (abdominal movement). The volunteer 

group exhibited larger SDs in all parameters, but the effect of the VC session was 

more noticeable in the volunteers. The VC1 session decreased the SD in all 

volunteers, whereas in patients, VC did not result in a reduction in the SD of the 

breathing cycle time and location of end-of-inhale. In patients, the variation of all 

parameters for FB was relatively small (~1mm). The improvement of VC was 

limited by showing the end-of-exhale signal value in patients. This finding agreed 

with our expectation that the variation of 1D breathing signals reduced when subjects 

followed vocal coaching. The increasing variation in cycle time and end-of-exhale 

in patient groups may originate from the short recording time. Because patients’ 

daily schedules are carefully controlled, subtle changes can become significant over 

a small number of breathing cycles. 

 

2.3.2 Motion data visualisation 

By utilising the KDE to visualise the 2D motion data, variation in respiratory motion 

between sessions could be observed. The patterns of KDE can be categorised into 

three common cases by our observation in this study, as shown in Fig. 2.5. [a] salient 

feature in all cases is a clear band with a hot spot (red arrow) at the lower left part of 

the KDE. The hot spot in Fig. 2.5 (left) corresponds to the general respiratory 
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trajectory, 

 

Figure 2.4: Box plots of the SD of the breathing cycle. Location of end-of-inhale and 

location of end-of-exhale for volunteer and patient data. 

indicating that the end-of-exhale period was the longest in the entire breathing cycle 

and represented the most reproducible pathway. The end-of-inhale (green arrow) was 

also enhanced in some cases, whereas the enhancement was not as strongly 

noticeable as the end-of-exhale in those cases. The findings suggested that the end-

of-inhale value was more variable and/or that less time was spent on the end-inhale 

than end-exhale. Fig. 2.5 [b] shows a closed-loop, demonstrating that motion 

followed a different path for exhalation and inhalation, in turn indicating a higher 

complexity of respiration. In Fig. 2.5 [c], two parallel bands were observed. This 

indicated that the breathing pattern changed within a single session. This may have 

arisen from the baseline shift of the thoracic movement. The MI result met our 

assumption that the regular KDE (Fig. 2.5 [a]) was the highest in the group. The 

KDE with a relationship change (Fig. 2.5 [c]) indicated lower MI. 

 

2.3.3 Quantifying the MI of the two signals 

Tables 2.1 and 2.2 quantify the mean MI for the entire abdominal and thoracic signals 

for every session. In both the volunteer and patient studies, MI was time-dependent 

and could only be computed for signals acquired simultaneously. The values of MI 

were high in most volunteers for the FB and R sessions, indicating that the 

relationship between two breathing signals is more stable in FB.   
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However, the result of the VC sessions showed a mixed influence on MI. For four 

out of five volunteers, MI decreased from R to VC1 (exception: volunteer 3). For 

VC2, an increase in MI was observed from VC1 for all volunteers. For two out of 

the five volunteers, the highest observed MI appeared in VC2. The changing 

relationship of the two breathing signals was unclear with a minimally increasing 

MI. For all patients, an increase in MI from FB to VC (with the exception of patient 

2) was observed. For patients with low SD in cycle time, vocal coaching improved 

for maintaining consistency between thoracic and abdominal breathing signals (60% 

patients with higher MI with vocal coaching comparing with free breathing). An 

interesting finding in R showed that thoracic and abdominal movement became more 

similar to MI increased. That result may indicate either consistency in SI/AP internal 

motion or that total information from the surface reduces. The latter interpretation 

implies that there is less information available from surface signals to describe the 

complete motion model. To validate this assumption, the acquisition of internal 

images, such as those obtained by 4DCT, is necessary. 
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Volunteer 1 2 3 4 5 

FB 1.12 

±0.04 

1.05 

±0.3 

0.65 

±0.29 

1.16 

±0.13 

0.72 

±0.1 

R 1.23 

±0.08 

1.39 

±0.11 

0.94 

±0.15 

1.56 

±0.12 

1.61 

±0.06 

VC 1 0.95 

±0.22 

1.07 

±0.13 

0.67 

±0.18 

1.33 

±0.21 

0.62 

±0.2 

VC 2 1.00 

±0.15 

1.24 

±0.11 

1.62 

±0.06 

1.63 

±0.03 

0.85 

±0.03 

Table 2.1: MI of respiratory motion using abdominal and thoracic motion data from 

five volunteers. 4 

 

Patient 1 2 3 4 5 6 

FB 0.67 

±0.1 

1.4 

±0.70 

0.85 

±0.11 

0.94 

±0.14 

0.7 

±0.19 

0.62 

±0.15 

VC 1.36 

±0.05 

1.05 

±0.13 

1.11 

±0.16 

1.28 

±0.10 

1.2 

±0.11 

1.01 

±0.06 

 

Table 2.2: MI of respiratory motion using abdominal and thoracic motion data from 

six female patients. 
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Figure 2.5: Typical KDEs from a single session. Abdominal (X-axis) vs thoracic (Y-axis) displacement is visualised. The colour map illustrates the 

likelihood of each position, with red as high and blue as low likelihoods. The figures below each KDE are the corresponded breathing 

signals (blue = abdomen, orange = thorax) 

[a] 

[a] [b] [c] 
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2.3.4 Correlation of motion between two sessions 

The correlation of the breathing pattern between two sessions was evaluated as the 

similarity of the corresponding KDEs. The CC between the KDEs from FB and VC 

were calculated individually. 

Table 2.3 lists the average CC for each session of all volunteers by comparing 

every day with every other day. There was a mixed result for vocal instruction. For 

most volunteers, the CC was similar or higher in R than in FB (with the exception of 

volunteer 3). For all volunteers, the CC with VC1 was lower than that with FB. An 

increase in CC was observed from VC1 to VC2 in all volunteers. For three out of the 

five volunteers, the CC was higher in VC2 than in FB. The result indicated that there 

is a mixed influence of the vocal coaching approach. There was no clear tendency to 

interpret the overall result, potentially due to the small sample size used in this study. 

There was a need for a large group to provide a more convincing result. Also, our 

assumption was challenged in R as not all subjects improved in the consistency of 

their breathing patterns, which hinted that their breathing was relatively unstable, 

more variation when compared with that of the free-breathing session. For volunteer 

2,3 and 4, free-breathing session reached higher CC (CC=0.52) than R state ( 

CC=0.4). 

 

Volunteer 1 2 3 4 5 

FB 0.38 

±0.03 

0.71 

±0.02 

0.45 

±0.11 

0.41 

±0.08 

0.71 

±0.07 

R 0.51 

±0.1 

0.67 

±0.06 

0.14 

±0.1 

0.4 

±0.04 

0.81 

±0.02 

VC 1 0.09 

±0.07 

0.67 

±0.03 

0.15 

±0.1 

0.39 

±0.06 

0.32 

±0.04 

VC 2 0.21 

±0.13 

0.85 

±0.02 

0.52 

±0.08 

0.74 

±0.05 

0.47 

±0.03 

 

Table 2.3: Average CCs by comparing every day with every other day. 
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2.4 Discussion and Conclusion 

These initial results lend considerable weight to the use of surface surrogate 

monitoring in clinical applications. This study shows that multiple respiratory signals 

are able to be acquired with the Kinect system, which is easy to carry around and can 

be set up within five minutes. The sole problem is its latency in laptop recording, 

which may have been due to a limitation of RAM memory. Kinect is a promising, 

low-cost depth camera that could be useful in medical imaging applications, and its 

total price (less than 200 USD) meets our goal, which is to develop a relatively 

cheaper contactless image system to monitor respiratory surface movement. 

Irregular respiratory motion is a challenge in thoracic tumour radiotherapy. 

Vocal instruction is a relatively simple method to regularise breathing patterns. 

Studies have analysed respiratory motion with 1D signals, mostly in abdominal 

motion, with Real-time Position Management (RPM) [62]. George [63] investigated 

biofeedback in detail by fitting cosine functions to the breathing waveform. The 

waveform presented in the research is symmetrical, but our study found that the 

inhale time and exhale time were unequal for most subjects, indicating that the 

symmetrical model may not be suitable. 

Finally, Alnowami [64] applied the KDE to the classification of breathing 

patterns based on their phase. This study indicated that the breathing pattern could 

be either in-phase (Fig. 2.5 [a]) or out-of-phase (Fig. 2.5 [b]). However, the patterns 

between the sessions were not compared. 

There is a need to quantify the outcomes, and to evaluate the effectiveness of 

personalised vocal instructions, all subjects’ surface images were recorded during 

FB and VC, and abdominal movement was analysed. The difference between FB and 

VC patterns was noticeable. For the volunteers, VC greatly improved the variation 

in cycle time, end-of-inhale position and end-of-exhale position. This finding was in 

agreement with relevant studies [49, 65]. The end-of-exhale position appeared to be 

more stable when the instructions were generated on the same day (VC2). 

The assessment of MI is an innovative approach to breathing signals. It was 
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observed that the MI between two signals was inconsistent across breathing sessions. 

The changing value of MI indicated that the total information between the two breathing 

signals either increased or decreased in different sessions. For the volunteers, the MI 

from the R session was generally higher than that of the FB session. Furthermore, the 

MI from the VC2 session was usually greater than that from the VC1 

 

Figure 2.6: Examples of the similarity of KDE by CC. The respiratory motion in B1 

and B2 (CC = 0.83) was more regular than that in A1 and A2 (CC = 0.53). 

This result corresponded with visual observations. 

 

session (VC1 = 0.93, VC2 = 1.27). The results from the patient group were in 

agreement with those from the volunteer group. The observed MI was higher with 

VC than FB, indicating that total information decreases when vocal instructions are 

followed. 

KDE offers an easy way to visualise surface motion. However, when using 

KDE, variations between single cycles and sessions are easily noticeable. The KDE 

method provides an alternative to compare the similarity between breathing patterns 

within different respiration days or sessions. Definite improvements in the regularity 

of the breathing pattern were visible, as seen in Fig. 2.6. The CC between different 

sessions indicated similarity of breathing patterns. We observed similar or higher 

CCs with R than with FB. This indicated that relaxed and uncontrolled breathing was 

stable. Furthermore, the CC in VC2 was greater than that in VC1 (VC1=0.32, 

VC2=0.56), implying that breathing is more stable when vocal instructions generated 
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from the same day, VC2, were followed. This tendency was in agreement with the 

MI results. 

Irregularities in the KDEs, such as those observed in Fig. 2.5 [b] and Fig. 2.5 

[c], are likely to arise from the signals of thoracic motion. The thoracic signal is 

usually noisier, resulting in a lower CC because of a relatively divergent KDE. 

 

Figure 2.7: The VC affects KDE from a single patient 

 

Furthermore, the amplitude of the thoracic regions is subtle. Occasional behaviours, 

such as deep breaths, coughs, and changes in the movement baseline, blur the KDE. 

Also shown in Fig. 2.7 is a single example of the influence of vocal instructions on 

KDE. The personalised instructions generated an expected respiratory rhythm, 

causing the breathing cycle to be shorter than instructed. The volunteers claimed that 

when they got used to the vocal instruction, they changed from one phase to another 

earlier than the instructions indicated. As a result, the VC KDE could be different 

from the FB KDE. The red line in Fig. 2.7 illustrates the site of maximum density. 

For VC, the centre of the high-density region shifted closer to the mean displacement. 

There were a few limitations to this research. The most critical concern was the 

limited amount of patient data. More volunteers and patients are required, and their 

breathing signals should be recorded over multiple days to achieve conclusive 

results. In future research, images from 4DMR/Cine-CT should be considered the 

internal landmark to answer the central concept of the study. 

This study revealed that VC is a promising approach to respiratory regulation, 

although, with the current performance, it is not suitable for clinical applications with 
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a large variation in breathing regulation. More patients are necessary to obtain 

conclusive results. Moreover, a comparison between visual-feedback and VC 

methods must be performed for the verification of the influence of psychological 

expectations, wherein visual feedback; patients can observe their breathing paths by 

viewing the screen, a feat impossible in the VC method. The VC method provides 

time- and cost-efficiency, and an easily repeatable approach in both imaging and 

treatment rooms. The utilisation of KDE provides a simple way for observers in a 

clinic to monitor respiratory motion. In this study, we demonstrated the advantage of 

generating vocal instructions in a single day with a simple contactless monitoring 

method.
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Chapter 3 

Investigation of a 3D printing bolus for 

post-mastectomy patients 

 

• Publication 

Chuang, C.S., Xu, R, Li, X., Fan, J., & Royle, G. Evaluation of a 3D printed 

Customised Bolus for post-mastectomy patients. In preparation. 

 

In this chapter, the concept of personalised treatment in radiotherapy is extended into 

a parallel project for different thoracic tumours (i.e., breast cancer). This study 

investigated the application of 3D printing techniques in radiotherapy, mainly 

focusing on the use of a bolus during post-mastectomy radiotherapy. 

 

Research aims and contribution 

This research aims to investigate the feasibility of using new 3D material to make a 

bolus. The objectives of this research are as follows: 

• To evaluate the new material dosimetry by percent depth dose (PDD) 

measurement and compare it with values found in the literature. The PDD 

measurement provides the necessary parameters for bolus design. This process 

validates the photon profile in the printing material and the interplay with other 

tissues using a treatment planning system. 

• To create an optimised, user-friendly workflow from the source image to the 

final printed product. Specifically, clinicians should be able to delineate the 

target volume on the image, and the bolus should be able to be made without 

other programmatic skills. 

• To verify the surface dose enhancement with the printed bolus, and perform a 

conformity test on patients to examine the feasibility of its clinical use. The 
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customised bolus is expected to increase the surface dose to fulfil the primary 

purpose. The air gap, which is not expected to exist with the printed bolus, is 

observed by the new CT scan. 

I worked together with a radiation oncologist at Shenzhen People’s Hospital to 

improve the current bolus for post-mastectomy patients. I spent a full year at the 

department of radiation oncology in Shenzhen People’s hospital to help develop an 

economical and time-saving method of the same quality. I was involved in workflow 

development and primary project management, and I also tested the new printed 

material for dosimetric feasibility and clinical placement outcome. 

 

The novelty of the work 

This work involves the development of an overnight producing workflow for 

personalised bolus. After thorough literature research on patient-specific 3D printing, 

we noticed the lack of integrated research investigating the feasibility of 3D 

techniques in the literature. Furthermore, a comparison between various printed 

materials was impossible since every publication used different materials from the 

companies they are in collaboration with to test their products. During a discussion 

with a leading oncologist and physicist, we decided to optimize the current workflow 

for each article [65~69], discussed in a later section, to perform the production 

overnight. The printed bolus can be completed the day after CT simulation, and it 

involves a similar waiting time for patient treatment as the conventional procedure. 

The customised bolus allows better dose coverage and normal tissue protection. 

 

3.1 Rationale 

This work aims to develop an advanced method to improve dose distribution as 

radiotherapy in superficial regions is a critical issue. Due to the characteristics of a 

high-energy photon beam, receiving a sufficient treatment dose in a shallow region 

is difficult to achieve. This situation becomes more challenging when patients with 

breast cancer undergo breast removal (mastectomy), as such patients can expect to 

retain little tissue on their chest after surgery. In order to improve treatment quality, 

the novel procedure of breast radiotherapy can be introduced. Among all available 



 89 

technical solutions, the most common alternative is to place the bolus on the patient’s 

surface. This method entails the addition of an extra layer on the skin and an increase 

in surface dose. However, air gaps may exist between the bolus and the skin due to 

scars from previous surgery. Related researches conclude that the uncertainty 

regarding planned and actual dose can show a difference of up to 10% [65, 66]. 

Therefore, the primary aim is to create a perfectly adhered bolus in order to optimise 

the dose distribution under the skin. In this regard, 3D printing methods are potential 

solutions that can overcome the problem of air gaps. Owing to the rapid development 

of 3D printing techniques, the production of highly precise and customised bolus has 

become economically and clinically feasible. 

Major concerns with the 3D printing technique include the lack of knowledge 

of new material and the actual interaction between a printing bolus and human skin. 

Currently, there is no gold standard for 3D printing in clinical applications. 

Additionally, a few articles have addressed the alignment of the bolus. Therefore, 

there is no guarantee that the air gap problem can be fully solved. 

This study introduces a rapidly developed workflow to build a bolus in the 

clinical environment. To expedite the production process and lessen the required 

time, a user-friendly overnight workflow is established. Briefly, a simple dose 

measurement with films is performed to visualise the dose profile and evaluate the 

dosimetric result. The film readout is capable of evaluating the water-equivalence of 

the printing material. Furthermore, the covered bolus on a patient’s skin is followed 

up by CT to evaluate the fit between the printed bolus and the patient's contour. More 

specifically, this study pertains to the important process of quantifying the air gap 

volume and assessing the feasibility of such a highly customised product. 

 

3.1.1 The air gap problem 

Butson [67] investigated the effect of an air gap volume by having a parallel plate 

ionisation chamber held in a solid water phantom. This was initially used without 

the introduction of any air gaps and irradiated with a 6 MV photon beam to produce 

a reference reading for the bolus and undamaged tissue. A set of measurements was 

conducted by changing the length of the air gap, field size, and beam angle to 

determine the effect. There was no reduction in skin dose with a 10 mm bolus and 
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an air gap of 2 mm. With an air gap of 4 mm, the dose reduction varied from 0 to 4% 

depending on the field size. A small field size showed a great reduction with an air 

gap. The worst condition, a 10 mm air gap with a small field size (8 x 8 cm) and a 

beam tilt angle of 60, reduced the surface dose by up to 10%. 

In addition, Khan [65] conducted a similar study but used Gafchromic EBT 

films instead. The EBT films were sandwiched into a solid water slab, with a bolus 

covering the slab. The air gap was from 0 to 5 cm with two field sizes: 5 x 5 cm and 

10 x 10 cm. The surface dose from the 6 MV beam decreased significantly for the 

air gaps when the distance between the bolus and skin was greater than 5 mm. 

However, this study did not compare the influence of different beam angles. From 

both studies, it was concluded that a tilted beam angle, small field size, and air gaps 

larger than 2 to 5 mm should be avoided. However, with a tangential view, the beam 

to the bolus was not vertical. Therefore, dose reduction became more influenced by 

the air gap. To minimise the unwanted dose by using a bolus, an air gap between the 

bolus and skin of less than 2 mm was used as a conservative criterion. 

Because of the air gap, discrepancies in daily bolus placement led to a surface 

dose reduction or even unwanted dose distribution around an organ at risk. For post-

mastectomy irradiation, the ipsilateral lung may be covered by a hot spot with an air 

gap of uncertain size. To deal with the air gap problem, a customised bolus, 

fabricated from skin contours to reduce these discrepancies, offers a possible 

solution. 

 

3.1.2 3D printing technique in radiotherapy 

The goal of an ideal radiotherapy treatment plan is to address dose distribution with 

sufficiency and uniformity in the target volume. According to a guideline from the 

ICRU 62 report, the Planning Target Volume (PTV) should be covered by 95% of 

the prescribed dose. However, a challenge emerges when treating a shallow tumour. 

There is a built-up region with high energy photons between the surface and region 

of maximum dose. This phenomenon, also known as the skin-sparing effect, causes 

an insufficient dose below the skin. This effect results in potentially insufficient 

coverage of PTV for a shallow tumour [67], where 6 MV photon beam cannot reach 

maximin dose before PTV, where less than 1.5 cm form the surface  To overcome 
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the skin-sparing effect problem, an alternative method is used to improve the dose 

distribution for the treatment of superficial tumours. 

The application of a bolus, which is a flexible tissue-equivalent layer covering 

the surface of lesions, improves the problem of under-dosing at the skin surface for 

superficial lesions. With this additional layer on the patient’s skin, the built-up region 

of high energy beams moves forward across the surface of the skin and improves the 

dose coverage for superficial lesions. The application of a bolus to superficial 

tumours has been shown to have clinical efficacy for post-mastectomy [68], head 

and neck [69, 70], and external limb [71] irradiation. A bolus can theoretically solve 

various underdose problems in superficial radiotherapy. 

In radiotherapy, 3D printing has been highlighted as a supporting technology 

because of the feasibility of prototype devices. This concept has been extended to 

various phantom studies for both image and dosimetry experiments. Furthermore, 

3D printing makes fabricating a sophisticated volumetric object from any virtual 

design possible. The products are printed directly from the computer software 

without third-party processing, so from design to production, the product can be 

finished in a single room overnight. Users can change their design easily without 

negotiating with the manufacturers, as was done with customised products before. 

This novel technique is straightforward for users, but time-consuming. 

Leading researches that relate to respiratory motion can be used as examples. 

Mayer’s team constructed a thoracic phantom with two different materials to 

simulate bone and muscle tissue [72]. This innovative phantom allowed them to 

measure the dose from a moving tumour inside the simulated thoracic cavity. 

Dosimetric measurement is an effective approximation of a real human for 

demonstrating the influence of respiration on dose distribution. It was impractical 

and expensive to build a phantom for a single function before the maturation of the 

3D printing industry. However, as the cost of 3D printing continues to decrease, the 

availability of cheap, self-manufactured customised products will enhance the ability 

of researchers to progress from creative impulse to effective research. Our study 

explores this concept. 

Preliminary 3D bolus research illustrated the relative potential outcome by 

increasing the dose for a superficial tumour. Using a minimal air gap, Burleson [65] 
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investigated the application of a customised printed bolus to improve the uniformity 

of dose distribution in the nasal cavity. The nasal cavity is one of the most 

challenging regions for radiotherapy, owing to its irregular surface and superficial 

region in which dose delivery is considered problematic. A block with the inverse 

shape of a RANDO phantom was printed so that the nasal region was covered with 

the targeted thickness. However, our study used other materials and targeted the 

breast rather than the nasal cavity. 

Park [69] described the application of a printed bolus in post-mastectomy 

radiotherapy. The work was performed in South Korea, where the target patients 

were more similar to those in our study: Asian women. Covered by the customised 

bolus on the target volume with electron beam therapy, 3D-printed boluses resulted 

in a reduction in the mean dose to the ipsilateral lung by up to 20%. Furthermore, 

another advantage of shaping the dose distribution is that by amending the bolus 

design with an electron beam, the organ at risk can be avoided becoming a hotspot. 

The surface of the outer bolus is in front of the lung. These were all promising 

outcomes for 3D printing; because the bolus mirrored the contour of the inner lung, 

the hotspot of the electron beam decreased sharply. 

The aforementioned studies represent a small sub-section of bolus research, 

which largely focuses on dosimetric experiments or clinical applications. Burleson 

and Kim [74] focused on treatment plan comparisons of phantoms for the nasal 

cavity with 9 MeV and 6 MV electron and photon beams, respectively. Their studies 

lacked detailed patient information in the construction of the boluses. Since the 

patients vary in their bodily structure, customised boluses may not be as perfect a 

match as expected. Park demonstrated a satisfactory result for a virtual patient 

treatment plan. Their dosimetry test did not evaluate the material, which can be 

uncertain when dose curves or exact material density is unknown. No integrated 

research studies have been conducted on dosimetry and feasibility for clinical use. 
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Figure 3.1: Workflow of the experiments presented in this chapter. 

 

3.2 Materials and Methods 

3.2.1 Printing material selection 

New material was introduced to Shenzhen People’s Hospital, but due to the 

bureaucratic regulation of research funding in Shenzhen, purchasing foreign 

products (that is, all 3D printers used in the aforementioned studies) is restricted. To 

use the same printers as used in other studies would have been time-consuming due 

to the obligation of clearing Chinese customs. Moreover, this part of the funding was 

used as a proof-of-concept part in the project, and thus a desktop rather than an 

industrial version of the printer was used. There is a limited printed volume for the 

desktop version with a single material, whereas the industrial printer is capable of 

printing dual materials at full thoracic size [73]. 

Therefore, the printer used was developed by a local research team from the 

Material Science Department of Tsinghua University. The price of the printing 

package, including a desktop printer, a bottle of resin, and software was only a 

quarter of the price of the 3D printers used in the aforementioned studies. 
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Furthermore, the distributor claimed that the density of the printer resin could be 

adjusted to meet our requirements by mixing the two materials provided in certain 

concentrations. This would allow the production of customised bolus material that 

could be matched to the requirements of the experiments. While the material seemed 

to be adaptable to meet any of the requirements for this project, the actual 

performance required characterisation. Therefore, only a single material was used 

for the initial stage of this project. 

 

3.2.2  Printing technique selection 

Two primary formatting techniques are used in mainstream 3D printers: 

(1) Fused deposition modelling (FDM) and (2) stereolithography (SLA). The 

FDM progress is based on the heating and layering of thermoplastics where a 

temperature-controlled extrusion head is fed with a thermoplastic material, which is 

then heated to a semiliquid. Burleson [59] presented a detailed workflow and system 

setup for the FDM printing technique for printing boluses. Simply stated, FDM is 

like the process of adding cream onto a cake via a pastry bag. The source of the 

material, normally similar to a bundle of string, is melted, passed through the nozzle, 

and a selected volume of material is stacked on the target location. There is no need 

for further operation after the printing process for FDM products. 

In contrast, SLA is the process through which light (laser or UV) causes chains 

of molecules to bind, thereby forming polymers. The ingredient, resin, is composed 

of relatively short carbon chains which join together to create much longer (and 

therefore stiffer) chains when exposed to UV or laser light. When a sufficient number 

of chains have reacted, the final product is a solid part which comprises of a long 

carbon chain. The length of the polymers, which determines the hardness of the final 

product depends on the exposure time. The longer the resin is exposed, the harder 

the layer that forms. The process repeats until those polymers then establish a layer 

of the completed product. After the process, the area of printed products is soaked in 

the resin tank. The resident resin on the surface solidifies after exposure to UV from 

daylight and forms an undesirable shape. To clean the surface, the printed product 

must be washed using water (in the case of water-soluble resin) or soaked in an 

ethanol bucket (in the case of oil-soluble resin).  
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Figure 3.2: Schematic demonstration of an SLA printer. [a] A light source, a laser, or 

UV. [b] The transparent bottom of the tank. [c] The printing material: 

photosolidified resin. [d] The printed product. [e] The moving platform to 

carry the printed product. 

 

Printing Technology Stereolithography (SLA) 

Build Volume 192 120 200mm (7.5” 4.7” 7.8”) 

XY Resolution 75 µm 

Layer Thickness (Z resolution) 10, 25, 50, 100, 150, 200, 300 µm 

Printing Speed 1,000 cc/hr, 200 mm/hr thin-walls 

 

Table 3.1: Characteristics of the 3D printing performed in this work 

 

There is no clear evidence pertaining to which printing technique is more 

effective for bolus manufacturing. The collaborating company only manufactures 

SLA-based 3D printers, and hence, we investigated an SLA printer. Compared with 

other commercial printers, this new project offers a desktop printer that is more 

convenient for the initial project of prototype evaluation. The target product we 

investigated was fabricated using a new UV-based printer (SLA technique; 

SLASH#, UNIZ TECHNOLOGY LLC., USA) with green oil-soluble resin. 

[  ] 

[  ] 

[  ] 

[  ] 

[  ] 
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3.2.3  Bolus design: Block 

In this initial study, to determine the properties of the untested 3D printer, an 

elementary geometric shape was used, which was a block. The blocks were also used 

for dosimetry measurements in the following session. The entire printing progress 

was made using the SLASH#. 

Our target was to build two 15 x 15 x 3 cm blocks. The block was designed with 

3D Builder, a programme that comes baked in with Microsoft Windows 10. The 

programme allows users to draw simple shapes, such as a cylinder or cone. 

1. First, we opened 3D Builder and selected a cube. 

2. The initial size of the cube was 4 x 4 x 4 cm. The size was amended to our 

target by clicking the arrow in each direction. The amended cube is shown 

below in Fig. 3.4. 

3. The file had to be saved as a printable-file (in the STL file format) that could 

be read by 3D printer applications. 

4. After the STL file was loaded into the printer console, the block was rotated 

90 degrees because the block and the moving platform are vertical. This is the 

limitation of the printer’s printable size (the Y-axis is only 12 cm long). The 

precision of the Z-axis was 0.05 mm, with 2 seconds of exposure time for 

solidification at each layer. 

5. The final project object was attached to the tray and covered with the 

remaining resin. It had to be removed carefully with a flat shovel and placed 

into a bucket of ethanol to clean the resin residue on the surface. 

As soon as the resin came into contact with water, it turned into a white glue-

like form and was difficult to clean. This is unlike other commercial printers with 

water-soluble resin, which are much easier to clean than ours. Our experience led us 

to soak the product with medicinal alcohol, which was the cheapest available 

solution. Next, we used tissue paper to remove the remaining resin on the surface. 

Another problem we noticed was that the blocks were too heavy for our target 

volume. The block fell into the resin pool halfway through printing due to its weight, 

as shown in Fig. 3.3 [b]. Therefore, the final printed products were six 15 x 15 x 1 

cm blocks, as shown in Fig. 3.3 [c]. 
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Figure 3.3: The print process of the customised bolus. [a] The printer uses an upside-

down printing process. The green resin (lower tray) solidified when exposed 

to UV. The printed product was associated with a supporting column to 

carry the weight of the bolus; if this measure had not been taken, the bolus 

would have fallen into the tray. This condition became a limitation as we 

used the printer. The orange shell is to prevent UV leaking from the bottom 

when applicants observe the printer operating. [b] The failure of the printer 

was due to the weight of the block. A fissure (blue arrow) was observed. [c] 

The successfully printed block for the tests (15 x 15 x 1 cm). 

 

 

Figure 3.4: Design of the block with a target size of 15 x 15 x 3 cm 
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3.2.4  Bolus design: From image to printable file 

The next step was to build a more complicated model. The bolus was designed 

according to the contour of the patient or phantom surface. The source of the image 

to be designed was acquired from the CT simulator at Shenzhen People’s Hospital. 

The CT images of both the anthropomorphic phantom (West China Centre of 

Medical Sciences of Sichuan University), female torso phantom (China, Fig. 3.5), 

and three female patients who underwent mastectomy were required for the bolus 

design. 

1. Image acquisition 

The treatment room and simulator room were located in a contracted hospital 

(distal court), whereas the department and CT simulator were in the main 

court. These two places are separated by 45 minutes by car. The regular 

procedure in this hospital for radiotherapy patients is as follows: 

(i) Patients present for immobilisation using a vacuum bag or mask in the 

conventional simulator room, and the radiographer draws the marker on 

their skin (distal court). 

(ii) Patients return to the main court for the CT simulation with their markers 

on the same day (main court). 

(iii) Physicians and medical physicists finish the treatment plan in the 

radiation oncology department. Then, the treatment plan moves to the 

database in the treatment room (main court). 

(iv) Patients visit the treatment room for their sessions (distal court). 

The simulated CT images for the treatment plan of three female post-

mastectomy patients were used for the bolus design. The axial size between 

each slice was 5 mm. For the phantom study, the phantom was positioned 

with the vacuum bag by a physician in the conventional simulator room. The 

three cross-lead markers placed on the phantom surface with laser lines were 

used as the marker for the CT simulation. What differed was that the patient 

CT images had a 5-mm gap, whereas the gap was 1 mm between each axial 
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image for the phantom study. 

The image data in the digital imaging and communications in medicine (DI-

COM) file format was acquired during the CT simulation for each subject. 

The acquired DICOM files were used to create virtual 3D-printable boluses. 

2. File conversion 

The CT images were processed using a MATLAB function, from data 

conversion to bolus design. First, CT data converted the DICOM file into an 

Mfile (MATLAB-readable file format) with the MATLAB built-in function 

dicomread. In a complete file with an all-DICOM structure, we only focused 

on two types of information: volumes and voxDim1 (also voxDim2 and 

voxDim3). Volume represents the 3D matrix of the whole CT image, and 

voxDim is the pixel size in each direction. Using the phantom image as an 

example, the voxDims were 0.973, 0.973, and 1 mm. 

3. Building of the surface model 

Contouring the surface is a critical process in bolus design. The surface of 

each subject is the distance from the edge of the image (Y-axis) to the first 

pixel to reach the selected Hounsfield unit (HU). The target HU was -100 

from the edge of the soft tissue. The patients’ surface can be described as the 

inverse image of this distance map, as shown in Fig. 3.6 [c]. 

(i) The contour was estimated slice by slice. Fig. 3.6 [c] demonstrates the 

axial signal image of the phantom. 

(ii) The binary segmentation was processed by the threshold as -100. The 

value separates the air, including lung tissue and other tissue. 

(iii) The location of the first non-zero pixel was calculated on each Y-axis as 

the contour of the slice. Therefore, 1D data could be obtained for each slice 

image. 

(iv) After processing all the slices, the contouring data could be assembled 

into a 2D depth image of the subject. However, this was an inverse depth 

image; the peak of the surface showed the lowest value. After the image was 

inverted, the final depth image for surface contouring was complete, as 

shown in Fig. 3.6 [c]. 
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Figure 3.5: Phantom immobilised with a vacuum bag. 

 

 

Figure 3.6: Workflow for the bolus design. [a] This is the CT image of the phantom 

acquired from CT sim. The image had a threshold of -100 HU (soft tissue 

density). The blue arrow illustrates the distance from the edge of the image 

to the first nonzero pixel as the subject’s surface. This process was 

conducted for all the axial slices in the CT series. [c] The final depth image 

from the phantom. The intensity shows the distance from the couch level. 

The breast regions are the most elevated part in the Z-axis and therefore 

show the highest intensity. 

 

(v)  Because the ROI was manually selected, the noise in the background 

was negligible. 

4. Bolus design 

The physicians manually selected the region based on the target volume to 
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define the area of the bolus (ROImask). While the value of the distance was 

pixel location-based, the surface image could represent an integral number. 

Furthermore, regarding the pixel size of the CT images, the distance value 

could change considerably between two adjacent pixels. 

The surface directly converted from the depth image was uneven, as shown 

in Fig 3.7. The smoothness of the surface from the 3D object was required 

because the original file contained triangular meshes as surface information. 

This was an underlying proof-of-concept study. Rather than processing the 

model with a 3D graph, open-source programmes were used. The 

programmes were sourced from the MATLAB database (surf2solid and 

smoothpatch). 

The surf2solid programme creates closed solids by adding a flat base or 

offsetting the voxel size from the DICOM information after receiving 

thickness information. The bolus was used to determine the target thickness 

(5 mm). This function determined the actual bolus size by providing the pixel 

size. 

The smoothpatch programme smoothed the triangulated patch/mesh. The 

effect of this function is demonstrated in Fig 3.8 [a]/[b]. The function 

supports accurate curvature flow smoothing, keeping the edge ratio the same. 

The distance to the surface can be a continuous value. 

5. Printable file 

As with the block phantom, the model was required to convert the file into a 

printable format. However, MATLAB does not provide this function directly. 

Another open-source programme was used to convert the Mfile to the STL 

format. 

After finishing the file of the prototype 3D bolus, the bolus was transformed 

into a printable size due to the limitation of the printing tray (X-Y size). The 

position of the bolus is shown in Fig. 3.3 [a]. The precision of the Z-axis was 

0.05 mm, with 2 seconds of exposure time for solidification at each layer. 

This description means every exposure formed a 0.05 mm-thick layer of the 

solid layer. 
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The design and weight of the bolus influenced the exposure time. A shorter 

exposure time of the resin softened the final materials, leading to the 

unsupported structure shown in Fig. 3.2 [b]. Hence, considering the volume 

and weight of the customised bolus, and as suggested by the agent-based in 

prior experience, an extended exposure time was required, which inevitably 

resulted in a higher density and the final product to be quite heavy. 

Furthermore, the supporting columns were added at the suggestion of the 

agent. The overall process took approximately eight hours for each bolus. 

For medical requirements, an overnight printing protocol can be opted for, 

which allows the bolus to be ready on the following day after CT scanning. 

The four open-source functions used in this work were as follows: 

 

• dicomread: Reads DICOM images in MATLAB. It is a built-in function. 

• surf2solid: Turns thin surfaces into closed solids by adding a flat base or 

offsetting with a given thickness. 

https://uk.mathworks.com/matlabcentral/fileexchange/26710-

smoothtriangulated-mesh 

• smoothpatch: Ensures that the accurate curvature flow is smoothed. It 

smooths in the regular axis, keeping the edge ratio the same. It also 

supports Laplacian smoothing with inverse vertice-distance-based 

umbrella weights, making the edge lengths more uniform. 

https://uk.mathworks.com/matlabcentral/fileexchange/42876-

surf2solidmake-a-solid-volume-from-a-surface-for-3d-printing 

• stlwrite: Coverts the Mfile into the printable STL format. 

https://uk.mathworks.com/matlabcentral/fileexchange/36770-

stlwritewrite-binary-or-ascii-stl-file 

 

https://uk.mathworks.com/matlabcentral/fileexchange/26710-smoothtriangulated-mesh
https://uk.mathworks.com/matlabcentral/fileexchange/26710-smoothtriangulated-mesh
https://uk.mathworks.com/matlabcentral/fileexchange/42876-surf2solidmake-a-solid-volume-from-a-surface-for-3d-printing
https://uk.mathworks.com/matlabcentral/fileexchange/42876-surf2solidmake-a-solid-volume-from-a-surface-for-3d-printing
https://uk.mathworks.com/matlabcentral/fileexchange/36770-stlwritewrite-binary-or-ascii-stl-file
https://uk.mathworks.com/matlabcentral/fileexchange/36770-stlwritewrite-binary-or-ascii-stl-file
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Figure 3.7: Raw STL file directly converted with Surf2solid from the 2D image in Fig. 

3.6 [c]. Due to the discrete value of distance measurement, the surface was 

relativity rigid and not suitable for printing. The zoomed-in image reveals 

the step-like features. 

 

 

 

Figure 3.8: The STL file after the smoothing process with smoothpatch. The surface of 

the phantom becomes a continuous change, which is smoother than that of 

the raw data. The zoomed-in image of the armpit area reveals that the step-

like features have been removed. 

 

3.2.5 Comparison of PDD measurement 

The assessment of tissue-equivalence has become a required process for a bolus. 

Bolus material should approximate tissue-equivalence, presenting similar properties 

to water. In this experiment, we applied the target material (Mtarget) and another 

commercial printer material with different formation techniques, using an FDM 

printer from a local provider. The material for the FDM technique (MFDM) was 

polylactide (PLA), which was the same material used in Burleson’s study [59]. The 

six blocks made of the Mtarget were the 15 x 15 x 1 cm blocks from section 3.2.2, 

and the blocks made of the MFDM were 15 x 15 x 3 cm. 

Compared with measuring from the Roos chamber, a plate ion chamber which is 

[a] [b] 
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usually used a dose measurement, film measurement is more 

  

Figure 3.9: Prescan of the film and the strip for PDD measurement. 

 

 

Figure 3.10: Position of the film and blocks. The strip was placed in the middle of the 

blocks and then sandwiched. 

 

usually used a dose measurement, film measurement is more time-efficient in a busy 

treatment room. The Gafchromic EBT3-0810 film (lot # 05171701; International 

Specialty Products, Wayne, NJ) was sandwiched between two blocks (3 cm 

thickness for each side). Each film was required to be pre-scanned a day before the 
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experiments and was separated into strips of 12 x 3 cm for measurement, as shown 

in Fig. 3.9. After the total measurement, all strips were placed in the same location 

on the scanner to be read. The films were scanned using a flatbed scanner (V800-

Epson, Seiko Epson Corp, Nagano, Japan) before exposure and after being irradiated 

f o r  2 4  h o u r s  f o r  p r e c i o u s  o p t i c a l  d e n s i t y  ( O D ) . 

The experiment revealed the fundamental radiological property of the printed 

material. Knowledge of the PDD provides an understanding of the built-up region. 

Hence, the minimal thickness of the bolus can be estimated. Chamber measurements 

are conducted for more detailed analysis in later processing steps. 

The setup was also surrounded by solid water for scattering irradiation. The 

stack was placed in line with the beam axis with a source-to-surface distance (SSD) 

of 100 cm, but it had a subtly tilted angle to prevent self-build-up. A photon beam of 

6 MV and electron beams of 9 MeV, the standard treatment beam energy for this 

local hospital, were used for the measurements with 100 monitor unit (MU). 

The dose-OD curve was not linear, and calibration was required to be performed 

for each box. To set up the corresponding curve, ten extra exposures were taken with 

individual MUs. The measured MUs were 0, 10, 30, 50, 70, 100, 200, 300, 500, 800, 

and 1000. The film was placed under 5 cm of solid water with an SSD of 100 cm, as 

standard treatment distance.  

 

3.2.6 Skin dose evaluation with the phantom 

To evaluate the feasibility of skin dose enhancement, the surface dose was measured 

with and without the printed bolus. As with the original plan, the EBT film was 

inserted into the gap of the phantom layers. The film was cut to fit the contour of the 

phantom surface. 

The readout of the film provided the internal dose distribution, and it illustrated 

well the difference in the hotspot intensity at the edge of the lung and heart. The left 

breast was selected as the target region. However, the female phantom was 

immobilised with a vacuum bag for the entire experiment as in the procedure 

mentioned in session 3.2.3, and the physicians were worried about altering the 

position of the film when unpacking the vacuum bag to remove the film. Furthermore, 
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positioning the films inside the phantom was impractical, and therefore, for the 

phantom study, only the surface dose was measured. 

In contrast to the patient CT images, the axial gap for each slice in the phantom image 

was 1 mm to provide more precision for the bolus design. This series of CT images 

was only used for the bolus design rather than treatment planning due to the problem 

of position uncertainty. The bolus manufacturing process was described in section 

3.2.3. An additional CT image was processed after the printed bolus was finished, 

and two CT scans were taken with and without the bolus covering the phantom. The 

physicist created a routine treatment plan: 2 Gy covered in 95% isodoses of PTV for 

each fraction, with two tangential views with a 6 MV photon beam. 

 

Tissue Phantom Actual [68] 

Lung -783 -700 to 600 

Soft tissue -11 100 to 300 

Bone 151 700 

 

Table 3.2: The HU for each tissue of this phantom. The actual human tissue HU is 

provided by [68] as comparison 

 

 

Figure 3.11: The setup of a female-phantom study and the location of TLD on the left 

breast of the phantom. S, I, R, L, and C refer to the superior side, inferior 

side, right side, left side, and centre point. 

 

The method was inspired by Ha [76]. In their study, optically stimulated 
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luminescence dosimetry (OSLD) was arranged on the phantom surface with a 

conventional bolus and a printed bolus. In contrast to their setup, we used nine 

thermoluminescent dosimeters (TLDs) offered and counted the readout by the 

Shenzhen Prevention and Treatment Center for Occupational Disease in China. This 

hospital is the authority for health physics in Shenzhen, offering a personal dosimeter 

to radiation-related workers. Unfortunately, they can only provide the readout of the 

TLDs and no other useful information such as the dose-response curve. It may be 

that the TLD is not suitable to use with a high energy beam. These TLDs were 

attached to the surface of the left breast, as shown in Fig. 3.11, to measure the 

variance of the skin dose. The TLDs were aligned with the laser lines in the treatment 

room. Each TLD was positioned approximately 2 cm away from the nearest one. The 

phantom was irradiated in a single session (2 Gy) with two views to simulate the 

patient’s condition, and only the photon beam was used during this session. 

 

3.2.7 Evaluation of the air gap under the bolus 

The final part of this research involved the printed bolus being placed on the three 

selected patients for conformity. One item to be aware of for this study was that the 

patient’s body contours changed during the treatment cycle. The printed material 

was solid, but air gaps emerged because of this change in body contours. The entire 

treatment session normally takes six weeks, and it is highly possible for figure 

change in patients by following nutrition instructions or any other prescription. To 

illustrate the applicability of the printed 3D bolus, the air gap between the bolus and 

the patient’s surface was calculated using CT image sets. 

The source of the CT images used to design the bolus was the same as for the 

treatment planning images. The bolus design process is shown in section 3.2.3, and 

the bolus was made in the middle of the treatment session three to four weeks after 

the simulator CT scan, at which point we considered such a period sufficient to verify 

our hypothesis. A repeat CT scan was applied to evaluate the agreement between the 

design of the printed bolus and the patient’s contour. Patients were asked to bring 

their own vacuum bag from the distal court to the main court for the repeat CT scan 

to ensure that the position was correct. The bolus was placed on the patient’s surface 

without markers. 
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Figure 3.12: Demonstration of a conformity test on a patient. The printing bolus was 

aligned on the patient’s skin by her physician. The entire setup was 

repeated on the day of the CT sim. 

Adhesion with skin, i.e. conformity of the printing bolus, was evaluated as the 

voxel Hounsfield Unit (HU), which defined less than -100 HU as the air.  Due to 

the partial volume effect, the voxels from edge of bolus are with higher HU. 

Hence, the threshold of air is used -100 HU to capture the contour. Only the air 

volume under the printed bolus that influences the dose distribution was considered 

as air gap. The maximum distance and the total volume were the criteria for 

evaluating the conformity of the customised bolus. The air gap was measured 

column-by-column in the image segment, and the difference was calculated in each 

column. The nonzero value existed at the boundary from air to solid part (1) and 

vice versa (-1). The assumption was that the column with the air gap included air 

(1), bolus (0), air gap (1), and skin (0). Hence, the distance of the bolus was from 

the location of the first 1 to the location of the second. The final air gap was then 

visually checked for unwanted noise. 

3.3 Result 

3.3.1 PDD measurement 

The CT images of the two materials were acquired for HUs, which can be related to 

electron density. They were 165 and -36 HU for MTarget and MFDM, respectively. 

Although that MFDM had an HU closer to water, neither of them were perfect water-

equivalent materials. The PDD curves for both materials also agreed with the CT 

results. 
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The two images, un-irradiated film and irradiated film, were placed on the same 

location on the scanner. The region of interest (ROI) was selected on the irradiated 

film, while the corresponding location of the un-irradiated film was determined. The 

OD value was calculated pixel-by-pixel in the ROI. The result shows a satisfactory 

fit between the OD value and MU. The PDD results were used for the fitting curve 

to estimate the actual dose. 

 

 

Figure 3.13: The irradiated film with different MUs for calibration. The squares are 

marked from 0 to 10 and correspond with the MU mentioned in section 

3.2.2. The square marked as 11 is the background.  

 

 

Figure 3.14: The calibration of the OD and MU curve. The dose-grayscale response is 

nonlinear. An additional experiment is necessary to build the correct 

response curve. PDD is the relative dose. Therefore, we used MU rather 

than the exact dose. The MU values were 0, 10, 30, 50, 70, 100, 200, 300, 

500, 800, and 1000. The fitting curve (R-square= 0.99) is shown in the same 

plot. The fitting curve adjusts the measurement from the PDD with OD. 
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Figure 3.15: Demonstration of the irradiated strip with a 9 MeV electron beam. The 

beam enters from the side with a number, which is located in the darker 

part of the strip. 

 

 

Figure 3.16: PDD curve of EBT film with two printing materials. In this case, two 

common treatment energy for surface treatment of PDD were performed 

with 6 MV photons and 9 MeV electron beams. 

 

There was a 3.6-mm shift at the dmax, location with the maximin dose, under the 6 

MV photon beam, which was 13.5 mm for MTarget and 17.1 mm for MFDM . This shift 

was different in the built-up zone for both materials. There was a shift of 15 mm for 

the built-up zone in water under the 6 MV photon beam. These results also showed 

the minimal thickness of the bolus for each printing material. As expected, with a 

greater HU (HU>0), there was a steeper build-up and drop-off before and after dmax. 

However, there was little difference in the build-up curve for both materials. 
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The outcome was similar to the 9 MeV electron beam; dmax values were 17.4 mm 

and 21.4 mm for MTarget and MFDM, respectively. The target material demonstrated 

the potential of the bolus material with a slightly shorter built-up region than the one 

we found for water, which was 1.5 mm higher. This result implied that 

manufacturing the customised bolus requires a lower volume of resin than PLA to 

reach the same quality. 

 

3.3.2 Skin dose with the phantom 

Table 3.3 shows that the mean skin dose increased by 3.34±6.62% with the printed 

bolus. However, the dose did not increase homogeneously. Four TLDs decreased by 

3% with the bolus compared with the non-bolus. The worst-case decreased by 7.5% 

at the S2. However, there was an 8.49% improvement in the skin dose with other 

measurement points. The central point (C) was enhanced the most at 15.13% using 

the customised bolus, which matched our expectations because it was the tangential 

point for the entire breast. The expected readout was 200 cGy for each measured 

point. The mean surface dose was 206.7 and 200.0 cGy with and without the printed 

bolus, respectively. The measurement was close to the planned dose (200 cGy per 

fraction) without the bolus. In addition, the SD was 8.8 and 16.7 without and with 

the printed bolus, respectively. When covered by the bolus, the variation of dose 

distribution on the surface increased. Finally, a paired T-test (p = 0.20) indicated the 

same result. There was no significant improvement in the surface dose when using 

the customised bolus. For this section, the bolus used was unsuitable for clinical 

application with potential air gap above the surface, due to dose uncertainty. This 

situation might be improved with a flexible printing material, leading to better 

surface conformity 

 

3.3.3 Bolus-skin adhesion test 

Figure 3.17 shows a histogram of the air gap volume from the CT simulation scan of 

the three patients. The results demonstrated that the mean air gap between the printed 

bolus and the patient’s skin was 9.75±0.25 cubic centimetres (cc), indicating that the 

customised printed bolus did not perfectly match patient coverage. A large difference 
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existed in the air gap distance across the thorax. The profiles for the three patients 

were similar. The histogram of the volume shows that conformity was superior in 

the lower lung. For the surface of the upper lung in this test, patient 2 illustrated a 

satisfactory result, whereas the results from patients 1 and 3 were unsatisfactory.  

For patient 3, it could be claimed there was no satisfactory adhesion for the entire 

surface while there was improved contact between the printed bolus and skin around 

the heart level in the other two patients, indicating that the dose distribution followed 

the treatment planning outcome to avoid the heart, including the hot spot. The 

distance of the maximum air gap was 7.87, 7.68 and 8.28 mm for the three patients, 

respectively. The value was far larger than our target of 2 mm, which is proof that 

there is no negative impact on dose distribution [57]. The maximum distance reveals 

the high chance of unwanted dose distribution, particularly in the upper lung region, 

when covering the printed bolus. 

Figure 3.18 displays the axial images from a different position. A clear air gap 

around the armpit region is observed in Figure 3.18 [a]. A large mismatch (>2mm) 

appeared at the lateral sides of the breast. However, in the lower part of the thorax 

shown in Figure 3.18 [b], the conformity improved with significant coverage and 

minimal air gap. Hence, there are more alternatives to manipulate the beam with 

tangential views for organs at risk (OAR). That gives us hope that there is potential 

to use the printed bolus in the context of post-mastectomy irradiation. 
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 Without Bolus-covered Difference (%) 

S2 186.2 197.6 6.12 

S1 208.6 192.9 -7.53 

R2 195.7 207.8 6.18 

R1 193 190.2 -1.45 

L1 199.4 194.4 -2.51 

L2 196.2 205.8 4.89 

I1 205.2 203.3 -0.93 

I2 215.8 237.6 10.1 

C 200.2 230.5 15.13 

 

Table 3.3: The TLD measurement (cGy) at a measuring point from a single session. 

 

 

Figure 3.17: Volume (air voxel in each slice) of air gaps on the patients. For each figure, 

the left graph shows the volume of the air gap in each slice. The right image 

illustrated the corresponding location of patients. 

voxel voxel voxel 
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Figure 3.18: Variation in the conformity of the printed bolus on the same patient. 

3.4 Discussion and Conclusion 

Coverage of PTV at the superficial lesions is a challenge for high-energy photon 

therapy. The introduction of a 3D printing technique attracts the attention of the 

medical industry. To mitigate against the pitfalls of commercial boluses, printed 

boluses use a customised design for each patient. However, there is a lack of 

knowledge about the new material for medical use, and related studies performed 

dosimetric experiments while others did not test before clinical application. 

To evaluate the feasibility of this new method, we developed a series of 

experiments. The knowledge of each printing material was developed under different 

circumstances. In this study, it was by measuring the PDD, which is difficult to 

compare across studies, but other studies have built customised boluses directly 

rather than providing PDD information as fundamental properties. Burleson 

measured the PDD of clear-PLA with a 6 MV and a 9 MeV 4 x 4 beam [74]. Their 

results implied that the HU must be set at 260 to correct the PDD curve in the 

treatment plan system, but the PLA used in this study was only -36 HU. The PDD 

curves of the printing material are crucial, and the test of the target material is 

satisfactory with promising PDD results. 

This difference also showed in the measured dmax, which was 13.5 mm with a 6-

MV photon beam in Burleson’s study, and 17.1 mm in this study. The dmax was 

shorter for the Mtarget under both the 6 MV photon and 9 MeV electron beam. Given 
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the dmax measured, the minimum thickness was determined for the material. In 

addition, the field in our study was 10 x 10 cm, implying that there was more scatter 

radiation measured in the film. This work provided the concept for dosimetric 

properties with chamber measurement (Markus chamber). Using this data, the 

material can be confidently used for the first stage of this project. 

The dmax of the target material, which is close to the dmax of water, indicated that 

it is quite similar to water. To approach tissue equivalence, the production process 

must be modified by shortening the exposure time. The current exposure time was 

chosen to meet the needs of supporting the printed product rather than achieving a 

density that approaches water. The advantage of using the SLA technique is the 

ability to control the hardness of the final product. The longer the exposure time, the 

longer the polymer chains and the harder the surface. Therefore, PDD experiments 

can be used to confirm whether a significant influence exists on dmax. A material that 

is close to tissue in terms of tissue equivalence would require several further 

experiments with a chamber to create a database for the treatment planning system. 

The workflow for designing the bolus still needs to be more user-friendly. The 

clinicians would like to apply the PTV from the treatment plan system rather than a 

manual selection from the surface image. The current selection may lead to some 

mismatch. 
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It was assumed that the skin dose should increase when covered with the bolus 

and the phantom test demonstrated an unsatisfactory increase in skin dose with the 

use of the bolus. The experiment was improved for a better-measured method. The 

C point, at the tangential line of the beam, showed the most considerable 

improvement, where the regions with the least build-up were without the bolus in all 

points. Some measurement points, which were around the centre, decreased in 

absorbance of the dose. It is suspicious that the bolus did not adhere well to the 

phantom and resulted in the unnoticeable air gap. 

This bolus was well-matched with the phantom visually, but air gaps may have 

occurred during the patients fitting test, which led to unpromising results. The mild 

distortion of the printed product led to unwanted dose coverage. Furthermore, this 

occurrence highlighted the idea that the addition of a CT scan is necessary to ensure 

the fit of the bolus. The thickness of the TLD was around 1.2 mm, which led to the 

mismatch between the printed bolus and the phantom. The research of Ha [77] and 

Robar [70] illustrated a significant agreement between the planned dose and 

measured dose under the printed bolus. Both boluses were designed with pockets on 

the skin side. The pockets allow OSLD chips to insert the bolus without creating 

space between the bolus and skin. This indicates that the future development 

direction of bolus designs is surface dose measurement with OSLD without an air 

gap. 

The patients’ CT scans created an awareness of the pitfalls of the 3D-printed 

bolus. Various air gaps were found in all cases. The mismatch may lead to worse 

dose distribution than without the bolus because of the uncertainty of the air gap 

location from one day to another. Major issues contribute to the shaping of the armpit, 

and none of the three patients showed a strong attachment to the bolus. The negative 

outcome indicated to our team that the bolus should be specially designed in this 

region and suggested that the bolus attachment can easily change due to the influence 

of body weight. This is an essential finding of this research.  

For our phantom study, the results showed zero air gap for the printed bolus, 

whereas, with the conventional bolus, they showed an air gap of 8 to 15 mm. The 

problem for the phantom experiment was the solid structure because the patient’s 

contours changed over time. However, few studies have determined the outcomes of 

the patient. Robar performed related work that compared a bolus printed with a 



 117 

flexible material with a conventional bolus on 16 patients. The results showed that 

the mean air gap was reduced to 3 mm with the printed bolus. The air gap regions 

greater than 5 mm were reduced by 30% when the printed bolus was used. The time 

from the image to bolus fabrication was not mentioned in their study. The body 

contours may not have changed significantly in this study. Our study showed a great 

disparity between the printed bolus and skin, particularly around the armpit area. 

Robar obtained a similar finding. A single outlier case was noticed; there was a 

2-cm air gap under the bolus in the last session. The case was confirmed to be due 

to an anatomical change by comparing the CT images across the two sessions. This 

information should be considered when applying the customised bolus. A repeat CT 

scan would be necessary for the conformity of the printed bolus. 

 

3.4.1 Future work of 3D printing in radiotherapy 

 

3.4.1.1 Extra CT scan 

In the personalised bolus approach, an additional CT scan is required for bolus 

design, which forces patients to endure extra radiation exposure. Since this is a 

disadvantage, two potential options exist for reducing CT scans to meet ethical and 

clinical needs: 

(a)  Integrated virtual bolus. With superior knowledge of the properties of the 

printer materials, a virtual bolus could be precisely created using the treatment 

image with assigned election density for treatment management. Not only 

could the bolus be shaped with the OAR (the margin of the lung), it could also 

conform with possible body changes. Park [69] demonstrated this method by 

integrating the edge of the lung into the outer surface of the customised bolus. 

The hotspot from the electron beam dropped rapidly before the critical organ, 

which in this case was the ipsilateral lung. 

(b)  Optical surface scanner. The optical scanner allows physicists to capture 

surface information of patients. A bolus could be developed from these surface 

data, whereas internal information is limited before the planning CT. The bolus 

design may encounter difficulty if its only reference is the diagnosis CT. 
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Furthermore, the scanning room requires an alignment system, producing extra 

complication in the workflow. In terms of this concept, the source image for 

the bolus design could be linked with the Kinect image, as discussed in the 

previous chapter. 

i. The research group must look for another phantom because the infrared from 

the Kinect cannot reflect the surface of the current transparent phantom 

accurately, leading to measurement errors in the depth map. 

ii. The optical scan, Kinect, and CT scan are performed to capture the contour of 

the phantom. 

iii. The workflow in section 3.2.2 can be followed to build a customised bolus. 

iv. Two printed boluses can be taken to the CT scanner to acquire the image data. 

v. The image registration proceeds for two sets of images to analyse the bolus 

difference with two modalities. 

 

3.4.1.2 Knowledge of material science 

Another limitation of the material in this experiment was radiation damage. The 

chemical bonds in the material break easily under high energy beams, not to mention 

proton beams. A strain test was presented by Michiels [78], and his study revealed 

that the printing material became even harder after 6 MV of irradiation. These 

exciting findings show that materials change their properties as they progress in 

tandem with the treatment sessions with patients. The printed material from both the 

FDM and the SLA techniques becomes stiffer after irradiation with the entire 

treatment dose, and this may imply changes in internal structure. Therefore, it is 

unclear whether these changes are of sufficient magnitude to have an impact on the 

dose distribution and to change the tolerance of the HU after irradiation should be 

considered. 

This initial work shows high potential for the use of 3D printing in bolus fabrication, 

although we cannot deny that there are many steps in which improvement is required. 

This first glance of the proposed project offers a more sophisticated guideline for 

further progress. First, a multidisciplinary team is a priority. The process involves 

3D graph design, material science, and radiation oncology. With additional research 
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regarding these subjects, a conclusive result for the use of 3D printing in bolus 

fabrication can finally be determined. Medical application is strategic work and 

requires a significant amount of time to reach the goal for the following reasons: 

i. When comparing the work, the bolus can be designed directly from TPS while 

our work takes a long detour from the CT image to the printed products. 

ii. The mixture-of-material investigation. A mixture-of-material technique was 

introduced in which the printer can print a target material by mixing two material 

sources at a selected ratio, providing the opportunity to create an exact water-

equivalent product when the range of the photon and electron beams (or even 

the proton beam alone), are known. 

iii. Assessments of new methods must include more patients, and types of 

superficial tumour other than breast tumour should be included. With further 

cooperation with the local and leading hospital, the likely outcome will be more 

convincing. 

This study revealed that 3D printing is a potential approach for customised bolus 

design. The printed bolus process provides a time- and cost-efficient approach for a 

personalised procedure of cancer therapy. The study showed that the performance of 

the material is acceptable for making a bolus by demonstrating a similar PPD curve 

to that of water. However, the outcomes of the surface dose enhancement and air gap 

fit were unacceptable for clinical use, although the interface of the program was 

improved. There was uncertainty regarding the processing of the bolus from the 

image to the final product, leading to a mismatch between the bolus and skin. 

Although CT imaging revealed a considerable air gap between the bolus and the 

patient’s skin, we believe this problem can be managed in future research. The 

optimisation of the current workflow and the inclusion of a specialist, such as a graph 

designer, are priorities for our future work.  
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Chapter 4 

Final remarks 

 

Radiotherapy has become a standard option for cancer treatment with the basic 

treatment criteria for each type of cancer demonstrated in the treatment guidelines. 

However, since the human body is sophisticated, treatment procedures beyond the 

guidelines should be developed for individuals of different ethnicities, and 

potentially, on an individual basis, also known as personalized cancer therapy.   

This thesis aimed to investigate two types of customised procedures in radiotherapy, 

which were performed in Shenzhen, as well as a personalised imaging system for a 

specific use. With numerous patients and limited medical resources in a city 

experiencing a period of rapid development, the need exists to explore and discover 

an alternative method for the improvement of treatment quality. 

The treatment of two leading cancers worldwide, lung cancer and breast cancer 

is limited by time and if there is sufficient time in the treatment room, the problem 

of respiratory motion compensation can be managed with greater flexibility. The 

change in internal margin from respiratory motion causes uncertainty in treatment 

planning during radiation therapy. The application of surrogate signals and motion 

models could be a solution to this challenge as with knowledge provided by the 

motion model, the location of the tumour could potentially be estimated, although 

the related methods are time-consuming. Therefore, the solution to this problem was 

simplified to an approach that aimed to regularise the breathing cycle of patients. 

The method we presented is vocal coaching, which requires patients to control 

their breathing cycle by following instructions. Vocal coaching is the most 

straightforward approach among the different attempts to regularise breathing as it 

does not require reading skills or knowledge on interaction with a digital device, 

which is occasionally a problem for older patients. However, the improvement of 

respiratory regularity by following vocal instruction was not observed in all patients. 

This study showed good performance when utilising the contactless monitoring 

system as a respiratory surrogate. The abdominal and thoracic breathing signals can 

be separated from the subject’s surface with post-processing. The fact that the 
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variation in abdominal movement decreased the relationship between thoracic and 

abdominal breathing means breathing signals may become more complicated with 

vocal instruction. The subjects’ breathing cycle that became more irregular with 

vocal instruction may be due to prior expectation, and this problem highlighted a 

field we had not considered human psychology. The need thus exists to design a 

questionnaire to investigate this possible issue with a much larger sample group. 

With limited patients and volunteers, the study showed mixed results on this topic 

and thus, increasing the number of participants is crucial for a more conclusive result. 

Another critical treatment that this study investigated is post-mastectomy 

radiotherapy, for which our study evaluated a new printing material with a complete 

workflow. The dosimetry test showed that the material has a similar profile to water, 

less dose uncertainty between layers, thereby determining the minimal thickness of 

the bolus design. However, improvements in chamber measurement must be 

considered to obtain convincing dosimetric test results. The surface dose 

enhancement and conformity tests revealed this difficulty. Specifically, there was no 

significant dose increase with the bolus with a potential air gap, according to a 

thermoluminescent dosimeter. Due to positional uncertainty and alterations in body 

shape, unwanted moderate-to-large air gaps which were larger than the air gaps 

formed when using flexible commercial bolus were observed under the solid printed 

bolus used in our study. An adhesion test must be taken the following day during the 

scanning for CT simulation, and the volume of the thermoluminescent dosimeter 

must be taken into consideration during the design of the bolus to allow for extra 

space when covering the surface. This dosimetric result demonstrates that the printed 

bolus is not appropriate for clinical applications. To achieve a meaningful 

conclusion, a need exists to extend the investigation to an interdisciplinary group that 

includes 3D graph designers to ensure that the impact of body shape on the printed 

bolus that is processed and built overnight is minimised. 

Both studies illustrated that a personalised procedure must rely on more precise 

control during the treatment sessions. Without a surrogate, it is difficult for the 

investigators to monitor the breathing signals of patients following instruction. 

Furthermore, it is difficult to analyse the dose distribution after positioning the bolus 

when a CBCT image is lacking. In terms of exploring the utilisation of vocal 

coaching and printed bolus as solutions for radiotherapy, the results were 
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contradictory to our initial purposes. Currently, these methods require more effort 

and time to meet the same requirements as conventional methods. However, the two 

projects share a potential point as initial stages and further modifications such as 

increasing the sample size. 
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Appendix 

*  

Individual results for each target landmark. The mean 2D Euclidean, SI, and 

AP distance for each of the target landmarks (in mm). 
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Details of MATLAB file 

 

 

 

 

 

 

 


