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Abstract. EndoTect Challenge 2020, which aims at the detection of8

gastrointestinal diseases and abnormalities, consists of three tasks in-9

cluding Detection, Efficient Detection and Segmentation in endoscopic10

images. Although pathologies belonging to different classes can be man-11

ually separated by experienced experts, however, existing classification12

models struggle to discriminate them due to low inter-class variability.13

As a result, the models’ convergence deteriorates. To this end, we pro-14

pose a hybrid loss function to stabilise model training. For the detection15

and efficient detection tasks, we utilise ResNet-152 and MobileNetV3 ar-16

chitectures, respectively, along with the hybrid loss function. For the seg-17

mentation task, Cascade Mask R-CNN is investigated. In this paper, we18

report the architecture of our detection and segmentation models and the19

performance of our methods on HyperKvasir and EndoTect test dataset.20

Keywords: Endoscopy · Object detection · Polyp segmentation · Computer-21

assisted intervention22

1 Introduction23

The gastrointestinal endoscopy is a routine examination process via natural cav-24

ity for digestive disease detection. It is the most efficient procedure for gas-25

trointestinal disease detection. Although biopsy is the only gold standard for26

recognising pathology, previous studies on endoscopic imaging reported the po-27

tential capability of endoscopy for lesion classification [10, 15]. In these reports,28

the micro-vascular pattern and micro-surface pattern of the mucosa under the29

view of endoscopy provided strong evidence for the preliminary diagnosis of gas-30

trointestinal lesion [16]. Well-trained practitioners and experienced endoscopists31

can detect benign polyps and malignant tumours and tag these lesion with dif-32

ferent labels through the micro-anatomical findings visualised by the endoscope.33

However, these critical clues are unintelligible for a novice practitioner due to34

their seemly similar appearances. To improve the quality of endoscopy examina-35

tion, several guidelines have been proposed aiming at quantifying the anatomical36
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Fig. 1. Proposed hybrid loss with trimming for improving model stability during train-
ing. The baseline models are trained using backbone (a) and single classification head
(b). lossraw denotes CE(yraw, ŷraw). The proposed method with hybrid loss are trained
with backbone (a) and multiple classification heads and trimmed to single head during
inference (c).

sites to diminish the blind points [1][15]. The recent studies on smart quality con-37

trol methods based on these guidelines also show their efficiency for endoscopic38

quality control [7][14]. These computer-assisted lesion detection and anatomical39

site detection methods showed great potential towards automating the digestive40

disease diagnosis and endoscopic quality control.41

Towards this end, EndoTect Challenge 2020 (EndoTect) called for recognising42

digestive disease through computer vision methods [8]. The challenge consists43

of three tasks, namely, detection, efficient detection and segmentation. In this44

paper, we propose the hybrid loss-based methods utilising ResNet-152 [6] and45

MobileNetV3 [9] for the detection and efficient detection tasks, respectively. The46

proposed hybrid loss helped in improving the model convergence. For the polyp47

segmentation task, we use the Cascade Mask R-CNN [3] method. Our methods48

are evaluated on the HyperKvasir dataset [2] and the test data of EndoTect.49

2 Methodology50

2.1 Detection and efficient detection51

Baseline methods ResNet-152 [6] and MobileNetV3-large [9] are the backbone52

Convolutional Neural Network (CNN) models that we utilise for the detection53

and efficient detection tasks, respectively. These models are pre-trained on the54

ImageNet [5] dataset. For fine-tuning, the last fully connected layers are replaced55

by new dense layers with output units equal to the number of disease classes.56

Hybrid loss function We propose a hybrid loss function (Lh) in which the57

disease labels are rearranged into raw, macro, oesophagus (e) and ulcer (u).58

Lh = CE(yraw, ŷraw) + CE(ymacro, ŷmacro) + CE(ye, ŷe) + CE(yu, ŷu), (1)

where CE is the cross-entropy loss. Lh is implemented by adding multiple clas-59

sification heads after the backbone model as shown in Fig. 1. Corresponding60
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Fig. 2. Cascade Mask R-CNN. “I” is input image, “conv” backbone convolution,
“RPN” region proposal network, “pool” region-wise feature extraction, “B” bound-
ing box, “C” classification and “M” mask.

labels of yraw, ymacro, ye and yu for training multiple classification heads are61

listed in Section 2.3. Our models are trained using the proposed hybrid loss62

function made up of four cross-entropy loss functions as shown in Fig. 1(b).63

Model trimming The multiple classification heads derived from single classi-64

fication head have a dense layer for the detection task with 23 output units as65

defined in EndoTect and three more dense layers for the extra tasks. This addi-66

tion of extra units is discussed in more detail in Sec. 4. Though these extra layers67

improved our model stability during training, they are redundant for inference.68

Therefore, after training, the multiple classification heads model is trimmed into69

the single classification head model as shown in Fig. 1(b). This change makes70

the model lighter and faster during inference.71

For brevity, “〈model〉” denotes backbone, such as ResNet-152, “〈model〉w.”72

denotes the model trained with hybrid loss, and “〈model〉w. 〈head〉” denotes the73

classification head, such as raw, from model trained with hybrid loss.74

2.2 Segmentation model75

Our solution is based on Cascade Mask R-CNN [3] as shown in Fig. 2, which is76

implemented using the MMDetection toolbox [4]. The pipeline is formulated as:77

mt = Mt(P (x, bt−1)),

ct = Ct(P (x, bt−1)), (2)

bt = Bt(P (x, bt−1)).

where x indicate the CNN features of backbone network, P (.) is a pooling oper-78

ator, e.g., Region of Interest (RoI) Align or RoI pooling, Mt, Ct and Bt denote79

the mask, class and box head at the tth stage, mt, ct and bt represent the corre-80

sponding mask predictions, class predictions and box predictions, respectively.81

The overall loss function (Lseg) takes the form of a multi-task learning:82



4 Qi He, Sophia Bano, Danail Stoyanov, and Siyang Zuo

Lseg =

T∑
t=1

(Lt
mask + Lt

bbox), (3)

Lt
mask(mt, m̂t) = BCE(mt, m̂t), (4)

Lt
bbox(ct, bt, ĉt, b̂t) = Lcls(ct, ĉt) + Lreg(bt, b̂t). (5)

Here, Lt
mask is the loss of mask predictions at stage t, which adopts the binary83

cross-entropy loss. Lt
bbox is the loss of the bounding box predictions at stage t,84

which combines two terms Lcls(ct, ĉt) and Lreg(bt, b̂t), respectively for classifica-85

tion and bounding box regression.86

2.3 Data augmentation and training details87

Data augmentation Training augmentation for detection and efficient detec-88

tion consists of contrast augmentation, colour shift, brightness augmentation,89

flipping, perspective transformation and blur. Different from detection, flipping,90

cutout, colour shift, JPEG compression and affine transform augmentations are91

applied at random for training the segmentation model.92

Labels of hybrid loss The hybrid loss takes label from four categories:93

– Raw labels are the original 23 classes provided for EndoTect.94

– Macro labels consist of 11 classes, namely, ’other’, ’bbps-0-1’, ’bbps-2-3’,95

’dyed-lifted-polyps’, ’dyed-resection-margins’, ’impacted-stool’, ’normal-cecum’,96

’normal-pylorus’, ’polyp’, ’retroflex-rectum’ and ’retroflex-stomach’.97

– Oesophagus labels consist of 6 classes, namely, ’other’, ’barretts’, ’normal-z-98

line’, ’oesophagitis-a’, ’oesophagitis-b-d’ and ’short-segment-barretts’.99

– Ulcer labels consist of 7 classes, namely, ’other’, ’ulcerative-colitis-grade-0-1’,100

’ulcerative-colitis-grade-1-2’, ’ulcerative-colitis-grade-2-3’, ’ulcerative-colitis-101

grade-1’, ’ulcerative-colitis-grade-2’, ’ulcerative-colitis-grade-3’.102

Implementation details The detection and efficient detection models are re-103

implemented with PyTorch [13]. We fine-tuned the models with single GPU for104

40 epochs by SGD optimiser with an initial learning rate of 0.003 and momentum105

of 0.9, and decrease it by 0.1 after 10th, 20th and 30th epochs. The batch sizes106

for ResNet-152 and MobileNetV3 are set to 32 and 128, respectively.107

The segmentation model is re-implemented using the MMDetection [4] open-108

source toolbox based on PyTorch. The model is pre-trained from COCO dataset109

[12]. Then we fine-tuned it with 2 GPUs for 20 epochs with an initial learning110

rate of 0.004 and decrease it by 0.1 after 10th and 18th epochs, respectively. The111

batch size is set to 2 for each GPU. Image data is resized to 1024 × 1024 pixel112

resolution for training and inference. For inference, we adjusted the thresholds113

of the detector. The Non-Maximum Suppression (NMS) threshold of Region114

Proposal Network (RPN), score threshold of R-CNN, NMS threshold of R-CNN115

and mask threshold of R-CNN are set to 0.7, 0.5, 0.3 and 0.45, respectively.116
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Table 1. Average results for detection and efficient detection models

Method Dataset
Macro Average Micro Average
PREC REC F1 PREC REC F1 MCC

ResNet-152 raw HyperKvasir 0.588 0.584 0.584 0.901 0.901 0.901 0.892

ResNet-152 w. raw HyperKvasir 0.598 0.601 0.596 0.904 0.904 0.904 0.895

ResNet-152 w. raw EndoTect 0.683 0.646 0.659 0.913 0.913 0.913 0.903

MobileNetV3 raw HyperKvasir 0.513 0.556 0.504 0.845 0.845 0.845 0.833

MobileNetV3 w. raw HyperKvasir 0.519 0.557 0.505 0.851 0.851 0.851 0.840

MobileNetV3 w. raw EndoTect 0.528 0.496 0.503 0.785 0.785 0.785 0.765

3 Results117

3.1 Detection and efficient detection118

Evaluation metrics consist of precision (PREC), recall (REC) , f1-score (F1)119

and Matthews correlation coefficient (MCC). We trained and validated ResNet-120

152 (ResNet-152 raw), ResNet-152 with hybrid loss (ResNet-152 w. raw), Mo-121

bileNetV3 (MobileNetV3 raw) and MobileNetV3 with hybrid loss (MobileNetV3122

w. raw) on HyperKvasir dataset following the 2-fold cross validation on the123

official splits [2]. For EndoTect, the models with hybrid loss are trained on Hy-124

perKvasir and evaluated on the test data provided by EndoTect. The models125

with hybrid loss have an improved performance on HyperKvasir than the base-126

line as shown in Table 1. The ResNet-152 w. raw has a superior performance on127

the images from macro labels than oesophagus labels and ulcer labels, which is128

demonstrated by the confusion matrix of detection models on HyperKvasir as129

shown in Fig 3.130

MobileNetV3 w. is susceptible to the extra black border on the test dataset131

due to its lighter structure. This is supported by the performance drop of the132

MobileNetV3 w. raw on the test data as shown in Table 1. The test data included133

dark border regions that were not present in the training data, which made the134

test data distribution to be slightly different than the training data. These dark135

borders made the scale of the colour image region on the test data smaller than136

training data. Though there is some performance drop on it, MobileNetV3 w.137

raw has a great advantage on speed since it has much fewer parameters than138

ResNet-152 w. raw. The speed of MobileNetV3 w. raw is evaluated using average139

time, minimum time, max time, average FPS, minimum FPS and maximum FPS,140

which are found to be 7.7 ms, 7.6 ms, 22.2 ms, 129.7, 45.0 and 132.0, respectively.141

3.2 Polyp segmentation142

The segmentation model is evaluated using 2-fold cross validation on HyperK-143

vasir dataset. For submission, the model are trained on HyperKvasir dataset and144

evaluated on EndoTect test dataset. The evaluation results are shown in Table 2,145

and the qualitative evaluation is shown in Fig 4. F1-score and Jaccard of 0.879146

and 0.822 on the EndoTect test dataset which shows promising performance of147

our trained model.148
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Fig. 3. Confusion matrix of ResNet-152 w. raw evaluated on HyperKvasir. The la-
belling of the classes follows [2].

Table 2. Evaluation of segmentation model

Method Dataset Jaccard F1-score Recall Precision

Cascade Mask R-CNN HyperKvasir 0.792 0.850 0.904 0.846

Cascade Mask R-CNN EndoTect 0.822 0.879 0.882 0.915

(a) Original image (b) Ground truth (c) Predicted mask

Fig. 4. Qualitative evaluation of the segmentation model

4 Discussion149

We proposed a hybrid loss to stabilise convergence of model, which slightly im-150

proved the performance of ResNet-152 and MobileNetV3 on HyperKvasir as151
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shown in Table 1. This change is motivated by an observation, that the CNN152

model is likely to wrongly classify oesophagus and ulcer images. Such misclas-153

sification would last during the whole training process.To narrow the range of154

misclassification, we filtered these indiscriminate labels through the confusion155

matrix of ResNet-152 on HyperKvasir and redesign the labels based on the con-156

nected component from the confusion matrix. Though focal loss [11] has been157

demonstrated to achieve a better performance than CE loss in the object detec-158

tion task, CE loss was found to be experimentally better than the focal loss in159

this task. Therefore, we designed this hybrid loss (presented in Section 2) using160

the rearrange labels and CE loss for detection and efficient detection tasks.161

Beside the redesigning of labels, we also focused on improving the perfor-162

mance of models via strong image augmentation. After we experimented with163

various combinations of data augmentation, we found the blur in image augmen-164

tation to be detrimental for training segmentation model, because blurring makes165

it hard to distinguish the features representing boundary and minuscule texture.166

5 Conclusion167

We addressed the problems of disease detection, efficient disease detection and168

polyp segmentation for the EndoTect2020 Challenge. We introduced the hybrid169

loss and model trimming for improving the gastrointestinal disease detection in170

endoscopic images. The hybrid loss and model trimming is shown to stabilise171

model training, improve classification of indiscriminate classes and make the172

model lighter and faster during inference. We utilised Cascade Mask R-CNN with173

heavy data augmentation for polyp segmentation. We observed that heavy data174

augmentation helped in better generalising the model for unseen dataset. This175

was evident from our model superior performance on the EndoTect challenge test176

dataset compared to the HyperKvasir dataset. The proposed methods are ex-177

perimentally demonstrated efficient for gastrointestinal image classification and178

polyp segmentation. In future work, we plan to further improve the multiple clas-179

sification heads of the hybrid loss for further improving the model performance.180
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