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The computational neurology of movement under active 
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Thomas Parr,1 Jakub Limanowski,1 Vishal Rawji2 and Karl Friston1

Abstract

We propose a computational neurology of movement based on the convergence of theoretical 

neurobiology and clinical neurology. A significant development in the former is the idea that 

we can frame brain function as a process of (active) inference, in which the nervous system 

makes predictions about its sensory data. These predictions depend upon an implicit predictive 

(generative) model used by the brain. This means neural dynamics can be framed as generating 

actions to ensure sensations are consistent with these predictions—and adjusting predictions 

when they are not. We illustrate the significance of this formulation for clinical neurology 

through simulating a clinical examination of the motor system; i.e., an upper limb coordination 

task. Specifically, we show how tendon reflexes emerge naturally under the right kind of 

generative model. Through simulated perturbations, pertaining to prior probabilities of this 

model’s variables, we illustrate the emergence of hyperreflexia and pendular reflexes, 

reminiscent of neurological lesions in the corticospinal tract and cerebellum. We then turn to 

the computational lesions causing hypokinesia and deficits of coordination. This in silico 

lesion-deficit analysis provides an opportunity to revisit classic neurological dichotomies (e.g., 

pyramidal versus extrapyramidal systems) from the perspective of modern approaches to 

theoretical neurobiology – and our understanding of the neurocomputational architecture of 

movement control based on first principles.
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Introduction

Much of our understanding of neurobiology rests upon observations from clinical neurology. 

The classification of symptoms and signs according to different sorts of lesion – and the implied 

distinctions between the systems these disrupt – underwrite a modern understanding of the 

function of the nervous system (Jackson, 1903; Steinberg, 2013). One of the outstanding 

challenges for modern neuroscience is to supplement these observations with formal 

(computational) models and to establish their theoretical foundations. In what follows, we 

revisit some fundamental ideas in clinical neurology from the perspective of a formal approach 

to neurobiology. Our aim is to see whether there is a clear analogy between the distinctions 

that arise through purely theoretical considerations, and those that have been established 

through clinical observation. 

The utility of this approach has previously been unpacked in the setting of functional 

neurological disorders (Edwards et al., 2012). The importance of a computational 

understanding of ‘functional’ pathology is underwritten by the difficulty in identifying gross 

structural abnormalities in these patients. Edwards et al. illustrated – using a predictive coding 

formalism – that computational pathology manifesting at a synaptic level affords a plausible 

explanation for functional signs and symptoms. In addition to furthering our understanding of 

these disorders, this identifies (broadly) the kinds of therapy that could be developed to treat 

these disorders. Crucially, as this approach is based on a physiologically grounded theory, these 

therapeutic approaches include those that act to pharmacologically modulate synaptic 

transmission, or that involve behavioural therapies designed to target the same synapses 
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through their associated computational role. Here, we argue that the benefits outlined by 

Edwards et al. may be usefully extended and unified with other neurological subfields. In other 

words, a functional understanding of neurological syndromes should not be restricted to those 

patients for whom no structural lesion has been identified. As a starting point, it is important 

to find the points of connection between classical neurological and computational framings of 

brain function.

For this challenge to be met, we examine some of the important distinctions made between 

types of clinical sign and ask whether these map on to the distinctions that arise from theoretical 

neurobiology. To ensure the relevance of this in clinical settings, we focus upon two sorts of 

behaviour commonly elicited in neurological examination that vary with different pathologies. 

The first is an examination of tendon stretch reflexes. This is an important part of a neurological 

examination in which tapping on a tendon elicits a reflexive movement at that joint (Walker, 

1990). The amplitude, speed, and shape of the response is indicative of certain kinds of 

pathology. Notably, damage to the corticospinal tract – which provides cortical modulation of 

spinal reflex circuits – leads to ‘brisk’ reflexes with large amplitude. Cerebellar lesions, on the 

other hand, lead to oscillatory or ‘pendular’ reflexes. 

The other domain we consider is the examination of coordination, as assessed through the 

common ‘finger-nose’ test, where patients are asked to alternate between touching their nose, 

and then the finger of the examining clinician. The clinician moves their finger to alternative 

locations as the patient continues. This is useful in identifying ataxias – often due to cerebellar 

lesions (Akbar and Ashizawa, 2015). While not the primary method of assessment, 

performance of this test may be difficult for those with Parkinsonian phenotypes where 

movement initiation is impaired. Our focus on these tests rests upon their established ability to 

disambiguate between different kinds of clinical syndrome. In addition, they provide an 

important test of construct validity for a hypothetical computational lesion, as their 

consequences must be consistent with clinical pathology in different domains. A theoretically 

motivated cerebellar lesion is clearly a poor hypothesis if it induces pendular reflexes but no 

ataxia and vice versa. Finally, an appeal to clinical signs that localise anatomical lesions offers 

a test of a computational architecture for motor control. The connectivity of lesioned areas must 

be consistent with that established through neurological anatomy.

Broadly, the theoretical distinctions of interest here concern the difference between spatial and 

temporal precision, continuous and categorical inference, and between inference about states 

of the world and planning as (active) inference. The relevant clinical distinctions are between 
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pyramidal and extrapyramidal, cerebellar and subcortical, and motor and executive syndromes. 

In setting out the relationship between these, we ask whether modern theoretical neurobiology 

endorses these clinical categories and, if so, whether we can use the wealth of anatomical 

knowledge associated with neurological constructs to constrain accounts of brain function in 

terms of inferential message passing. The purpose of this paper is to find a mapping between 

the Bayesian message passing that may be used to generate movements, and the neuroanatomy 

of motor control. 

The challenge of unifying structural and functional accounts of brain dysfunction calls for a 

model that not only predicts behaviour but is grounded in the structural anatomy of the brain. 

The benefit of a forward model – that makes predictions at the level of behaviour – is threefold. 

First, it is useful to have a common framework in which to understand functional changes in 

the brain following a variety of pathological processes. We focus upon the framework afforded 

by Bayesian accounts of brain function – which assume that the brain employs an internal 

model to draw inferences about the causes of sensory data. The flexibility of an inferential 

formulation of brain function is evident in accounts of neurological phenomena as diverse as 

synucleinopathic visual hallucinations (O’Callaghan et al., 2017), alien limb syndrome in 

cortico-basal degeneration (Wolpe et al., 2020), and tic disorders (Rae et al., 2019).

Secondly, it is useful to know what is and is not a plausible explanation for a given clinical 

sign. A computational model provides a simple means of assessing this. By inducing a 

hypothetical lesion and simulating the results, we see whether or not that hypothesis could 

account for observed pathology. We will see an example of this later on in relation to tremor 

in Parkinson’s disease. In brief – consistent with previous arguments (Marsden, 1984a) – we 

find that tremor is not explained by a lesion of the computational homologue of the substantia 

nigra pars compacta. Instead, this may be a downstream consequence of (pathological or 

therapeutic) perturbations to one aspect of brain function for distant parts of the network (c.f. 

functional diaschisis (Carrera and Tononi, 2014b; Price et al., 2001b; von Monakow, 1914)).

Finally, forward models aid in non-invasive quantification of pathology. Using standard model 

inversion schemes (Friston et al., 2007), it is possible to infer the parameter values that best 

explain observed behaviour. Advantages of doing so include the ability to quantitatively track 

disease progression and therapeutic response. This is useful both in the therapeutic setting and 

in clinical trials, where such measures could form useful outcome measures. Alternatively, 

quantitative phenotyping is useful in identifying candidates for trials or treatment options. The 
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benefits of this sort of approach are evident in quantitative (genomic) phenotyping in cancer 

research (Fisher et al., 2011).

The key theoretical contributions we offer in this paper are as follows. First, we set out a 

generative model whose motoric solutions include the kinds of behaviours used to assess 

neurological function in a clinical setting. Second, this generative model uses a hierarchical 

form where each level prescribes short trajectories at the level below – consistent with the idea 

of motor chunking (Wymbs et al., 2012)—the idea that the single motor elements of action 

sequences can be grouped into units of behaviour—over multiple timescales. Third, the 

synthetic lesion-deficit analysis provided here goes beyond previous mixed models based upon 

active inference (Friston, Parr et al., 2018) and provides a means to map message passing to 

known neurological anatomy.

Active inference

We start by outlining active inference; a ‘first principles’ account of behaviour (Friston et al., 

2017a). We do so to highlight the key dichotomies that are implied. The central idea is that the 

brain’s dynamics can be framed in terms of an implicit internal (generative) model as if it were 

drawing inferences about the outside world (Von Helmholtz, 1867). Under active inference, 

perception and action are framed as processes that try to reconcile discrepancies between 

predictions of the generative model and the world (Friston et al., 2010b), either by changing 

‘beliefs1’ (perception) or by changing the world (action). As such, the key to understanding 

healthy or pathological behaviour is in finding the generative model that the brain is implicitly 

using (Parr et al., 2018). In the context of movement, there are two parts to this generative 

model (Friston et al., 2017b). One that deals with alternative movements that could be made 

(e.g., “do I reach to the left or the right?”), and one that details the sensory consequences 

anticipated during the execution of that movement (e.g., “if I reach to the left, what does this 

mean for proprioceptive input at my shoulder joint?”). 

The role of a generative model is to predict sensory data (y). The quality of predictions under 

a model, relative to observed data, may be quantified in terms of  ‘evidence’ – the probability 

1 It is worth acknowledging a tension between some of the technical terms we use, and the lay meaning of these 
words. When we refer to a ‘belief’, we mean this in the Bayesian sense (i.e., Bayesian belief updating or 
propagation). Here, a belief is simply a probability distribution. This may be represented by the activity of a neural 
population – not a propositional belief in the folk psychology sense.
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that observed data would have been generated by this model. The (log) evidence can be written 

in terms of the joint density of hidden (unobserved) variables (υ = (x, v, s, π)) and data generated 

by the generative model, and the posterior probability of these hidden variables having 

observed these data:

( | )

( )

ln ( ) ln ( , ) ln ( | )
[ln ( , ) ln ( | )]

[ln ( , ) ln ( )]

ln ( ) [ ( ) || ( | )]

p y

q

KL

p y p y p y
E p y p y
E p y q

p y D q p y
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The first line here illustrates the decomposition of the log evidence into a joint probability and 

a posterior probability via Bayes’ rule. The second line (arbitrarily) introduces an expectation 

(i.e. average) with respect to the posterior probability. Given that the left-hand side is not 

explicitly a function of the hidden variables, this expectation does nothing to this expression. 

However, it does let us construct a lower bound on the evidence by relaxing the constraint that 

we use the exact posterior density (Beal, 2003; Dayan et al., 1995). This is useful, as it is often 

difficult to compute the exact posterior. The third line expresses this bound by substituting an 

arbitrary distribution (q) for the posterior. The rearrangement in the final line (which rests upon 

factorising the joint distribution into the evidence and posterior), shows that the KL-divergence 

(which quantifies how different two distributions are from one another) between our 

approximate posterior and the exact posterior density quantifies the difference between the 

model evidence its lower bound (sometimes referred to as an ELBO, or a negative free energy).

The insight from Equation 1 is that, if we wish to act upon the environment to obtain those data 

that maximise the evidence for a model, it is sufficient to seek those data that maximise a lower 

bound, as long as the divergence between our approximate posterior and the exact posterior is 

small. This lets us summarise active inference as follows:

( )

( )
( )

arg max [ln ( ( ) | )]

( ) arg max{ [ln ( ( ) | )] [ ( ) || ( )]}

q
a

q KL
q

a E p y a
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 (2

The first line says that we choose the actions (a) that lead to the most probable data under 

current beliefs. These data are expressed as a function of action (y(a)) to emphasise that action 
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changes the outside world in such a way that we receive new sensory data2. The second line 

revises beliefs, such that they render the data more probable (while not moving too far from 

prior beliefs). The reason the KL-Divergence in the second line does not appear in the first is 

that this term does not depend upon sensory data, and so is not changed by action. An important 

aspect of Equation 2 is that the optimal action given a sensory input depends upon the prior 

beliefs that characterise a generative model. The importance of this relates to a set of results 

known as the complete class theorems (Daunizeau et al., 2010; Wald, 1947). These state that 

any behaviour (or statistical decision function) is Bayes optimal under the right set of priors. 

In one sense, this says that Equation 2 is trivial, in that there are a set of prior beliefs that 

renders it true for any given observed behaviour. In another sense, this provides a useful way 

of articulating the challenge before us in characterising healthy or pathological behaviour. It 

says that the appropriate way to provide this characterisation is to find the set of priors under 

which that behaviour—healthy or pathological—would be Bayes optimal. In other words, we 

seek to identify the priors that would generate specific sorts of behaviour when Equation 2 is 

solved for their associated generative model. Ultimately, one might hope that this will inform 

diagnosis and treatment of motor maladies

To apply Equation 2 in a more concrete setting, we must specify the generative model (p(y, υ)) 

associated with that setting. We will begin with the model that accounts for generation of 

continuous proprioceptive and visual data based upon arm movements, which brings us to 

realm of (bicipital) tendon stretch reflexes.

Synthetic tendon reflexes

The first problem we face is how to generate a healthy tendon reflex. This means we write 

down the generative model that predicts proprioceptive data from the relevant joints and solve 

Equation 2 for this model. How do we relate Equation 2 to the idea of a reflex? This equation 

says we should take action to ensure incoming (proprioceptive) data cohere with their most 

likely value. Another perspective is that an internal model provides a setpoint for these sensory 

data, and that any deviations from this point must be corrected by action (i.e., changes in firing 

of motor neurons). Framed in terms of spinal reflexes, this means proprioceptive signals 

2 The optimisation scheme used to solve Equation 2 for the generative model used here is detailed in 
supplementary Appendix 1.
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resulting from changes in muscle length are propagated to the dorsal horn of the spinal cord 

(the afferent pathway), where they induce changes in firing of motor neurons (the efferent 

pathway), which restore the muscle length to their setpoint (Friston, 2011). The setpoint may 

be modulated by corticospinal projections, which influence the relationship between the 

afferent and efferent pathways. This influence, under active inference, depends upon the form 

of the implicit generative model.  Figure 1 specifies the form of the model. This takes the things 

we expect to influence sensory data coming from an arm, including the angular positions and 

velocities of the shoulder and elbow joints, and predicts the sensory input predicted under a 

given configuration. The velocity of the joints is determined by a ‘target’ location, as if the 

hand is being pulled towards a desired location. This may be seen as a formalisation of the 

‘Equilibrium point hypothesis’ (Feldman and Levin, 2009), and more recent ‘passive 

movement’ paradigms (Mohan et al., 2018). The key idea behind these formulations is that a 

movement may be generated simply by predicting its sensory consequences – as if it were 

taking place – and using low level reflexes to correct any discrepancies. In other words, if we 

were to imagine our arm being pulled to a point in space, we can predict the proprioceptive 

input we would experience and use this to realise the movement. This kind of model is similar 

to those used in modern robotics to generate movements (Oliver et al., 2019; Tani et al., 2004), 

and to established approaches in engineering including PID control (Baltieri and Buckley, 

2019). Within the same framework, it follows that a discrepancy between proprioceptive input 

and sensory predictions would also result in impaired voluntary movement; as is seen in the 

case of severe deafferentation (Rothwell et al., 1982).

The equations in Figure 1 are obtained through application of Newtonian mechanics and 

trigonometry. The angular positions of the joints (x1,2,3) change at a rate specified by their 

angular velocities (x4,5,6). The rate of change of the velocities depends upon the product of the 

moment of inertia (κ) and a rotational force. In the ‘real’ world, this force is given by the action 

(a) generated as a consequence of Equation 2. From the perspective of the generative model 

shown in Figure 2, the rotational force is an imagined (fictitious) force that acts in a Euclidean 

frame of reference to shorten the distance between the position of the hand (Θ) and a target 

position (v1,2,3). This distance is multiplied by the gradient of Θ with respect to the angular 

positions to bring this back into angular coordinates. The function Θ – that gives the Euclidean 

position of the hand as a function of the angular positions of the joints – follows from standard 

trigonometry. The function g maps these variables to the expected data in each modality. In 
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addition, g reports the colour of the targets (whose positions are fixed) based upon the v4,5,6 

variables. This gives three numbers that represent the intensity of the shading for each target.

Having set up the continuous part of the model, we are now in a position to explore the 

influences of some simple perturbations. To illustrate the effects of these, we use a ubiquitous 

neurological test: eliciting the biceps tendon reflex. This involves using a tendon hammer to 

tap on the tendon connecting the biceps muscle to the bones of the forearm (Walker, 1990). 

We simulate this by transiently augmenting the input of the type Ia proprioceptive afferents at 

the elbow, as if the tendon had been suddenly stretched. The first plot in Figure 2 illustrates the 

consequences of this in the absence of synthetic lesions. As in vivo, this induces a fast, small 

amplitude, flexion of the elbow that then relaxes back to its initial position. The reason for this 

is that the artificial proprioceptive input carries low evidence under the generative model (that, 

a priori, does not entertain perturbations of this sort); thus, action is induced to restore these 

data to their most probable values.

To select the most appropriate candidates for synthetic lesions, it is worth going into a little 

more detail about the notion of ‘precision’ (Feldman and Friston, 2010). This is the inverse 

variance associated with a probability distribution. In engineering and motor control, precision 

can be regarded as the gain applied to corrective prediction errors. In terms of inference, 

precision may be thought of as the confidence of a belief, as opposed to its content, and can 

have debilitating consequences when it is not estimated accurately. For a dynamic model, of 

the sort employed here, precision may be factorised into two components (see appendix for 

details):

 (3𝛱 = 𝛱 ⊗ 𝑆(𝜆)

Loosely speaking, these may be thought of as spatial (Π) and temporal (S(λ)) components, in 

the sense that the former accounts for the inverse covariance of the positions of the (x, y, or v) 

variables, while the latter determines the smoothness of random fluctuations (i.e. the 

correlations between position, velocity, and subsequent temporal derivatives). The point of this 

decomposition is that, for a biological system, these fluctuations are not really ‘random’, but 

are generated by dynamical systems operating over a faster timescale than that considered by 

the controllable dynamics or kinetics of the generative model (Friston et al., 2010a). This means 

that these fluctuations have a structure over time (e.g., serial correlations or smoothness) that 

cannot be neglected. The use of generalised coordinates of motion, and the definition of the 

generalised precision matrix of Equation 3, ensures we take account of this temporal structure. 
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The λ parameter is a parameter of the autocorrelation function, evaluated at zero lag, and can 

be thought of as a measure of the ‘smoothness’ of the fluctuations.

Accurate estimation of precision is vital in the context of movement, in that descending 

predictions of the sensory consequences of movement must predict not only the expected value 

of these sensory signals, but the dispersion anticipated around this expectation (Kanai et al., 

2015). This underwrites the notion of sensory attenuation (Brown et al., 2013); attending away 

from sensory data during self-generated movement. On this view, descending predictions of Π 

should be attenuated by descending corticospinal fibres (Adams et al., 2013). To show what 

happens in the absence of this attenuation, we simulated a tendon reflex with a generative 

model that attributes too much precision to sensory data; i.e., as if we had induced a lesion 

somewhere between the motor cortex and spinal motoneurons – to induce a failure of sensory 

attenuation. Compare the upper plot in Figure 2, which shows the ‘healthy’ response, with the 

middle plot showing the exaggerated ‘brisk’ reflex (Gandevia et al., 1986; Wilson et al., 1999) 

following a failure to attenuate predictions about the precision of these data.

The hypothesis that arises from this is that the corticospinal tract normally attenuates the gain 

(i.e., precision) of the synapses mediating spinal stretch reflexes, and that this gain is 

abnormally high in the absence of corticospinal attenuation. To assess the validity of this 

hypothesis, it is worth thinking about other pathological processes that lead to brisk reflexes 

with an intact corticospinal tract. Our hypothesis implies that such processes should also 

preclude attenuation of reflexive gain. This seems to be borne out by an autoimmune condition 

known as stiff-person syndrome – which causes hyperreflexia in the presence of a structurally 

intact corticospinal tract (Jung et al., 2014; Rakocevic and Floeter, 2012). This is due to 

autoantibodies against an enzyme called glutamate decarboxylase (GAD). Physiological 

measurements that hint at excessive synaptic gain include the normal motor unit activity on 

electromyography during muscle spasms (Armon et al., 1990). One interpretation of these 

responses is that normally subthreshold sensory inputs evoke what would be normal efferent 

aspects of a reflex. In other words, the gain of the translation from the afferent to efferent input 

is turned up.

GAD is an enzyme found (not exclusively) in the dorsal horn of the spinal cord (Lorenzo et al., 

2014), and is involved in synthesis of the inhibitory neurotransmitter γ-amino-butyric acid 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab085/6168144 by U
niversity C

ollege London user on 26 M
arch 2021



11

(GABA). There is evidence of disruption of the associated spinal circuits in stiff-person 

syndrome (Floeter et al., 1998; Meinck et al., 1995). This is interesting in that the disruption 

leading to hyperreflexia involves loss of inhibitory neurotransmitters in the region of the same 

synapses whose gain is attenuated by the corticospinal system. The implication here is that both 

corticospinal disconnection and anti-GAD disease fail to suppress exuberant responses of 

efferent in response to afferent arms of a reflex. Computationally speaking, this is a failure to 

attenuate precision.

Interestingly, stiff-person syndrome is associated with startle reflexes that can be evoked by 

sensory modalities other than proprioception; including audition and somatosensation 

(Rakocevic and Floeter, 2012). This implies the mechanisms behind a stretch reflex, normally 

observed following anatomically localised lesions, may be more broadly expressed. While 

vascular events that disrupt the pyramidal tract do not give rise to multimodal startle responses, 

autoimmune processes do not need to respect these anatomical boundaries.

The lower plot in Figure 2 shows the consequence of overestimating the smoothness of 

fluctuations (i.e., the temporal component of the precision of generalised motion). The 

consequence of this is a pendular reflex, inducing oscillatory movements at the elbow and 

shoulder. This sort of response is characteristic of cerebellar lesions (Holmes, 1917; Holmes, 

1939), although normally demonstrated at the knee, and implicates the cerebellum in estimation 

of these temporal correlations. The inset below the lower plot shows the result of the same 

lesion applied to the oculomotor model described in (Parr and Friston, 2018), illustrating the 

hypermetric saccades and oscillatory corrective movements that result from overestimation of 

smoothness in this domain. Similar effects are seen in cerebellar lesions (Optican and 

Robinson, 1980; Ritchie, 1976; Robinson et al., 2002). The idea that the cerebellum may be 

engaged in optimising beliefs about the temporal component of precision harmonises with 

ideas about the role of this structure in precise timing of responses (Ivry et al., 2002; Sokolov 

et al., 2017). Specifically, the higher temporal embedding order allows for more precise beliefs 

about the local trajectory of continuous variables due to the non-zero autocorrelations that come 

along with this. This facilitates local predictions about when something is likely to change. 

Notably, it is this temporal embedding order that has previously been exploited to account for 

sensorimotor delays within a predictive coding (motor) scheme (Perrinet et al., 2014). 

At this point, it is worth reflecting on where this approach is situated compared to other 

perspectives on motor control. Specifically, it is important to acknowledge that some argue in 

favour of separable, but interacting, processes that mediate state estimation and motor control. 
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This implies that, in addition to a forward model of the kind employed here, there is an ‘inverse’ 

model that specifically deals with computing a motor command that would fulfil a desired goal 

(Egger et al., 2019; McNamee and Wolpert, 2019). The approach we pursue here is more 

aligned with pure forward modelling approaches that generate predicted proprioceptive data 

and use spinal reflex arcs to resolve discrepancies between predicted and observed sensory 

input (Buhrmann and Di Paolo, 2014), which renders inverse modelling redundant. A feature 

common to both perspectives is the notion of optimisation (Liu and Todorov, 2007). Each relies 

upon a function (or functional, under active inference) that must be minimised or maximised. 

While a full deconstruction of these two approaches requires a paper of its own, supplementary 

Appendix 2 highlights some of the salient points. This is not intended as a refutation of previous 

accounts of reflexes, but as a formalisation in terms of the same sort of message passing used 

in more ‘cognitive’ operations.

In this section, we have highlighted the first dichotomy that emerges from specifying the kind 

of generative model required for arm movements. This is the distinction between spatial and 

temporal contributions to the precision of fluctuations. Interestingly, at least in the context of 

tendon reflexes, these appear to mirror the distinction between cerebellar and corticospinal 

syndromes. Our aim in the next section is twofold. First, by moving on to the next 

(coordination) stage of a neurological examination, we have an opportunity to assess whether 

the synthetic cerebellar and corticospinal homologues introduced here generalise beyond the 

domain of reflexes. Second, we introduce our next dichotomy: inference about continuous or 

categorical variables, capturing the distinction between execution and planning. 

Hierarchy and planning

Following from an assessment of reflexes, we now move to an assessment of coordination. 

Typically, in a clinical setting, this is done by asking a patient to reach out and touch two 

different objects (typically their nose and the clinician’s finger), and to alternate between the 

two while the clinician moves one of the targets so that it changes position each time. Based 

upon this idea, we constructed the generative model of Figure 3. This comprises three levels, 

the lowest of which is the model of Figure 1. The upper two levels (shown in Figure 3) represent 

the processes that generate the v variables in Figure 1. The arrows in this figure indicate the 

non-zero terms in the matrices that comprise the parameters of the generative model. The 

highest level of this model comprises two sorts (i.e., factors) of categorical hidden states. The 
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first is the combined position and direction of movement of the hand (upper left, Figure 3). 

Consistent with dynamics described at higher levels of the cortex (Honey et al., 2012; Murray 

et al., 2014), this is a relatively coarse-grained representation spatially and temporally. The 

position is defined in terms of which of three spatial locations (shown as red dots) the arm starts 

from, and direction of movement in terms of which it is moving towards. The second factor at 

the highest level is where the current target is (darker sphere). This may change from moment-

to-moment from the perspective of the highest level. 

The lower (discrete) level of this generative model involves much more temporal and spatial 

detail than the higher level, but covers shorter periods of time (Friston et al., 2017d). This 

means that the target location is now static, as it only changes over the slower scale prescribed 

by the higher (discrete) level. The increased spatial resolution at the lower level affords the 

opportunity to represent spatial locations that are intermediate to those of the three target 

locations. These are shown as small red spheres. For each short trajectory at this level, the 

higher level specifies a starting location (via D) and a direction of travel (E) that influences the 

transitions (B). For visual clarity, we have not shown all the possible transitions between the 

(red) attracting points. In brief, one policy leads to a clockwise transition, one to an 

anticlockwise transition, and one to a static transition (i.e., attracting point stays in the same 

location). Each of the locations at the lower level, indicated by the red spheres, maps to an 

attracting point (v1,2,3) in the continuous model in Figure 1. Similarly, the shading of each of 

the target spheres maps to the continuous representation of target colours (v4,5,6). There is one 

other outcome of the categorical levels of the model that never reaches the continuous model 

(i.e., is conditionally independent of it). This is whether the hand position and the target 

position match, or whether the hand has not yet reached the target. By setting a prior belief (C) 

that the correct hand position will be achieved, the course of action most likely to fulfil this 

attains a higher plausibility. Note that this is not used as a prior over outcomes at the level of 

inference about outcomes, but as a prior belief about the consequences (on average) of policies. 

In other words, it is used as if it were a parameter of the prior over policies. The prior over 

policies includes both E and G, where G is a function of C. The C-vector may be thought of 

as a parameter of the prior belief over policies. However, it is an interesting quantity, as it could 

be thought of as a prior itself. The key idea here is that we specify a prior (C) over observations 

that is the Bayesian model average under all policies (weighted by their respective 
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probabilities). In place of specifying the probability of each policy and then finding this 

average, we specify this average and use this to express a prior over policies that would realise 

this (when an information theoretic bound is minimised). This is almost the opposite approach 

to the use of a free energy bound to approximate a marginal distribution over outcomes, as it 

starts from the distribution over outcomes and finds an expected free energy that defines a 

distribution over policies.

At this point, it is worth summarising the way in which continuous and categorical inferences 

talk to one another (Friston et al., 2017b). The key idea here is that each categorical outcome 

is assigned to a point in continuous space. By averaging these points based upon the relative 

probability of each outcome, we generate an empirical prior belief about the location of the 

current target in continuous space. To update beliefs about these outcomes, we can treat each 

outcome as an alternative hypothesis for the continuous dynamics at the low level, and compute 

the evidence for each hypothesis. Practically, we can do this very efficiently by appealing to 

Bayesian model reduction (Friston et al., 2018; Friston et al., 2016). This is a statistical 

technique that allows us to use the inversion of a ‘full’ model to calculate the evidence we 

would have achieved had we used alternative priors. The full model in this context is the 

continuous model where the prior expectation for the v variables is given by a weighted sum 

of all possible expectations. Each alternative (reduced) model is given by choosing an 

expectation associated with a specific outcome, as opposed to taking the expectation based 

upon all of these. Equation 4 expresses the form this takes. We use Lτ(t) to indicate the (log) 

evidence as a function of time (t) during a categorical epoch (τ). This depends upon the 

probability of continuous data (y) given categorical outcomes (oτ). This is accumulated (or 

integrated) and combined with the prior (oτ) for that epoch to give a posterior belief (rτ).
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L % %
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Like the negative free energies used as approximate (log) evidences elsewhere in this paper, L 

approximates a log evidence based upon an approximate posterior. The second line of Equation 

4 calls upon the mappings between the discrete and continuous parts of the model, that depend 

upon precisions formulated in terms of generalised coordinates of motion (Equation 3). This is 

useful to know, as it constrains the connectivity implied by the inversion (i.e., solution) of this 

generative model. The degree to which higher orders of motion influence the expected position 

of the hidden causes, and the reciprocal influence of the empirical prior precision for these 
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higher orders, implies brain regions computing these smoothness parameters should exert an 

influence over those that mediate the interaction between continuous and categorical variables. 

In addition, note the predicted outcomes (oτ) that appear in this equation are themselves 

computed by weighting the predicted outcomes under each policy by the relative probabilities 

of each policy (π). This implies both smoothness estimation and beliefs about policies should 

influence those regions translating between continuous and categorical inference. We will 

return to this crucial issue in the discussion.

Figure 4 shows what happens when we simulate inference in the model of Figures 1 and 3, by 

numerically integrating (i.e., solving) the equations in supplementary Appendix 1 (which solve 

Equation 2). This provides an example of healthy behaviour in the coordination task outlined 

above. The target location changes 3 times and, each time, the three controllable joints of the 

arm flex, extend, or rotate such that the hand reaches the target. A series of selected frames are 

shown on the left of Figure 4, which show the movement of the arm, and the (imaginary) red 

spheres to which the arm is drawn. By predicting the proprioceptive input that would be present 

if there were a spring pulling the hand to these fictive targets – and by inferring a sequence of 

intermediate targets from the current location to the final target – spinal reflexes are engaged 

that resolve the discrepancy between predicted and observed proprioceptive data such that the 

arm reaches its target. The trajectory of the hand and the sequence of imaginary spheres to 

which it is drawn are shown in the upper right plot in Figure 4. The corresponding joint angles 

are shown in the plots below. Note that this formulation of co-ordinated motor activity 

dissolves Bernstein's problem (Bernstein, 1967), because there is one unique trajectory under 

the priors implicit in the generative or forward model. In other words, there are no ad hoc 

objective functions (Jordan, 1989) necessary to constrain the plurality of trajectories and 

degrees of freedom associated with any goal-directed behaviour – the only objective is to 

realise the movement that maximises model evidence (or free energy). All that is required to 

specify this free energy functional is the set of priors that detail the structure of the task (i.e., 

how we as experimenters or the physical world generate the data presented to the model). 

Crucially, these all participate in the same objective function. Another way of putting this is 

that the only thing that needs specification under this approach is the problem to be solved. 

This includes the physics of the problem in addition to the decisions to be made and the final 

answer that we expect to settle upon. Once this is specified, the problem entails the objective 

function, which can be solved automatically and generically.
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In referring to a ‘goal’, we mean there is a prior preference or expectation built into the 

generative model that the hand location will be congruent with the currently highlighted target 

(i.e., the darker sphere). To get a sense of the ‘goal’ of the arm movement, it is worth translating 

the generative model into the kind of instructions we might ask a participant to follow during 

an experiment. The highest level effectively says “During this task, there are three targets that 

will be present throughout. One of these will be dark, and the other two light. Periodically, and 

randomly, we will change which of the three targets is darkened.” The lower MDP level says: 

“The task here is to touch whichever is the dark target at any one time.” This is expressed by 

the correct and incorrect outcome that predicts ‘correct’ when the location of the hand and the 

dark target align, and ‘incorrect’ otherwise. The C vector specifies that the former is preferred 

in this experiment.

This simulation shows how the presence of a deep temporal model naturally extends the 

equilibrium point hypothesis to an equilibrium trajectory hypothesis. Importantly, this means 

that there are two sorts of computational syndrome we might expect when lesioning this model. 

The first is a failure to infer the series of attracting points leading to the goal. The second is a 

failure to implement the movements that lead to the realisation of the kinematics implied by 

these attracting points. This speaks to a division into pathologies of discrete and continuous 

inference or, equivalently, between those affecting the planning and execution of movements. 

Interestingly, the same theoretical distinction between continuous and discrete processes was 

proposed based upon clinical observations at the end of the 19th century: “the cerebellum is the 

centre for continuous movements and the cerebrum for changing movements” (Jackson, 1899). 

Figure 5 illustrates the consequences of a set of model ‘lesions’ for the arm movement 

trajectory, where the targets follow the same sequence as in Figure 4. Note that manipulations 

of the precision (Π) of sensory input do not impair the performance of this coordination task. 

If we interpret this lesion as in Figure 2 – interruption of descending signals from the pyramidal 

system – the unaffected performance is consistent with the relative preservation of coordination 

in patients with corticospinal lesions (Clarke et al., 2016). More complex motor tasks, including 

grasping, can be associated with deficits following these lesions (Wenzelburger et al., 2004), 

but the task shown here is not sufficiently sensitive to demonstrate these. Overestimation of 

smoothness (λ) does not impair the planning of movement, in the sense that the same sequence 

of planned targets is inferred as in Figure 4. However, there is a marked hypermetria (i.e., 

movement beyond the intended goal) at each target location with an oscillatory path between 

these locations (Bastian, 2011). Recalling that no such oscillations were present at rest, before 
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the tendon tap, in the simulations in Figure 2, we can interpret this trajectory as expressing an 

intention tremor. This is characteristic of cerebellar disease, and of Purkinje cell degeneration 

(Louis and Faust, 2020). This provides an example of disorder of movement execution, as 

opposed to movement planning. It also endorses the idea that the cerebellum estimates this 

smoothness, as we find the same lesion that induced cerebellar-like reflexes also induces the 

coordination deficits associated with a cerebellar syndrome (Horak and Diener, 1994; Hore et 

al., 1991).

It is important to highlight at this point that there are many different causes of a cerebellar 

ataxia (Akbar and Ashizawa, 2015). These range from inherited disorders, such as the 

spinocerebellar ataxias (Klockgether et al., 2019), to acquired vascular (Edlow et al., 2008), 

demyelinating (Wilkins, 2017), or systemic insults (Ercoli et al., 2019). The simulations 

presented here speak to the common pathological endpoint of these processes. As such, it is 

worth briefly addressing theories of cerebellar pathophysiology (Diener and Dichgans, 1992) 

and what this endpoint could be. This serves to illustrate the more general point that clinical 

neurology is only made possible through the fact that the number of ways in which the nervous 

system reacts to perturbation is much smaller than the number of pathological processes that 

could cause this perturbation. Understanding the mechanism of a common endpoint – for 

instance, through a computational approach as outlined here – might point to targeted 

therapeutics that address this mechanism, despite being agnostic to the specific aetiology. 

Returning to the example of cerebellar dysfunction, the parameter λ we deal with here directly 

modulates cerebellar targets, as Equation 3 suggests it contributes to the same spinal circuits 

targeted by the corticospinal tract. This places λ in the cerebellar output nuclei or red nucleus 

and implies any upstream damage to the cerebellum will influence this. 

Physiologically, the outputs of the cerebellum are under inhibitory control from the Purkinje 

neurons (Ito et al., 1964). This makes sense of the idea that cerebellar lesions lead to 

overestimation of λ, as the neural populations encoding this variable are disinhibited. Purkinje 

neuron activity depends upon patterns of activity in parallel fibres that run along the surface of 

the cerebellar cortex and upon climbing fibres that arise from the olivocerebellar tract (Jörntell, 

2017). Prominent theories of cerebellar function argue that climbing fibres aid in learning 

which patterns of parallel fibre input should prompt disinhibition of Purkinje cell targets (Ito, 

2006). While there remains controversy over the synapses in which this learning takes place 

(Kellett et al., 2010; Weeks et al., 2007), it follows that disruption of the Purkinje cell influence 

over the output nuclei will also disrupt learned contextualisation of this output.
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These clinical and physiological observations help localise the message passing that 

underwrites cerebellar function, but also highlight an incompleteness of the generative model. 

The implication is that we require explicit priors over λ that enable learning of this variable. As 

Bayesian message passing is necessarily reciprocal (if A tells us something about B, then B 

tells us something about A), this implies messages to the cerebellar output nuclei must be 

constructed from those areas influenced by λ – consistent with the contribution of the 

spinocerebellar tract to the parallel fibres (Ekerot et al., 1979).

The hypothesis that the cerebellum deals in temporally correlated fluctuations makes 

predictions for clinical research. For example, while very important in motor control, temporal 

correlations are also important in other sensory systems. This implies patients with cerebellar 

lesions should be impaired at perceptual tasks involving motion discrimination. Motion is 

important here, as λ relates to autocorrelations over time. Evidence in favour of this includes 

the increased perceptual threshold required in visual dot-motion tasks in cerebellar patients 

compared to controls (Händel et al., 2009).

In addition, Figure 5 introduces two new lesions that target the discrete parts of the generative 

model; i.e., categorical inference or planning. The first of these is disruption of the precision 

associated with the contribution of expected free energy to policy selection3. To understand the 

contribution of this, we briefly review the way in which policies are inferred under active 

inference. Equation 5 sets this out explicitly4:

(1) (1) (2) (1) (1)

(1) (1) (1)

(1) (1) (1) (1) (1)

(ln )

ln ln
  

  

   

  

   


π E o F γ G

G o ς
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 (5

This says that posterior beliefs about policies (π(1)) comprise three parts. These are the prior 

plausibility of each policy (E(1)) taking account of higher level (slowly changing) contexts 

(o(2)), and two sorts of free energy functional (F(1) and G(1)). These functionals score the 

evidence and expected evidence for a policy. The key difference between the two is that the 

expected log evidence (i.e. negative expected free energy) involves an expectation with respect 

to future (unobserved) outcomes (o(1)) as indicated by the dot product in the second line. The 

3 For an account of how the imperative to minimise expected free energy emerges from the underlying physics, 
see Friston, K., 2019. A free energy principle for a particular physics. In: arXiv e-prints. Vol., ed.^eds.
4 In this expression, free energy and expected free energy decrease with log evidence. In statistics and machine 
learning, authors prefer to use the negative version of these functionals.
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final line sets out the key elements of the expected free energy. The first two terms quantify 

the difference between predicted and preferred (C(1)) outcomes5, while the third expresses the 

ambiguity (or conditional entropy) of state-outcome mappings expected under a policy.

Together, these balance exploratory (ambiguity-averse) and exploitative (preference-driven) 

behaviours. Note that the contribution of the expected free energy in the first line is weighted 

by a precision parameter (γ). This quantifies the prior confidence that policies will minimise 

expected free energy. This precision has been repeatedly associated with dopamine signalling 

in both theoretical (Friston et al., 2014; Parr and Friston, 2019) and empirical (Marshall et al., 

2016; Schwartenbeck et al., 2015) domains. It is interesting to note that this effectively weights 

the contribution of two opposing influences over policy selection, much as dopamine regulates 

the balance between the direct and indirect pathways through basal ganglia circuitry (Nambu, 

2004; Smith et al., 1998).

Figure 5 shows that attenuating the precision parameter γ leads to a qualitatively different sort 

of behaviour than the manipulations outlined above. Here, the lack of confidence in policy 

selection favours a set of attracting points that are either near the start location or are in the 

centre of all of the other possible points. This failure to confidently predict where the hand will 

move to next induces either a reliance on prior beliefs about the start location, or the averaging 

all predictions to reach the centre. Heuristically, we can think of the first quarter of the trial as 

failing to accumulate enough evidence in favour of a move to a new location. The slightly 

larger movements in the second quarter are not enough to reach a new location but provide 

more substantial evidence of displacement from the start location. This facilitates a movement 

(in the third quarter) away from the start but to a location in the centre of all others. Finally, 

the drift back to the initial location could reflect the presence of the hand between the start and 

the centre, providing evidence in favour of a trajectory between this location and all others. In 

the absence of clear evidence towards another specific location, this leads to a return to the 

initial location. Note that there is no problem in motor execution, as the hand is drawn reliably 

to the red spheres. The problem is in the selection of the location of these imaginary attracting 

points. The difficulty in initiating large amplitude movements – and the fact that movements 

are slow, once initiated, are compatible with the kinds of disorders associated with subcortical 

lesions (Albin et al., 1989). These disorders include conditions like Parkinson’s disease 

5 Technically, this corresponds to the KL divergence between predicted and preferred outcomes and its 
minimisation is known as risk sensitive or KL control in optimal motor control: van den Broek, J.L., Wiegerinck, 
W.A.J.J., Kappen, H.J., 2010. Risk-sensitive path integral control. UAI. 6, 1–8.
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(Clarke, 2007; Marsden, 1992), in which dopaminergic neurons of the substantia nigra pars 

compacta are depleted. 

The final lesion shown in Figure 5 targets the deep hierarchical structure of the discrete part of 

the generative model. As shown in Figure 3, the two discrete levels are linked by the A(2)-

factor. This factor is used to generate predicted outcomes, which are then mapped to prior 

beliefs about policies (see Equation 5) and prior beliefs about the initial state at the lower level. 

The reciprocal message back to the higher level then depends upon which policy and initial 

state were inferred by the end of the trajectory at the lower level. This is shown in Equation 6:

𝒓(2)
𝜏

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
= 𝜎(𝑙𝑛 𝒐(2)

𝜏
𝑝𝑟𝑖𝑜𝑟

+ 𝑙𝑛 𝑬(1) ⋅ 𝝅(1)

𝑝𝑜𝑙𝑖𝑐𝑦 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
+ 𝑙𝑛 𝑫(1) ⋅ 𝒔(1)

1
𝑠𝑡𝑎𝑡𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

)

(6

The reciprocal message passing between these fast and slow levels facilitates the seamless 

composition of a series of trajectories into a motor narrative. 

Our final lesion disrupts this message passing by attenuating the precision (Parr and Friston, 

2017) associated with A(2). This effectively disconnects those neuronal populations 

representing where the arm is coming from and going to, from those that represent the initial 

position and policy at the lower level. This precludes the use of inferences about one trajectory 

from influencing the next. As Figure 5 shows, this disrupts the sequence of attracting points 

inferred. However, it does so in a quite different way to the lesions of γ, which provides us 

with a final dichotomy: inferences about states and policies.

Functionally, this dichotomy maps onto the distinction between executive (Diamond, 2013) 

and planning (Marsden, 1984a; Marsden, 1984b) functions; anatomically, it may be equivalent 

to the distinction between cortical and subcortical syndromes (Hazy et al., 2007). One 

terminological conflict worth addressing is the traditional view of executive function as 

comprising planning, working memory, and inhibition and the formal realisations of these 

processes. The conflict here is that all these processes (defined formally) occur over a range of 

timescales, while it is typically only the slower timescales that are thought of in terms of 

executive function. This precludes (for example) the working memory processes that mediate 

visual scene construction, which ensures we perceive more than the limited foveal field of 

vision available to us at any one time. It also means that very fast planning processes that 

determine the shape of a short motor trajectory are not treated as ‘executive’. Instead, executive 

function typically comprises working memory over the timescale of delay-period tasks 
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(Funahashi, 2015) and planning of the sort required to solve (for example) a Tower of Hanoi 

problem (Hardy and Wright, 2018). Here, we use the term ‘executive’ to refer to those 

inferences with long temporal horizons. Operationally, in relation to this task, this means 

inferences about sequences of trajectories (intended to reach a certain goal state each; i.e., “I 

will first move my hand to the upper target, followed by the lower left, and then the upper 

target again”) qualify, but inferences about sequences of movements within a goal-directed 

action (i.e., “on my way to the upper target, I will move through these intermediate spatial 

locations”) do not; c.f., motor chunking (Wymbs et al., 2012).

Note that, following the synthetic lesion of A, each shorter trajectory (between the vertical 

lines) ends at the same place as in the healthy model. The points at which the trajectory deviates 

occur immediately after the target location changes (i.e., at each transition at the higher level 

of the model). This suggests a failure to change to a new sort of policy when the context 

changes. Despite this, the information available over a faster scale is sufficient for the 

appropriate trajectory to be inferred, if a little later than it would have been with an intact 

model. 

One perspective on this – consistent with the role of the frontal cortices in coordinating working 

memory (Goldman-Rakic, 1995) – is that this is due to a failure of ‘immediate recall’ (Harlow 

et al., 1952; Jacobsen, 1935) of the previous part of the trajectory (before the change in target 

location), preventing synthesis of movement plans across changes in task context. Another 

perspective is that this provides an interesting connection to another well recognised sign 

associated with these disorders. This is the phenomenon of perseveration – where patients who 

have started to engage in a given behavioural protocol struggle to abort or change this 

behaviour at the appropriate time (Freedman et al., 1998; Nyhus and Barceló, 2009). This 

lesion could underlie the perseverative or task-switching difficulties associated with frontal 

lobe executive syndromes (Luria, 1980) with consequences in the motor domain (Leonard et 

al., 1988).

There is a (loose) sense in which this is the opposite of the Parkinsonian type symptoms 

following lesions of γ described above, which lead to excessive reliance on inferences about 

slowly changing variables at the higher level (Jávor-Duray et al., 2017). In contrast, a 

disconnection or lesion to the mapping associated with A leads to over-reliance on inferences 

about fast-changing variables and a failure to deal with contextual change. The dichotomy here 

is one of shifting the balance to behavioural imperatives arising from slower or faster 

timescales. However, reducing the precision of either of these imperatives ultimately reduces 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab085/6168144 by U
niversity C

ollege London user on 26 M
arch 2021



22

the confidence in any plan of action. This means we should expect attenuated basal ganglia 

output and impaired task switching in both Parkinsonian and frontal syndromes – as is seen in 

these conditions (Cameron et al., 2010; Luria, 1980). This idea lends itself to experimental 

evaluation, as it implies a common attenuation of basal ganglia signals in (for example) fMRI 

in patients with frontal and Parkinsonian syndromes compared to controls while engaging in 

task-switching behaviour.

Discussion

Computational anatomy

In the above, we set out a generative model whose inversion or solution – based upon a form 

of inferential message passing with a well-defined computational anatomy – enables 

performance of simple motor tasks of the kind used to assess neurological function in a clinical 

setting. We found that synthetic lesions to the generative model resulted in motor behaviour 

consistent with syndrome categories observed in clinical populations (see Table 1 for a non-

exhaustive summary). The mutual constraints offered by the anatomy of message passing and 

the consequences of lesions in relation to empirical data imply specific hypotheses about the 

realisation of these computations in brain anatomy. Figure 6 outlines an anatomical scheme 

that satisfies these constraints, and implicates many of the same anatomical regions as in 

existing schemes (Scott, 2012). At the level of the spinal cord, this shows the α-motoneurons 

as using the discrepancy between the proprioceptive inputs and descending predictions about 

these data to drive muscle contraction. Any residual error is communicated to the ventral 

posterior lateral (VPL) thalamus via the nucleus cuneatus. This thalamic nucleus may 

(polysynaptically) project to the motor cortex. However, this is not strictly necessary under 

active inference, as the prediction error is largely suppressed through motor reflexes (see Figure 

6). This idea has been used to explain the poverty of projections to cortical layer IV – the layer 

typically in receipt of ascending projections (Felleman and Van Essen, 1991; Zeki and Shipp, 

1988) – in ‘agranular’ primary motor cortex (Adams et al., 2013; Shipp et al., 2013). This is 

endorsed by the increasing recognition of the central role of spinal reflexes in implementing 

complex coordinated behaviour (Weiler et al., 2019).
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The predictions sent from the primary motor cortex to the spinal cord themselves depend on 

input from other cortical regions; the most likely candidates in the context of goal-directed 

upper limb movement being the frontal and parietal cortices (Cohen and Andersen, 2002; 

Dekleva et al., 2016; Graziano, 1999; Graziano et al., 2000; Limanowski and Blankenburg, 

2016; Rushworth et al., 1997). Figure 6 illustrates this in terms of inferences about continuous 

variables passed from the premotor (PM) cortex. Interactions between PM and motor thalamus 

– comprising ventral lateral (VL) and ventral anterior (VA) nuclei – are shown as translating 

between discrete and continuous inference. Note that this translation depends upon cerebellar 

inputs to the VL-thalamus, as this modulates the gain of its projections to the cortex, and on 

basal ganglia inputs to both VL and VA thalamic nuclei to take account of Bayesian model 

averaging over policies (FitzGerald et al., 2014). This is based upon the idea that the basal 

ganglia are engaged in evaluating alternative policies (Jahanshahi et al., 2015). This view of 

the basal ganglia is highly consistent with the view that, while alternative sequences of actions 

are likely represented in cortical regions, the evaluation of these alternative plans appears to 

take place within basal ganglia circuits (Marsden, 1984b; Monchi et al., 2006). As we saw 

above, this evaluation depends upon the (expected) evidence for each policy, and hierarchically 

derived prior beliefs. Figure 6 depicts these influences as arising from the direct and indirect 

pathways from the striatum to the globus pallidus internus. Note the internal consistency of this 

with the role of dopamine in weighting the relative contributions of these. In addition, the direct 

pathway has a net inhibitory influence over the basal ganglia outputs, in virtue of the 

suppression of policies with high expected free energy, while the net influence of the indirect 

pathway is excitatory, specifying the range of plausible policies for a given context. These 

influences over the (GABAergic) output nuclei and their behavioural consequences are 

consistent with those found through optogenetic manipulation of the striatal medium spiny 

neurons at the origin of these basal ganglia pathways (Freeze et al., 2013; Kravitz et al., 2010).

Synthetic behaviour

Notably absent from the phenomenology of the synthetic dopamine lesions is the classic 

Parkinsonian resting tremor (Wenzelburger et al., 2000). This raises an important point that 

should contextualise the account on offer here. Syndromes like Parkinson’s disease are not 

consequences of focal lesions, but depend upon pathogenic processes with specific anatomical 
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distributions. This is seen in studies in which the dopaminergic midbrain is lesioned in monkeys 

(Poirier et al., 1975). These also fail to induce a resting tremor (unless additional lesions are 

made elsewhere). In addition, aspects of the Parkinsonian syndrome have been associated with 

dynamic dysfunction in reticular thalamocortical networks (Reis et al., 2019). Observations of 

this sort have led some to argue that a tremor is not an integral part of the syndrome induced 

by degeneration of the substantia nigra pars compacta (Marsden, 1984a). Another perspective 

on this is that the tremor results from a functional diaschisis (Carrera and Tononi, 2014a; Price 

et al., 2001a; von Monakow, 1914), with other components of the motor network (Muthuraman 

et al., 2018) compromised as a consequence of the primary insult. 

It is interesting to note the similarities between the synthetic trajectories under ‘cerebellar’ 

lesions presented here and the ‘before learning’ trajectories shown in neural network models 

of reaching behaviour; e.g., (Schweighofer et al., 1998). This raises the possibility of some 

mathematical equivalence between the quantities being learned in the neural network model 

and the optimisation of precision in generalised coordinates of motion. Causal evidence in 

favour of extinction of learning in motor behaviour following cerebellar lesions is evident in 

animal research, where lesions to the subcortical nuclei (Yeo et al., 1985b) or cortex (Yeo et 

al., 1985a) both abolish previously learned motor responses and preclude their reacquisition. 

In addition, human studies in clinical populations have illustrated similar oscillatory motor 

trajectories – in a task very similar to that used here – for those with cerebellar lesions (Sanes 

et al., 1990), and the interaction of this with learning. In future work, we hope to unpack the 

optimal estimation of this precision under active inference, to see whether the implied update 

rules have the same form as the updates used during learning in models that seek to directly 

emulate cerebellar architectures. This is an important step in showing the convergence between 

emergent dynamics under first principles and more physiologically motivated update schemes.

While our focus has been on movement in humans, the same principles have been employed 

to develop synthetic and robotic systems (Hafner et al., 2019; Matsumoto and Tani, 2020; 

Oliver et al., 2019). The reason for mentioning this is that if there are homologies between the 

functioning of artificial and human motor systems, both may fail in the same way. The 

implication is that the wealth of neurological research accumulated over the last few centuries 

may be vital in understanding pathologies of artificial intelligence (and vice versa).

Hierarchical motor ‘chunking’
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A key theoretical advance of our paper is the use of empirical priors about policies, as 

contextualised by the higher levels of a cortical hierarchy. This allows for a range of plausible 

action plans to be specified based upon the (slowly changing) context (Pezzulo et al., 2018). 

This is important for three reasons. The first of these relates to the anatomy of the basal ganglia. 

The presence of a cortical input providing a temporally coarse influence over policy selection 

is highly consistent with the distribution of cortical inputs (Wall et al., 2013) to the D2-

expressing medium spiny neurons (the origin of the indirect pathway), and with their increased 

time-constants (Gertler et al., 2008) relative to D1-expressing neurons (of the direct pathway). 

It is also consistent with observations of ‘bracketing’ in the striatum (Graybiel and Grafton, 

2015), in which neural activity signals the start and end of each component (behavioural unit) 

of a task (Jin and Costa, 2010). Over time, repeated sequences are grouped, meaning neural 

activity becomes less frequent. This chunking into progressively longer action sequences is 

highly consistent with the idea of a hierarchy of policies (or plans) and with the idea that these 

are evaluated in the striatum. The second reason relates to an interesting phenomenon that 

arises in Parkinson’s disease. This is called kinesia paradoxa (Banou, 2015), and describes 

when patients who are otherwise akinetic perform fluent (often visually-guided) movements 

(Glickstein and Stein, 1991). The anatomy of Figure 6 provides a clear hypothesis as to how 

this could happen. Although the direct pathway is unable to drive precise policy selection in 

the absence of dopamine, the indirect pathway could continue to do so, based upon inferences 

about a slowly changing context (e.g. being on a moving bicycle) in which a particular 

behaviour (e.g., pedalling) is confidently predicted (Snijders and Bloem, 2010). The third 

reason for emphasising hierarchical control of policy selection is that this provides a link 

between cortical and subcortical contributions to disorders in which the policies executed are 

incongruent with the context at hand. This is important in tic disorders (see below).

Hierarchical motor control provides an interesting connection with models that incorporate the 

notion of ‘effort’ in disambiguating between alternative movements (Rigoux and Guigon, 

2012; Shadmehr et al., 2016). The key idea is that movements requiring more effort are 

penalised relative to less effortful choices. From an active inference perspective, effort may be 

equated with the implausibility of a trajectory under prior beliefs. This is sometimes phrased 

as a ‘complexity’ penalty, quantified by the (KL) divergence between prior and posterior 

beliefs about how to act, or as a Bayesian Occam’s razor (Rasmussen and Ghahramani, 2001) 

that tells us the simplest hypothetical action sequence tends to be the best. This suggests that 

the analogue of the effort penalty proposed by some is given by the prior beliefs passed from 
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higher to lower levels via the E-matrix employed here. Note that, in our Parkinsonian 

simulations, the reduced precision associated with the expected free energy means that E 

dominates inference about how to act, implying goal-directed movements driven by G become 

much more effortful. This also provides an interesting connection between neuroanatomical 

theories of effort (Hwang, 2013) which propose representation by the indirect pathway through 

the basal ganglia, just as with E in the anatomical scheme presented here.

Alternative approaches

Some authors have argued that the forward modelling approach that underwrites the results 

presented here is limited in the context of faster movements (Kawato and Wolpert, 1998). This 

rests partly upon the delays present in certain reflex loops, and the relationship between these 

and physical properties of the limbs. In contrast, others have demonstrated (Flash, 1987) that 

this sort of modelling can be highly successful when physical parameters are closely informed 

by physiology. When thinking about the potential challenge fast movements might pose, it is 

also worth highlighting an important distinction between traditional equilibrium point theories 

and the implementation presented here. This is the use of generalised coordinates of motion. 

The advantage of representing not only the position – but also the velocity, acceleration, and 

subsequent orders of motion – is that higher orders of motion act as the coefficients of a local 

Taylor series approximation to the current trajectory. This is useful in the sense that it allows 

for predictions about the proximal future and past. The advantage of this is that the delays that 

might otherwise be difficult to deal with during fast movements can be compensated for. In 

addition, they provide a means of dealing with non-zero autocorrelations in fluctuations, of the 

sort that have been shown to have an influence over motor trajectories (Harris and Wolpert, 

1998). For detailed numerical demonstrations of how generalised coordinates of motion can 

overcome the issue of neural delays during fast movements, please see (Perrinet et al., 2014). 

The relevance of the distinction between inverse and forward modelling for understanding 

disease is exemplified by the simplicity of the simulations of reflexes described above. This 

rests upon the idea that precision must be attenuated (by descending neurons from the cortex) 

under an equilibrium-point model to allow movement to take place. The hyperreflexia in Figure 

1 results from a failure of this attenuation. Inverse modelling approaches do not require this 

attenuation, so there is no reason to expect exaggerated reflexes following loss of descending 

control. More broadly, the clinical benefit of adopting the Bayesian message passing formalism 

advocated here is the common language it affords to address multiple interacting neurological 

systems. In part, this is due to the use of a single generative model to account for discrete 
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sequences of events (i.e., planning and decision making) and continuous trajectories – which 

may be proprioceptive, but could also include light and sound intensity, somatosensation, or 

other modalities. As no brain system operates in isolation, it is important to understand the 

distant consequences of a focal lesion (e.g., the changes to low level motor trajectories as a 

consequence of prefrontal lesions shown in Figure 4). This necessitates a common generative 

model of the sort on offer here.

Several computational accounts have been proposed to address specific behaviours, to provide 

neuroanatomical theories, or to simulate specific lesions (Vijayakumar et al., 2011). For 

example, (Schweighofer et al., 1998) provide a model that reproduces similar cerebellar lesions 

to those shown here, (Rigoux and Guigon, 2012; Shadmehr et al., 2016) focus upon ways in 

which goal-directed reaching under effort constraints may be realised, and (Buhrmann and Di 

Paolo, 2014) highlight the ways in which spinal reflexes may underwrite complex motor 

behaviours. In this paper, we offer a single generative model whose inversion is consistent with 

known anatomy and qualitatively reproduces a range of clinical syndromes by lesioning the 

appropriate priors. This provides constraints on the functional anatomy at several different sites 

– and offers a way to frame multiple different sorts of lesion within the same inferential 

network.

It is important to note that other proposals tend to address slightly different problems to that 

we focus upon here. We offer a characterisation of the anatomy of motor control in terms of 

Bayesian message passing. While there are many other computational models that could be 

(and have been) constructed, to our knowledge, none offer an inferential characterisation of 

this sort. As such, these are different perspectives as opposed to competing models, per se. One 

point in common between this approach and those based upon inverse models is that both 

acknowledge the importance of an internal model of dynamics in order to engage in planning 

(Cos et al., 2013; Sabes and Jordan, 1997). The distinction is that the dynamical model and 

alternative plans in our approach are part of the forward model.

Future work

One way in which we hope to exploit this formalism in future work is in understanding impulse-

control disorders, such as Tourette’s syndrome, where there appears to be a failure to determine 

which policies are implausible in a given context (Rae et al., 2019) leading to a failure to 

suppress involuntary movements or ‘tics’ (Albin and Mink, 2006). Notably, the functional 

neuroanatomy of this syndrome implicates multiple regions in the cortico-subcortical loops 
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shown in Figure 6 (Bronfeld et al., 2011; Orth and Rothwell, 2009). Under the view that frontal 

regions normally provide the indirect pathway with contextual input, damage to either frontal 

or indirect pathway regions could result in the enaction of implausible (context-inappropriate) 

movements, through a relative facilitation of the direct pathway. This is another way of 

phrasing the view that the frontal cortex is engaged in contextual behavioural inhibition, of the 

sort investigated through ‘go no-go’ paradigms (Sakagami et al., 2006). The model provided 

here provides the machinery upon which such tasks could be simulated, while considering the 

motoric constraints on task performance. Specifically, an important issue in tic disorders is that 

the mechanisms generating tics and those involved in their inhibition are often difficult to 

disentangle (Rawji et al., 2020). Our hope is that this form of modelling, which treats these as 

occurring at different temporal hierarchical levels, may be used to identify which aspects of 

neuronal message passing to probe empirically to disambiguate the two. The anatomical 

process theory associated with this message passing facilitates the expression of hypotheses 

answerable to, for example, neuroimaging studies. This also makes a more general point about 

the use of theoretical models in motivating new hypotheses to address as yet poorly understood 

motor pathology.

It is worth highlighting a simplification we have made in the induction of synthetic lesions. 

This is that we have not distinguished between the precision afforded to different sensory 

modalities. In future work, we hope to exploit this to try to understand how vision and 

proprioception may compensate for one another. In the context of limb or hand movements, 

this may be useful in providing a computational characterisation of dyspraxic syndromes, 

where lesions of the dorsal visual stream impair visually guided motor tasks (Desmurget et al., 

1999; Greene, 2005; Ungerleider and Haxby, 1994). By selectively attenuating modality-

specific precision parameters (Friston et al., 2010b) during more complex tasks (and sensory 

perturbations), we hope to reproduce the sorts of disconnection syndromes (Geschwind, 1965a; 

Geschwind, 1965b) found following lesions to different parts of the brain. This affords an 

additional opportunity to test the construct validity of the proposed functional anatomy in 

relation to neuropsychological data. Furthermore, this approach could be used to model the 

sorts of paradigms used in healthy people to investigate multisensory integration; for example, 

through experimentally inducing inconsistencies between proprioceptive and visual data (Fink 

et al., 1999; Foulkes and Miall, 2000; Limanowski et al., 2017). Through an appeal to the 

process theories associated with active inference (Friston et al., 2017a), synthetic neural 

responses may be simulated alongside behaviour, and may be used as regressors in analysis of 
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neuroimaging data in these tasks (Schwartenbeck et al., 2015). The hypothetical computational 

anatomy of Figure 6 makes clear predictions about where each sort of neural response could 

be detected in different anatomical locations, and ensures the ideas presented here are 

answerable to empirical data.

In this paper, we have illustrated the points at which modern theoretical neurobiology has 

converged upon the same sorts of distinctions that are well-documented in clinical neurology. 

This offers a mutual validation of these approaches and takes us a step further towards a 

functional interpretation of anatomical systems in the brain. However, this is more than simply 

an intellectual exercise. Recently, we have illustrated how we can conceptualise and simulate 

therapeutic interventions through appealing to the same framework (Parr and Friston, 2019), 

and illustrated how these computational parameters may be measured in vivo (Mirza et al., 

2018; Vincent et al., 2019). Placing the consequences of pathology and therapeutic intervention 

in the same domain offers the potential for a functionally grounded approach to treatment 

development and personalised therapeutics. Ultimately, our hope is that we could estimate the 

parameters of these models for individual patients (Schwartenbeck and Friston, 2016), based 

upon non-invasive behavioural measurements, and simulate alternative therapeutic 

interventions (Friston et al., 2017c). This would allow for highly personalised predictions about 

treatment responses, side-stepping a ‘trial-and-error’ approach to finding the best treatment for 

an individual patient.

Conclusion

This paper has attempted to find a point of contact between modern approaches to theoretical 

biology and classical neurological attempts to understand the function of the nervous system. 

The key connection between these is evident in William Gowers’ assertion that “…there is a 

region in which we must recognise hypothesis as absolute… Here we must either accept 

indirect perception, or we must be content with no perception of the causes of that which we 

observe. Where we have no certainty we must be content with probability…” (Gowers, 1894). 

This statement, while originally intended from the perspective of a neurologist, is equally 

applicable from the perspective of a nervous system, and emphasises the importance of a 

generative model of the causes of sensory input (observations). We have illustrated how 

specifying a minimal generative model for movement entails an inferential architecture that is 

highly consistent with known neuroanatomy. The sorts of pathology this lends itself to are 
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consistent with the classification of syndromes in clinical practice, which constitutes an 

important step in bridging clinical and theoretical approaches to neurobiology.
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Figures 1 and 3. The second provides simulations that validate the model described above in 

relation to the ‘minimum intervention principle’ of optimal motor control. The third 
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summarises the details of constructing covariance matrices in generalised coordinates of 

motion. In addition, videos of the synthetic tendon reflexes are available in the supplementary 

‘Reflexes.mp4’ file, and of the coordination task in the ‘Coordination.mp4’ file.
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Figure legends

Figure 1 – Continuous generative model of arm movement. This schematic shows the 

variables used to define a generative model of arm movements in three dimensions, and the 

equations that mediate their interactions. The functions f and g are used to define the expected 

rate of change of x, and the generation of y. The first 3 elements of x are the angular positions 

of the shoulder (rotation and flexion) and the elbow (flexion). The final 3 are the angular 

velocities associated with these joints. We have designed this generative model to include the 

belief that there is a (fictitious) force that is proportional to the distance between the position 

of some (imaginary) target (v1,2,3) and the current position of the hand (Θ) in a three dimensional 

Euclidean frame of reference. The Θ-function takes the angular positions of the joints and 

returns the coordinates of the hand. This depends upon the lengths of the arm and forearm, and 

the position of the shoulder (θ). Sensory data are divided into proprioceptive and visual 

modalities. The proprioceptive II-fibres report the angular position of the joints (i.e. the 

‘stretch’ in the associated tendons), while Ia-fibres report the rate of change of these positions. 

We have adopted the simplification here that the visual modalities report the position of the 

hand in Euclidean coordinates. In addition, they specify the colour of each of the three targets 

(v4,5,6) in different spatial positions. This model is similar in spirit to that used for (2-

dimensional) simulations of handwriting (Friston et al., 2011).
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Figure 2 – Synthetic biceps reflex under normal and abnormal precision estimates. The 

first three plots show the consequence of briefly stimulating the stretch receptors at the elbow, 

as if we had tapped on the tendon connecting the biceps muscle to the bones of the forearm. 

This induces a (proprioceptive) prediction error that is corrected by spinal reflexes. The first 

plot illustrates this for a ‘healthy’ generative model. The next two plots show what happens if 

we perturb beliefs about the spatial and temporal components of precision, respectively. 

Overestimating the former (Π) increases the gain of the prediction error, increasing the speed 

and amplitude of the reflex. Overestimating the smoothness of random fluctuations (λ) instead 

induces a smaller amplitude ‘pendular’ reflex where the arm continues to oscillate following 

the tendon tap. Note that the effects of the tendon tap are not seen only in the elbow joint. There 

are additionally changes in the shoulder flexion; changes in the rotation of the shoulder are 

limited, as this is orthogonal to the elbow joint. The lowest plot illustrates the same perturbation 

for the model of oculomotor behaviour described in (Parr and Friston, 2018). In this context, 

overestimation of the smoothness leads to hypermetric saccades. Compare this (red) to the 

simulated horizontal electro-oculogram (HEOG) in blue, where the smoothness is correctly 

estimated. The graphics of the arms are shown to provide some intuition for non-clinical 

readers as to the subtlety of the signs that might be elicited during a neurological examination. 

For clinical readers, they illustrate the sort of patterns they might be familiar with. While still 

images are limited in providing a sense of what is happening here, we invite readers to run the 

demonstration code indicated in the software note to produce an animated version of these 

graphics. In this setting, it is much easier to appreciate the qualitative differences between each 

lesion.

Figure 3 – Discrete generative model for movement planning. This schematic illustrates the 

hierarchical discrete state-space generative model that sits above the continuous model shown 

in Figure 1. This model generates the hidden causes (v) that are the (imaginary) attracting points 

and the target locations from the perspective of the continuous model, which effectively induce 

movement. The discrete (categorical) causes that generate these come in two forms: the 

alternative attracting points (red spheres) that act as equilibrium points, and which of the three 

possible target locations is currently specified. These causes are themselves generated by states 

at a higher level. At the highest level (upper left) we have a set of alternative combinations of 

trajectories. Each of these is defined in terms of which vertex of a triangle (i.e., target location) 

is at the start and end of that trajectory. There are three configurations not shown that represent 

a single vertex of the triangle being the start and end of a trajectory (i.e., a static ‘trajectory’). 
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In addition, the higher level includes a replica of the three possible target states (upper right). 

However, while these are considered static at the timescale of the lower level, the slower 

dynamics of the higher level allow this to change over time. The key distinction here is the 

absence of arrows between alternative target configurations at the first level. The C-vector 

represents the statistics of a prior belief that policies will lead to correct outcomes (i.e., hand 

and target location match). This ensures sequences of actions that lead to the realisation of this 

goal are more plausible than those that do not. The arrows within a level indicate the allowed 

transitions (encoded by B) between these configurations. The arrows between levels show the 

generation of lower level variables by higher level variables. This rests upon generation of a 

discrete outcome via A(2), which is then used to generate policies (via E(1)) or initial states (via 

D(1)). The role of D(2) is to provide a prior belief about the initial states at the higher level. Note 

that, if we were to extend this model to include further levels, this would also become an 

empirical prior, recapitulating the role of D(1). However, given that Level 2 is the highest level 

considered here, D(2) is simply a vector of prior probabilities. This says that the target states 

may be in any initial configuration with equal probability and that the initial state probability 

is equally distributed among any of the trajectories that start at the lower-right target

Figure 4 – Hierarchical movement planning and execution. This shows healthy 

performance of the coordination task in Figure 3. The upper right plot illustrates the series of 

attracting points inferred during the course of the movement as red spheres. These are shown 

as progressively darker over time (the apical sphere is darker simply because it was inferred as 

the target for multiple time-steps). The black line illustrates the trajectory of the hand. The blue 

arrow indicates the direction of travel, and the segment of the movement shown in the frames 

on the left. The lower right plot shows the angular coordinates for the shoulder and elbow over 

time. The vertical grey lines indicate the transitions at the highest level of the model, which 

coincide with the points at which the dark (target) sphere changes location. Note the change in 

shoulder flexion as the first target is reached. At the start of the trajectory, the shoulder flexes 

slightly. As the elbow flexes, continued shoulder flexion would bring the hand above the target. 

This is anticipated, and the shoulder begins to extend to prevent this from happening. Crucially, 

this means that the distance between the hand and the target is decreasing throughout the entire 

trajectory and there is no overshoot (or hypermetria). We will see an example where this fails 

later on. 

Figure 5 – Pyramidal and extrapyramidal. These plots show the consequences of four 

specific synthetic lesions to the performance of the task shown in Figure 4, and highlight the 
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difference between pyramidal (i.e., corticospinal) and extrapyramidal lesions. These include 

the same lesions as in Figure 2, but additionally include two perturbations to the discrete parts 

of the model. The first plot illustrates the preservation of coordination following overestimation 

of sensory precision (Π, compare with the trajectory of Figure 4). The second illustrates a 

decrease in the precision of the contribution of the expected free energy to beliefs about ‘how 

I am going to act’ (γ). The lack of confidence in selecting a sequence of fixed points leads to 

their estimation as being somewhere in the middle. Note that there is no impairment in reaching 

these fixed points. The initialisation of movement via a series of small amplitude movements 

resembles the ‘festinant’ gait sometimes observed in Parkinson’s disease (although this is 

typically observed in the lower limbs). Note the series of superimposed red spheres following 

this, indicating a decrease in movement amplitude following the initial movement. The third 

plot shows the overestimation of smoothness we saw earlier, with hypermetric overshoots at 

the end of each segment of the movement. The changes following overestimation of λ are 

strikingly similar to those plotted in (Holmes, 1939) for patients with cerebellar injuries. More 

modern studies also show the same kind of overshoot in limb trajectories (Deuschl et al., 2000). 

The final line shows what happens when the strength of the connections between the highest 

and middle levels of the hierarchy are attenuated (attenuating the precision associated with A). 

This shows successful completion of the task, but an apparent confusion each time the target 

changes position (often leading to a move towards the centre). While rapidly compensated for, 

this implies a discontinuous sequence of movements that fail to be synthesised into a coherent 

motor narrative.

Figure 6 – A computational anatomy of movement. This schematic illustrates an 

interpretation of the inferential message passing that underwrites the simulated movements in 

terms of the known anatomy of movement. The upper part (a) shows the relationship between 

the two levels of the discrete model. This treats estimation of hidden states as occurring in 

cortical columns in the frontal (slow) and parietal (fast) cortices. Each of these has an influence 

over planning in the basal ganglia, with the expected free energy at the lower level used to 

inhibit the basal ganglia output (as in the direct pathway), while the empirical priors derived 

from the higher level have a net excitatory effect on the output nuclei (as in the indirect 

pathway). Biologically, the latter is a disynaptic pathway including synapses in the globus 

pallidus externus and the subthalamic nuclei. The message passing shown in this schematic 

only deals with the net influence of this pathway. The lower part (b) of the figure shows how 

the message passing of the lower level of the discrete model interacts with the continuous 
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model. Note that the output of the basal ganglia nuclei influence the translation between 

hierarchical levels bi-directionally through Bayesian model averaging over policies, and in 

computing posterior beliefs to be passed upwards. Both the anterior and lateral parts of the 

ventral thalamic nuclei receive this input. The latter additionally receives cerebellar input 

which suggests this is the best candidate for the computation of the error at the continuous 

level, as this must be weighted by its associated precision, which depends upon the smoothness. 

We have associated the expected joint positions with the layer V Betz cells of the motor cortex. 

These are used to make descending predictions about proprioceptive input that are then 

compared to sensory afferents, leading to correction of any errors through motoneuron 

activation. For simplicity, we have omitted the predictions of visual data from this schematic. 
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Figure 1 – Continuous generative model of arm movement. This schematic shows the variables used to 
define a generative model of arm movements in three dimensions, and the equations that mediate their 

interactions. The functions f and g are used to define the expected rate of change of x, and the generation 
of y. The first 3 elements of x are the angular positions of the shoulder (rotation and flexion) and the elbow 

(flexion). The final 3 are the angular velocities associated with these joints. We have designed this 
generative model to include the belief that there is a (fictitious) force that is proportional to the distance 

between the position of some (imaginary) target (v1,2,3) and the current position of the hand (Θ) in a three 
dimensional Euclidean frame of reference. The Θ-function takes the angular positions of the joints and 
returns the coordinates of the hand. This depends upon the lengths of the arm and forearm, and the 
position of the shoulder (θ). Sensory data are divided into proprioceptive and visual modalities. The 

proprioceptive II-fibres report the angular position of the joints (i.e. the ‘stretch’ in the associated tendons), 
while Ia-fibres report the rate of change of these positions. We have adopted the simplification here that the 
visual modalities report the position of the hand in Euclidean coordinates. In addition, they specify the colour 
of each of the three targets (v4,5,6) in different spatial positions. This model is similar in spirit to that used 

for (2-dimensional) simulations of handwriting (Friston et al., 2011). 
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Figure 2 – Synthetic biceps reflex under normal and abnormal precision estimates. The first three plots show 
the consequence of briefly stimulating the stretch receptors at the elbow, as if we had tapped on the tendon 
connecting the biceps muscle to the bones of the forearm. This induces a (proprioceptive) prediction error 
that is corrected by spinal reflexes. The first plot illustrates this for a ‘healthy’ generative model. The next 
two plots show what happens if we perturb beliefs about the spatial and temporal components of precision, 
respectively. Overestimating the former (Π) increases the gain of the prediction error, increasing the speed 
and amplitude of the reflex. Overestimating the smoothness of random fluctuations (λ) instead induces a 

smaller amplitude ‘pendular’ reflex where the arm continues to oscillate following the tendon tap. Note that 
the effects of the tendon tap are not seen only in the elbow joint. There are additionally changes in the 

shoulder flexion; changes in the rotation of the shoulder are limited, as this is orthogonal to the elbow joint. 
The lowest plot illustrates the same perturbation for the model of oculomotor behaviour described in (Parr 

and Friston, 2018). In this context, overestimation of the smoothness leads to hypermetric saccades. 
Compare this (red) to the simulated horizontal electro-oculogram (HEOG) in blue, where the smoothness is 
correctly estimated. The graphics of the arms are shown to provide some intuition for non-clinical readers as 
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to the subtlety of the signs that might be elicited during a neurological examination. For clinical readers, 
they illustrate the sort of patterns they might be familiar with. While still images are limited in providing a 
sense of what is happening here, we invite readers to run the demonstration code indicated in the software 
note to produce an animated version of these graphics. In this setting, it is much easier to appreciate the 

qualitative differences between each lesion. 
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Figure 3 – Discrete generative model for movement planning. This schematic illustrates the hierarchical 
discrete state-space generative model that sits above the continuous model shown in Figure 1. This model 

generates the hidden causes (v) that are the (imaginary) attracting points and the target locations from the 
perspective of the continuous model, which effectively induce movement. The discrete (categorical) causes 

that generate these come in two forms: the alternative attracting points (red spheres) that act as 
equilibrium points, and which of the three possible target locations is currently specified. These causes are 

themselves generated by states at a higher level. At the highest level (upper left) we have a set of 
alternative combinations of trajectories. Each of these is defined in terms of which vertex of a triangle (i.e., 

target location) is at the start and end of that trajectory. There are three configurations not shown that 
represent a single vertex of the triangle being the start and end of a trajectory (i.e., a static ‘trajectory’). In 
addition, the higher level includes a replica of the three possible target states (upper right). However, while 
these are considered static at the timescale of the lower level, the slower dynamics of the higher level allow 

this to change over time. The key distinction here is the absence of arrows between alternative target 
configurations at the first level. The C-vector represents the statistics of a prior belief that policies will lead 
to correct outcomes (i.e., hand and target location match). This ensures sequences of actions that lead to 
the realisation of this goal are more plausible than those that do not. The arrows within a level indicate the 

allowed transitions (encoded by B) between these configurations. The arrows between levels show the 
generation of lower level variables by higher level variables. This rests upon generation of a discrete 

outcome via A(2), which is then used to generate policies (via E(1)) or initial states (via D(1)). The role of 
D(2) is to provide a prior belief about the initial states at the higher level. Note that, if we were to extend 
this model to include further levels, this would also become an empirical prior, recapitulating the role of 
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D(1). However, given that Level 2 is the highest level considered here, D(2) is simply a vector of prior 
probabilities. This says that the target states may be in any initial configuration with equal probability and 
that the initial state probability is equally distributed among any of the trajectories that start at the lower-

right target 
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ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab085/6168144 by U
niversity C

ollege London user on 26 M
arch 2021



 

Figure 4 – Hierarchical movement planning and execution. This shows healthy performance of the 
coordination task in Figure 3. The upper right plot illustrates the series of attracting points inferred during 

the course of the movement as red spheres. These are shown as progressively darker over time (the apical 
sphere is darker simply because it was inferred as the target for multiple time-steps). The black line 

illustrates the trajectory of the hand. The blue arrow indicates the direction of travel, and the segment of the 
movement shown in the frames on the left. The lower right plot shows the angular coordinates for the 
shoulder and elbow over time. The vertical grey lines indicate the transitions at the highest level of the 

model, which coincide with the points at which the dark (target) sphere changes location. Note the change 
in shoulder flexion as the first target is reached. At the start of the trajectory, the shoulder flexes slightly. As 
the elbow flexes, continued shoulder flexion would bring the hand above the target. This is anticipated, and 

the shoulder begins to extend to prevent this from happening. Crucially, this means that the distance 
between the hand and the target is decreasing throughout the entire trajectory and there is no overshoot 

(or hypermetria). We will see an example where this fails later on. 
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Figure 5 – Pyramidal and extrapyramidal. These plots show the consequences of four specific synthetic 
lesions to the performance of the task shown in Figure 4, and highlight the difference between pyramidal 

(i.e., corticospinal) and extrapyramidal lesions. These include the same lesions as in Figure 2, but 
additionally include two perturbations to the discrete parts of the model. The first plot illustrates the 

preservation of coordination following overestimation of sensory precision (Π, compare with the trajectory of 
Figure 4). The second illustrates a decrease in the precision of the contribution of the expected free energy 
to beliefs about ‘how I am going to act’ (γ). The lack of confidence in selecting a sequence of fixed points 
leads to their estimation as being somewhere in the middle. Note that there is no impairment in reaching 

these fixed points. The initialisation of movement via a series of small amplitude movements resembles the 
‘festinant’ gait sometimes observed in Parkinson’s disease (although this is typically observed in the lower 

limbs). Note the series of superimposed red spheres following this, indicating a decrease in movement 
amplitude following the initial movement. The third plot shows the overestimation of smoothness we saw 
earlier, with hypermetric overshoots at the end of each segment of the movement. The changes following 
overestimation of λ are strikingly similar to those plotted in (Holmes, 1939) for patients with cerebellar 
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injuries. More modern studies also show the same kind of overshoot in limb trajectories (Deuschl et al., 
2000). The final line shows what happens when the strength of the connections between the highest and 
middle levels of the hierarchy are attenuated (attenuating the precision associated with A). This shows 

successful completion of the task, but an apparent confusion each time the target changes position (often 
leading to a move towards the centre). While rapidly compensated for, this implies a discontinuous sequence 

of movements that fail to be synthesised into a coherent motor narrative. 
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Figure 6 – A computational anatomy of movement. This schematic illustrates an interpretation of the 
inferential message passing that underwrites the simulated movements in terms of the known anatomy of 
movement. The upper part (a) shows the relationship between the two levels of the discrete model. This 
treats estimation of hidden states as occurring in cortical columns in the frontal (slow) and parietal (fast) 

cortices. Each of these has an influence over planning in the basal ganglia, with the expected free energy at 
the lower level used to inhibit the basal ganglia output (as in the direct pathway), while the empirical priors 
derived from the higher level have a net excitatory effect on the output nuclei (as in the indirect pathway). 
Biologically, the latter is a disynaptic pathway including synapses in the globus pallidus externus and the 
subthalamic nuclei. The message passing shown in this schematic only deals with the net influence of this 

pathway. The lower part (b) of the figure shows how the message passing of the lower level of the discrete 
model interacts with the continuous model. Note that the output of the basal ganglia nuclei influence the 

translation between hierarchical levels bi-directionally through Bayesian model averaging over policies, and 
in computing posterior beliefs to be passed upwards. Both the anterior and lateral parts of the ventral 

thalamic nuclei receive this input. The latter additionally receives cerebellar input which suggests this is the 
best candidate for the computation of the error at the continuous level, as this must be weighted by its 
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associated precision, which depends upon the smoothness. We have associated the expected joint positions 
with the layer V Betz cells of the motor cortex. These are used to make descending predictions about 

proprioceptive input that are then compared to sensory afferents, leading to correction of any errors through 
motoneuron activation. For simplicity, we have omitted the predictions of visual data from this schematic. 
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Table 1 Clinical and theoretical homologues

Neurological syndrome Clinical sign Synthetic lesion Functional role

Cerebellar Pendular reflexes

Dysmetria

λ

λ

Smoothness of random 

fluctuations

Corticospinal Brisk reflexes

Preserved coordination

Π

Π

Precision (inverse variance) 

of likelihood distributions

Parkinsonian Slow movements

Small amplitude movements

Delay in movement initiation

γ

γ

γ

Precision (inverse 

temperature) of policy priors

Executive Impaired ‘immediate recall’ A Precision (inverse 

temperature) of empirical 

(hierarchical) priors
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Parr et al. report a series of numerical simulations – based upon Bayesian message passing – 

of healthy and pathological motor control. They perform an in silico lesion-deficit analysis 

and demonstrate how the sorts of syndromes observed during a clinical neurological 

examination emerge from pathological computation. 
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