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Abstract
Motivation: Co-expression networks are a powerful gene expression analysis method to study how genes co-
express together in clusters with functional coherence that usually resemble specific cell type behaviour for the 
genes involved. They can be applied to bulk-tissue gene expression profiling and assign function, and usually cell 
type specificity, to a high percentage of the gene pool used to construct the network. One of the limitations of this 
method is that each gene is predicted to play a role in a specific set of coherent functions in a single cell type (i.e. 
at most we get a single <gene, function, cell type> for each gene). We present here GMSCA (Gene 
Multifunctionality Secondary Co-expression Analysis), a software tool that exploits the co-expression paradigm 
to increase the number of functions and cell types ascribed to a gene in bulk-tissue co-expression networks.

Results: We applied GMSCA to 27 co-expression networks derived from bulk-tissue gene expression profiling 
of a variety of brain tissues. Neurons and glial cells (microglia, astrocytes and oligodendrocytes) were considered 
the main cell types. Applying this approach, we increase the overall number of predicted triplets <gene, function, 
cell type> by 46.73%. Moreover, GMSCA predicts that the SNCA gene, traditionally associated to work mainly 
in neurons, also plays a relevant function in oligodendrocytes.
Availability: The tool is available at GitHub, https://github.com/drlaguna/GMSCA as open-source software.
Contact: juanbot@um.es for software issues and use and mina.ryten@ucl.ac.uk for results.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Gene co-expression networks (GCN) are a combination of gene clusters 

and graph networks, based on the correlation of mRNA levels from gene 

expression profiling(Botía, Juan A. et al., 2017; Langfelder and Horvath, 
2008; Miller et al., 2010; Oldham et al., 2008). Genes appearing together 
in a cluster or as neighbors in the network are said to be co-expressed. 
GCN analysis is a powerful tool for determining genes associated with 
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molecular mechanisms underlying biological processes of interest and for 
defining the function of a gene in a cell type using bulk-tissue 
transcriptomic data. GCNs provide insights into gene function in specific 
cell types by detecting gene clusters (i.e. modules) enriched for cell type 
markers. By applying the “guilt-by-association” (GBA) heuristic(van 
Dam et al., 2017; Wolfe et al., 2005) to GCNs, all genes in a cell-type 
enriched module are then predicted to relate to a single cell type within 
which, they share the same function.

However, there is ample evidence to suggest that a single gene may 
have different biological functions in different cellular contexts. For 
example, the tumor suppressor gene, TP53, which encodes tumor protein 
p53 has different roles depending on its interaction partners and 
consequently is implicated not only in DNA damage and repair, but also 
in the initiation of apoptosis and senescence(Gillis and Pavlidis, 2011). 
Yet current GCN analyses cannot capture such complexity even if it is 
reflected in transcriptomic data because commonly used forms of GCN 
analysis assign a single gene to a single module (see supplementary 
methods, section 2.1., for a detailed discussion on this). This is a 
significant limitation, especially when considering tissues with high 
cellular heterogeneity such as human brain tissue, where cellular context 
is likely to be of key importance to the understanding of gene function. 
Thus, elucidating the different roles of critical genes, while accounting for 
different contexts, such as expression in different cell types, could reveal 
new insights into the comprehension of gene function(Eating Disorders 
Working Group of the Psychiatric Genomics Consortium et al., 2020; 
Hekselman and Yeger-Lotem, 2020; Muratore et al., 2017; Reynolds et 
al., 2019). 

While cell-specific transcriptomic analyses may provide a means of 
addressing that issue, there are significant challenges associated with the 
construction of co-expression-based approaches in this context. Although 
single-cell technology is evolving rapidly, the gene expression data 
generated remains sparse in nature, with low sensitivity on the reads per 
gene and cell types detected when using single-cell and single-nucleus 
RNA-sequencing approaches, respectively. Other issues include drop-outs 
or transcriptional bursting (i.e. the time depending variation of 
transcription activity)(Buettner et al., 2015; Handley et al., 2015; Haque 
et al., 2017; Hicks et al., 2018; Kolodziejczyk et al., 2015; Zhu et al., 
2018). Furthermore, cell-specific human brain gene expression data sets 
generated from large numbers of individuals are rare due to the associated 
costs, and are largely limited to single-nucleus RNA-sequencing 
(snRNAseq) data as tissue is primarily sampled from post-mortem tissue. 
These snRNAseq data sets not only tend to be particularly sparse, but also 
have systematic biases, such as the under-representation of genes 
expressed within the neuropil (i.e. the synaptically enriched area of the 
central nervous system). To overcome some of these challenges, 
alternative techniques have been developed to study specific cell types in 
bulk tissue, for example by deconvoluting the specific contribution of each 
cell type to gene expression(Baron et al., 2016; Dong et al., 2020; 
Newman et al., 2015, 2019; Tsoucas et al., 2019; Wang et al., 2019). 

Thus, the development of tools to maximize the value of the large 
quantities of deeply sequenced and publicly available human brain bulk-
tissue transcriptomic datasets remains important. In this study, we develop 
a new method to investigate gene multifunctionality in bulk-tissue 
transcriptomic datasets. Here, we define multifunctionality as the 
association of a gene to multiple biological functions within a tissue as a 
result of its different cellular contexts. Particularly, we are primarily 
interested in the cell type context of genes. And our aim is to uncover 
different cell types and functions for the same genes and in this way 
opening new ways to study diseases with a genetic basis. We propose 
Gene Multifunctionality in Secondary Co-expression network Analysis 

(GMSCA) to investigate gene multifunctionality on gene expression 
profiling from bulk tissue (see Figure 1a and b). GMSCA is applicable 
when single-cell based data is not available yet but also in settings where 
there are paired bulk-tissue and single-cell samples. Importantly, GMSCA 
has been developed not to focus on producing estimates of each cell 
contribution to gene expression but on predicting gene function in each 
cell type the gene is expressed in. This process involves two steps. Firstly, 
GMSCA constructs a primary gene co-expression network (PGCN) from 
a gene expression matrix to produce a primary set of triplets <gene, cell 
type, function> from the annotated PGCN (see section 2.2. of 
supplementary methods). All genes found in those triplets are said to be 
typed. Secondly, GMSCA creates secondary gene co-expression networks 
(SGCN) for each of the target cell types. For each cell type and modules 
enriched for that cell type within the PGCNs, GMSCA removes the 
contribution of that cell type from the expression matrix. GMSCA now 
constructs, with the newly created gene expression matrix (which includes 
all the original gene pool), a SGCN and extracts new triplets <gene, cell 
type, function> (see Figure 1c and supplementary methods). When a gene 
was not identified within a triplet in the PGCN, but now appears in any 
triplet from the SGCNs, we say the gene is activated. If, on the contrary, 
it appeared within a triplet generated from the PGCN but not within any 
of the SGCN triplets, it is termed deactivated (see Figure 1 b for details). 

GMSCA increases the number of triplets obtained by 46.73% on 
average compared to conventional GCN, so notably increasing its utility. 
Therefore, secondary co-expression networks can augment existing tissue 
deconvolution approaches as they generate additional functional 
annotation of different cell types. These new functional annotations 
include multiple annotations for single genes (i.e., they shape gene´s 
multifunctionality), creating new applications for this well-established 
analysis. 

2 Methods
We created three network families in the form of R packages as resources: 
CoExp10UKBEC, CoExpROSMAP and CoExpGTEx. Networks were 
created with WGCNA and refined with k-means with CoExpNets R 
package(Botía, Juan A. et al., 2017). 
 
CoExp10UKBEC comprises GCNs created from confirmed non 
pathological human brain samples of 10 different brain areas. Samples 
were profiled for gene expression with Affymetrix Human Exon v2. 
Microarrays. Identical gene pool was used to construct co-expression 
networks (details of GCN construction here (Forabosco et al., 2013)). 

ROSMAP is a transcriptomics human frontal cortex resource with RNA-
seq based gene expression profiling for 640 samples, corrected for batch 
effect using ComBat. Age, sex, RIN and PMI (Post Mortem Interval) were 
regressed out of individual gene expression. GCNs were constructed from 
residuals. The 640 samples were arranged into four different groups to 
create 4 GCNs. One with all samples and three depending on neuritic 
plaques deposition postmortem diagnostic (a group for values 1, a second 
group for values 2 and 3 and a third group for values 4) with 200, 158, and 
221 respectively. 
 
We developed 13 co-expression networks for the 13 available brain areas 
in GTEx RNA-seq samples. We corrected samples for batch effect with 
ComBat. Then, we generated surrogated variables to model unknown 
effects in data and regressed those, age, sex, PMI and RIN from the overall 
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gene expression. GCNs were constructed from residuals. See the 
supplementary for the effect of sample size in GCN construction.

The procedure for creating both PGCNs and SGNCs is identical. The 
smooth parameter that satisfies scale free topology is found. An adjacency 
matrix is calculated and the subsequent topology overlap matrix (TOM) is 
obtained. The clustering is performed using 1-TOM as distance. Gene 
clusters are obtained by the cuTree algorithm with 100 as the minimum 
number of genes. A refinement step based on the k-means algorithm  with 
50 iteration steps is applied afterwards. Genes are ranked within the 
modules through the Pearson correlation of their expression and the 1st 
principal component of gene expression of the whole module, the module 
membership, MM. Gene clusters are annotated with function using 
gProfiler (see details here (Botía, Juan A. et al., 2017)). All networks are 
annotated for cell type as follows. 

Module Annotation for function and cell type

To annotate network modules for specific brain cell types, we tested 
modules for brain specific gene markers for the four main brain cell types 
(neuron, microglia, astrocytes and oligodendrocytes, (see Figure 1d) using 
manually curated cell marker datasets found at the CoExpNets package. 
We redesigned the original Fisher´s Exact test employed in CoExpNets to 
assess the significance of the overlap between genes at modules and genes 
at marker sets to account for module size as there is significant association 
between network module size and -log10() transformation of p-values 
from the tests in all PGCNs, mean R2 0.28, min 0.17, max 0.45 
(supplementary Figure 4 a, b). After applying Bonferroni correction, to 
account for multiple testing, we regressed out gene set size effect from p-
values significance (supplementary Figure 4 c, d, supplementary methods, 
section 2.3.2.) reducing the number of positive tests from an average of 22 
per network to just a mean of 11.03. Note that GMSCA is not restricted to 
either to the cell types considered here, nor the gene marker sets from 
CoExpNets. It can be tailored to any tissue and its corresponding cell types 
of interest provided that there are suitable cell type specific markers.

Human Phenotype Ontology Enrichment Analysis 

Human Phenotype Ontology (HPO) terms associated with each human 
gene were downloaded from HPO (Köhler et al., 2019). To determine the 
enriched Human Phenotype Ontology (HPO) terms we have selected the 
relevant overrepresented phenotypes in each module, these are phenotypes 
that are in at least 2% of the genes from the module and Fold Change (FC) 
is a measure of how many times that phenotype is more likely to be found 
in the module than by chance (HPO ontology)

Secondary co-expression networks generation

After generating the PGCN of a gene expression matrix, GMSCA detects 
modules enriched for the cell types of interest. For each gene in a module 
enriched for cell type ct, GMSCA generates a prediction triplet <gene, ct, 
function> where function refers to the Gene Ontology based annotation 
for all genes in the module. Then it builds SGCNs by applying a 
transformation to the gene expression of genes at modules enriched for the 
cell types of interest.  GMSCA´s model of gene expression for any gene g 
as follows

𝑒 =
 

∑
𝑐 ∈ 𝐶𝑇 

𝛼𝑐𝑥𝑐 +  𝛽 𝑥0,

where e is the gene expression for a specific gene, CT is the set of all cell 
types considered of interest for the tissue, xc is the particular contribution 
per sample of cell type c to the gene, and xo represents other unknown 
factors contributing to the expression. GMSCA assumes this additive 
model to decompose the gene expression matrix of each cell type enriched 
module as follows. Let us suppose that module m is enriched for a 
particular cell type. GMSCA removes the contribution of that cell type to 
gene expression from module m by starting with the MS,m matrix (i.e. gene 
expression of genes in module m for all samples S), it then obtains the set 
of PCAs to explain 90% of the variance, and compounds a new matrix 
with them, Tm,m,, the transformed gene expression matrix. It then removes 
the 1st PCA from that matrix to create T’m-1,m-1. Note that the 1st PCA is 
assumed to be the cell type contribution to gene expression that we 
remove. T’m-1,m-1 is finally used to reconstruct the original expression, 
using all PCA axes but the 1st. The current matrix, M’S,m, is now free of 
the detected cell type contribution. This matrix is then used by GMSCA 
to create a new GCN that we call secondary, i.e. SGCN. GMSCA 
constructs, in this way, one SGCN for each cell type. Note that it is 
extremely rare to find gene modules enriched for more than one cell type. 
And in those cases, the enrichment of one of the cell types is almost 
marginal, while the other is highly significant. GMSCA drops out the 
marginal signal.

Cell-type specific gene expression estimates for Barres

We downloaded supplementary table 4 from (Zhang et al., 2016) which 
contains expression levels for neurons, mature astrocytes, microglia and 
oligodendrocytes. Within each cell type, we averaged all available values 
for each gene. We scale and log transform that matrix. Then we generate 
a boolean matrix of specific gene expression in cell types, Mg x ct with genes 
in rows and cell types in columns such that M[i,j] is set to TRUE when 
gene i has greater expression than the mean expression from the whole 
expression matrix. 

To assess the multifunctionality prediction overlap between Barres data 
and GMSCA, we looked at GMSCA predictions from PGCNs and 
SGCNs, and assessed the overlap in the corresponding cell type at the 
Barres´ data. We report a Fisher´s exact test on this overlap. In each 
comparison, we remove known gene markers to avoid optimistic and 
unfair overlap assessments.

Cell-type specific gene expression estimates for sc-ROSMAP

We downloaded the sc-ROSMAP filtered count matrix from the Synapse 
Web site. In sc-ROSMAP, we can find 48 samples of human frontal cortex 
tissue arranged into 24 Alzheimer’s disease cases and 24 controls. We 
used control, dropped all zero count cell samples and generated a Boolean 
matrix of gene expression in neurons, microglia, mature astrocytes and 
oligodendrocytes, Mg x ct with genes in rows and cell types in columns such 
that M[i,j] is TRUE when gene i has a fold change of 3 of expression in 
cell type j, with respect to the overall mean expression within that gene 
and cell type. 

We assess the significance (Fisher’s exact test) of the overlap between all 
four ROSMAP network predictions and single cell observations. We 
removed known gene markers to avoid optimistic and unfair overlap 
assessments and aggregated excitatory and inhibitory neurons into a single 
type. 
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Using EWCE to replicate cell-specific expression enrichment from 
GSMCA predictions

EWCE was used to assess whether multifunctional predictions from 
GMSCA show any enrichment in expression in equivalent cell types from 
mouse. We tested each predicted cell type gene set from GMSCA for 
enrichment in the equivalent cell type at EWCE with tye 
bootstrap.enrichment.test() from the EWCE package, we converted 
human genes in our networks into MGI symbols using the 
mouse_to_human_homologs data table from EWCE. Gene markers were 
removed from the analysis. We used all MGI genes at the 
mouse_to_human_homologs table as the background gene set and 10000 
permutations for each test. Results with P < 0.05 were reported as 
significant. 

 

3 Results
To investigate the utility of GMSCA for the prediction of gene 
multifunctionality in brain, we used 27 co-expression networks from three 
brain-derived gene expression datasets (see Table 1), including 13 bulk 
RNA-seq networks from GTEx’s (The GTEx Consortium et al., 2015) 
brain regions and 4 bulk RNA-seq networks from the ROSMAP (A. 
Bennett et al., 2012a, 2012b) project, all variations of frontal cortex 
samples. Further, we reused 10 bulk AffyExon Array networks derived 
from UKBEC’s 10 brain regions (UK Brain Expression Consortium et al., 
2014). We refer to them as the GTEx, ROSMAP and UKBEC network 
families respectively.

The average gene pool for the three network families is 18682 and the 
average number of modules (clusters) is 30. As GMSCA uncovers 
multifunctionality, it focuses on modules enriched for markers of the cell 
types of interest. The average cell type enriched module size is 622 genes. 
Note that a percentage of those genes are cell type markers themselves; on 
average 158 genes, i.e., 25% of the whole module. Therefore, 75% of the 
genes in those modules generate new <gene, cell type, function> triplets 
in that cell type. Overall, the average PGCN generates more than 4500 of 
those prediction triplets. We focus on the major cell types in brain: 
neurons, microglia, astrocytes and oligodendrocytes (see Figure 1 d). We 
found that 44% of the PGCN modules enriched for markers of the major 
cell types were tagged as neurons, 21% as microglia, 18% as astrocytes 
and 17% as oligodendrocytes. Thanks to this approach, we gained the 
capability of studying gene multifunctionality by discovering new gene 
multifunctionality in specific cells with an additional 46.73% of the 
overall gene pool. 37% of the gene pool refers to newly activated genes 
and 9.73% are additional cell types for genes that become multifunctional 
(see Figure 1 c). 

GCN modules enriched for cell type markers are reliable

Predictions made by GMSCA come from cell marker enriched modules. 
Then we assessed whether those modules were replicable (i.e., preserved), 
and therefore reliable, across brain areas. If a gene module is preserved in 
a similar tissue, then the module is credible and replicable. If the module 
is not preserved, it might be due to two reasons. Either the module is 
specific for that tissue, and hence reliable, or the module is not reliable, 
i.e., most genes are found there just by chance. We used WGNCA’s 
preservation analysis based on the estimation of a Z statistic called Z 

summary (see [24] for a detailed explanation). Values of Z over 10 for a 
module suggest strong module preservation. Values over 2 suggest some 
preservation. Modules with Z under 2 are not preserved at the tissue tested 
(see Figure 2).

We first tested GTEx PGCNs´s modules enriched for cell type-specific 
markers for preservation across the remaining GTEx PGCNs. This 
resulted in 560 preservation tests. 8.6% of those tests were negative (i.e. 
Z < 2) suggesting that those modules were not preserved in the remaining 
brain PGCNs, while 40.4% of the tests showed signs of preservation (Z 
>= 2) and 50.8% showed  strong preservation (Z >= 10). We performed 
630 tests at UKBEC networks and 1.9% were negative. 13.3% pointed to 
weak preservation and the remaining 84.7% indicated strong preservation. 
All ROSMAP target modules were very well preserved as we may expect: 
one of the PGCNs includes all ROSMAP samples, and the other three 
include subsets of the samples used within that PGCN. 

Next, we assessed the 52 GTEx SGCNs (each PGCN generates four new 
GCNs) for preservation. This resulted in 5157 tests being performed of 
which 4.4% were negative (a cell type enriched module was not preserved 
in a GTEx tissue), 25.9% implied weak preservation and 69.6% yielded 
strong preservation. We performed the same analysis for the 40 UKBEC 
SGCNs. In this case, 2310 preservation tests were performed and 1.12% 
of the tests were negative, whereas 17.7% of the tests showed signs of 
preservation and 81.12% showed strong preservation. All preservation 
tests in ROSMAP SGCNs showed strong preservation. 

Part of the difference in non-preserved modules between GTEx and 
UKBEC can be explained due to PGCNs module size. The Z preservation 
value correlates positively with module size (R^2 0.38, supplementary 
Figure 1) (Langfelder et al., 2011). And maximum module size in GTEx 
PGCNs is 1663, and 2953 in UKBEC. Additionally, we wanted to further 
investigate whether the non-preserved GTEx modules could have had 
some biological meaning. We performed a functional enrichment analysis 
on the genes at those modules, based on the Gene Ontology, REACTOME 
and KEGG pathway databases using gProfileR R package (Reimand et al., 
2007). On average, we obtained 164 annotation terms per non-preserved 
module, suggesting these modules were biologically relevant. Their lack 
of  preservation may indicate that these modules were specific to their 
tissue. 

GMSCA multifunctional predictions replicate well in cell-
type-specific datasets

To assess whether GMSCA multifunctionality predictions replicate in 
cell-specific brain datasets we considered two cell-specific gene 
expression datasets in human brain cortex, sc-ROSMAP and Barres Lab 
data, which are different in nature and a mouse brain expression dataset 
(Zeisel et al., 2018) through the EWCE (Skene and Grant, 2016) tool. 

One of the human datasets is sc-ROSMAP (Mathys et al., 2019), from 
single cell transcriptomics in a fraction of bulk-RNAseq ROSMAP paired 
brain cortex samples (24 AD cases and 24 controls). The other is based on 
immunopanning of temporal lobe cortex samples (Mathys et al., 2019; 
Zhang et al., 2016) from Barres Lab. This involved purification of specific 
cell types using cell surface markers followed by gene expression profiling 
on these purified cell types. As we already noted, sc-ROSMAP and 
Barres’ datasets are of different nature but both were reduced to a list of 
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cell type specific genes for each of the cell types we are using in this paper 
(see methods). These lists are used then to compare with the cell 
multifunctionality predictions generated by GMSCA. Cell markers within 
GMSCA are removed from the analysis to avoid optimistically biased 
results. 
 
Multifunctionality predictions from all four ROSMAP PGCNs yielded 
significant overlap with sc-ROSMAP data (see supplementary File 2). For 
example, in the NotAD network the overlaps are as follows: Fisher´s Exact 
Test (FET): P < 4.27E-36 for neurons, P < 3.27E-46 for oligodendrocytes, 
0.017 for microglia and 2.94E-42 for astrocytes. SGCN predictions 
generated overlaps with the following significance: FET P < 2.02E-36 for 
neurons, P < 2.4E-7 for oligodendrocytes, P < 2.3E-3 for Microglia and P 
< 1.28E-3 for astrocytes. 
 
Barres Lab based predictions were assessed for overlap with our cortex 
networks (see supplementary file 2). Focusing, for example, on the same 
tissue used within the Barres paper, temporal lobe (the 10UKBEC TCTX 
GCN), GMSCA generated highly significant overlaps in primary 
predictions with P < 4.51E-67 for neurons, P < 1.94E-31 for 
oligodendrocytes, P < 7.2E-13 for microglia and P < 1.01E-84 for 
astrocytes. Secondary predictions yielded significant overlaps for neurons 
(P < 1.19E-73), oligodendrocytes (P < 4.09E-42) and astrocytes (P 2.02E-
12), but not for microglia (P 0.91).

GMSCA predictions were assessed for replication on a different-species 
and more comprehensive single-cell brain transcriptomic dataset, through 
EWCE (Expression Weighted Cell Enrichment).  This tool enables easy 
integration with mouse brain transcriptomics from 19 brain regions (Zeisel 
et al., 2015) and can be used to test whether a given gene list provided by 
the user presents higher expression levels in each cell type from the 
reference dataset than expected by chance. We tested all cell type 
predictions from PGCNs and SGCNs to assess whether EWCE 
recapitulated similar enrichments. This analysis showed that 100% of the 
GMSCA gene sets predicted to be functional in a given cell type were also 
found to be significantly enriched in expression by EWCE in the 
corresponding cell type (see methods, supplementary File 5)

GMSCA multifunctional predictions show concordance 
across the three network families in cortex-like tissues
 
As we used three brain network families, we could compare same-tissue 
networks between families to assess the agreement of predictions across 
their networks. Cortex is the only tissue present in all three families but 
also putamen and substantia nigra in GTEx and UKBEC (remind that 
ROSMAP is only frontal cortex). We assessed the significance of each 
pairwise overlap between (gene, cell-type) predictions from both primary 
and secondary networks, for each cell type and pair of frontal cortex 
tissues. All Fisher’s exact tests performed on the pairwise overlaps were 
highly significant, being the higher p-value of 1.3E-318 (see 
supplementary File 4 and supplementary figure 2). 
 
In regard to the putamen brain area, 35% of the neuron predictions made 
from the UKBEC putamen networks (primary and secondary), are also 
found as neuron in the GTEx putamen networks. Note that the putamen 
UKBEC PGCN generates no microglia related predictions (it generates 
2686 predictions in the SGCN though). The agreements for 

oligodendrocytes and astrocytes are 22.01% and 49.76%, respectively. For 
the substantia nigra brain area, the numbers for neuron, microglia, 
oligodendrocytes and astrocytes are 28.62%, 35.98%, 56.26%, and 
42.91% respectively (see supplementary File 4 and supplementary figure 
3). 

GMSCA links the SNCA gene to oligodendrocytes

The SNCA gene encodes the alpha-synuclein protein, located at the long 
arm of chromosome 4 at position 4q22.1. Mutations in this gene cause 
Parkinson disease (PD) (Appel-Cresswell et al., 2013; Krüger et al., 1998; 
Lesage et al., 2013; Polymeropoulos, 1997; Zarranz et al., 2004). SNCA is 
also linked to other neuro-degenerative diseases, mainly Alzheimer’s 
disease (Hashimoto and Masliah, 1999). The alpha-synuclein protein is 
involved in the regulation of neurotransmitter release, synaptic function 
and plasticity of dopaminergic neurons (Cheng et al., 2011). SNCA is also 
are associated with neuronal dysfunction. Therefore, it has been 
traditionally seen as highly relevant to neurons. Thanks to applying 
GMSCA to our networks, the generated multifunctionality predictions 
included an association of SNCA to oligodendrocytes in 4 SGCNs, see 
below (supplementary File 1).
  
SNCA is predominantly expressed in brain tissue (Figure 3 a), according 
to GTEx control samples bulk expression data V8 (The GTEx Consortium 
et al., 2015). Moreover, SNCA is mainly expressed in neurons and 
oligodendrocytes (Zhang et al., 2016) in the human cortex (Figure 3 b-c),  
as the Barres Lab data shows. In fact, SNCA was found in neuron-enriched 
modules in 10 out of the 13 GTEx PGCNs, all 4 ROSMAP networks and 
in 8 out of the 10 UKBEC networks. The only alternative cell type linked 
to SNCA is oligodendrocytes through the GTEx SGCNs of substantia 
nigra, putamen and hippocampus and the UKBEC temporal cortex. 
The substantia nigra is a central tissue in PD. Therefore we focused the 
subsequent analysis on this tissue (Figure 3 d). SNCA is found in the 
orangered2 module of the PGCN (module membership, MM = 0.84, see 
methods). That module is enriched for dopaminergic neuron markers (P < 
4.59E-25) and GO terms like catecholamine and dopamine biosynthetic 
processes (GO:0042423 P < 1.1E-5; GO:0042416 P < 9.9E-5), 
locomotory behavior (GO:0007626 P < 4.1E-4), neurotransmitter 
transport (GO:0006836 P < 1.9E-5), axonogenesis (GO:0007409 P < 
6.4E-4), dopaminergic neuron differentiation (GO:0071542 P < 8.0E-3) 
and ferric ion transport (GO:0015682 P < 4.6E-4). Dopaminergic neuronal 
loss is the hallmark of PD. Moreover, the aforementioned biological 
processes are highly relevant to PD (Aggarwal et al., 2019; Nutt et al., 
2004; Sawada et al., 2013). Interestingly, the darkorange2 module 
includes six more genes linked to PD (supplementary table 1). All this 
evidence suggests this network module is linked to PD.
When we applied GMSCA to create the corresponding SGCN, SNCA is 
found in the substantia nigra midnightblue module (MM = 0.53), which is 
enriched for markers of oligodendrocytes (P < 1.48E-4). This finding is 
replicated  using the putamen and hippocampus co-expression networks, 
belonging to the same network family, GTEx. Moreover, themidnightblue 
module shared 27 genes with the SNCA SGCN module in putamen 
(Fisher´s exact test on the overlap significant, P < 5.3E-11) and 45 with 
the SNCA SGCN module at the hippocampus, P < 2.2E-16, suggesting 
function similarity of these modules across the three tissues linking SNCA 
to oligodendrocytes. The midnightblue module (Figure 3 e) was enriched 
for the following GO terms: synaptic plasticity (GO:0048167 P <  1.3E-
4), neuronal plasticity (GO:0048168 P <  1.9E-3), regulation of synapse 
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organization (GO:0050807 P <  3.5E-3), axonal fasciculation 
(GO:0007413 P <  7.2E-3), neuron projection fasciculation (GO:0106030 
P <  7.2E-3), axon development (GO:0061564 P <  3.5E-3), neuron 
recognition (GO:0008038 P <  4.1E-3), regulation of neurotransmitter 
levels (GO:0001505 P <  5.5E-3), microtubule polymerization 
(GO:0046785 P <  1.4E-3), regulation of glutamate receptor signaling 
pathway (GO:1900449 P <  3.6E-3) and synaptic vesicle exocytosis 
(GO:0016079 P <  2.1E-3). Note that BP terms like “regulation of 
neurotransmitter levels” and “synaptic vesicle exocytosis” are processes 
found in the orangered2 module of the substantia nigra PGCN. Terms 
specific to the SGCN module, and also linked to oligodendrocytic activity, 
were: regulation of synapse organization (Eroglu and Barres, 2010), 
regulation of glutamate receptor signaling pathway(Gautier et al., 2015), 
axon development, axonal fasciculation, neuron projection fasciculation, 
neuron recognition or microtubule polymerization [50]. Interestingly, the 
midnightblue module included APP (MM = 0.84). Mutations in APP 
increase the risk of Alzheimer’s disease (Köhler et al., 2019). APP´s 
expression pattern in specific brain cells is similar to SNCA´s pattern, 
mainly expressed in neurons and oligodendrocytes (see Figure 3 c). The 
APP gene has been reported to have a role in regulating axonal 
myelination in oligodendrocytes (Truong et al., 2019).
A gene based analysis of the phenotypes linked to the midnightblue 
module (see methods) uncovered HPO terms like Dementia (HP:0000726 
fold change 2.55), Myoclonus (HP:0001336 FC 2.13), Variable 
Expressivity (HP:0003828 FC 1.85), Anxiety (HP:0000739 FC 1.65), 
Intellectual severe disability (HP:0010864 FC 1.56), Depressivity 
(HP:0000716 FC 1.24), Tremor (HP:0001337 FC 1.22), Ataxia 
(HP:0001251 FC 1.2) and Dystonia (HP:0001332 FC: 1.16).

4 Discussion

We propose GMSCA (Gene Multifunctionality Co-expression Analysis), 
as a method and software tool to uncover additional co-expression profiles 
for genes, apart from those we obtain with conventional co-expression 
analyses. GMSCA significantly enhances the power of GCN analyses, 
delivering the capability to study gene multifunctionality in specific cells, 
as models of gene co-expression in bulk tissue. GMSCA needs the same 
inputs as conventional co-expression analysis on bulk tissue such as gene 
expression profiles, gene marker sets for the cell type under study and gene 
sets enrichment analysis tools as gProfileR for pathway or GO based 
module annotation. This paper’s experiments are based on brain samples. 
Therefore, the SGCN obtained were focused on neurons, microglia, 
astrocytes and oligodendrocytes cell types. Interestingly, this approach 
increased the number of predictions of gene multifunctionality in specific 
cells with an additional 46.73% of the overall gene pool.
 
To demonstrate the potential of this method, we firstly assessed the 
reliability of GMSCA prediction triplets by means of its application to 
three network families for three different transcriptomics-based projects, 
UKBEC, GTEx and ROSMAP using WGCNA’s preservation analysis. 
We demonstrated that the cell-type enriched modules that GMSCA used 
to generate multifunctionality predictions were stable, including those in 
SGCNs. Part of the difference we obtained in non-preserved modules 
between GTEx and UKBEC could be explained by PGCNs module size.

Secondly, we showed a high level of replication of predictions in cell-type 
specific external data sets. As we already noted, sc-ROSMAP and Barres’ 
datasets are of different nature but both were reduced to a list of cell type 

specific genes for each of the cell types. Multifunctionality predictions 
from all four ROSMAP PGCNs yielded significant overlaps with the 
single nucleus ROSMAP dataset. We assessed prediction replication in 
Barres Lab data by looking at how our cortex networks´ predictions 
replicated in Barres cell specific gene expression profiles. All cell types 
but microglia showed highly significant levels of agreement. Moreover, 
thanks to the EWCE tool we were capable of assessing GMSCA 
predictions on mouse single-cell transcriptomics. 100% of both PGCN and 
SGCN gene sets yielded significant expression enrichment in equivalent 
brain cells.
 
Then, we tested the level of agreement in GMSCA predictions on the same 
tissues across the three networks families (frontal cortex tissue across the 
three families and substantia nigra and putamen tissues across GTEx and 
UKBEC) and demonstrated that agreement was high. We compared same-
tissue networks between families and assessed the agreement level of 
predictions for cell marker enriched modules across their networks, in 
PGCNs and SGCNs, for preservation across brain areas.
 
We used this SGCN to get details about the biological function of SNCA 
within specific cell types, such as how relevant SNCA was in the 
corresponding module and what genes SNCA co-expressed with, e.g. APP 
linked to dementia and Alzheimer. In this study, SNCA was found in 
oligodendrocytes through the GTEx SGCNs of substantia nigra, putamen 
and hippocampus and through the UKBEC SGCNs of temporal cortex. 
The relationship of SNCA and oligodendrocytes is supported by previous 
studies that have observed alpha-synuclein-containing inclusions (“coiled 
bodies”) in oligodendrocytes in parkinsonian brains (Wakabayashi et al., 
2000). Recently, the link between oligodendrocytes and Parkinson’s 
disease was reinforced by integrating GWAS results with single-cell 
transcriptomic data (Eating Disorders Working Group of the Psychiatric 
Genomics Consortium et al., 2020) through testing the genes tagged by 
the GWAS outcome into the EWCE tool. Thus, GMSCA has the potential 
to shed light on gene function within specific cell types and molecular 
processes, particularly in a disease context. To conclude, we would like to 
emphasize that the utility of GMCSA is not limited to brain tissue, but this 
method could be easily tailored to address questions around gene 
multifunctionality in any other tissue assuming the availability of 
expression profiling data and high quality, relevant cell-specific markers. 
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Figure 1. a) GMSCA generates a list of triplets <gene, cell type, function> 
for the genes included in the initial gene expression profiling matrix, 
MSxG. First, a WGCNA+k-means co-expression network called the 
primary network is created. Its modules are then tested (Fisher´s Exact 
Test, FET) for enrichment of cell type markers, in this case with brain cell 
type marker sets for neurons (in red), microglia (in green), 
oligodendrocytes (in light green) and astrocytes (in blue). Those modules 
with a clear signal (FET P < 0.05 on just a single cell type) are selected 
and their corresponding cell signal removed (see Methods) from 
expression to generate a new M’SxG. GMSCA creates a new co-
expression network (these are called secondary) for each expression 
matrix and annotates their modules in the same way. Cell-type enriched 
modules in both primary and secondary networks generate as many triplets 
(gene, cell type, function) as genes in the module. b) Any gene found in a 
cell type enriched module is tagged by GMSCA as “typed”. When a gene 
in a primary co-expression network shifts from a cell-type enriched 
module to a non-cell-type enriched module in the secondary co-expression 
network, we say the gene is deactivated (red arrows). When it goes from 
a non-cell-type enriched module to a cell-type enriched module, we say 
the gene is activated (green arrows). A gene is multifunctional when it 
goes from a cell-type enriched module to a module with a different cell 
type enrichment (black arrows). A gene is strongly typed when it goes 
from a cell-type enriched module to another module with the same cell-
type enrichment. It is strongly non-typed when the primary module and 
secondary module are both non-cell-type enriched. c) An average primary 
co-expression network tags 37% of genes as non-typed, another 30% as 
neuronal, 10% as oligodendrocytic, 13% as astrocytic and 8% as 
microglial. In a secondary network, 37% of non-typed genes become 
typed and 42.5% of typed genes become deactivated. Also, as 9.1% of the 
genes are tagged as pleiotropic in a single network, we can gain up to 
36.4% annotations of pleiotropy with all four secondary networks 
GMSCA creates in this case. c) Number and size of gene markers set used 
by GMSCA for each cell type, in this paper.

Figure 2. distribution of preservation values for all cell-type enriched 
modules as detected by GMSCA, for primary (in grey) and secondary (in 
white) networks. Each box plot corresponds to all modules within a family 
found to be enriched for the indicated cell type (MA for mature astrocytes, 
MG for microglia, N for neuron and OLG for oligodendrocytes). Families 
ending with “Sec” refer to secondary network modules. The vertical green 
dashed line marks the strong preservation limit (modules are easily 
replicable in other brain tissues and therefore highly reliable). The vertical 
orange dashed line marks the weak preservation limit (modules show signs 
or preservation and therefore some evidence of reliability). All 
preservation tests are performed within each network family. 98.1% of the 
preservervation tests sustain network reliability in UKBEC and 95.5% in 
GTEx. All tests yield strong preservation within the ROSMAP family.

Figure 3. a) SNCA is predominantly expressed in brain, as the violin plots 
show. All 13 brain tissues are within the top 16 GTEx tissues expressing 
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SNCA. b) Immunopanning data on brain cell expression from Barres Lab 
shows SNCA predominantly expresses in neurons and oligodendrocytes. 
GMSCA tags SNCA as neuronal and oligodendrocytic in the substantia 
nigra, putamen and hippocampus. c) APP, genetically linked to 
Alzheimer, is another interesting gene found in the same module as 
SNCA. Barres Lab’s data confirms it is predominantly expressed in 
neurons and oligodendrocytes. GMSCA tags it as neuronal and 
oligodendrocytic. d) UpSet plot (UpSet R package) on the genes from the 
predictions by  GMSCA on the GTEx substantia nigra samples. SNCA 
and APP are found at the intersection between N (neurons) and OLG 
(oligodendrocytes) with 378 genes more.
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