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This paper offers a formal account of policy learning, or habitual behavioral optimization,

under the framework of Active Inference. In this setting, habit formation becomes an

autodidactic, experience-dependent process, based upon what the agent sees itself

doing. We focus on the effect of environmental volatility on habit formation by simulating

artificial agents operating in a partially observable Markov decision process. Specifically,

we used a “two-step” maze paradigm, in which the agent has to decide whether

to go left or right to secure a reward. We observe that in volatile environments with

numerous reward locations, the agents learn to adopt a generalist strategy, never forming

a strong habitual behavior for any preferred maze direction. Conversely, in conservative

or static environments, agents adopt a specialist strategy; forming strong preferences

for policies that result in approach to a small number of previously-observed reward

locations. The pros and cons of the two strategies are tested and discussed. In general,

specialization offers greater benefits, but only when contingencies are conserved over

time. We consider the implications of this formal (Active Inference) account of policy

learning for understanding the relationship between specialization and habit formation.

Keywords: Bayesian, active inference, generative model, preferences, predictive processing, learning strategies

INTRODUCTION

Any self-organizing system must adapt to its surroundings if it is to continue existing. On a
broad timescale, population characteristics change to better fit the ecological niche, resulting in
evolution and speciation (Futuyma andMoreno, 1988). On a shorter timescale, organisms adapt to
better exploit their environment through the process of learning. The degree or rate of adaptation
is also important. Depending on the environment around the organism, specialization into a
specific niche or favoring a more generalist approach can offer distinct advantages and pitfalls
(Van Tienderen, 1991). While adopting a single, automatic, behavioral strategy might be optimal
for static environments—in which contingencies are conserved—creatures that find themselves in
more variable or volatile environments should entertain a broader repertoire of plausible behaviors.

We focus upon adaptation on the shorter timescale in this paper, addressing the issue
of behavioral specialization formally within a Markov decision process formulation of Active
Inference (Friston et al., 2017). Active inference represents a principled framework in which
to describe Bayes optimal behavior. It depends upon the notion that creatures use an internal
(generative) model to explain sensory data, and that this model incorporates beliefs about “how
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I will behave.” Under Active Inference, learning describes the
optimization of model parameters—updating one’s generative
model of the world such that one acts in a more advantageous
way in a given environment (Friston et al., 2016). Existing
work has focused upon how agents learn the (probabilistic)
causal relationships between hidden states of the world that
cause sensations which are sampled (Friston et al., 2016, 2017b;
Bruineberg et al., 2018; Kaplan and Friston, 2018; Parr and
Friston, 2018). In this paper, we extend this formalism to consider
learning of policies.

While it is clear that well-functioning agents can update
their understanding of the meaning of cues around them—
in order to adaptively modulate their behavior—it is also
clear that agents can form habitual behaviors. For example,
in goal-directed vs. habitual accounts of decision making
(Gläscher et al., 2010), agents can either employ an automatic
response (e.g., go left because the reward is always on the
left) or plan ahead using a model of the world. Habitual
responses are less computationally costly than goal-oriented
responses; making it desirable to trust habits when they have
been historically beneficial (Graybiel, 2008; Keramati et al.,
2011). This would explain the effect of practice—as we gain
expertise in a given task, the time it takes to complete that
task and the subjective experience of planning during the task
diminishes, likely because we have learned enough about the
structure of the task to discern and learn appropriate habits
(Klapp, 1995).

How may our Active Inference agent learn and select habitual
behaviors? To answer this question, we introduce a novel
feature to the Active Inference framework; namely, the ability
to update one’s policy space. Technically, a prior probability is
specified over a set of plausible policies, each of which represents
a sequence of actions through time. Policy learning is the
optimization of this probability distribution, and optimizing the
structure of this distribution (i.e., “structure learning”) through
Bayesian model comparison. Habitual behavior may emerge
through pruning implausible policies, and reducing the number
of behaviors that an agent may engage in. If an agent can
account for its behavior without calling on a given policy, it
can be pruned, resulting in a reduced policy space, allowing
agents to infer which policy it is pursuing more efficiently. Note
that in Active Inference, agents have to infer the policy they
are pursuing, where this inference is heavily biased by prior
beliefs and preferences about the ultimate outcomes. We argue
that pruning of redundant behavioral options can account for
the phenomenon of specialization (behavior highly adapted to
specific environments), and the accompanying loss of flexibility.
In addition to introducing Bayesian model reduction for prior
beliefs about policies, we consider its biological plausibility,
and its relationship with processes that have been associated
with structure learning (i.e., the removal of redundant model
parameters). Finally, through the use of illustrative simulations,
we show how optimizing model structure leads to useful policies,
the adaption of an agent to its environment, the effect of
the environment on learning and the costs and benefits of
specialization. In what follows, we will briefly review the tenets
of Active Inference, describe our simulation set up and then

review the behavioral phenomenology in light of the questions
posed above.

MATERIALS AND METHODS

Active Inference
Under Active Inference, agents act to minimize their variational
free energy (Friston, 2012) and select actions that minimizes
variational free energy expected following the action. This
imperative formalizes the notion that an adaptive agent should
act to avoid being in surprising states, should they wish to
continue their existence. In this setting, free energy acts as an
upper bound on surprise and expected free energy stands in
for expected surprise or uncertainty. As an intuitive example,
a human sitting comfortably at home should not expect to see
an intruder in her kitchen, as this represents a challenge to
her continued existence; as such, she will act to ensure that
outcomes (i.e., whether or not an intruder is present) match her
prior preferences (not being in the presence of an intruder); for
example, by locking the door.

More formally, surprise is defined as the negative log
probability of observed outcomes under the agent’s internal
model of the world, where outcomes are generated by hidden
states (which the agents have no direct access to, but which
cause the outcomes) that depend on the policies which the agent
pursues (Parr and Friston, 2017):

− ln P (õ) = − ln [
∑

s̃,π

P (õ, s̃, π) ] (1)

Here, õ = (o1, . . . , oT) and s̃ = (s1, . . . , sT)
correspond to outcomes (observations) and states throughout
time, respectively, and π represents the policies (sequence of
actions through time). Since the summation above is typically
intractable, we can instead use free energy as an upper bound on
surprise (Friston et al., 2017):

F = EQ[ lnQ (s̃, π) − ln P(õ, s̃, π) ] (2)

As an agent acts to minimize their free energy, they must also
look forward in time and pursue the policy which they expect
would best minimize their free energy. The contribution to the
expected free energy from a given time, G(π , τ ), is the free
energy associated with that time, conditioned on the policy,
and averaged with respect to a posterior predictive distribution
(Friston et al., 2015):

G (π , τ) = EQ(sτ |π)P(oτ |sτ )

[

ln P(oτ , sτ
∣

∣ π)− lnQ (sτ | π) ] (3)

We can then sum over all future time-points (i.e., taking the path
integral from the current to the final time: (π) =

∑

t≥τ G(π , t))
to arrive at the total expected free energy expected under
each policy.

Partially Observable Markov Decision
Process and the Generative Model
A Partially Observable Markov Decision Process (POMDP or
MDP for short) is a generative model for modeling discrete
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hidden states with probabilistic transitions that depend upon
a policy. This framework is useful for formalizing planning
and decision making problems and has various applications in
artificial intelligence and robotics (Kaelbling et al., 1998). An
MDP comprises two types of hidden variables which the agent
must infer: hidden states (s̃) and policies (π). An MDP agent
must then navigate its environment, armed with a generative
model that specifies the joint probability distribution of observed
outcomes and their hidden causes, and the imperative of
minimizing free energy. The states, outcomes and policies are
defined more concretely in the following sections.

The MDP implementation consists of the following matrices
specifying categorical distributions (Friston et al., 2017b):

Aij = P (oτ = i | sτ = j) state− outcome mapping

B (u)ij = P (sτ+1 = i| sτ = j ,

u = π (τ)) state− state transition

Cτ ,i = P (oτ = i) outcome preference

Di = P (s1 = i) belief about initial states

Ei = P (π = i | E) independent policy prior

The generative model (Figure 1) assumes that outcomes depend
upon states, and that current states depend upon states at the
previous timepoint and the action taken (as a result of the
policy pursued). Specifically, the state-outcome relationship is
captured by anA (likelihood)matrix, whichmaps the conditional
probability of any i-th outcome given a j-th state. A policy, πi =

(u1, . . . , uT), is a sequence of actions (u) through time, which the
agent can pursue. Generally, an agent is equipped with multiple
policies it can pursue. Conceptually, these may be thought of as
hypotheses about how to act. As hidden states are inaccessible,
the agent must infer its current state from the (inferred) state
it was previously in, as well as the policy it is pursuing. State-
to-state transitions are described by the B (transition) matrix.
The C matrix encodes prior beliefs about (i.e., a probability
distribution over) outcomes, which are synonymous with the
agent’s preferences. This is because the agent wishes to minimize
surprise and therefore will endeavor to attain outcomes that
match the distributions in the C matrix. The D matrix is the
prior belief about the agent’s initial states (the agent’s beliefs
about where it starts off). Finally, E is a vector of the belief-
independent prior over policies (i.e., intrinsic probability of each
policy, without considering expected free energy).

A concept that will become important below is ambiguity.
Assuming an agent is in the i-th hidden states, si, the probable
outcomes are described by a categorical distribution by the i-th
column of the A matrix. We can therefore imagine a scenario
where the distribution P (oτ | sτ = i) has high entropy (e.g.,
uniformly distributed), and outcomes are approximately equally
likely to be sampled. This is an ambiguous outcome. On the other
hand, we can have the opposite situation with an unambiguous
outcome, where the distribution of outcomes given states has low
entropy. In other words, “if I am in this state, then I will see this
and only this.” This unambiguous, precise outcome allows the
agent to infer the hidden state that they are in.

FIGURE 1 | Graphical representation of the generative model. The arrows

indicate conditional dependencies, with the endpoint being dependant on

where the arrow originated form. The variables in white circles show priors,

whereas variables in light blue circles are random variables. The A and B

matrices have round arrowhead to show they encode the transition

probabilities between the variables.

Crucially, under Active Inference, an agent must also infer
which policy it is pursuing at each time step. This is known
as planning as inference (Botvinick and Toussaint, 2012). The
requisite policy inference takes the form:

π = σ (Ê− F− γ · G) (4)

Here, π represents a vector of sufficient statistics of the posterior
belief about policies: i.e., expectations that each allowable policy
is currently in play. F is the free energy for each policy based
on past time points and G is the expected free energy for
future time points. The free energy scores the evidence that
each policy is being pursued, while the expected free energy
represents the prior belief that each policy will reduce expected
surprise or uncertainty in the future. The expected free energy
comprises two parts—risk and ambiguity. Risk is the difference
between predicted and preferred outcomes, while ambiguity
ensures that policies are chosen to disclose salient information.
These two terms can be rearranged into epistemic and pragmatic
components which, as one might guess, reduce uncertainty about
hidden states of the world and maximize the probability of
preferred outcomes.

The two quantities required to form posterior beliefs about
the best policy (i.e., the free energy and expected free energy of
each policy) can be computed using the A, B, and C matrices
(Friston et al., 2016; Mirza et al., 2016). The variable γ is an
inverse temperature (precision) term capturing confidence in
policy selection, and Ê is the (expected log of the) intrinsic prior
probabilities in the absence of any inference (this is covered
more in-depth in the “Policy Learning and Dirichlet Parameters”
section below). The three quantities are passed through a softmax
function (which normalizes the exponential of the values to sum
to one). The result is the posterior expectation; namely, the most
likely policy that the agent believes it is in. This expectation
enables the agent to select the action that it thinks is most likely.
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FIGURE 2 | Simulation maze set-up. (A) The maze location set-up. There are a total of 7 locations in the maze, each with their corresponding indexes (left diagram).

The state-outcome mapping (A matrix) between “Where” (i.e., agent’s current location) state and outcome is an identity matrix (right figure), meaning they always

(Continued)
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FIGURE 2 | correspond exactly. The maze consists of three stages: initial, intermediate, and final. The state-state transition matrix (B matrix) ensures that an agent

can only move forward in the maze, following the direction of the arrow. (B) The state-outcome transition probability between the “Where” state and “Feedback”

outcome (as encoded by the A matrix). Depending on the location of the reward, the agent receives different feedbacks which include a directional cue (cue left or cue

right) in the initial and intermediate locations, and a reward or punishment at the final locations. The index of the y-axis corresponds with the location index in (A). Here

we have depicted unambiguous cues, where the agent is 99% sure it sees the cue pointed in the correct (i.e., toward the reward location) cue. (C) An example maze

set-up with a reward at the left-most final location. The agent starts in the initial location, and the agent’s model-based brain contains representations of where it is in

the maze, as well as where it thinks the reward is. The agent is able to make geographical observations to see where it is in the maze (A), as well as receive a

“feedback” outcome which gives it a cue to go a certain location, or to give it reward/punishment (B). The small numbers beside each arrow illustrate the ambiguity of

the cues. As an example, we have illustrated the left-most scenario of (B).

Simulations and Task Set-Up
We return to our question of the effect of the environment
on policy learning via setting up a simulated environment
in which our synthetic agent (visualized as a mouse) forages
(Figures 2A,C). Our environment takes the form of a two-
step maze inspired by Daw et al. (2011), which is similar to
that used in previous work on Active Inference (Friston et al.,
2015, 2017). The maze allows for an array of possible policies,
and the challenge for our agent is to learn to prioritize these
appropriately. The agent has two sets of beliefs about the hidden
states of the world: where it is in the maze, and where the reward
is. The agent also receives two outcomes modalities: where it
is in the maze and feedback received at each location in the
maze (Figure 2C, right). The agent always knows exactly where
it is in the maze (Figure 2A), and receives different “Feedback”
outcomes, depending on where it is in the maze and the location
of the reward (Figure 2B).

The mouse always starts in the same initial location
(Figure 2A, position 1) and is given no prior information about
the location of the reward. This is simulated by setting matrix
D such that the mouse strongly believes that it is in the “initial
location” at τ = 1 but with a uniform distribution over the
“reward location.” The agent is endowed with a preference for
rewarding outcomes and wishes to avoid punishing outcomes
(encoded via the C matrix). Cues are placed in the initial and
intermediate locations (cue left and cue right). While the agent
has no preference for the cues per se, it can leverage the cue
information to make informed decisions about which way to go
to receive the reward. In other words, cues offer the opportunity
to resolve uncertainty and therefore have salient or epistemic
value. Figure 2C shows the reward in the left-most final location,
accompanied by an unambiguous cue—the agent is 99% sure
that “cue left” means that the reward is actually on the left. This
leads it to the correct reward location. The nature of the maze is
such that the agent cannot move backward; i.e., once it reaches
the intermediate location it can no longer return to the initial
location. Once the agent gets to the final location, it will receive
either a reward (if it is at the reward location) or be punished.

To see the effect of training under different environments,
we set up two different maze conditions: a volatile environment,
in which the reward can appear in any one of the 4 final
locations with equal frequencies, and a non-volatile environment,
where the reward only appears on the two left final locations
(Figure 3A). Crucially, this volatility is between-trial, because
these contingencies do not change during the course of a trial.
The mouse has no explicit beliefs about changes over multiple

trials. Two mice with identical initial parameters are trained in
these two distinct environments. With our set-up, each mouse
can entertain 7 possible policies (Figure 3B). Four of the policies
allow the mouse to get to one of the final four locations, whereas
three additional policies result in the mouse staying in either the
intermediate or initial locations. Finally, both mice are trained
for 8 trials per day for 32 days with unambiguous cues in
the two environments (Figure 3C). Bayesian model reduction
(further discussed below) is performed in-between training to
boost learning. Note that we set-up the training environment
with unambiguous cues to allow for efficient learning, while
the testing environment always has ambiguous cues—akin to
explicit curriculums of school education vs. the uncertainty of
real-life situations.

Policy Learning and Dirichlet Parameters
Whereas inference means optimizing expectations about hidden
states given the current model parameters, learning is the
optimization of the model parameters themselves (Friston et al.,
2016). Within the MDP implementation of Active Inference, the
parameters encode sets of categorical distributions that constitute
the probabilistic mappings and prior beliefs denoted by A, B,
C, D, and E above. A Dirichlet prior is placed over these
distributions. Since the Dirichlet distribution is the conjugate
prior for categorical distributions, we can update our Dirichlet
prior with categorical data and arrive at a posterior that is still
Dirichlet (FitzGerald et al., 2015).

While all model parameters can be learned (FitzGerald et al.,
2015; Friston et al., 2016, 2017b), we focus upon policy learning.
The priors are defined as follows:

E ∼ Dir (e) (5)

Here E is the Dirichlet distributed random variable (or
parameter) that determines prior beliefs about policies. The
variables e = (e1, . . . , ek) are the concentration parameters that
parameterize the Dirichlet distribution itself. In the following,
k is the number of policies. Policy learning occurs via the
accumulation of e concentration parameters—the agent simply
counts and aggregates the number of times it performs each
policy and this count makes up the e parameters. Concretely, if
we define π = (π1, π2, . . ., πk) to be the probability the agent
observes itself pursuing policies π = 1, . . . , k, the posterior
distribution over the policy space is:

Q (E) = Dir (e) = Dir (e+ π) (6)
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FIGURE 3 | Simulation task set-up. (A) The two environments in which the agents are trained. The environment can be non-volatile (left), in which the reward always

appears on the left of the initial location, with equal frequency. The volatile environment (right) has reward appearing in all four final locations with equal frequencies. (B)

The agent’s policies. In our simulation, our agents each have 7 policies it can pursue: the first four policies correspond to the agent going to one of the final locations,

policies 5–6 has the agent going to one of the intermediate locations and staying there, and policy 7 has the agent not moving from its initial location for the entire

duration of a trial. (C) The training cycles. Each day, each agent is trained for 8 trials in their respective environment, and in between days the agent goes to “sleep”

(and perform Bayesian model averaging to find more optimal policy concentrations). This process is repeated for 32 days.
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where e = (e1 + π1, . . . , ek + πk) is the posterior concentration
parameter. In this way the Dirichlet concentration parameter is
often referred to as a “pseudo-count.” Intuitively, the higher the e
parameter for a given policy, the more likely that policy becomes
because more of Q(E)’s mass becomes concentrated around this
policy. Finally, we take the expected logarithm to compute the
posterior beliefs about policies in Equation (4):

Ê = EQ(E)

[

ln P (π |E)
]

(7)

The E vector can now be thought of as an empirical prior that
accumulates the experience of policies that are carried over from
previous trials. In short, it enables the agent to learn about the
sorts of things that it does. This experience dependent prior
policy enters inference via Equation (4). Before demonstrating
this experience dependent learning, we look at another form
of learning known variously as Bayesian model selection or
structure learning.

Bayesian Model Comparison
In Bayesian model comparison, multiple competing hypotheses
(i.e., models or the priors that defines models) are evaluated
in relation to existing data and the model evidence for each
is compared (Hoeting et al., 1999). Bayesian model averaging
(BMA) enables one to use the results of Bayesian model
comparison, by taking into account uncertainty about which is
the best model. Instead of selecting just the most probable model,
BMA allows us to weight models by their relative evidence—to
evaluate model parameters that are a weighted average under
each model considered. This is especially important in situations
where there is no clear winning model (Hoeting et al., 1999).

An organism which harbors alternative models of the world
needs to consider its own uncertainty about each model. The
most obvious example of this is in the evaluation of different
plausible courses of action (policies), each entailing a different
sequence of transitions. Such models need to be learnt and
optimized (Acuña and Schrater, 2010; FitzGerald et al., 2014)
and, rejected, should they fall short. Bayesian model averaging is
used implicitly in Active Inference when forming beliefs about
hidden states of the world, where each policy is regarded as
a model and different posterior beliefs about the trajectory of
hidden states under each policy are combined using Bayesian
model averaging. However, here, we will be concerned with the
Bayesian model averaging over the policies themselves. In other
words, the model in this instance becomes the repertoire of
policies entertained by an agent.

Returning to our maze task, our artificial agents traverse
through the maze each day and aggregate e parameters
(Equation 6) to form its daily posterior—that will serve as
tomorrow’s empirical prior. During Bayesian model reduction,
various reduced models are constructed, via strengthening
and weakening amalgamations of e parameters. For each
configuration of these policy parameters, model evidence is
computed, and BMA performed to acquire the optimal posterior,
which becomes the prior for the subsequent day. In brief,
we evaluated the evidence of models in which each policy’s
prior concentration parameter was increased by eight, while the

remainder were suppressed (by factor of two and four). This
creates a model space—over which we can average to obtain the
Bayesian model average of concentration parameters in a fast
and biologically plausible fashion. Please see Appendix A, section
A.1 for a general introduction to Bayesian model reduction and
averaging. Appendix A, section A.2 provides an account of the
procedures for an example “day.” In what follows, we now look
at the kinds of behaviors that emerge from day-to-day using
this form of autodidactic policy learning—and its augmentation
with Bayesian model averaging. We will focus on the behaviors
that are elicited in the simulations, while the simulation details
are provided in the appropriate figure legends (and open access
software—see software note).

RESULTS

Learning
We now turn to our question about the effect of the environment
on policy learning. Intuitively, useful policies should acquire a
higher e concentration, becoming more likely to be pursued
in the future. In simulations, one readily observes that policy
learning occurs and is progressive, evident by the increase
in e concentration for frequently pursued policies (Figure 4),
which rapidly reach stable points within 10 days (Figure 4B, see
Figure 3C for the concept of “training days”). Interestingly, the
relative policy strengths attain stable points at different levels,
depending on the environment in which the agent is trained. In
a conservative environment, the two useful policies stabilize at
high levels (e ≈ 32), whereas in a volatile environment, these
four useful policies do not reach the same accumulated strengths
(e ≈ 25). Furthermore, the policies that were infrequently used
are maintained at lower levels when trained in a non-volatile
environment (e ≈ 7), while they are more likely to be considered
for the agent trained in the volatile environment (e ≈ 11).

We will henceforth refer to the agent trained in the non-
volatile environment as the specialist agent, and the agent
trained in the volatile environment as the generalist agent.
Anthropomorphically, the specialist agent is, a priori, more
confident about what to do: since the reward has appeared in
the leftward location its entire life, it is confident that it will
continue to appear in the left, thus it has predilections for left-
going policies (policies 1 and 2 of Figure 3B). Conversely, the
generalist agent has seen reward appear in multiple locations,
thus it experiences a greater level of uncertainty and considers
more policies as being useful, even the ones it never uses. We
can think of these as being analogous to a general practitioner,
who must entertain many possible treatment plans for each
patient, compared to a surgeon who is highly skilled at a
specific operation.

We can also illustrate the effect of training on the agents’
reward-acquisition rate: the rate at which the agents successfully
arrive at the reward location (Figure 5). Here, we tested the
agents after each day’s training. We see that (Figure 5B, left) with
just a few days of training, the specialist agent learns the optimal
policies and its reward-acquisition rate becomes consistently
higher than a naïve agent with no preference over any of its
policies (enaive = (e1, . . . , e7) = (1, . . . , 1)). Conversely,
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FIGURE 4 | Policy learning over days for agent training in non-volatile and volatile environments. (A) Heat-map of e concentration parameters for each policy

(separated by rows) over all 32 days of training (separated by columns). (B) Plot of e concentration parameter for policies over 32 days of training.

the generalist agent never becomes an expert in traversing its
environment. While it learns to identify the useful policies
(Figure 5A, right), its performance is never significantly better
than the naïve agent (Figure 5B, right). We emphasize that the
“naive” agent does not simply select policies at random. Rather,
it has uninformative policy priors and therefore relies upon its
model-based component for policy inference (Equation 4). The
similarity in performance between the generalist and “naive”
agent is further discussed in the limitations section. Overall,
we see that a non-volatile environment leads to specialization,
whereas a volatile environment leads to the agent becoming
a generalist.

Testing
We then asked how the specialist and generalist mice perform
when transported to different environments. We constructed
three testing environments (Figure 6A): the specialized
environment, similar to the environment the specialized
agent is trained in; namely, with rewards that only appear on
the left side of the starting location (low volatility); the general
environment containing rewards that may appear in any of
the four final locations (high volatility); additionally, the novel
environment has reward only on the right side of the starting
location (low volatility).

Each agent was tested for 512 trials in each test environment.
Note that the agents do not learn during the testing phase—we
simply reset the parameters in our synthetic agents after each
testing trial to generate perfect replications of our test settings.
We observe that an untrained (naïve) agent has a baseline
reward-acquisition rate of ∼60%. On the contrary, the specialist

agent excels when the environment is similar to that it trained
in, performing at the highest level (89%) out all the agents.
In contrast, the specialist agent performs poorly in a general
environment (46% reward-acquisition), and fails all but one out
of its 512 attempts in a novel environment where it needs to go in
the opposite direction to that of its training (Figures 6B,C). The
generalist agent, being equally trained in all four policies—that
take it to one of the end locations—does not suffer from reduced
reward-acquisition when exposed to a new environment (the
specialized environment or novel environment). However, it does
not perform better in a familiar, general environment either. The
agent’s reward-acquisition remains around 60% across all testing
environments, similar to that of a naïve agent (Figures 6B,C).

Overall, we find that becoming a specialist vs. a generalist
has sensible trade-offs. The benefit of specialization is substantial
when operating within the same environment, consistent with
data on this topic in a healthcare setting (Harrold et al., 1999; Wu
et al., 2001). However, if the underlying environment is different,
then performances can decrease to one which is poorer than the
performance without specialization.

DISCUSSION

Specialists and Generalists
Our focus in this paper has been on policy optimization, where
discrete policies are optimized through learning and Bayesian
model reduction. By simulating the development of specialism
and generalism, we illustrated the capacity of a generalist to
perform in a novel environment, but its failure to reach the level
of performance of a specialist in a specific environment. We
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FIGURE 5 | Example performance of in-training agents over days. (A) Heat-map of e concentration parameters for each policy (separated by rows) over all 32 days of

training (separated by columns). (B) The frequency at which the agent is able to get to the reward location when tested under ambiguity. This simulated testing is done

after each day of training, where each agent is tested under ambiguity (the agent is 65% sure it sees the correct cue) for 32 trials, where the reward location / frequency

in the testing environment is identical to the environment in which the agent is trained (i.e., a specialist agent is tested in an environment with low volatility and the

reward always being on the left of the initial location). The frequency is computed from how many out of the 32 trials the agent is able to get to the true reward location.

now turn to a discussion of the benefits and costs of expertise.
Principally, the drive toward specialization (or expertise) is the
result of the organism’s imperative to minimize free energy. As
free energy is an upper bound on surprise (negative Bayesian
model evidence), minimizing free energy maximizes model
evidence (Friston et al., 2013). As model evidence takes into
account both the accuracy and complexity of an explanation
(FitzGerald et al., 2014), it is clear that having a parsimonious
model that is well-suited to the environment—a specialist
model—will tend tominimize free energy over time, provided the
environment does not change.

In a stable (conservative, non-volatile) setting, a complex
environment can be distilled down into a simple model without
sacrificing accuracy. This results in efficient policy selection
and provides a theoretical framework for understanding the
formation of expertise. In our simulations, the agent trained in
the unchanging environment learns to favor the two policies
that go left, as the reward is always on the left of the starting
location. It thus becomes more efficient and acts optimally in the
face of uncertainty. This is evident by its excellent performance
in finding left-situated rewards (Figure 6). Indeed, previous
theories of expertise differentiate experts from novices in their
ability to efficiently generate complex responses to their domain-
specific situations (Krampe, 2002; Ericsson, 2008; Furuya and
Kinoshita, 2008). For example, in typists, expertise is most well-
characterized by the ability to quickly type different letters in
succession using different hands (Gentner, 1998; Krampe, 2002).
In essence, the expert needs to quickly select from her repertoire
of motor policies the most appropriate to type the desired word.
This is a non-trivial problem: using just the English alphabet,

there are a total of 26m ways of typing anm-character-long word
(e.g., a typist needs to select from 266 = 308915776 policies to
type the 6-letter word “EXPERT”). It is no wonder that a beginner
typist struggles greatly and needs to forage for information by
visually searching the keyboard for the next character after each
keystroke. The expert, on the other hand, has an optimized prior
over her policy space, and thus is able to efficiently select the
correct policies to generate the correct character sequences.

However, specialization does not come without its costs.
The price of expertise is reduced flexibility when adapting
to new environments, especially when the new settings are
contradictory to previous settings (Sternberg and Frensch, 1992;
Graybiel, 2008). Theoretically, the expert has a simplified model
of their domain, and, throughout their extensive training, has
the minimum number of parameters necessary to maintain their
model’s high accuracy. Consequently, it becomes difficult to fit
this model to data in a new, contradictory environment that
deviates significantly from the expert’s experience. For instance,
we observe that people trained in a perceptual learning task
perform well in the same task, but perform worse than naïve
subjects when the distractor and target set are reversed—and take
much longer to re-learn the optimal response than new subjects
who were untrained (Shiffrin and Schneider, 1977).

Conversely, a volatile environment precludes specialization.
The agent cannot single-mindedly pursue mastery in any
particular subset of policies, as doing so would come at the cost of
reduced accuracy (and an increase in free energy). The generalist
agent therefore never reaches the level of performance that the
specialist agent is capable of at its best. Instead, the generalist
performs barely above the naïve average reward-acquisition
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FIGURE 6 | Post-training performance of specialist and generalist agents in ambiguous environments (the agent is 65% sure it sees the cue telling it to go in the

correct direction) (A) Visualization of the three testing environments. The specialized and general testing environment have identical reward location and frequencies

(Continued)
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FIGURE 6 | top the environments in which the specialist and generalist agents were trained, respectively. The novel environment is a new, low volatility environment in

which the reward only appears to the right of the initial location. (B) Distribution of reward-acquisition-rate of specialist and generalist agents compared against a naïve

agent with no training. The “Policy Strength” column shows how much of each policy the agent has learned, and the three boxes of boxplots show the comparison in

performance. The reward-acquisition rate distribution is generated via running each trial 32 times to generate a reward-acquisition rate (proportion of times the agent

correctly navigates to the reward location), and repeating this process 16 times to generate a distribution of scores. (C) A confusion matrix of mean reward-rate of

each agent within each testing environment. Both the heat map and the color over each element represents the reward-acquisition rate.

rate, even when tested under a general environment. However,
the generalist is flexible. When placed in novel and changing
environments, it performs much better than our specialist agent.

Interestingly, we note that specialist formation requiring a
conservative training environment adheres to the requirements
specified by K. Anders Ericsson in his theory of deliberate
practice—a framework for any individual to continuously
improve until achieving mastery in a particular field (Ericsson
et al., 1993, 2009; Ericsson, 2008). Ericsson establishes that
deliberate practice requires a well-defined goal with clear
feedback (c.f., low volatility learning environment) and
ample opportunity for repetition and refinement of one’s
performance (c.f., training, repetition and, potentially, Bayesian
model reduction).

While outside of the current scope, future work could consider
even more dynamic (and potentially more realistic) situations
where the goal changes intermittently. We tentatively predict if
the agent is given time in environments where state-outcome
mappings can be inferred easily (unambiguous), it will perform
well irrespective of goal location. However, if the environment is
always ambiguous, it will be more difficult to learn good habits,
and even harder so with an itinerant goal.

Ways of Learning
There are two principal modes of (policy) learning. The first is
learning via reduction, which entails a naïve agent that starts
with an over-complete repertoire of possible policies, who then
learns to discard the policies that are not useful. This is how
we have tackled policy learning here; specifically, via optimizing
a Dirichlet distribution over policies, using Bayesian model
reduction. By starting with an abundance of possible policies, we
ensure that the best policy is likely to always be present. This
also corresponds with the neurobiological findings of childhood
peaks in gray matter volume and number of synapses, followed
by adolescent decline (Huttenlocher et al., 1982; Huttenlocher
and Dabholkar, 1997; Giedd, 2008). In this conceptualization, as
children learn they prune away redundant connections, much
as our agents triage away redundant policies. Likewise, as the
policy spaces are reduced and made more efficient, we also
observe a corresponding adolescent decline in brain glucose
usage (Chugani et al., 1987). This is consistent with the idea
that informational complexity is metabolically more expensive
(Landauer, 1961).

The second method of learning is learning via expansion.
Here, we start with a very simple model and increase its
complexity until a more optimal model is reached. Concretely,
this problem of increasing a parameter space is one addressed
by Bayesian Non-parametric modeling (Ghahramani, 2013),
and has been theorized to be utilized biologically for structure

learning to infer hidden states and the underlying structures
of particular situations (Gershman and Niv, 2010; Collins and
Frank, 2013).

Bayesian Model Comparison
In our simulations, we optimized policy strengths through
the process of Bayesian model reduction (to evaluate the free
energy or model evidence of each reduced model), followed
by model averaging—in which we take the weighted average
over all reduced models. However, BMA is just one way of
using model evidences to form a new model. Here, we discuss
other approaches to model comparison, their pros and cons,
and biological implications. The first is Bayesian model selection,
in which only the reduced model with the greatest evidence is
selected to be the prior for the future, without consideration
of competing models. This offers the advantage of reduced
computational cost (no need to take the weighted sum during
the averaging process) at the cost of a myopic selection—the
uncertainty over reduced models is not taken into account.

The second method, which strikes a balance between BMA
and Bayesian model selection with respect to the consideration
of uncertainty, is BMA with Occam’s Window (Raftery, 1995). In
short, a threshold is established, OR, and if the log evidence of
any reduced model is not within OR, we simply do not consider
that reduced model. Neurobiologically, this would correspond
to the effective silencing of a synapse if it falls below a certain
strength (Fernando et al., 2012). This way, multiple reduced
models and relative uncertainties are still considered, but a great
degree of computational cost is saved since less reduced models
are considered overall.

We note that in Bayesian model comparison, the repertoire
of reduced models to be considered, the width of the Occam’s
window, as well as the time spent in “wake” (experience-
gathering) and “rest” (model comparison and reduction) phases
are all hyperparameters. Similar to model parameters, we can
expect there to be hyperpriors, which are priors over the
hyperparameters. While outside of the scope of the current work,
hyperpriors may be optimized via evolutionary processes which
also reduce the (path integral of) free energy (Kirchhoff et al.,
2018; Linson et al., 2018).

Furthermore, we theorize that there may be a connection
between these model optimization processes, and those thought
to occur during sleep, in line with previously theorized role of
sleep in minimizing model complexity (Hobson and Friston,
2012), and related to the homeostasis hypothesis of sleep
(Tononi and Cirelli, 2006). In this theory, a variational free
energy minimizing creature tries to optimize a generative
model that is both accurate and simple—i.e., that affords
the least complicated explanation for the greatest number of
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observations. Mathematically, this follows from the fact that
surprise can be expressed as model evidence—and model
evidence is the difference between accuracy and complexity.
During wakefulness, an organism constantly receives sensory
information, and forms accurate yet potentially complex models
to fit these data (neurobiologically, via increases in the
number and strength of synaptic connections through associative
plasticity). During sleep, which lacks any precise sensory input,
creatures can optimize their models post-hoc by reducing
complexity (Friston and Penny, 2011). This can be achieved
by considering reduced (simpler) models and seeing how well
they explain the data collected during waking hours (FitzGerald
et al., 2014). This is sometimes called Bayesian model reduction
(Friston et al., 2018).While we refer tomodel reduction as “sleep”
in this work, we acknowledge that no consensus has been reached
on the role of sleep, and the function of sleep as Bayesian model
reduction is just one theory.

Computational Psychiatry
Previously, Active Inference has been used as a tool for
computational psychiatry, both for phenotyping (Schwartenbeck
and Friston, 2016), and as a model of psychiatric symptoms
such as illusions (Brown et al., 2013), visual hemineglect (Parr
and Friston, 2018), and auditory hallucinations (Benrimoh et al.,
2018), to name a few. For instance, low precision assigned to
sensory attenuation can result in hallucination (Brown et al.,
2013). Uniquely, Active Inference allows for the consideration of
both perception and action. Specifically, some recent works have
begun to show the potential for disruptions of the policy space
to engender symptoms such as visual neglect (Parr and Friston,
2018) and auditory hallucination in schizophrenia (Benrimoh
et al., 2018).

While the role of the policy space has been shown to be
important, so far, there has been no formal account in Active
Inference on how a policy space is learned—in the sense
of structure learning—and altered. This is what the current
work seeks to provide. Specifically, we formalize the policy to
incorporate a policy prior. We then show how this prior is
learned, as well as introducing the notion of Bayesian model
reduction to change the structure of the policy space. Further,
we showcase the interplay between the prior and the free energy
in our “two-step” task, where we identified ambiguity—in the
state-outcomemapping—as a crucial determinant of when policy
priors (i.e., “habits”) become important. Depending on the
training environment, we demonstrate that different policy priors
can underwrite sensible behavior.

Simply put, while we had known that disruption to the
policy space plays a role in various psychiatric symptoms, we
are now equipped with a formalism to tackle how the policy
space can become maladapted to its environment. This can be
an experience-dependent process, where rare policies with low
priors are never considered. This may also be a result of model-
comparison, where the models compared may not have full
support over the policy space, or the model averaging process
may not consider the full set of possible policies (e.g., due
to computational constraints). These are tentative hypotheses,
which future work can explore in greater depth.

Moreover, we have focused on ease-of-interpretability in this
work and hope this paper can also act as a foundational “tutorial”
for future work in Active Inference that seeks to investigate the
interaction between the policy space and behavior. We have
therefore refrained from making claims about specific brain
areas. One can note that policies are usually associated with
the striatum (Parr and Friston, 2018), while observation space
is modality dependent, per the functional anatomy of primary
and secondary sensory cortex (for instance, the state-outcome
mapping in auditory tasks can be tentatively theorized to map
to the Wernicke’s—prefrontal connection). For more precise
process theories on how the Active Inference machinery maps
onto brain areas, we invite the readers to look at the discussion
sections of Benrimoh et al. (2018) and Parr and Friston (2018).

Limitations
One limitation of our simulations was that our agents did not
learn about cues at the same time they were learning about
policies; in fact, the agents were constructed with priors on
which actions were likely to lead to rewards, given specific cues
(that is, a correctly perceived cue-left was believed by the agents
to—and actually did—always lead to a reward on the left). As
such, we did not model the learning of cue-outcome associations
and how these may interact with habit formation. We argue
this is a reasonable approximation to real behavior; where an
animal or human first learns how cues are related to outcomes,
and, once they have correctly derived a model of environmental
contingencies, can then proceed to optimizing policy selection.

Additionally, while we were able to see a significant
performance difference between specialist and generalist agents,
there was little distinction between the performance of generalist
and naïve agents. This likely resulted from the “two-step” maze
being a relatively simple task. As agents are incentivized to go
to the very end of the maze to receive a reward, the naïve
agents and the generalist agents (as a result of the volatile
training environment) have isomorphic prior beliefs about the
final reward locations, and thus perform similarly. In this sense,
becoming a generalist is the process of resisting specialization,
and the preservation of naivety.

To address the above limitations, future work could involve
more complex tasks to more clearly differentiate between
specialist, generalist, and naïve agents. Additional types of
learning should also be included, such as the learning of state-
outcome mappings [optimizing the model parameters of the
likelihood (A) matrix, as described in Friston et al. (2016,
2017b)], to understand how learning of different contingencies
influence one another. In addition, more complex tasks may
afford the opportunity to examine the generalization of specialist
knowledge to new domains (Barnett and Ceci, 2002). This topic
has recently attracted a great deal of attention from the artificial
intelligence community (Pan and Yang, 2010; Hassabis et al.,
2017).

Furthermore, it would be interesting to look at policy learning
using a hierarchical generative model, as considered for deep
temporal models (Friston et al., 2017a). This likely leads to a
more accurate account of expertise-formation, as familiarity with
a domain-specific task should occur at multiple-levels of the
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neural-computation hierarchy (e.g., from lower level “muscle
memory” to higher level planning). Likewise, more unique cases
of learning can also be explored, such as the ability and flexibility
to re-learn different tasks after specializing, and different ways of
conducting model comparison (as discussed above).

CONCLUSION

In conclusion, we have presented a computational model under
the theoretical framework of Active Inference that equips an
agent with the machinery to learn habitual policies via a prior
probability distribution over its policy space. In our simulations,
we found that agents who specialize—employing a restricted
set of policies because these were adaptive in their training
environment—can perform well under ambiguity but only if
the environment is similar to its training experiences. On the
contrary, a generalist agent can more easily adapt to changing,
ambiguous environments, but is never as successful as a specialist
agent in a conservative environment. These findings cohere
with the previous literature on expertise formation—as well as
with common human experience. Finally, these findings may be
important in understanding aberrant inference and learning in
neuropsychiatric diseases.
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