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Abstract: Mobility restrictions have been a heated topic during the global pandemic of coronavirus
disease 2019 (COVID-19). However, multiple recent findings have verified its importance in blocking
virus spread. Evidence on the association between mobility, cases imported from abroad and local
medical resource supplies is limited. To reveal the association, this study quantified the importance
of inter- and intra-country mobility in containing virus spread and avoiding hospitalizations during
early stages of COVID-19 outbreaks in India, Japan, and China. We calculated the time-varying
reproductive number (Rt) and duration from illness onset to diagnosis confirmation (Doc), to represent
conditions of virus spread and hospital bed shortages, respectively. Results showed that inter-country
mobility fluctuation could explain 80%, 35%, and 12% of the variance in imported cases and could
prevent 20 million, 5 million, and 40 million imported cases in India, Japan and China, respectively.
The critical time for screening and monitoring of imported cases is 2 weeks at minimum and 4 weeks
at maximum, according to the time when the Pearson’s Rs between Rt and imported cases reaches
a peak (>0.8). We also found that if local transmission is initiated, a 1% increase in intra-country
mobility would result in 1430 (±501), 109 (±181), and 10 (±1) additional bed shortages, as estimated
using the Doc in India, Japan, and China, respectively. Our findings provide vital reference for
governments to tailor their pre-vaccination policies regarding mobility, especially during future
epidemic waves of COVID-19 or similar severe epidemic outbreaks.

Keywords: human mobility; reproductive number; imported coronavirus disease 2019 (COVID-19);
hospital bed shortage; duration from COVID-19 onset to diagnosis confirmation

1. Introduction

The novel coronavirus SARS-CoV-2 has appeared and affected human societies for
more than a year as of this writing [1]. The outbreak was declared as public health

Int. J. Environ. Res. Public Health 2021, 18, 2826. https://doi.org/10.3390/ijerph18062826 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-2450-3318
https://orcid.org/0000-0002-1920-5829
https://orcid.org/0000-0002-4630-5147
https://doi.org/10.3390/ijerph18062826
https://doi.org/10.3390/ijerph18062826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18062826
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/6/2826?type=check_update&version=3


Int. J. Environ. Res. Public Health 2021, 18, 2826 2 of 15

emergency of international concern by the World Health Organization on 30 January
2020 [2]. With limited available vaccines, much of the effort made has been to suppress
rapid diffusion of the disease by implementing non-pharmaceutical interventions such
as restricting human movements [3]. Other non-pharmaceutical interventions include
wearing face masks, proper hand hygiene, or changing climate or weather conditions [4,5].
Among these, controlling inter- and intra-country mobility is a top-down action that can
be more correctly and uniformly implemented than enforcement of mask wearing and
similar measures, and is much more controllable than altering local climate or weather.
Mobility restriction can play an important role in protecting individuals from potential
infection by interrupting disease transmission, until safe and effective vaccines can be
made widely available [6]. In the present study, we therefore examined mobility restriction
as a determinant of disease transmission.

Pilot studies have demonstrated the effect of both inter- and intra-country mobility
restrictions on slowing the spread of COVID-19. For example, strict measures implemented
in Wuhan, such as the cordon sanitaire, has impeded 80% of cases that could have been
exported to other cities internationally [7]. Outside Wuhan, limiting human mobility,
together with providing sufficient medical resources such as testing kits and hospital beds
at an early stage has been a proven approach in China [8], Italy [9] and the United States
(US) [10]. Moreover, strict and prompt restrictions on mobility have effectively protected
local economies by limiting the spread of disease [11] and are cost-effective in the long
run [12]. As for economic concerns, transportation was needed to sustain international
supply-demand chains of resources [13]. However, human mobility is closely related to the
number of confirmed cases of COVID-19 infection that may be owing to importation by
inbound airline passengers [14–18]. Although case importation is the key factor driving the
onset of local outbreaks, inter-country mobility cannot easily be unilaterally modified by a
single country; therefore, imported cases cannot be completely prevented as it is impossible
to completely isolate all countries in the world [19]. Therefore, understanding the effect
of inter-country mobility on local transmission and number of cases with local ongoing
epidemic is of great importance. There have been much early studies focusing on the
effect of travel restrictions or airport screening with other interventions via mathematical
models [7,8,20]. However, few model findings have suggested a proper quarantine pe-
riod [4]. Determining the approximate period during which imported cases can spark local
outbreaks is critical, to better control travelers’ mobility and impede local transmission in a
timely manner. Apart from modeling, empirical studies are needed in different countries,
to provide concrete data and develop tailored local policy.

Containing local transmission that is triggered by imported cases of COVID-19 re-
quires greater attention [7,17,21]; for this, deeper insight into the effects of intra-country
mobility on disease transmission is required. Taking provinces or states as the basic study
area, it is apparent that moving from one to another can result in local, within-country
case importation, which can lead to the disease spreading across an entire country. Owing
to a lack of alert systems, China experienced this phenomenon through the end of 2019,
and faced a critical shortage of medical resources in early February, 2020 [1,17,22], which
sharply raised the crude fatality rate. To this end, reducing intra-country mobility via vari-
ous measures, such as implementing social distancing policies to cut off virus transmission,
can help to lower the number of infections and save needed medical resources. Although
there has been much effort made worldwide in terms of early preparedness before the
emergence of COVID-19 [23,24], shortages of hospital resources have still occurred in
many countries, which can partly be attributed to the broken supply-demand chains. Since
the beginning of the pandemic, much effort has been devoted to planning for resource
sharing [25], framing of better systems to decide turn-over time [26], and most importantly,
ensuring that sufficient beds are available for patients who require hospitalization [27].
However, how intra-country mobility dynamics affect medical resources, in particular hos-
pital beds, remains unclear owing to a lack of precise data. When investigating the impact
of intra-country mobility on an entire country, studies have focused on the duration from
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the date of illness onset to the date of a confirmed COVID-19 diagnosis (Doc). However,
providing information of differences in Doc among different locations has been neglected.
In the present study, we proposed a crude model to estimate daily bed shortages, to clarify
the effect of intra-country mobility restrictions.

In this study, we aimed to quantify the importance of both inter- and intra-country
mobility in containing virus spread and conserving hospital bed availability during early
outbreak periods, and to provide policy recommendations in cases of recurring outbreaks.
Three countries with differing socioeconomic and epidemiological characteristics were
selected. India has the second largest population and number of COVID-19 cases world-
wide but has been highly understudied. Japan initially succeeded in suppressing the daily
increment in cases but was later forced to implement another nationwide lockdown. China
was the first country to achieve successful control of SARS-CoV-2 transmission, where the
Doc gradually declined to zero during the first 2 months of the pandemic; however, the
country experienced a crisis in disease reoccurrence in March owing to imported cases.
Therefore, we investigated the status of virus transmission in these three countries by esti-
mating the time-varying reproductive number (Rt) and Doc via the integration of multiple
data streams. The epidemic experience in China was divided into two phases in this study,
to enable fair comparisons with India and Japan: (i) 1 January to 29 February, the discovery
and recovery phases; (ii) 1 March to 16 June 2020, the period during which transmission
was appropriately managed. The first phase was used to measure the effect of intra-country
mobility on hospital bed shortages; the second phase was used to study the impact of inter-
country mobility on disease transmission. The empirical critical period to effectively limit
the impact of case importation was subsequently quantified. Finally, we put forth policy
recommendations based on our results. This study directly and quantitatively bridges
mobility and imported cases, local transmission, and hospital bed supply. These findings
can provide useful information for the public regarding how reducing mobility can directly
reduce local transmission and relieve the disease burden on the healthcare system. It is of
the utmost importance to involve the government, to improve preparedness for the coming
wave of COVID-19 or other outbreaks that constitute a public health emergency.

2. Materials and Methods
2.1. Data Sources

The mobility dataset consisted of both inter- and intra-country human movements.
To capture inter-country mobility, the number of airline passengers between 231 regions
worldwide were retrieved from the International Air Transport Association [28], covering
4453 airports from January 2019 to March 2020. Here, airflow data in March 2020 were
regressed with imported COVID-19 cases. The number of potentially averted cases of
imported infection in 2020 was then calculated by substituting annual summed airflow
data in 2019 for that in March 2020 in the regression function.

Human mobility data for China, Japan and India were collected from two major
datasets. More specific, real-time location records in China were obtained from smart
phone users of Baidu’s location-based service apps which are released on Baidu Migration
big data website (https://qianxi.baidu.com/ (accessed on 16 June 2020). Mobility data
in India and Japan were collected from the Google Community Mobility dataset (https:
//www.google.com/covid19/mobility/ (accessed on 26 April 2020). In this study, we
collected data in the same temporal period of confirmed cases and intra-country mobility
for each country. Note that these data were collected at country level as the study sites
were country-based.

Epidemiology data in three countries were collected from publicly available patient
databases, listed in Table 1. In these databases, desensitized patient information was
recorded separately, including symptom onset date, diagnosis confirmation date, removal
date (either recovered or died), and source country (imported cases only). Based on these
records, the Doc of each patient was calculated as the duration from symptom onset to
case confirmation, with further estimation of the time spent waiting for testing kits or an

https://qianxi.baidu.com/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
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available hospital bed. To detect the effect of mobility during early outbreaks, we selected
these periods in the three countries.

Table 1. Publicly available patient records databases used in this study.

Data Source Country Duration

https://www.covid19india.org/ India 2 February 2020–26 April 2020
https://github.com/reustle/covid19japan-data/tree/master/docs/patient_data Japan 15 January 2020–17 April 2020

https://github.com/beoutbreakprepared/nCoV2019
China 1 January 2020–16 June 2020

https://github.com/Juan-ZJ/COVID-19-line-list

2.2. Estimation of Time-Varying Reproductive Number, Rt

The basic reproductive number, is defined as the average number of new secondary in-
fections caused by an infected individual during the infectious period in a fully susceptible
population, and characterizes the transmissibility of a disease. If the value of Rt is greater
than 1, the disease will continue to spread. Given the variation in transmissibility with
interventions, we estimated the daily reproductive number Rt using the EpiEstim package
in R. The main estimation process was as follows.

Serial interval is defined as the difference in symptom onset dates between secondary
new infectees and their origin case, which is vital in estimating Rt. Digesting observed
daily new cases I(t), and fitted serial interval wj using the Bayesian framework with a
Gamma (a, b) prior distribution for R(T) for each time window T = [t1, t2], the Poisson
likelihood-based method outputs the posterior distribution of R(T) as in Equation (1). Here
we set a = 1, b = 5, and specified the serial interval to be the Gamma distribution with a
mean of 7.5 days and a standard deviation of 3.4 days:

R(T)|I, w ∼ Gamma

(
a + ∑t2

t=t1
I(t),

1
1
b + ∑t2

t=t1
∑t

j=1 I(t− j)wj

)
, (1)

Scanning through I(t) with a sliding window of size d, i.e., Wt,d = [t − d + 1, t], a
time-varying estimate R̂(t) = R̂(Wt,d) can be obtained for each day. That is to say, the
time-varying reproductive number Rt equals the posterior mean of Equation (1), as in
Equation (2):

R̂(t) =
a + ∑t

i=t−d+1 I(i)
1
b + ∑t

i=t−d+1 ∑i
j=1 I(i− j)wj

, t ≤ T. (2)

Note that we basically adopted Thompson’s method [29], except for the serial interval
(SI) estimation. Because there is no available information on pairs of infectees and their
origins, SI can only be set as constant [30]. Here we adopted d = 7. Imported cases were
considered separately in this study, to better estimate the Rt.

2.3. Estimation of Doc and Epidemic Curves by Illness Onset Date

The duration from date of illness onset to case confirmation, Doc, represents the
dynamic period of waiting for medical resources like testing kits or available hospital beds.
Doc can be calculated using deidentified data in the patient records in open data sources
(Table 1), which contain information such as illness onset date, confirmation date, and
confirmation location, as in Equation (3):

Dp
oc = Tp

c − Tp
o , (3)

where Dp
oc denotes the Doc from the pth piece of patient records. Tp

c and Tp
o represent the

dates of confirmation and illness onset in the pth piece of records, respectively. These
records are also location-labelled, on the basis of which Doc for each city on each day can
be estimated. Taking advantage of this, epidemic curve according to illness onset date can
also be estimated as follows.

https://www.covid19india.org/
https://github.com/reustle/covid19japan-data/tree/master/docs/patient_data
https://github.com/beoutbreakprepared/nCoV2019
https://github.com/Juan-ZJ/COVID-19-line-list
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The distribution of Doc on date Tc can be estimated, as in Equation (4):

P(Doc = j|Tc) = P(Tc − To = j|Tc) =
n(Tc − To = j | Tc)

n(Tc)
, Tc = 1, . . . , T, (4)

where n(Tc) denotes the number of confirmed cases on date Tc, n(Tc − To = j | Tc) denotes
the number of cases whose confirmation date was Tc but whose onset date was To = Tc − j.

Applying the distribution to officially reported confirmed COVID-19 cases, the number
of patients on onset date To, N(To), can be calculated using the Bayes formula of total
probability, as in Equation (5):

N(To) = ∑T
Tc=T0

N(Tc)·P(Doc = Tc − To|Tc), (5)

where N(Tc) denotes the number of officially reported confirmed cases on date Tc. N(To)
is the estimated total number of new-onset cases on date To.

2.4. Estimation of Bed Shortage

Disease onset-to-confirmation delay could result from limited diagnostic capacity and
limited healthcare resources such as a shortage of hospital beds. This lack of resources
was one of a fundamental drivers in the very early stages of disease transmission, as was
the situation in Hubei Province at the beginning of 2020 (excluding Wuhan City, hereafter
Hubei for short), which is relaxed after the development of Fangcang [31]. We assumed
that the onset-to-confirmation time delay in Hubei characterized the time spent waiting
for testing kits whereas in other locations, this is referred to the period waiting for both
testing kits and hospital beds. Taking Doc dynamics in Hubei as a natural decreasing trend
in locations first experiencing a COVID-19 outbreak, the total number of person-days spent
waiting for a hospital bed in unprepared locations can be estimated using the number of
patients on the onset date, multiplied by the difference in Doc between these locations and
Hubei, summed over each onset day, as in Equation (6):

Nw =
∑DT

t=D1
NUN(t)·

(
DUN

oc (t)− DHB
oc (t)

)
Dh

, (6)

where Nw denotes the total number of patients waiting for a hospital bed; NUN(t) denotes
the number of patients in unprepared locations on the onset date t; DUN

oc (t) and DHB
oc (t)

represent Doc in unprepared locations and Hubei on illness onset date t, respectively; Dh is
the average number of days patients are hospitalized; and D1 and DT denote the start and
end dates of the period with bed shortages, respectively.

2.5. Critical Period for Imported Case Prevention

Different periods were selected to calculate the Pearson’s correlation between imported
cases and the daily reproductive number, which is defined from different start days to
the end of the study period. The start date ranges from the first date with a confirmed
case(s), to day 14 after that date. In correlation analysis, we took 1 week as the unit of
calculation; the start week is defined as the first week following the start date. Thereafter,
the correlations were calculated recursively from the first start week to the end week in
1-day steps. The empirical critical timing is when the correlations drop sharply. The entire
study periods in India, Japan, and China are given in Table 1.

3. Results
3.1. Time-Varying Reproductive Number Rt and Doc

The time-varying reproductive number Rt was estimated during the period when early
outbreaks occurred (Figure 1). Across countries there was a large Rt at the beginning of the
pandemic, indicating high transmissibility of COVID-19. Effective measures were put in
place to reduce virus spread, which is reflected in the fluctuating Rt curves. Consistent with
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official declarations, Japan and China both succeeded in controlling virus transmission
in late March (Rt < 1). However, Japan failed to maintain this trend, which resulted in a
rebound. China was able to maintain virus control, until a local outbreak occurred in Beijing
in June 2020. In contrast, we detected a high transmission rate in India at the beginning of
the epidemic in that country, followed by a considerable reduction in late April. However,
the Rt was consistently greater than 1, indicating that the disease continued to spread
during the entire study period, only with different intensities.

Figure 1. Time-varying reproductive number Rt in (A) India, (B) Japan and (C) China using R package, EpiEstim; parameter
settings are described in Section 2.2. Note that the Rt in China was generally less than 1 despite ongoing virus spread.

The value of Rt reflects the rate of virus transmission, and Doc indicates preparedness
in terms of both medical resources and public awareness. Both India and Japan managed to
reduce Doc within approximately 7 days, which then soared to higher than the initial levels
(Figure 2A,B). The Doc during the second phase of epidemic in China was close to zero,
with the severe and strictly enforced measures such as lockdown of entire cities during
the first phase. Therefore, Doc dynamics during the first phase, visualized in Figure 2C,
gradually reduced from double digits to zero on 19 February 2020, indicating that wherever
a symptomatic patient was identified, testing kits and a hospital bed were available.

Figure 2. Dynamic Doc and sketch of indents. Doc in (A) India and Hubei, (B) Japan and Hubei, and (C) Wuhan and Hubei.
Striped areas represent the difference in Doc and can be used to roughly estimate bed shortages within a certain period.
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3.2. Critical Period for Controlling Imported Cases

The distinct correlation between transmissibility and number of imported cases
(Figure 3) during the first 15-day period of documented local transmission indicated that
controlling case importation is fundamental to modulating local outbreaks during the very
early stages of the disease transmission. The strongest correlation occurred in the first
10 days (one start week with 3 subsequent days) in India, with peaks at 15 days in Japan,
and 12 days in China. It is reasonable that these peak days denote the period with the
greatest likelihood that imported cases can infect local people (exposed susceptibles), and is
thus influenced by population density [32], or local interventions, such as social distancing
or vaccination.

Figure 3. Pearson’s correlation between imported cases and time varying reproductive numbers in India (A), Japan (B),
and China (C) with 14 temporal ranges. Start days here indicate the start day (since the first imported cases) of the
temporal range.

The drop day represents the date when local transmission is taken over by infected
cases among local infectees, which reflects local surveillance capability for imported cases.
The lowest correlation reached −0.6 in Indian and −0.8 in Japan, indicating that imported
cases triggered local transmission, such that the driver of Rt dynamics was no longer
only imported cases. Note that the correlation drops sharply after 18, 24, and 26 days, in
India, Japan and China, respectively. These days represent the time when the influence
of imported cases on local transmission comes to an end, indicating the optimal time to
subject imported cases to proper surveillance and monitoring.

3.3. Effect of Restriction of Inter-Country Mobility on Limiting Case Importation

A considerable reduction in inter-country mobility appeared to avert infections owing
to imported cases. Our findings showed that the number of actual airline passengers
in March 2020 with different originations can explain 80% and 35% of the variance in
the corresponding imported cases in India and Japan, respectively (Figure 4). Statistical
analysis indicated that every 10,000 passenger decrease in airline transport inflow resulted
in a 7.5 (±0.6) and 1.4 (±0.35) decrease in imported cases in India and Japan, respectively
(Figure 4A,B). Apparently, reducing the number of inbound passengers to 5950 alone
could significantly diminish the linear impact of flight numbers on imported cases in
India according to this linear regression results, although flight passengers less than 50,000
shows a trend towards the origin. Controls implemented on inbound terrestrial or oceanic
passengers required greater restriction to control case importation in Japan. Moreover,
regression analysis indicated that fewer flight passengers in 2020, as compared with the
annual numbers in 2019, could have blocked an increase of more than 20 million imported
cases in India (inset in Figure 4A), and approximately 5 million imported cases in Japan
(inset in Figure 4B). China is a special case. Although limiting inter-country mobility is
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likely to have prevented importation of 40 million cases as shown in linear regression
model (Figure 4C), inbound flight passengers only explain 12% of the variance of imported
cases in China. This is discussed further in the following section.

Figure 4. Imported cases in relation to inbound flight passengers in India (A), Japan (B) and China (C). Donut chart shows
the estimated number of cases prevented by limiting inter-country mobility locally as compared with airline passengers
in 2019. Values in the center of the chart indicate the possible number of confirmed imported cases that were prevented.
Annotated countries are the top five greatest contributors to imported cases in each of the three countries. Data with country
name are listed in Table A1.

Figure 4 (inserts) shows the countries with the greatest contributions to case impor-
tation in the three countries. We found that the United Arab Emirates, US, Saudi Arabia,
Thailand, and Singapore were the five countries most responsible for imported cases in
India. China, Korea, US, Thailand and the Philippines were the leading countries of case
importation to Japan whereas Thailand, Japan, US, Singapore and Malaysia are the major
countries responsible for imported cases in China.

3.4. Effect of Intra-Country Mobility on Hospital Bed Shortages

Figure 5A,B show estimates of additional hospital beds in India and Japan. The
estimates during the first phase in China are illustrated (Figure 5C) because no cases
had been documented since the beginning of the second phase (Figure 2C). There was a
continuous increase in bed shortages in India and China prior to the implementation of
nationwide lockdown (24 March and 23 January, respectively) and a sharp decrease in
intra-country mobility thereafter. Despite the similar increase of Doc in Japan, measures
such as a nationwide lockdown were still not implemented to reduce this. Judging from
the curves and bars in Figure 5, there is a phase-wise relationship between intra-country
mobility (curves in green) and bed shortages (bars). However, the bed shortage estimation
is reasonable only after official actions such as lockdown have been taken.

Intra-country mobility and bed shortages were linearly regressed in India (since 24
March 2020), Japan and China (since 23 January 2020). Our results indicated that a 1%
mobility release would result in 1430 (±501) bed shortages in India, 109 (±181) in Japan and
10 (±1) bed shortages in China. By integrating intra-country mobility and bed shortages,
we demonstrate that the dynamics of intra-country mobility can explain 54%, 1%, and 76%
of bed shortages in India, Japan, and China, respectively. The rate is extremely low in Japan
because the precondition of beds shortage estimation was not fulfilled. This rate increases
to 12% after the condition is plausibly met (Figure A2), which is further discussed in the
following section.
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Figure 5. Dynamics of local Doc, intra-country mobility and hospital bed shortages in India (A1), Japan (B1) and China
(C1). (A2), (B2) and (C2) denote the relationship between intra-country mobility and estimated bed shortages. Note that
we consider the lagged relationship between the reduction of mobility and bed shortage by estimating the relationship in
(A2) and (C2) using the mobility and bed shortage data in the period marked by green and blue arrows in (A1) and (C1).

4. Discussion
4.1. Mobility Restriction Versus Normal Condition

The initial high Rt in Figure 1 indicates an outbreak, which could have resulted from
either imported cases or collective local infection; Figure 3 shows that the outbreak was
owing to the former. This verifies the importance of monitoring and control measures for
imported cases; empirically, their effect on local virus transmission peaked at approximately
2 weeks, was maintained at around 2 weeks, and ended at 4 weeks in all three countries.
Similar to our Pearson’s correlation analysis, Sokadjo studied the relationship between
inflow of airline passengers and daily confirmed cases [18]. Although we obtained a similar
curve shape, we more directly calculated imported cases and reproductive numbers,
yielding more robust data using recursive correlation analysis and more targeted results
as we determined this relationship for each country. Our results do not repeat the work
of Sokadjo’s but rather represent a clearer physical interpretation of a gap between the
inflow of airline passengers in that previous study and our imported cases in the present
work. Applying linear analysis between these two variables, imported cases proved to be
the driver of initial local transmission as shown in Figure 3. Furthermore, in Figure 4, we
illustrated that the greater the airline passenger inflow, the greater the number of imported
cases, although with different intensities in different countries. Therefore, our sequential
results re-assert the merit of exerting great effort to properly screen and manage all inbound
flight passengers.

Controlling flight inflow, however, does not necessarily mean stopping all inbound
flights. First, according to the regressed results shown in Figure 4, there would still be
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imported cases in countries such as Japan and China, even if inter-country mobility were
reduced to zero. Therefore, implementing the 15-day period to control imported cases, as
in Figure 3, is of great importance to be able to restore normal daily life. During this period,
greater preparedness is needed to ensure the availability of resources such as nucleic
acid testing kits, hospital beds, and ventilators [23]. Second, as illustrated in the case of
China, imported cases can be largely independent of airline travel, which can facilitate
international travel as well as keeping the virus outside of the country. This “clean network”
resulted from targeted policies for different flights [33]. Rather than using one-size-fits-all
approach, China accepted most passengers but refused entry to those from countries with
historically higher COVID-19 incidence rates, as a compromise. By excluding flights from
low-risk countries such as Thailand, Japan and Cambodia, the explanation rate (R-square)
would rise to 52% (Appendix A, Figure A1), which accords with the explanation rate of
India and Japan. These evidences suggest two ways that a return to normal life can be
achieved using inter-country mobility restriction.

Intra-country mobility adjustment also directly influences vital medical resources
such as hospital beds. Once people became aware of the severity of COVID-19, tighter
intra-country mobility policies led to fewer bed shortages (Figure 5A,C). Bed shortages
were eliminated and patients could be attended as long as the difference between country-
wide Doc and the baseline had dropped to zero. Although total intra-country mobility
restrictions can then be lifted, as happened during the second phase in China, this recovery
is not totally equivalent to a return to normal life. Schlosser et al. found that suppressing
intra-country mobility not only changes the intensity of restrictions, but also the structure of
mobility [34]. Given limited finer location-based mobility indices, spatiotemporal behavior
modes and land-use data, much information is lacking regarding how to measure when
life can return to normal.

4.2. Prerequisite of Beds Shortage Estimation

Doc proved to be a critical value in modeling the effect of imported cases on virus
transmission in Kraemer’s work (Figure S2 in [35]); however, its capability to represent
the level of preparedness among local governments and populations was neglected. As
Figure 2A,B shows, the initial dynamics of Doc in India and Japan suggested that patients
with imported infections were aware of their symptoms and the government in each
country managed to have them tested and admitted to hospitals. Thereafter, because public
awareness remained at the same level, the most likely reasons accounting for the variance
are the differences in preparedness regarding testing kits and hospital beds. Based on news
reports in China, the difference of Doc between Hubei and Wuhan is the difference between
time spent waiting for testing kits only, and time spent waiting for both testing kits and
hospital beds. The larger Doc difference in India and Japan and the gradually smaller
Doc difference in China are the results of government measures and human behaviors,
and provide a basis for the estimation of hospital bed shortages. Based on this reasoning,
the bed shortage estimation can be correctly made when high levels of public awareness
have been reached and the curve dynamics only result from different time spent waiting
for hospital beds and/or testing kits. This prerequisite accounts for why intra-country
mobility only explains 1% of the variance in bed shortage in Japan, which is extremely
low compared to India and China. This is related to the underlying assumption of bed
shortage estimation.

In Section 2.4, differences of two Doc values are attributed to the period waiting for
hospital beds only. However, Doc could be high in Japan regardless of the testing kit and
hospital bed availability if people fail to recognize the serious risks and are unwilling to
be admitted to the hospital [36]. The general public in Japanese only became aware of the
severity of the epidemic after a nationwide lockdown was initiated on 7 April [37], which
is beyond the range of our data availability. Comparatively, the correlation reached 35% to
62% in India and China because the calculation begins from the date the cordon sanitaire
was implemented. It can be reasonably concluded that only when people are alerted, do the
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differences of Doc represent the time waiting for hospital beds. To verify this assumption,
we took the day with lowest intra-country mobility as the date when the Japanese public
became aware of the seriousness of the epidemic (March 8), and re-applied the regression
analysis; the rate increased to 12.5% (Figure A2). This bed shortage estimation method is
applicable only when the prerequisite is fulfilled.

4.3. Strengths, Limitations and Future Directions

This study succeeded in explaining the importance of both inter- and intra-country
mobility using the aforementioned procedure. Most notably, estimation of hospital beds
shortage is proposed based on Doc, which can be extended to all countries if its prerequisite
is fulfilled. This contribution managed to provide medical resources data and, for the
first time, provides the opportunity to directly correlate mobility with medical resources
using only publicly available data. The importance of mobility during the early stages of
COVID-19 outbreaks is thus highlighted.

Apart from aforementioned caveats, some limitations or uncertainties remain. First,
the bed shortage estimation takes the Doc of Hubei as baseline. However, because the
outbreaks in India and Japan were later than that in Hubei, those countries may have had
greater levels of preparedness regarding hospital beds and testing kits, whose actual Doc
baseline should be even lower than that of Hubei, resulting in underestimation of their
bed shortage. This implies that, in reality, bed shortages may be even more sensitive to
intra-country mobility, requiring a greater commitment from governments to restricting
intra-country mobility. Second, the preciseness of Rt estimated using EpiEstim in R can be
improved if information for pairs of infectees and their origin cases can be obtained.

Our quantitative analysis and plausible findings reinforce the importance of inter- and
intra-country mobility regarding imported cases and medical resources, and explained the
general process of case importation from other countries, proper screening and surveillance,
local transmission, and hospital bed shortages. Future work should focus on developing a
finer model and precisely distinguishing drivers of imported COVID-19 cases and hospital
bed shortages. Further investigation on how daily human life can return to normal apart
from adjusting the mobility level and structure, should be conducted to allow targeted
policies to be developed.

5. Conclusions

This study empirically and quantitatively relates both inter- and intra-country mobility
to imported COVID-19 cases and hospital beds, highlighting the importance of mobility
during early stages of the outbreak. We analyzed the relationship between inter-country
mobility, imported cases and time-varying reproductive number, and found that inter-
country mobility led to more imported cases, which initiated local transmission of COVID-
19 whose correlation with Rt peaks at around 2 weeks and drops at around 4 weeks,
providing a reference for the optimal surveillance period. With local transmission, we
estimated hospital bed shortages using the different durations from illness onset to case
confirmation (Doc) in different countries, and found that intra-country mobility can explain
54%, 1%, and 76% of the variance in hospital bed shortages in India, Japan and China,
respectively. Note that targeted airline passenger screening was implemented in China
and the Doc declined to zero during the second phase in that country. Therefore, both
inter- and intra-country mobility could be relaxed to a large extent, providing a successful
example in recovery of mobility. Although there are some limitations, the findings of this
study can help the public to better understand the effect of mitigating both inter- and
intra-country human mobility on limiting the diffusion of COVID-19 infection, and can
provide quantitative results for policy makers in the face of recurring COVID-19 outbreaks
and other epidemics. Efforts are needed to determine how best human life can return to
normal in the face of the COVID-19 pandemic.

Based on our findings regarding the transmission process during the early outbreak
stages, we put forth the following targeted policy recommendations: (1) Targeted policies
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must be designed to determine the maximum number of inbound flights that can be
allowed, considering the incidence rate in the originating country, as China is currently
doing. A balance must be struck between inbound travel (most importantly, to maintain
supply chains) and COVID-19 case importation to avoid halting all air transport; (2) Strict
screening of inbound passengers and proper monitoring of travelers suspected of imported
infection, for a minimum of 2 weeks and maximum of 4 weeks; (3) Intra-country mobility
restrictions must be enforced to varying degrees, which can help raise public awareness,
and directly help to relieve the burden on local medical resources in the face of local
transmission; (4) Ensuring adequate supplied of medical resources in preparation for
infectious disease outbreaks and reducing the Doc to near zero and maintaining Rt values
to less than 1. Only then, can intra-country mobility restrictions be lifted.
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Appendix A

Figure A1. Imported cases in relation to number of inbound airline passengers in China, excluding
low-risk countries namely, Thailand, Japan, and Cambodia.

Figure A2. Intra-country mobility and hospital bed shortages in Japan since March 8 (the day with
the lowest available data of intra-country mobility).
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Table A1. Inbound Flight passengers and imported cases from different source countries to India, Japan, and China in 2020.

India Japan China

Source
Country

2020 Flight
Passengers

Imported
Cases

Source
Country

2020 Flight
Passengers

Imported
Cases

Source
Country

2020 Flight
Passengers

Imported
Cases

Australia 29,673 2 Australia 47,913 2 Angola 75 3
Bahamas 20 1 Austria 3227 1 Austria 892 3
Bahrain 16,867 2 Belgium 3020 2 Belgium 1695 5

Bangladesh 18,229 2 Bolivia 34 1 Brazil 1709 9

Brazil 1512 3 Brazil 4121 2 Burkina
Faso 82 7

Canada 24,496 2 Canada 14,771 3 Cambodia 52,633 6
China 1403 4 China 51,970 17 Canada 20,638 12
Congo 162 1 Congo 0 1 Denmark 642 1

Denmark 2352 1 Cote
d’Ivoire 0 1 Egypt 1818 1

Egypt 4438 1 Czech 1787 1 Ethiopia 2024 1
Finland 1118 1 Egypt 2622 12 France 8352 79
France 12,690 14 Ethiopia 252 2 Germany 13,638 6

Germany 16,993 10 Finland 3951 3 Greece 1097 1
Greece 943 1 France 24,718 26 Hungary 722 4
Guyana 14 1 Germany 17,248 9 Iceland 127 1

Indonesia 11,687 17 Holland 4512 8 Indonesia 9901 3
Iran 688 34 India 8327 1 Iran 2829 9

Ireland 3841 2 Indonesia 36,538 5 Ireland 940 5
Italy 5146 34 Ireland 1137 9 Italy 4736 46

Japan 7318 2 Italy 9411 11 Japan 53,170 2
Kenya 5844 1 Korea 80,459 1 Malaysia 25,231 5

Malaysia 33,847 1 Mexico 4849 1 Netherlands 2717 6
Mexico 508 1 Morocco 1858 1 Niger 60 2

Netherlands 5761 3 New
Caledonia 2372 1 Nigeria 845 10

New
Zealand 5714 1 Philippines 64,747 11 Norway 443 2

Oman 49,183 1 Portugal 1220 2 Pakistan 1444 8
Philippines 3900 6 Spain 11,619 20 Philippines 15,501 43

Portugal 1051 1 Switzerland 3045 2 Russian
Federation 6923 42

Qatar 39,981 5 Thailand 62,414 4 Saudi
Arabia 585 4

Russian
Federation 11,748 1 UK 21,669 24 Serbia 1223 4

Saudi
Arabia 98,599 30 US 194,938 39 Singapore 17,491 2

Singapore 48,595 3 Vietnam 57,775 2 Spain 7846 89
South
Africa 5942 1 Sweden 906 1

Spain 4512 16 Switzerland 1522 8
Sri Lanka 34,801 5 Thailand 108,739 13
Sweden 1651 3 Turkey 1291 2

Switzerland 4050 2 UAE 7785 10
Thailand 43,419 6 UK 41,216 289
Trinidad 16 1 US 67,375 151
Turkey 9125 4 Vietnam 2923 1
UAE 293,587 266
UK 68,504 73
US 113,165 29
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