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White matter microstructure and its relation to
clinical features of obsessive–compulsive disorder:
findings from the ENIGMA OCD Working Group

Abstract
Microstructural alterations in cortico-subcortical connections are thought to be present in obsessive–compulsive
disorder (OCD). However, prior studies have yielded inconsistent findings, perhaps because small sample sizes
provided insufficient power to detect subtle abnormalities. Here we investigated microstructural white matter
alterations and their relation to clinical features in the largest dataset of adult and pediatric OCD to date. We analyzed
diffusion tensor imaging metrics from 700 adult patients and 645 adult controls, as well as 174 pediatric patients and
144 pediatric controls across 19 sites participating in the ENIGMA OCD Working Group, in a cross-sectional case-control
magnetic resonance study. We extracted measures of fractional anisotropy (FA) as main outcome, and mean diffusivity,
radial diffusivity, and axial diffusivity as secondary outcomes for 25 white matter regions. We meta-analyzed patient-
control group differences (Cohen’s d) across sites, after adjusting for age and sex, and investigated associations with
clinical characteristics. Adult OCD patients showed significant FA reduction in the sagittal stratum (d=−0.21, z=
−3.21, p= 0.001) and posterior thalamic radiation (d=−0.26, z=−4.57, p < 0.0001). In the sagittal stratum, lower FA
was associated with a younger age of onset (z= 2.71, p= 0.006), longer duration of illness (z=−2.086, p= 0.036), and
a higher percentage of medicated patients in the cohorts studied (z=−1.98, p= 0.047). No significant association
with symptom severity was found. Pediatric OCD patients did not show any detectable microstructural abnormalities
compared to controls. Our findings of microstructural alterations in projection and association fibers to posterior brain
regions in OCD are consistent with models emphasizing deficits in connectivity as an important feature of this
disorder.

Introduction
Abnormalities in cerebral white matter (WM) are rele-

vant to models of anomalous brain circuitry that posit
deficits in connectivity in obsessive–compulsive disorder
(OCD). OCD has a childhood onset in over 50% of all cases,
and most childhood-onset OCD cases persist into adult-
hood1. Diffusion tensor imaging (DTI) allows the study of
WM at the microstructural level through the analysis of
intrinsic, three-dimensional diffusion properties of water
within brain tissues2. Prior DTI studies in OCD3–5 suggest

that microstructural alterations are present in a number of
WM areas. However, results across studies are inconsistent,
with contrasting or conflicting effects of OCD on DTI
metrics6. Sources of heterogeneity may include methodo-
logical factors (e.g., imaging acquisition and data proces-
sing), clinical characteristics, and variations in demographic
or socioeconomic factors. More importantly, sample size
variations may impact reported findings, as small studies
may have insufficient power to detect subtle alterations7.
Brain imaging consortia offer new opportunities, pooling

data and findings from around the world to achieve an
appropriate sample size. The OCD working group of the
Enhancing Neuro-Imaging Genetics through Meta-Analysis
(ENIGMA) consortium8, is one such collaboration.
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Previous findings from the working group focused on
subcortical and cortical brain gray matter abnormalities,
using subcortical volumes, cortical thickness, and surface
area quantification algorithms. An initial analysis of data
from 3589 individuals showed distinct subcortical volume
abnormalities in adults (smaller hippocampal and larger
pallidal volumes) and unmedicated children (larger tha-
lamic volume) with OCD9. The second study focused on
cortical gray matter differences and showed a lower surface
area for the transverse temporal cortex and a thinner
inferior parietal cortex in adult patients. In pediatric OCD
patients compared to healthy controls, significantly thinner
inferior and superior parietal cortices were found10. Medi-
cation status was associated with structural differences in
both pediatric and adult OCD.
Here we aimed to investigate WM microstructural

alterations in adult and pediatric OCD using data from
the ENIGMA OCD working group, in the subset of par-
ticipants that had collected diffusion magnetic resonance
imaging (MRI). DTI metrics in 700 adult patients were
compared to those of 645 adult controls, and separately,
174 pediatric patients were compared to 144 pediatric
controls. Analyses also aimed to investigate associations
between WM microstructure and demographic and clin-
ical variables. As prior meta-analytic findings in frontal
and callosal regions have been inconsistent (with either
higher11 or lower3,11 fractional anisotropy (FA) in anterior
midline tracts), with more homogenous findings for
fronto-temporal and fronto-parietal intra-hemispheric
bundles, we expected to find microstructural alterations
(as reflected by lower FA3,4,6,11) in the long tracts con-
necting frontal regions to posterior temporal, parietal and
occipital association cortices.

Methods
Study dataset
The ENIGMA OCD Working Group includes 19

international research institutes. Previous literature
(including studies from the present Working Group9,10)
showed different patterns of effects in pediatric and adult
cohorts; thus, we performed separate meta-analyses for
adult and pediatric data. Globally, we analyzed data from
1345 adults (including 700 OCD patients and 645 controls,
aged ≥18) and 318 children (including 174 OCD patients
and 144 controls). The diagnosis of psychiatric disorders
including OCD and other comorbid conditions (if any)
was made using a structured or semi-structured interview;
the Structured Clinical Interview for DSM-IV [(First
et al.12) n= 9 datasets], the Mini-International Neu-
ropsychiatric Interview [(Sheehan et al.13) n= 3 datasets],
or the schedule for affective disorders and schizophrenia
for school-aged children: Present and Lifetime Version [K-
SADS-PL14; n= 7 datasets]. Patients were administered
the Yale-Brown Obsessive–Compulsive Scale (YBOCS)15

and the Child YBOCS16 to assess symptom severity. These
tools are clinician-rated, 10-item scales, with each item
rated from 0 (no symptoms) to 4 (extreme symptoms; total
range, 0–40), with separate subtotals for the severity of
obsessions and compulsions.
Common exclusion criteria across sites included: (1)

history of psychoactive substance dependence or abuse
during lifetime, (2) history of neurologic illness or brain
injury, (3) presence of any brain pathology as instantiated
by standard magnetic resonance imaging (MRI) exams
(including T1-weighted and standard clinical sequences),
(4) dementia diagnosis according to DSM-IV-TR criteria.
Tables 1 and 2 show the demographic and clinical

characteristics of the participants from each site.
All local IRBs approved the use of measures extracted

from completely anonymized data.

Image acquisition and processing
Harmonized preprocessing, including brain extraction,

eddy current correction, movement correction, echo-
planar imaging-induced distortion correction and tensor
fitting, was carried out at each site, using protocols and
quality control pipelines provided by the ENIGMA-DTI
working group (http://enigma.ini.usc.edu/protocols/dti-
protocols/) and already employed to pool harmonized
DTI analyses from around the world17–19.
Once tensors were estimated, each site conducted a

harmonized image analysis for FA quantification using the
ENIGMA-DTI protocol, consisting of the tract-based
spatial statistics (TBSS)20 analytic method modified to
project individual FA values to the ENIGMA-DTI skele-
ton. Tract-wise regions of interest (ROIs), derived from
the Johns Hopkins University21 WM parcellation atlas,
were used to extract the mean FA across the full skeleton
and mean FA values for 25 ROIs.
Diffusivity measures (i.e., mean diffusivity (MD), axial

diffusivity (AD), and radial diffusivity (RD)) were also
derived for secondary analysis (i.e., the analyses were
performed only in those WM regions, if any, where FA
was significant). In the main analyses, we combined left
and right ROI across hemispheres, as we had no a priori
hypotheses regarding lateralized effects on FA.

Statistical analysis
At each site, Cohen’s d effect sizes were calculated for

differences in FA between patients and healthy controls.
Age, sex, age-by-sex interaction, and quadratic covariates
of age2 and age2-by-sex interaction were included in the
model, as linear and nonlinear age and sex interactions
have been reported for FA17. Subsequently, a random
effects meta-analysis was run at the coordinating site
using Comprehensive Meta-Analysis (CMA, version 2,
Biostat, Englewood, NJ) to combine individual site effect
sizes. Heterogeneity scores (I2; lower values indicate lower
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variance in the effect size estimates across studies) were
also computed for each test.
Effect sizes are reported as overall Cohen’s d values for

case/control effects and z-scores, and were considered sig-
nificant if p < 0.05. The stability of the overall effect size
estimate was tested using a ‘leave one out’ sensitivity ana-
lysis. This analysis shows how the overall effect size changes
if one dataset at a time is removed, assessing whether
potential results are site-dependent with between-sites
variations potentially deriving from variability in study
population characteristics (sampling error). Furthermore, to
ascertain whether the estimated effect size varied as a
function of clinical characteristics, mixed-effects meta-
regressions were performed on FA, using age of onset,
duration of illness, symptom severity, and percentage of
medicated patients in the patients’ dataset as regressors.
The influence of medication status was also explored
through a mixed-effects sub-group analysis, comparing
effect sizes in medicated (n= 8) and unmedicated (n= 3)
patient cohorts. These analyses were primarily run in those
WM areas where effect sizes were significant and stable
according to the leave-one-out analyses. Ancillary analyses
explored the effect of clinical variables on FA also in WM
areas where only partly stable results were observed (i.e.,
where the removal of 1 or 2 studies affected significance)

Results
Demographics and clinical characteristics of the parti-

cipants in each site are shown in Tables 1 and 2.

Adult Cohort
Table 3 indicates the 5 out of 25 regions with lower FA

in patients compared to controls. These are the genu of
the corpus callosum (GCC, d=−0.17, z=−2, p=
0.045), the posterior corona radiata (PCR, d=−0.16,
z=−2.38, p= 0.017), the posterior thalamic radiation
(PTR, d=−0.261, z=−4.57, p < 0.0001), the sagittal
stratum (SS, d=−0.21, z=−3.21, p= 0.001) and the
uncinate fasciculus (UNC, d=−0.18, z=−2.49, p=
0.013) (see Fig. 1).
Heterogeneity scores revealed a significant high var-

iance for GCC (I2= 53.61, p= 0.018) only, whereas PCR
(I2= 26.25, p= 0.19), PTR (I2= 6.61, p= 0.38), SS (I2=
24.43, p= 0.21), and UNC (I2= 37.4, p= 0.1) showed
non-significant variance between sites.
The sensitivity analysis showed that PTR and SS were

the only WM tracts where the removal of individual
datasets did not affect significance. For the other WM
tracts results are more controversial, since for GCC the
exclusion of six sites determined a loss of significance of
the model, while for PCR and UNC the exclusion of two

Table 1 Demographic and clinical characteristics of patients with obsessive–compulsive disorder (OCD) and control
subjects.

Characteristics Adult OCD sample

(n= 700)

Adult HC sample

(n= 645)

Pediatric OCD sample

(n= 174)

Pediatric HC sample

(n= 144)

Age (years) 31.4 ± 9.9 30.7 ± 10 14.5 ± 2.3 14.3 ± 2.5

OCD illness severity score 25 ± 7.1 – 20.7 ± 7.8 –

Age at onset 19.1 ± 8.4 – 13.1 ± 5.3 –

N (%) N (%) N (%) N (%)

Male 405 (58) 378 (59) 94 (53) 74 (51.3)

Medication use at time of scan 269 (39) – 112 (64) –

Current comorbid disorders

Anxiety 74a (11) – 27b (23) –

Major depression 60c (10) – 10b (9) –

OCD symptom dimension

Aggressive/checking 418d (79) – 82e (75) –

Contamination/cleaning 358d (68) – 74e (68) –

Symmetry/ordering 378d (62) – 72e (66) –

Sexual/religious 229d (44) – 47e (43)

Hoarding 115d (22) – 45e (41) –

aData available for 625 patients.
bData available for 117 patients.
cData available for 610 patients.
dData available for 525 patients.
eData available for 109 patients.
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sites determined a loss of significance of the model (see
Supplementary Table 1).
As secondary analyses, we also investigated diffusivity

measures (i.e., MD, AD, and RD) in those WM regions
where FA was significantly reduced in OCD. Results
revealed that patients diagnosed with OCD showed higher
MD in the SS (d= 0.21, z= 2.75, p= 0.006) and higher RD
in PTR and SS (d= 0.16, p= 0.002 for PTR and d= 0.21,
p= 0.007 for SS). No significant results were found for AD.
As stated, meta-regressions were primarily run in regions

where effect sizes were significant and stable (i.e., PTR and
SS). In the SS of adults diagnosed with OCD, lower FA was
significantly associated with younger age of onset (z= 2.71,
p= 0.006), longer duration of illness (z=−2.09, p= 0.036)
and a higher percentage of medicated patients (z=−1.98,
p= 0.047; see Fig. 2). Mixed-effects sub-groups analysis
showed a significant difference (q value(df= 1)= 5.27,

p= 0.022) between the effect sizes in medicated (N= 544,
d=−0.274, p= <0.0001) and unmedicated (N= 158, d=
0.046, p= 0.72) patients. No relationship was found
between FA values of the PTR and clinical measures. No
relationship was found between FA and YBOCS scores.
Ancillary analyses in those WM areas where results were

unstable according to the leave-one-out analyses (i.e., PCR
and UNC), revealed that lower FA was associated with
longer duration of illness (z=−2.308, p= 0.021) and
higher percentage of medicated patients (z=−2.817, p=
0.005) in the PCR, and with higher percentage of medi-
cated patients (z=−2.453, p= 0.014) in the UNC.

Pediatric cohort
In the pediatric cohort, patients showed no detectable

FA abnormalities in any of the regions studied (see Table
4 for statistical details).

Table 2 (a) Breakdown, by site, of clinical characteristics of adult patients with obsessive–compulsive disorder (OCD) in
the ENIGMA OCD Working Group samples; (b) Breakdown, by site, of clinical characteristics of pediatric patients with
obsessive–compulsive disorder (OCD) in the ENIGMA OCD Working Group samples.

Site OCD/HC (N) Medicated (%) Age of onset Duration of illness YBOCS score Lifetime anxiety (%) Lifetime depression %

(a)

Amsterdam 38/34 0 15.1 ± 6.8 23.7 ± 12.8 21.3 ± 6.1 42.1 47.4

Bangalore 158/131 39.9 22.3 ± 7.7 7.2 ± 5.2 25.5 ± 6.5 8.9 7

Capetown 22/23 40.9 13.2 ± 5.7 17.2 ± 11.5 23 ± 4.2 0 0

Kyoto 35/41 0 25.2 ± 9 7.7 ± 6.2 21.9 ± 6.6 8.6 0

Milan 63/65 60.3 15.6 ± 6.2 18.9 ± 11.6 31.4 ± 5.2 1.6 7.9

Mount Sinai 16/18 81.3 12.4 ± 5.7 15.1 ± 6.7 19.9 ± 5.9 50 18.8

Munich 73/60 60.3 17.6 ± 6.7 13.5 ± 10.3 20.8 ± 6.2 8.2 23.3

Rome 77/111 94.8 16.8 ± 8 17.3 ± 12.8 23.2 ± 9.3 10.4 9.1

Sao Paulo 37/30 43.2 12.8 ± 5.9 26.3 ± 13.5 29.2 ± 6.2 73 83.8

Shangai 83/45 0 24 ± 9.9 6 ± 5.9 26.2 ± 4.7 0 0

Seoul 98/87 13.3 19.1 ± 7.2 6.2 ± 7 25.8 ± 6.9 1 2

(b)

Bangalore 13/13 85 12.8 ± 1.9 1.5 ± 1 21 ± 7.6 23.1 23.1

Barcelona 52/27 78.8 12.2 ± 2.5 1.5 ± 2.1 20.8 ± 7.6 28.8 5.8

British

Columbia

13/16 86.7 11.1 ± 3.5 3.3 ± 2.7 14 ± 6 33.3 0

Calgary 19/18 0 NA NA 23.1 ± 4.7 NA NA

Chiba 20/6 40 11.9 ± 2.4 2.1 ± 1.8 27 ± 6.2 10 0

Oxford 13/18 63.6 11.7 ± 3 4.7 ± 3.2 20 ± 7.3 31.8 22.7

Yale 22/23 52.2 NA NA 26.9 ± 4.5 43.5 39.1

Zurich 22/23 57.1 11.1 ± 2.4 4.7 ± 2.3 16.1 ± 10.1 42.9 0

YBOCS Yale-Brown Obsessive–Compulsive Scale, NA not available.
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Discussion
In the largest coordinated meta-analysis of WM in OCD

to date, we demonstrated specific regional WM alterations
in adults with OCD, with lower FA in GCC, PCR, PTR, SS,
and UNC. Such results were stable and independent of
sampling error in the PTR and SS only. Secondary analyses
on other diffusion parameters revealed that OCD showed
higher MD in the SS and higher RD in PTR and SS.
Meta-regressions indicated that lower FA in the SS is

associated with younger age at onset, longer duration of
illness, and being on medication, but not with symptom
severity suggesting that—as observed for cortical thick-
ness and subcortical volumes in OCD—, the reported
alterations may be markers of the disorder. We did not

find case-control differences in WM microstructure of
pediatric subjects.
A role for cerebral WM and oligodendrocytes (the mye-

linating cells of the central nervous system) in the patho-
physiology of many psychiatric disorders has been supported
by growing research evidence4,22, suggesting abnormalities
of myelination status as a possible pathogenic mechanism23.
Specifically, altered myelin-related maturational growth may
explain the enhanced risk for psychiatric disorders during
the transition from childhood to adulthood24,25, an age
window of intense ongoing brain development23.
Although FA is a general measure of microstructure—

including variation in regional myelination levels, such as
axon demyelination or loss, myelin loss or increased

Table 3 FA meta-analysis metrics for the adult sample.

Effect size and 95% confidence interval Heterogeneity

ROI Cohen’s d S.E. Lower limit Upper limit z value p value q value p value I squared

ACR −0.1164 0.0983 −0.3091 0.0763 −1.1839 0.2364 29.1988 0.0012 65.7520

ALIC −0.0584 0.0971 −0.2488 0.1320 −0.6013 0.5477 28.5200 0.0015 64.9369

AverageFA −0.1968 0.1091 −0.4107 0.0171 −1.8036 0.0713 35.9099 0.0001 72.1525

BCC −0.1119 0.1076 −0.3227 0.0990 −1.0398 0.2984 34.9932 0.0001 71.4230

CC −0.1558 0.1067 −0.3650 0.0533 −1.4606 0.1441 34.4018 0.0002 70.9317

CGC −0.0626 0.0789 −0.2173 0.0920 −0.7938 0.4273 18.9453 0.0410 47.2164

CGH −0.0677 0.0650 −0.1951 0.0598 −1.0404 0.2982 13.2641 0.2093 24.6083

CR −0.1294 0.0962 −0.3179 0.0591 −1.3454 0.1785 27.9259 0.0019 64.1910

CST 0.0641 0.0577 −0.0490 0.1772 1.1106 0.2667 10.8843 0.3666 8.1241

EC −0.1173 0.0868 −0.2873 0.0528 −1.3513 0.1766 22.7693 0.0116 56.0812

FX −0.1063 0.0745 −0.2523 0.0398 −1.4259 0.1539 16.9566 0.0753 41.0259

FXST −0.0804 0.0968 −0.2701 0.1093 −0.8307 0.4062 28.3405 0.0016 64.7148

GCC −0.1696 0.0845 −0.3352 −0.0041 −2.0085 0.0446 21.5584 0.0175 53.6144

IC −0.0158 0.0887 −0.1896 0.1581 −0.1776 0.8590 23.8155 0.0081 58.0106

IFO −0.0350 0.0772 −0.1864 0.1164 −0.4531 0.6505 18.1854 0.0519 45.0108

PCR −0.1570 0.0660 −0.2863 −0.0277 −2.3803 0.0173 13.5590 0.1941 26.2484

PLIC 0.0406 0.0763 −0.1090 0.1903 0.5321 0.5947 17.7645 0.0591 43.7078

PTR −0.2619 0.0573 −0.3742 −0.1495 −4.5689 0.0000 10.7084 0.3807 6.6151

RLIC −0.0256 0.0823 −0.1869 0.1356 −0.3117 0.7553 20.5308 0.0246 51.2926

SCC −0.1223 0.0882 −0.2952 0.0506 −1.3868 0.1655 23.5299 0.0090 57.5008

SCR −0.0664 0.0776 −0.2184 0.0856 −0.8565 0.3917 18.3052 0.0500 45.3707

SFO −0.0776 0.0813 −0.2370 0.0818 −0.9545 0.3399 20.0600 0.0287 50.1495

SLF −0.1189 0.1066 −0.3278 0.0901 −1.1149 0.2649 34.3842 0.0002 70.9169

SS −0.2090 0.0651 −0.3367 −0.0814 −3.2100 0.0013 13.2328 0.2109 24.4304

UNC −0.1799 0.0723 −0.3216 −0.0382 −2.4885 0.0128 15.9772 0.1003 37.4109

Cohen’s d values, their s.e., lower and upper limits, p values and I2 (heterogeneity) values after meta-analysis for differences between OCD patients and healthy
controls.
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extracellular space—it does not provide a physiologically
specific explanation of WM abnormalities26. In our study,
higher MD and RD (and the absence of changes in AD) in
the same bundles supports the hypothesis that lower FA
reflects a disruption of myelin sheaths27,28, given that RD
is a putative myelin marker26.
The association between myelin degradation in the SS

and longer illness duration together with the absence of a
detectable alteration in pediatric patients, suggest that
neuroplastic changes may reflect prolonged symptoma-
tology, since compulsively engaging in a particular
behavior or cognitive process has been suggested to alter
brain structure29,30. Moreover, symptoms indicative of
obsessive–compulsive traits are related to individual
myelination over time, even in otherwise healthy samples.
This suggests that the mechanisms underlying compul-
sivity have long-lasting effects on brain development,
possibly affecting myelination trajectories during ado-
lescence, with enduring effects into adulthood23. Alter-
natively, the paucity of extrinsic factors regulating the
development of myelinating glia31 could have driven the
altered myelination and its association with prolonged
illness. Indeed, impoverished environment is both the

cause and the consequence of mental illness in general,
and of compulsivity in particular32.
Lower FA in the SS was related to medication status (this

was true also for PCR and UNC), and present only in the
cohort of medicated patient. Moreover, the effect remained
significant across combinations of datasets when only
medicated patients were considered. Therefore, we cannot
rule out the possibility that medication impacts WM
microstructure. Indeed, drug-induced reductions in the FA
of several WM tracts may be seen in OCD33 and long-term
treatment exposure may negatively influence the pro-
liferation of oligodendrocytes and their myelination of
axons27,34–36. Our findings are consistent with a previous
large multimodal meta-analysis3 where increased WM
volume and decreased FA were especially pronounced in
OCD samples with a high proportion of medicated
patients. That said, given the cross-sectional nature of the
present study, our interpretation here is a tentative one,
and requires confirmation with a longitudinal design.
PTR and the SS (but also the PCR) convey projection

fibers to the posterior part of the brain. Thus, our results
strengthen the hypothesis that OCD involves abnormalities
affecting an extensive network of regions11,37. Both bundles

Fig. 1 Left panel—fractional anisotropy (FA) differences between OCD patients and healthy controls for 25 white matter (WM) regions.
Gradient bar indicates Cohen’s d effect sizes after meta-analysis. Right Panel- Cohen’s d effect sizes after meta-analysis, including age, sex, age × sex,
age2, and age2 × sex as covariates. Error bars represent 95% confidence intervals. Significant regions are highlighted in orange.
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project to posterior parietal, temporal and occipital cor-
tices, and include many major association fibers (including
the UNC) where altered microstructure may be related to
clinical phenomenology38,39. Our findings are consistent
with a range of work indicating altered connectivity outside
the fronto-striatal circuit in OCD. For example, results of a
multimodal structural imaging study suggested that
patients with OCD show significant alterations of the
interrelated gray and WM networks over occipital and
parietal cortices, frontal interhemispheric connections, and
cerebellum40. Also, decreased functional connectivity in the
occipital cortex, temporal cortex, and cerebellum has been
shown in OCD41. Finally, there is evidence in OCD of
associations between structural and functional alterations
in a complex network including, beyond orbitofrontal and
cingulate areas, temporal and occipital cortices42.
We only partially replicate previous large meta-analytic

findings demonstrating the validity of both the classic fronto-
striatal model of the disorder3 and the more recent multiple

brain system approach11,43. The present findings are based
on the TBSS technique, which by reducing WM tracts into a
skeleton, confines statistical testing to a selective group of
voxels through a constrained local search for maximal FA.
Such an algorithm may therefore produce more consistent
results, but also more conservative ones, thus explaining the
lack of case/control group differences in more anterior WM
structures found in previous meta-analysis where whole-
brain WM volumetric and FA studies were combined3.
Notably, in our study WM microstructural alterations

in OCD were associated with age at scanning. Specifically,
WM alterations were observed in the adult cohort only,
and were associated with longer illness duration. These
findings, which were unrelated to OCD symptom severity,
complement previous evidence of differences between
adult and pediatric OCD patients in brain morphologi-
cal3,10,44 and clinical45 correlates.
There is evidence that the human brain’s protracted

myelination46,47 underpins myelin vulnerability along a

Fig. 2 Association between FA reduction (in OCD adult patients) in the sagittal stratum and illness duration (green dots), age of onset (blue
dots) and percentage of medicated patients across the 11 ENIGMA-OCD sites. Sphere magnitude indicates sample size.
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continuum from early to late stages of development and
disease48. Thus, it has been suggested that pediatric OCD
could be a neurodevelopmental disorder with potentially
differing patterns of myelination occurring throughout life49.
Indeed, evidence in healthy subjects indicates that the psy-
chiatric trait of compulsivity is linked to reduced myelin
growth that emerges only during adolescence (being present
only to a minor extent in childhood) as a result of aberrant
developmental processes23. Alternatively, pediatric OCD
might be a developmentally moderated expression of etiologic
processes that are shared with the adult clinical phenotype.
A number of limitations of the data analyzed here deserve

emphasis. First, although TBSS is a widely used method for
voxel-based analysis of WM, addressing issues associated
with smoothing and misalignment in DTI group analysis37,

the technique has some limitations. Indeed, by reducing
WM tracts into a skeleton, delineating the center of the
tracts and projecting onto it only the highest FA value along
the projection, some information might be lost50, and
potential artifacts, resulting from misregistration, might be
produced51. Nevertheless, several test–retest and reliability
analyses were conducted by the ENIGMA-DTI working
group to ensure reproducibility of measures and effects
using this TBSS approach52. Future investigations combin-
ing various imaging modalities in the same meta-analysis
and both pre-analyzed and raw data53 will potentially offer
insights that are not apparent from the TBSS approach.
Moreover, a word of caution is needed regarding the
interpretation of the neurobiological basis of DTI measures
since although FA reflects the myelination, orientational

Table 4 FA meta-analysis metrics for the pediatric sample.

Effect size and 95% confidence interval Heterogeneity

ROI Cohen’s d S.E. Lower limit Upper limit z value p value q value p value I squared

ACR 0.035 0.111 −0.183 0.254 0.318 0.751 4.154 0.762 0.000

ALIC 0.103 0.145 −0.180 0.386 0.711 0.477 11.207 0.130 37.538

AverageFA 0.077 0.111 −0.142 0.295 0.687 0.492 5.421 0.609 0.000

BCC 0.011 0.138 −0.260 0.282 0.079 0.937 10.316 0.171 32.143

CC −0.013 0.117 −0.242 0.217 −0.108 0.914 7.596 0.370 7.844

CGC 0.111 0.112 −0.107 0.330 0.997 0.319 6.212 0.515 0.000

CGH −0.017 0.143 −0.296 0.263 −0.116 0.908 10.928 0.142 35.946

CR 0.022 0.111 −0.196 0.240 0.197 0.844 5.042 0.655 0.000

CST −0.110 0.153 −0.409 0.189 −0.723 0.469 12.410 0.088 43.593

EC −0.025 0.111 −0.244 0.193 −0.226 0.821 5.000 0.660 0.000

FX −0.119 0.111 −0.337 0.099 −1.072 0.284 1.237 0.990 0.000

FXST −0.095 0.134 −0.357 0.168 −0.707 0.480 9.725 0.205 28.020

GCC −0.018 0.111 −0.236 0.201 −0.158 0.875 4.635 0.704 0.000

IC 0.013 0.111 −0.205 0.231 0.116 0.907 3.551 0.830 0.000

IFO −0.025 0.111 −0.243 0.193 −0.228 0.819 2.937 0.891 0.000

PCR 0.078 0.116 −0.149 0.305 0.676 0.499 7.443 0.384 5.958

PLIC 0.026 0.111 −0.192 0.244 0.237 0.813 2.079 0.955 0.000

PTR −0.004 0.201 −0.398 0.390 −0.022 0.982 21.204 0.003 66.987

RLIC −0.067 0.111 −0.285 0.151 −0.602 0.547 5.021 0.657 0.000

SCC −0.036 0.112 −0.255 0.183 −0.321 0.748 6.867 0.443 0.000

SCR −0.040 0.111 −0.258 0.178 −0.357 0.721 4.165 0.761 0.000

SFO 0.100 0.155 −0.203 0.404 0.649 0.516 12.757 0.078 45.127

SLF −0.089 0.116 −0.317 0.139 −0.763 0.446 7.519 0.377 6.904

SS 0.006 0.146 −0.280 0.292 0.041 0.967 11.433 0.121 38.775

UNC 0.053 0.119 −0.181 0.286 0.441 0.659 7.840 0.347 10.711

Cohen’s d values, their s.e., lower and upper limits, p values and I2 (heterogeneity) values after meta-analysis for differences between OCD patients and healthy controls.
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coherence, and microtubular axonal structure of fibers,
other in vivo markers not explored in the present study have
been shown to be a more direct reflection of myelination
status54,55. Another potential limitation of the present study
may lie in the differences in clinical characteristics between
the studied patients, particularly in the average age of onset
(which ranged from 4 to 49). Since the latter is often cal-
culated retrospectively, a reliable and unanimous method for
establishing this important effect moderator is warranted.
Also, we were not able to calculate specific dosages of dif-
ferent medication types and analyze medication effects in
terms of drug dosages or total time of treatment and, as
such, potential detrimental/normalizing effects of different
medications could not be tested. Furthermore, while dis-
order severity was assessed cross-sectionally at the time of
the scan, WM integrity reflects a process that occurred
longitudinally over time and this could explain the absence
of disorder severity effects. Lastly, it is worth mentioning
that while the adult cohort analysis had sufficient power to
detect the observed effect size, as the sample size was ade-
quate to detect microstructural differences as small as d=
0.15, the null result in the pediatric cohort may be a con-
sequence of the relatively small sample size since the power
for potentially detecting even very small differences was low
(0.32). Nevertheless, this is the largest pediatric dataset
investigated in a DTI study of OCD.
In summary, our results clearly indicate a key role in

adult OCD for microstructural alterations in projection
and association fibers to posterior brain regions. Our
meta-regression results related to duration suggest that
microstructural alterations may persist during the course
of the illness, although longitudinal data are needed to
confirm such trajectories. Future studies to investigate the
co-occurrence of abnormal WM microstructure, GM
volume and metabolic differences in OCD may shed light
on the interactions and trajectories of structural and
functional alterations in this condition. In particular,
longitudinal designs, and collecting information from
patients at their illness onset, combined with multimodal
MRI approaches, such as volumetric, DTI, fMRI, and
MRS will help provide an understanding of the timing and
course of brain changes in OCD, and provide greater
insight into the mechanisms involved in various stages of
OCD, including the long-term effects of medication.

Conflict of interest
The authors declare no competing interests. The study was partially funded by
the Italian Ministry of Health (Ricerca Corrente 19, 20).

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41398-021-01276-z.

Received: 14 February 2020 Revised: 15 June 2020 Accepted: 19 October
2020

References
1. Micali, N. et al. Long-term outcomes of obsessive-compulsive disorder: Follow-

up of 142 children and adolescents. Br. J. Psychiatry 197, 128–134 (2010).
2. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues

elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 111, 209–219
(1996).

3. Radua, J. et al. Multimodal voxel-based meta-analysis of white matter
abnormalities in obsessive-compulsive disorder. Neuropsychopharmacology
39, 1547–1557 (2014).

4. Jenkins, L. M. et al. Shared white matter alterations across emotional disorders:
A voxel-based meta-analysis of fractional anisotropy. NeuroImage Clin. 12,
1022–1034 (2016).

5. Koch, K., Reeß, T. J., Rus, O. G., Zimmer, C. & Zaudig, M. Diffusion tensor
imaging (DTI) studies in patients with obsessive-compulsive disorder (OCD): A
review. J. Psychiatr. Res. 54, 26–35 (2014).

6. Eng, G. K., Sim, K. & Chen, S. H. A. Meta-analytic investigations of structural grey
matter, executive domain-related functional activations, and white matter
diffusivity in obsessive compulsive disorder: an integrative review. Neurosci.
Biobehav. Rev. 52, 233–257 (2015).

7. Melicher, T. et al. White matter changes in first episode psychosis and their
relation to the size of sample studied: A DTI study. Schizophr. Res. 162, 22–28
(2015).

8. Thompson, P. M. et al. ENIGMA and the individual: predicting factors that
affect the brain in 35 countries worldwide. Neuroimage 145, 389–408 (2017).

9. Boedhoe, P. S. W. et al. Distinct subcortical volume alterations in pediatric and
adult OCD: a worldwide meta- and mega-analysis. Am. J. Psychiatry 174, 60–70
(2017).

10. Boedhoe, P. S. W. et al. Cortical abnormalities associated with pediatric and
adult obsessive-compulsive disorder: findings from the enigma obsessive-
compulsive disorder working group. Am. J. Psychiatry 175, 453–462 (2018).

11. Piras, F., Piras, F., Caltagirone, C. & Spalletta, G. Brain circuitries of obsessive
compulsive disorder: a systematic review and meta-analysis of diffusion tensor
imaging studies. Neurosci. Biobehav Rev. 37, 2856–2877 (2013).

12. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. Structured clinical
interview for DSM-IV-TR axis I disorders, researchversion, patient edition.
(SCID-I/P). (Biometrics Research, New York State Psychiatric Institute, New
York, 2002).

13. Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.):
the development and validation of a structured diagnostic psychiatric inter-
view for DSM-IV and ICD-10. J. Clin. Psychiatry 59(Suppl 20), 22–23 (1998).

14. Kaufman, J., & Schweder, A. E. The Schedule for Affective Disorders and
Schizophrenia for School - Age Children: Present and Lifetime version (K-
SADS-PL) in The Comprehensive Handbook of Psychological Assessment.
(CHOPA) Volume 2: Personality Assessment Vol. 2 (eds. Hersen, M., Segal, D. M. &
Hilsenroth, M. J.) 247–255 (John Wiley & Sons Inc., Hoboken, NJ, 2003).

15. Goodman, W. K. et al. The Yale-brown Obsessive Compulsive Scale. I. Devel-
opment, use, and reliability. Arch. Gen. psychiatry 46, 1006–1011, http://www.
ncbi.nlm.nih.gov/pubmed/2684084 (1989).

16. Scahill, L. et al. Children’s Yale-Brown Obsessive Compulsive Scale: reliability
and validity. J. Am. Acad. Child Adolesc. Psychiatry 36, 844–852 (1997).

17. Kelly, S. et al. Widespread white matter microstructural differences in schizo-
phrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI
Working Group. Mol. Psychiatry 23, 1261–1269 (2018).

18. van Velzen, L. S. et al. White matter disturbances in major depressive disorder:
a coordinated analysis across 20 international cohorts in the ENIGMA MDD
working group. Mol. Psychiatry 25, 1511–1525 (2020).

19. Villalón-Reina, J. E. et al. Altered white matter microstructure in 22q11.2
deletion syndrome: a multisite diffusion tensor imaging study. Mol. Psychiatry
25, 2818–2813 (2020).

20. Smith, S. M. S. S. M. et al. Tract-based spatial statistics: voxelwise analysis of
multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

21. Mori, S. et al. Stereotaxic white matter atlas based on diffusion tensor imaging
in an ICBM template. Neuroimage 40, 570–582 (2008).

22. Nave, K.-A. & Ehrenreich, H. Myelination and oligodendrocyte functions in
psychiatric diseases. JAMA Psychiatry 71, 582–584 (2014).

Piras et al. Translational Psychiatry          (2021) 11:173 Page 9 of 11

https://doi.org/10.1038/s41398-021-01276-z
http://www.ncbi.nlm.nih.gov/pubmed/2684084
http://www.ncbi.nlm.nih.gov/pubmed/2684084


23. Ziegler, G. et al. Compulsivity and impulsivity traits linked to attenuated
developmental frontostriatal myelination trajectories. Nat. Neurosci. 22,
992–999 (2019).

24. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of mental
disorders in the World Health Organization’s World Mental Health Survey
Initiative. World Psychiatry 6, 168–176 (2007).

25. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders
emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008).

26. Song, S. et al. Diffusion tensor imaging detects and differentiates axon and
myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage
20, 1714–1722 (2003).

27. Rosso, I. M. et al. Brain white matter integrity and association with age at onset
in pediatric obsessive-compulsive disorder. Biol. Mood Anxiety Disord. 4, 13
(2014).

28. Alexander, A. L. et al. Characterization of cerebral white matter properties
using quantitative magnetic resonance imaging stains. Brain Connect. 1,
423–444 (2011).

29. Maia, T. V., Cooney, R. E. & Peterson, B. S. The neural bases of obsessive -
compulsive disorder in children and adults. Dev. Psychopathol. 20, 1251–1283
(2008).

30. Fields, R. D. White matter in learning, cognition and psychiatric disorders.
Trends Neurosci. 31, 361–370 (2008).

31. Fields, R. D. A new mechanism of nervous system plasticity: activity-
dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015).

32. Kim, S. J., Lewis, M. & Veenstra-VanderWeele J. The Developmental Neuro-
biology of Repetitive Behavior. In: Neural Circuit Development and Function in
the Heathy and Diseased Brain (eds Rubenstein, J. L. & Rakic, P.) (Academic
Press, 2013).

33. Benedetti, F. et al. Widespread changes of white matter microstructure in
obsessive-compulsive disorder: effect of drug status. Eur. Neuropsycho-
pharmacol. 23, 581–593 (2013).

34. Haroutunian, V. et al. Myelination, oligodendrocytes, and serious mental illness.
Glia 62, 1856–1877 (2014).

35. Káradóttir, R. & Attwell, D. Neurotransmitter receptors in the life and death of
oligodendrocytes. Neuroscience 145, 1426–1438 (2007).

36. Bollettini, I. et al. White matter alterations associate with onset symptom
dimension in obsessive–compulsive disorder. Psychiatry Clin. Neurosci. 72,
13–27 (2018).

37. Gan, J. et al. Abnormal white matter structural connectivity in adults with
obsessive-compulsive disorder. Transl. Psychiatry 7, e1062 (2017).

38. Calzà, J. et al. Altered cortico-striatal functional connectivity during resting
state in obsessive-compulsive disorder. Front. Psychiatry 10, 319, https://www.
frontiersin.org/article/10.3389/fpsyt.2019.00319/full (2019).

39. Garibotto, V. et al. Disorganization of anatomical connectivity in obsessive
compulsive disorder: A multi-parameter diffusion tensor imaging study in a
subpopulation of patients. Neurobiol. Dis. 37, 468–76 (2010).

40. Kim, S. G., Jung, W. H., Kim, S. N., Jang, J. H. & Kwon, J. S. Alterations of gray and
white matter networks in patients with obsessive-compulsive disorder:
Amultimodal fusion analysis of structural MRI and DTI using mCCA+ jICA.
PLoS ONE 10, e0127118 (2015).

41. Hou, J. M. et al. Resting-state functional connectivity abnormalities in patients
with obsessive compulsive disorder and their healthy first-degree relatives. J.
Psychiatry Neurosci. 39, 304–11 (2014).

42. Moreira, P. S. et al. The neural correlates of obsessive-compulsive disorder: a
multimodal perspective. Transl. Psychiatry 7, e1224 (2017).

43. Menzies, L. et al. White matter abnormalities in patients with obsessive-
compulsive disorder and their first-degree relatives. Am. J. Psychiatry 165,
1308–1315 (2008).

44. Pujol, J. et al. Mapping structural brain alterations in obsessive-compulsive
disorder. Arch. Gen. Psychiatry 61, 720–730, http://archpsyc.jamanetwork.com/
article.aspx?doi=10.1001/archpsyc.61.7.720 (2004).

45. Geller, D. A. et al. Developmental aspects of obsessive compulsive disorder:
findings in children, adolescents, and adults. J. Nerv. Ment. Dis. 189, 471–477
(2001).

46. de Graaf-Peters, V. B. & Hadders-Algra, M. Ontogeny of the human central
nervous system: What is happening when? Early Hum. Dev. 82, 257–266
(2006).

47. Bartzokis, G. B. Brain myelination in prevalent neuropsychiatric developmental
disorders: Primary and comorbid addiction. Adolesc. Psychiatry 29, 55–96
(2005).

48. Sherin, J. E. & Bartzokis, G. Human Brain Myelination Trajectories Across the Life
Span: Implications for CNS Function and Dysfunction. In: Handbook of the Biology
of Aging (eds Masoro, E. J. & Austad, S. N.) 336–446 (Academic Press, 2011).

49. Gruner, P. et al. White matter abnormalities in pediatric obsessive-
compulsive disorder. Neuropsychopharmacology 37, 2730–2739, http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473339&tool=
pmcentrez&rendertype=abstract (2012).

50. Zalesky, A. Moderating registration misalignment in voxelwise comparisons of
DTI data: A performance evaluation of skeleton projection. Magn. Reson.
Imaging 29, 111–125 (2011).

51. Schwarz, C. G. et al. Improved DTI registration allows voxel-based analysis that
outperforms Tract-Based Spatial Statistics. Neuroimage 94, 65–78 (2014).

52. Acheson, A. et al. Reproducibility of tract-based white matter microstructural
measures using the ENIGMA-DTI protocol. Brain Behav. 7, e00615 (2017).

53. Radua, J. & Mataix-Cols, D. Meta-analytic methods for neuroimaging data
explained. Biol. Mood Anxiety Disord. 2, 6 (2012).

54. Schmierer, K., Scaravilli, F., Altmann, D. R., Barker, G. J. & Miller, D. H. Magne-
tization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann.
Neurol. 56, 407–415 (2004).

55. Turati, L. et al. In vivo quantitative magnetization transfer imaging correlates
with histology during de- and remyelination in cuprizone-treated mice. NMR
Biomed. 28, 327–37 (2015).

Author details
Fabrizio Piras 1, Federica Piras1, Yoshinari Abe 2, Sri Mahavir Agarwal3, Alan Anticevic4, Stephanie Ameis5,6,7,
Paul Arnold 8, Nerisa Banaj1, Núria Bargalló9,10, Marcelo C. Batistuzzo 11, Francesco Benedetti 12,
Jan-Carl Beucke13,14, Premika S. W. Boedhoe15,16, Irene Bollettini12, Silvia Brem17, Anna Calvo9, Kang Ik Kevin Cho18,
Valentina Ciullo1, Sara Dallaspezia12, Erin Dickie 19, Benjamin Adam Ely 20, Siyan Fan16, Jean-Paul Fouche21,
Patricia Gruner4, Deniz A. Gürsel22, Tobias Hauser 16, Yoshiyuki Hirano 23, Marcelo Q. Hoexter11, Mariangela Iorio1,24,
Anthony James 25, Y. C. Janardhan Reddy3, Christian Kaufmann13,26, Kathrin Koch22, Peter Kochunov 27,
Jun Soo Kwon 18, Luisa Lazaro28,29, Christine Lochner21, Rachel Marsh30,31, Akiko Nakagawa23, Takashi Nakamae 2,
Janardhanan C. Narayanaswamy3, Yuki Sakai 2, Eiji Shimizu23, Daniela Simon13, Helen Blair Simpson30,31,
Noam Soreni32, Philipp Stämpfli33, Emily R. Stern20, Philip Szeszko34, Jumpei Takahashi23,
Ganesan Venkatasubramanian 3, Zhen Wang 35, Je-Yeon Yun 18ENIGMA OCD Working Group, Dan J. Stein 21,
Neda Jahanshad36, Paul M. Thompson36, Odile A. van den Heuvel15,16 and Gianfranco Spalletta1,37

Piras et al. Translational Psychiatry          (2021) 11:173 Page 10 of 11

https://www.frontiersin.org/article/10.3389/fpsyt.2019.00319/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00319/full
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.61.7.720
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.61.7.720
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.61.7.720
http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.61.7.720
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473339&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473339&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473339&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473339&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473339&tool=pmcentrez&rendertype=abstract
http://orcid.org/0000-0003-3566-5494
http://orcid.org/0000-0003-3566-5494
http://orcid.org/0000-0003-3566-5494
http://orcid.org/0000-0003-3566-5494
http://orcid.org/0000-0003-3566-5494
http://orcid.org/0000-0001-8348-0801
http://orcid.org/0000-0001-8348-0801
http://orcid.org/0000-0001-8348-0801
http://orcid.org/0000-0001-8348-0801
http://orcid.org/0000-0001-8348-0801
http://orcid.org/0000-0003-2496-4624
http://orcid.org/0000-0003-2496-4624
http://orcid.org/0000-0003-2496-4624
http://orcid.org/0000-0003-2496-4624
http://orcid.org/0000-0003-2496-4624
http://orcid.org/0000-0003-1347-8241
http://orcid.org/0000-0003-1347-8241
http://orcid.org/0000-0003-1347-8241
http://orcid.org/0000-0003-1347-8241
http://orcid.org/0000-0003-1347-8241
http://orcid.org/0000-0003-4949-856X
http://orcid.org/0000-0003-4949-856X
http://orcid.org/0000-0003-4949-856X
http://orcid.org/0000-0003-4949-856X
http://orcid.org/0000-0003-4949-856X
http://orcid.org/0000-0003-3028-9864
http://orcid.org/0000-0003-3028-9864
http://orcid.org/0000-0003-3028-9864
http://orcid.org/0000-0003-3028-9864
http://orcid.org/0000-0003-3028-9864
http://orcid.org/0000-0002-3019-0090
http://orcid.org/0000-0002-3019-0090
http://orcid.org/0000-0002-3019-0090
http://orcid.org/0000-0002-3019-0090
http://orcid.org/0000-0002-3019-0090
http://orcid.org/0000-0002-7997-8137
http://orcid.org/0000-0002-7997-8137
http://orcid.org/0000-0002-7997-8137
http://orcid.org/0000-0002-7997-8137
http://orcid.org/0000-0002-7997-8137
http://orcid.org/0000-0003-3844-3061
http://orcid.org/0000-0003-3844-3061
http://orcid.org/0000-0003-3844-3061
http://orcid.org/0000-0003-3844-3061
http://orcid.org/0000-0003-3844-3061
http://orcid.org/0000-0002-2742-8328
http://orcid.org/0000-0002-2742-8328
http://orcid.org/0000-0002-2742-8328
http://orcid.org/0000-0002-2742-8328
http://orcid.org/0000-0002-2742-8328
http://orcid.org/0000-0003-3656-4281
http://orcid.org/0000-0003-3656-4281
http://orcid.org/0000-0003-3656-4281
http://orcid.org/0000-0003-3656-4281
http://orcid.org/0000-0003-3656-4281
http://orcid.org/0000-0002-1060-1462
http://orcid.org/0000-0002-1060-1462
http://orcid.org/0000-0002-1060-1462
http://orcid.org/0000-0002-1060-1462
http://orcid.org/0000-0002-1060-1462
http://orcid.org/0000-0003-4265-198X
http://orcid.org/0000-0003-4265-198X
http://orcid.org/0000-0003-4265-198X
http://orcid.org/0000-0003-4265-198X
http://orcid.org/0000-0003-4265-198X
http://orcid.org/0000-0003-2475-8548
http://orcid.org/0000-0003-2475-8548
http://orcid.org/0000-0003-2475-8548
http://orcid.org/0000-0003-2475-8548
http://orcid.org/0000-0003-2475-8548
http://orcid.org/0000-0002-0949-898X
http://orcid.org/0000-0002-0949-898X
http://orcid.org/0000-0002-0949-898X
http://orcid.org/0000-0002-0949-898X
http://orcid.org/0000-0002-0949-898X
http://orcid.org/0000-0003-4319-5314
http://orcid.org/0000-0003-4319-5314
http://orcid.org/0000-0003-4319-5314
http://orcid.org/0000-0003-4319-5314
http://orcid.org/0000-0003-4319-5314
http://orcid.org/0000-0002-5531-2410
http://orcid.org/0000-0002-5531-2410
http://orcid.org/0000-0002-5531-2410
http://orcid.org/0000-0002-5531-2410
http://orcid.org/0000-0002-5531-2410
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810


1Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy. 2Department of Psychiatry, Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan3Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National
Institute of Mental Health & Neurosciences, Bangalore, India. 4Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. 5Child, Youth and
Emerging Adult Program, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. 6Department
of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada. 7Department of Psychiatry, University of Toronto, Toronto, ON, Canada. 8Mathison Centre for Mental
Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. 9Magnetic Resonance Image
Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. 10Centre de Diagnostic per la Imatge (CDIC), Hospital Clínic de
Barcelona, Barcelona, Spain. 11Instituto e Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, SP, Brazil. 12Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy. 13Department of
Psychology, Humboldt-Universität zu Berlin, Berlin, Germany. 14K8 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 15Amsterdam
University Medical Centers, Vrije Universiteit, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands. 16Amsterdam university medical
centers, Vrije Universiteit, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands. 17Department of Child and
Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland. 18Institute of Human Behavioral Medicine, SNU-MRC Seoul,
Republic of Korea. 19Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. 20Department of
Neuroscience and Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 21SAMRC Unit on Anxiety & Stress Disorders, Department of
Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa. 22Department of Neuroradiology, Klinikum rechts der Isar, Technische
Universität München, München, Germany. 23Research Center for Child Mental Development, Chiba University, Chiba, Japan. 24Center of Excellence on Aging and
Translational Medicine - CeSI-MeT, Chieti, Italy. 25Department of Psychiatry, Oxford University, Oxford, UK. 26Department of Psychology, Freie Universität zu Berlin,
Berlin, Germany. 27Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA. 28Department
of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain. 29Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona, Spain. 30Columbia University Irving Medical Center, Columbia University, New York, NY, USA. 31The new York State
Psychiatric Institute, New York, NY, USA. 32Pediatric OCD Consultation Clinic, Anxiety Treatment and Research Center, McMaster University, Hamilton, Ontario,
Canada. 33MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric
Hospital of the University of Zurich, Zurich, Switzerland. 34Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 35Shanghai
Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China. 36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging &
Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, USA. 37Division of Neuropsychiatry, Menninger Department
of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA

ENIGMA OCD Working Group
Francesca Assogna1, Rosa Calvo29,38, Stella J. de Wit15,16, Morgan Hough39, Masaru Kuno23,
Euripedes C. Miguel11, Astrid Morer28, Christopher Pittenger4, Sara Poletti12, Enrico Smeraldi12, João R. Sato40,
Aki Tsuchiyagaito23, Susanne Walitza17, Ysbrand D. van der Werf16, Daniela Vecchio1 and Mojtaba Zarei41

38CIBERSAM, Barcelona, Spain. 39Highfield Unit, Warneford Hospital, Oxford, UK. 40Center of Mathematics, Computation, and Cognition, Universidade Federal do
ABC, Santo André, São Paulo, Brazil. 41Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran

Piras et al. Translational Psychiatry          (2021) 11:173 Page 11 of 11


	White matter microstructure and its relation to clinical features of obsessive&#x02013;nobreakcompulsive disorder: findings from the ENIGMA OCD Working Group
	Introduction
	Methods
	Study dataset
	Image acquisition and processing
	Statistical analysis

	Results
	Adult Cohort
	Pediatric cohort

	Discussion
	Acknowledgements
	Acknowledgements




