
Quality of Service Impact on Edge Physics Simulations for VR

Sebastian Friston1, Elias Griffith2, David Swapp1, Caleb Irondi2, Fred Jjunju2, Ryan Ward2,
Alan Marshall2 and Anthony Steed1

Abstract—Mobile HMDs must sacrifice compute performance to achieve ergonomic and power requirements for extended use.
Consequently, applications must either reduce rendering and simulation complexity - along with the richness of the experience - or
offload complexity to a server. Within the context of edge-computing, a popular way to do this is through render streaming. Render
streaming has been demonstrated for desktops and consoles. It has also been explored for HMDs. However, the latency requirements
of head tracking make this application much more challenging. While mobile GPUs are not yet as capable as their desktop counterparts,
we note that they are becoming more powerful and efficient. With the hard requirements of VR, it is worth continuing to investigate
what schemes could optimally balance load, latency and quality. We propose an alternative we call edge-physics: streaming at
the scene-graph level from a simulation running on edge-resources, analogous to cluster rendering. Scene streaming is not only
straightforward, but compute and bandwidth efficient. The most demanding loops run locally. Jobs that hit the power-wall of mobile
CPUs are off-loaded, while improving GPUs are leveraged, maximising compute utilisation. In this paper we create a prototypical
implementation and evaluate its potential in terms of fidelity, bandwidth and performance. We show that an effective system which
maintains high consistencies on typical edge-links can be easily built, but that some traditional concepts are not applicable, and a
better understanding of the perception of motion is required to evaluate such a system comprehensively.

Index Terms—virtual reality, streaming, edge-computing

1 INTRODUCTION

Mobile Head Mounted Displays (HMDs) endeavour to support high
quality VR, but ultimately must trade-off power for ergonomics, acces-
sibility and battery life. Consequently, developers face more constraints
in delivering rich experiences on these platforms than on traditional
ones such as desktops. A potential solution is streaming: treating the
HMD as a thin client where significant computation is off-loaded to
the cloud. Modern examples include game-streaming services such
as Google Stadia, but similar solutions have existed for several years
in different vertical markets (e.g. SGI’s Visual Area Networking, or
Microsoft’s Azure Remote Rendering).

Typically, the cloud service renders images that are streamed to a
client as video. For HMDs, such systems must fit bandwidth constraints
while guaranteeing viewpoint response-times of less than 16 ms. This
is challenging even without network transport delay, as video encoding
and decoding are expensive operations. It has been questioned whether
even next-generation technologies can reconcile these constraints [23].

It is worth considering then, what other schemes may support an
optimal balance of power, latency and Quality of Experience (QoE).
Scene-graph streaming has been an approach to Distributed Virtual
Environments (DVEs) since their inception [54], but clients usually
require complex prediction and synchronisation to overcome poor net-
work Quality of Service (QoS) [3]. This is because they are designed
to operate over wide area networks, where delays can reach 10s-100s
of milliseconds. These functions are complex, and such clients would
not be considered ‘thin’.

In this paper we re-evaluate scene-graph streaming within the context
of edge-computing. In edge-computing, a high-quality connection
brings resources close to a device, allowing a powerful remote processor
to respond more quickly than a weak local one. This high QoS creates
the potential for alternative ways to build DVEs. Whereas traditional
DVEs and games require complex local clients to overcome poor QoS,
an edge-physics client takes on a role analogous to a cluster node,
turning the HMD back into a thin client.

• 1Department of Computer Science, University College London.
• 2Department of Electrical Engineering and Electronics, University of

Liverpool.

Digital Object Identifier:10.1109/TVCG.2021.3067757

Unlike configurations such as render streaming, scene-graph stream-
ing allows keeping loops with the tightest latency requirements, such as
head tracking, local to the device. Intensive jobs that stress the power
budget of mobile CPUs are off-loaded. Mobile GPUs, however, are
increasingly power efficient and can be leveraged to maximise total
compute resources for the best experience.

In this paper, we implement a framework that explores what we
term edge physics. Complex simulations typical of high-end games are
offloaded to an edge-computing resource, and the results streamed as
scene graph changes. The types of computation considered are designed
to be more complex than a mobile HMD could reasonably support. We
use our framework to explore practical tradeoffs in this configuration,
and evaluate it in terms of fidelity, bandwidth and performance.

In many ways edge physics is analogous to cluster rendering, but
with important differences. A typical edge physics configuration will
use heterogenous platforms, have clients autonomously handle user
input, and will connect over a shared and more highly variable network
(running over, e.g., WiFi6 or 5G) than would be available to a cluster.
We find resulting QoS fluctuations undermine traditional latency com-
pensation through prediction, but that overall performance suggests this
configuration is very promising.

2 RELATED WORKS

2.1 Streaming Virtual Reality
Many recent works consider streaming pre-recorded or dynamically
rendered VR through 360 video. Pohl et al [42] described an end-to-end
system using current-generation technology, and compared compres-
sion techniques and commerical offerings. One of the latest is Shi et
al’s [47], which streamed subsets of panoramas as FFMPEG encoded
video from edge-nodes over LTE or WiFi.

To reduce bandwidth, modern systems are usually view-dependent.
The viewer’s gaze is used to send a subset of the scene, or to optimise
sampling of the scene, such that bandwidth is dedicated to what is most
salient. For example, Zhou et al [55] used non-traditional projections
to vary information density. Ozcinar et al [39] used visual attention
maps to control tile delivery. This does however create a dependency
between server response time, visual quality and speed. If the server
does not respond quickly enough to viewpoint changes, the user will see
visual artefacts. Authors have tried to compensate for this in different
ways. For example, Rossi et al [45] used gaze path prediction to
load an optimal set of tiles, while Shi et al [47] used overscanning.
The trade-off becomes between bandwidth and uncertainty. Video



underlies a number of commerical streaming applications, such as
NVidia Shield [35], Valve’s SteamLink [52] and Google Stadia [8].

However, video is far from the only representation to be considered
for streaming VR. Lamboray et al [24] were one of the first to suggest
streaming point-video. Recently, Park et al [40] applied 2D techniques
such as view-dependent transmission and tiling to voxel streaming.
Guéziec et al [9] presented a framework for streaming with VRML. Ol-
brich & Pralle [37] streamed virtual realty ‘movies’ at the triangle level.
Hladky et al [16] and Mueller et al [33] streamed shaded primitives. Lin
et al [28] repurposed JPEG compression for 3D geometry, including
support for lossy compression. Hnidek [17] presented a ‘semi-reliable’
protocol for real-time 3D data, which selectively re-transmitted lost
packets based on information content, without delaying others.

Another approach is command streaming, which streams instruc-
tions at a level comparable to the graphics API. WireGL [19] streamed
OpenGL commands to virtualise a distributed graphics architecture.
PolyStream uses command streaming to support cloud based 3D con-
tent. The motivation is not to reduce bandwidth, but the cost of support-
ing the GPUs necessary to deliver video, which is a primary challenge
for the cloud gaming industry [43].

At the scene graph level, streaming overlaps with traditional DVEs.
In fact, cluster rendering was one of the original use-cases for DVEs,
where they provided transparent APIs for scaling systems beyond a
single workstation [53] [15] [29]. This led to distribtued scene-graph
libraries such as blue-c [34] and Wolverine [4], and concepts such
as the scene-graph-as-a-bus [54], that underlie DVEs as collaborative
systems.

2.2 Prediction
At the scene-graph level, prediction is used for both bandwidth reduc-
tion (through dead reckoning) and latency compensation. Singhal &
Cheriton [49] were one of the first to use position history with adaptive
convergence in remote rendering. Lau & Lee [25] modelled the error
budget of a predictor and classified four error sources: model mismatch,
noise, quantization and time precision, which authors have addressed
in different ways.

Kim & Kim [22] demonstrated improved accuracy using a Kalman
filter. LaViola [26] proposed Double Exponential Smoothing (DESP)
which used linear regression. Stakem & AlRegib [50] proposed
Exponential Smoothing (ES), which combined numerical differenc-
ing (backwards) with Eulers method (forwards). Both DESP and ES
show similar performance to a Kalman filter, but require parameter tun-
ing. Hanawa & Yonekura [12] [13] [14] used a Taylor Series expansion
running on the server in order to achieve smaller sampling intervals and
so higher precision. Aggarwal et al [1] proposed synchronising clocks
to improve accuracy, while Tumanov et al [51] proposed proactive lag
compensation based on the estimated latency to a client. These are just
a few examples of the many works addressing predictor error.

Almost all these examples use some variant of Euler’s method or re-
gression per-dimension. This can work, but makes certain assumptions.
Further, the return of increasing complexity is limited. For example,
Singhal & Cheriton [49] and Lau & Lee [25] demonstrate sensitivity to
unmodelled terms, however Hanawa & Yonekura [12] showed better
results with lower polynomial-order models. Meng et al [31] noted
the context sensitivity of this and proposed a hybrid system that would
switch order dynamically.

2.3 Smart Clients
For internet-based applications, the performance of independent, per-
object predictors alone is typically too low because real applications
have many highly non-linear inputs, such as collision responses and
stochastic user input. Internet-based DVEs typically use contextual
and domain knowledge to compensate for large latencies. For example,
Cronin et al [5] proposed trailing state synchronisation, which ran multi-
ple parallel simulations for immediate context switching. This provided
similar features to rollback, often used in online fighting games [44].
Li et al [27] and Shi et al [48] proposed using potential fields to predict
player motion. Ohlenburg [36] extended dead-reckoning to include
collision responses. Bernier [3] describes the latency compensation in

Half Life. Clients ran local simulations while mirroring user input to a
remote simulation that integrated input from all players. Local simula-
tions provided instantaneous feedback between receving authoritative
updates from the server. This is typical of modern DVEs and games
which must remain responsive over the high latencies of the public
internet. Following the dead reckoning principle: the more duplication
between client and server, the longer they can go without communicat-
ing, but the more power the client must expend. This reveals a trade-off:
power vs. distance.

2.4 Edge Computing
Edge computing is a concept in distributed computing which brings
resources close to the client. As Hu et al [18] demonstrate, edge
computing can benefit CPU intensive applications as powerful remote
processors can respond faster than weak local ones if complemented
by a sufficiently fast connection.

One complementary technology generating interest is 5G.
Lai et al [23] assert that high quality mobile VR is delay limited. The
QoS sufficient for desktop games is insufficient for VR, which requires
much lower latencies. (e.g. 16 ms for head tracking). The capabilities
of 5G may meet these requirements, and authors are already examin-
ing its potential for streamed VR [10] [38] [6]. The state-of-the-art is
Furion [23], which splits a virtual scene between local and remote ren-
derers. Furion’s authors are more pessimistic than most about streaming
video alone however, and show through careful analyses that the QoS
requirements for VR will saturate even next-generation networks.

Therefore, when we consider the potential of next-generation net-
works for streamed VR, it is still pertinent to ask: what should be
streamed?

3 EDGE PHYSICS

Edge physics supports high quality VR on low-power devices by stream-
ing at the scene-graph level. Both client and server have a logical repre-
sentation of the scene state. The client also has a visual representation.
The server runs the simulation & logic and sends state updates. The
client is responsible for updating the camera and rendering. A diagram
of the process is shown in Figure 1. Edge physics has a number of
advantages: the protocol is simpler than for command streaming. There
is no compression or decompression delay as with video. Bandwidth is
superior to video streaming for most use-cases. The visual quality is al-
ways pixel-perfect, and the same stream can broadcast to heterogenous
clients. Edge physics exchanges the same variables as common DVEs
and games, but relies on the edge-configuration’s network QoS rather
than a local simulation to maintain QoE (as in, e.g. [3]).

Fig. 1: Logical flow diagram for prototypical implementation

Scene-streaming may provide a near optimal balance of computing
power. Mobile CPUs have a low per-core ‘power wall’ due to thermal
constraints. This will most disadvantage single-threaded tasks such as
physics simulation. Despite this there are still improvements needed to
support next-gen applications [11]. Mobile CPUs are also more likely



to be loaded with compute intensive tasks such as inside-out tracking.
Mobile GPUs however are becoming more powerful, driven in part by
machine vision and deep neural network applications (e.g. DeepSense
[20]). Beyond efficiency, we can also exploit the sum of the computing
power available across two machines. We demonstrate a scene complex
enough that a desktop PC cannot maintain VR frame-rates on it own.
However, coupling it to an Oculus Quest for visualisation allows it to
be viewed comfortably.

More importantly for VR, edge physics offers a good distribution
of latency. Sensitivity to latency depends on modality. Head tracking
latency thresholds are on the order of 16 ms or less [21]. Higher level
perceptions are more task dependent, and can be more tolerant. For
example Morice et al [32] found in a ball bouncing task that perception-
action coupling was changed between 30 ms to 90 ms, but only at 50 ms
did users change control modes, and only at 70 ms did they perceive
a change. In edge physics, head tracking responses are computed
locally, and maintain visual quality regardless of speed. Only logical
cues are subject to link delays, and though delayed, the state is always
consistent.

Edge physics could be a low-overhead way to build co-located col-
laborative VR. Edge physics is not an alternative to a smart client
however. The compute distribution relies on the visualiser being a
dumb terminal, which is enabled only by a good local connection as
part of the edge-computing configuration.

Figure 2 compares the distribution of responsibilities between dif-
ferent architectures. The distances between the Simulation, Render
and Display stages have different sensitivities. The cloud icon size is
indicative of these delays. The long-range links in a traditional DVE
are likely to have large latencies over the internet, while edge-nodes
will be lower, on the order of building-scale latencies.

For a typical DVE which operates over long distances, some sim-
ulation code (the ‘smart client’) must be duplicated. In Figure 2 we
indicate that similar simulation code often runs on both client and
server, so for N clients, there are N+1 copies of the code. The appli-
cation also requires a conflict resolution protocol. Render Streaming
and Edge Physics are concerned with the local configuration. Neither
precludes additional, traditional long distance synchronisation.

For example, a nearby render streaming node may responsible for
simulation and rendering for a client, while also being networked to a
central server to support multi-player gaming. An edge physics node
may also have a more complex upstream synchronisation scheme to a
centrally managed simulution.

In this paper however we focus on the downstream connection,
between edge server and one or more clients. This is analogus to cluster
rendering. However, our implementation is built to be complementary
to the existing scene-graph API and to support heterogenous clients,
rather than building an application around a distributed API. Further,
cluster rendering is usually performed on a dedicated wired network.
The shared, typically wireless, networks of variable architecture used
for edge-computing have qualitatively different properties.

To explore the potential of edge physics, we construct a prototype
implementation and evaluate it in terms of consistency and performance,
as well as investigate the effect of design decisions such as prediction.

4 IMPLEMENTATION

4.1 Overview and Architecture

We implemented a proof-of-concept in Unity 2019.2.6. Unity processes
acted as both the server and client(s). A deskop PC was used as a server.
Two additional PCs and an Oculus Quest (an Android mobile platform)
acted as clients (Figure 3). The server only has to run the physics loop
in real-time, so can be less powerful than a typical VR desktop.

The scene was duplicated in each process, with physics simulations
disabled on the clients and rendering disabled on the server. Objects
were assigned GUIDs at design time. Static geometry was shared ahead
of time in the application binary. The server had control of all dynamic
objects. For example, the 1600 balls in Subway (Section 5.1). The
server would compute their dynamics, collision responses, etc, and
transmit their resulting state at points in time to the clients.

Fig. 2: Comparison of process distribution between a typical DVE,
render steaming and edge physics.

Fig. 3: Message flow diagram of edge-physics network

This is sufficient for visualisation, but effective VR requires the
world to be responsive. Clients had control of the viewpoint and
any avatar geometry (such as hand models). Grasping was supported
through spring constraints between hand controllers and objects [46].
Three constraints were created per controller to facilitate torque. Spring-
constraints are good mechanisms, because forces are integrated locally
making them less sensitive to QoS than force-reflection. They support
L1-L3 collaboration (multiple users affecting the same object at the
same time [30]), and most algorithms such as haptics are based on
Hooke’s Law in any case.

4.2 Messaging
The whole system defined only two types of message: a spring con-
straint update and object state update. These were 48 and 52 bytes
respectively (Table 1). Messages were packed into UDP datagrams, and
generated and consumed using blitting. UDP datagrams were limited
to 508 bytes in order to minimise fragmentation and reduce packet loss.
Our networking code required a further 8 byte overhead, meaning 9
state updates could be sent per datagram (though they were packed
dynamically).

Unity uses a component-based programming model. Seperate ob-
jects were created for handling state and constraint messages. Conse-
quently, message types were not mixed within datagrams. Our network-
ing code routed datagrams to specific objects using the scene graph [54].
The interpreted type depended on the destination.

Messages were generated in the physics loop at a fixed interval and
complete datagrams transmitted on a separate thread via a lock-free
queue. The timestamp member was used as instrumentation for our
evaluation, and to discard out-of-order packets which would otherwise
introduce spatial jitter. The timestamp was the server’s time to 100 ns.
High-precision time APIs are now available on modern desktop OSs,
allowing the system clock to be used. Low-power clients may not have
high-precision time APIs, but they only need to compare timestamps.



State Update Constraint Update
Type Property Type Property
Int32 Id Int32 Id
Int64 Timestamp Int64 Timestamp
Vector3 Position Vector3 LocalAnchorPosition
Vector3 Velocity Vector3 RemoteAnchorPosition
Quaternion Rotation Int32 IsConnected

Float SpringCoefficient
Float SpringDamper

Table 1: Message definitions

Whether a powerful remote processor can outperform a weaker local
one depends on the speed of the connection to it. Our implementation
therefore optimised for latency above all else. No blocking calls were
used in the main-thread, logic & control-flow such as type interpretation
was embedded in the routing, and strong typing was used to facilitate
processing through direct memory copies.

4.3 Prediction

In pre-trials we captured server data from our two evaluation envi-
ronments (Section 5.1) and evaluated various predictors. We found
position-history based Euler extrapolation had the highest accuracy
without interaction, and hold-last-sample with, over delays up to
100 ms. Consistent with previous works, higher-order predictors ended
up introducing more error than they compensated. Accordingly, we
implemented three prediction modes: Hold-Last-Sample (H) and single-
order Euler where states were extrapolated from time of message receipt
(L) or transmission (G). The behaviour of the three modes is shown in
Figure 4.

Fig. 4: Diagram of expected predictor behaviour. In Hold Last Sample,
the client shows snapshots of the server state, delayed by the transport
latency. In Local mode, the state includes a velocity term, so motion
is extrapolated between updates, but the state is still delayed by the
transport latency. In Global mode, the clocks are synchronised and so
the client can compensate for transport delay when extrapolating the
state of the server.

4.4 Example

As an example of a typical configuration, we show a subway scene
(Figure 6) with 1600 objects falling through the environment. The
physics simulation alone takes 12 ms per frame. A VR-capable desktop
PC can show it at 50 fps, bound by the CPU. Using edge physics,
we explore this environment on an Oculus Quest connected via WiFi.
The desktop runs the physics and transmits updates at 50 Hz. The
Quest maintains its native 72 Hz frame rate, using local prediction to
upsample the physics. The bandwidth was 47 Mbps and the latency
50 ms on average between a message being generated and parsed. This
is the one-way delay for the physics updates only; recall the head and
hand tracking loops run locally, and at 72 Hz are less than 14 ms.

Profile Latency (ms) Jitter (ms) Packet Loss (%)
1 0 0 0
2 10 1 0.1
3 50 5 1
4 100 10 2
5 250 30 5

Table 2: Quality of Service Profiles

5 EVALUATION

We evaluate the potential of edge physics by testing our system with
different configurations under different QoS. Our primary measure
was consistency. Simulations of rich environments will include many
collisions and other effects that result in highly dynamic object trajecto-
ries. Inconsistencies will be revealed in the differences between these
trajectories. The server has the true state, so consistency was measured
as Eucliden distance between object positions at fixed wall-clock times.
There is nothing special about how positions are handled, so measures
should generalise to other continous parameters. Consistency is impor-
tant because the fidelity of the local view determines how effectively a
user can perceive and manipulate the world.

Additionally, we measure system metrics such as latency and fram-
erate, in order to understand the source of inconsistency and to validate
our apparatus works as expected.

Currently there are no absolute thresholds to define success. We
would consider an edge-physics system successful if it avoids intro-
ducing any artefacts not present in an equivalent native system. It is
reasonble to expect additional inconsistencies may be tolerable how-
ever, depending on the nature of any motion artefacts introduced. In
this initial work though, we aim only to understand what these artefacts
may be, and where they come from.

5.1 Environments

We use two prototypical environments. The first (Room, Figure 5) is
a room-scale scene with interactive objects. Interaction between two
users and the environment was recorded and played back for each trial.
Expert users were recorded ensuring L3 interaction was captured, such
as handover and collaborative lifting of stacked objects. Note that while
one or more users may introduce constraints, these are always evaluated
at the server, so the consistency measure is always the same: between
the server and one client. The second (Subway, Section 4.4, Figure 6)
consisted of a large number of objects falling through a complex world.
This environment had no interaction, so all motion should be purely
physics-based. Therefore only one client was connected for the trials
in Subway.

5.2 Apparatus

Three computers were connected via our building’s 1G Ethernet net-
work. A parallel network synchronised their clocks to within a
microsecond using PTP. One was nominated as the server, which
also hosted a software network emulator. Edge physics traffic was
routed through the emulator, then over the building’s network to the
clients. The emulator inserted delays and dropped packets to reduce
the QoS according to one of five profiles (Table 2). The emulator op-
erated at the UDP datagram level. Delay per datagram was given by
Latency+ Jitter ·N (0,1). Packet Loss was the uniform probablility
of a datagram being discarded.

Our intent was to use this apparatus to measure the impact of QoS on
our primary measure, consistency. We first profiled our system to ensure
it was operating as expected (Section 6.1). Then the QoS was degraded
to examine in what ways consistency was undermined (Section 6.2).
Based on the results from these tests, we introduced additional condi-
tions to evaluate the effects of Update Rate (Section 6.3). Finally we
measure the computational overhead of our implementation, and make
some observations about bandwidth consumption (Sections 7 & 8).



Fig. 5: Room environment

Fig. 6: Subway environment

6 NETWORK QUALITY

Our first objective was to determine how consistency degrades with
QoS, and whether prediction can ammeliorate it. Unlike in tightly
controlled networks, it is expected that different edge clients may have
different QoS connections to the same server, and could therefore have
quite different experiences. Futher unlike, e.g. clusters, users interact
through their client, using it to generate constraints, and clients are
deliberately not synchronised in order to support heterogenity. We
suspect therefore even though there is one server with the ground truth,
the different experiences of two clients could still affect the global
simulation. To test this we include both symmetric and asymmetric
network profiles. In total, we defined 27 conditions: 9 QoS pairs with
3 predictor modes each (Table 3). We run Room under conditions
1-27 with both clients, and Subway under conditions 1-15 with client 2
only. We recorded approximately 90 and 15 seconds of data for Room
and Subway respectively, per trial. All metrics - consistency, latency,
framerate - were captured for each trial.

6.1 Latency Breakdown
We use the Tracepoints method [7] to measure the latency between
generating and processing an edge physics message. This method
tracks messages through the system, taking high precision timestamps
as they go using the PTP-synchronised system clocks.

During each trial, the latency of each recieved message was recorded.
Figure 7 plots the latencies for the Room QoS conditions. The boxes
show the IQ range and the crosses the outliers. Each pair of plots
per-condition corresponds to the two clients. For clarity, conditions are
also distinguished by colour based on their prediction mode. Larger
copies of all plots are available in the supplementary materials.

We see that the latencies for each client closely follow the condition’s
QoS profiles. For the asymmetrical conditions, 4-15, Client 2 (right)
shows an increase in latency with QoS profile, while Client 1’s (left)
latency remains stable. The change in prediction mode has no effect, as
expected. In the symmetrical conditions, 1-3 & 16-27, measurements
are consistent between clients. This is expected as the client load is low,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

100

200

300

400

H

L

G

 --

 --

 --

Fig. 7: Message latencies (in ms) for Room QoS trials for both clients,
for each experimental condition. For clarity, predictor conditions
(H,L,G) are also distinguished by colour. Larger copies of all plots are
available in the supplementary materials.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

50

100

150

200

250

Fig. 8: Box-plot of FPS samples taken during the Room QoS trials
for each condition. Samples were taken each frame. Each (per condi-
tion) triple corresponds to the server (left) and clients (two rightmost).
Additional colour coding of predictor modes as in Figure 7.

so there is less sensitivity to client compute power. The measurements
do include the time to receive updates on the main thread however, so
it would not be unexpected if they deviated on mismatched clients.

The baseline latency - measured for Clients with QoS profile 1 - was
an average of 15 ms. The Tracepoints method allows measuring the
latency of intervening stages. To evaluate the sources of latency we
measure three additional QoS profiles, with latency, but no jitter or
packet loss (Table 4). From this we can see the majority of the delay
is waiting at the client for the next frame. For performance reasons
messages are processed in the physics loop, which runs at 15 ms inter-
vals. It may be expected based on this, that frame-quantisation could
hide network latency. As the 5 ms profile (middle column, Table 4)
shows however, this is not the case. Quantisation is not deterministic
so any network delay affects the probability of being quantised to the
subsequent frame.

We also record the FPS of each node (Figure 8). The first of each
triple is the server, and the other two the clients. We see the frame-
rate is consistent across all conditions, as expected. We see that the
clients maintain VR frame-rates (first quartile above 120 fps). We also
see that client frame-rates are higher than the server’s, suggesting that
clients could not run the application alone, as the more powerful server
itself cannot reach the same frame-rate. The outliers show a number
of transient drops, likely due to unexpected system load spikes and
operations such as garbage collection. As clients are asynchronous
however they maintain their frame-rate and tracking latency irrespective
of server interruptions.

These latency and frame-rate measures confirm our apparatus is
operating as expected.



Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Client 1 Profile 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
Client 2 Profile 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 2 2 2 3 3 3 4 4 4 5 5 5
Predictor H L G H L G H L G H L G H L G H L G H L G H L G H L G

Table 3: Network Quality Experimental Conditions, by Client Profile (see Table 1) and Predictor ([H]old-Last-Sample, [L]ocal and [G]lobal)

Stage 0 ms 5 ms 10 ms
Mean Min Max Mean Min Max Mean Min Max

Create Message 0.24 0.12 8.62 0.25 0.13 8.70 0.25 0.13 8.82
Transmit Message 0.14 0.00 8.62 0.14 0.00 9.16 0.14 0.00 10.72
Receive Message 0.72 0.10 42.20 5.76 0.00 28.97 10.92 1.20 39.26
Process Message 16.84 4.44 108.45 15.65 4.43 105.90 15.94 4.40 90.50

Table 4: System delays (in ms) for 3 emulated latencies. (Jitter and packet loss are always zero.)

6.2 Consistency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 9: Position consistency (in m) for the Room QoS conditions.
Additional colour coding of predictor modes as in Figure 7. Guides at
the mm, cm and m scale.

Figure 9 shows the consistency measures for Room under each
condition. We see that for conditions with profiles 1 & 2, consistency
is almost always mm to cm scale, but with outliers of 1 m to 2 m.
Conditions with profiles 3 & 4 maintain a mean consistency below one
cm, though the 25th percentile is between one cm and one m. Only
conditions with profile 5 have a mean error above one cm. Even with
pre-recorded avatars there is an effect of asymmetrical QoS. Dynamics
that could be changed by this include more extreme violation of spring
constraints, for example. Consistency tends to decrease regularly with
decreasing QoS, however in absolute terms the differences are on the
order of centimeters at most. Conditions are distinguished mostly by
their outliers, so we examine these in detail.

6.2.1 Motion Thresholds
Any parallel system will have some inconsistency between physics and
rendering due to sampling quantisation. The faster an object moves
the larger this inconsistency will be. Figure 11 shows the error as a
function of velocity for one client. As expected, the predictors skew the
relationship, replacing delay error with prediction error to one degree
or another. Contrary to expecations, the largest absolute errors occur
at the lowest speeds. As speeds are the true speeds at the server at
measurement time, we suspect this is due to prediction error following
collision responses.

6.2.2 Lifetime of an Object
All conditions have outliers up to 1 m or so. To understand what
these mean to the user we isolate single objects and investigate their

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
-2

10
0

Fig. 10: Position consistency (in m) for the Subway QoS conditions.
Additional colour coding of predictor modes as in Figure 7. Guides at
the mm, cm and m scale. Only conditions 1-15, for Client 2, are shown
- Subway had no interaction and so no asymmetrical conditions.

trajectories. Figure 12 shows such a trajectory. We see there are two
types of error. In the first an object follows the server trajectory, but
delayed. In the second an object leaves the trajectory. To quantify these
we split them into M and Q errors - representating tangential and phase
error, respectively. M is defined as the Euclidean distance to the closest
point on the true trajectory. Q is the distance along the true trajectory
from the closest point to the true point. Both errors are measured in
metres. This is to make them comparable as for slow objects, small
distance errors can manifest as large time-offsets.

Figure 14 shows the MQ error distribution for the Room trials. As
expected, we see that misprediction error is the source of M error, as
errors with large components in the vertical axes correspond almost
exlusively to prediction modes Local and Global. We also see that
Global time has worse performance than Local (a broader distribution
in both axes). On first glance this is unexpected, as the clocks are
tightly synchronised. If predictors have high error however, integrating
over larger time periods that include transport delay, as done in Global
mode, would integrate these errors as well.

While Q errors are not by definition harmless, they will be less
noticable so long as objects do not stutter, as the simulation will appear
consistent over time. Figure 13 shows the M errors for Client 2. Almost
all are due to prediction error. Though it is possible for no-prediction
conditions to have M errors as well, if the local trajectory skips a curved
section due to infrequent updates.

We repeated all measurements for the Subway environment (see
Figure 10 for overall consistency). We see the same susceptibilities to
prediction error as Room, and higher sensitivity to network conditions.
On first glance this is surprising: with no interaction, prediction should
be more beneficial in this environment. However, while motion is regu-
lar, it is highly non-linear due to bounces and collisions. Further, with
more objects we must send more packets, representing proportionally
more moving objects, increasing sensitivity to jitter and packet loss.



Fig. 11: Error (y-axis) (in m) as a function of velocity (x-axis) (in m/s) for all errors at Client 2 in the Room QoS trials, shown by QoS profile
(left to right) and predictor mode.

Fig. 12: Server (dashed) and client (dotted) trajectories for an object
using local prediction (L), illustrated with errors tangential to (red) and
along (blue) the path.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

10
-5

10
0

Fig. 13: M errors (in m) for the Room QoS conditions. Additional
colour coding of predictor modes as in Figure 7. Guides at the mm, cm
and m scale.

Finally, we fit a linear model to see if error is predictable. Some
independent variables were significant, but with R2 values of 15 to 25 %
the model was not deemed to be useful. Further details are available in
the appendix.

6.3 Update Rate
We observe that many outliers are due to prediction error, and that
without prediction, the major source of M-error is skipped curves
due to infrequent updates. Based on this, we suspect that reductions
in update rate may have the greatest potential to introduce artefacts.
Accordingly we ran further trials to isolate the effects of update rate.

We define 12 new conditions, with baseline network QoS but varying
update rates (Table 5). Figure 15 shows the measured periods for the 12
conditions. The period is defined as the interval between two successive
message receipts for an object. As can be seen, the effective update
rate is never below the physics rate of the server, as this quantises
transmissions. As expected, prediction has no effect as the overheads
are trivial.

Figure 16 shows the consistency for each condition. This shows an
interesting pattern, in that the position errors for condition 7 are lower
than for condition 4, even though condition 7 has a lower update rate
(33 Hz vs 50 Hz). This suggests it is more important the update rate
be a multiple of the physics rate (fixed at 15 ms during the trials), than
high. We also see that while update rate does affect consistency, it does
so trivially, with a 4x reduction in update rate resulting in only 1-2 mm
additional error on average (condition 10 vs. 1), and no obvious change
in outliers.

6.4 Jitter

A weakeness in our evaluation is that we do not measure spatial jitter.
Jitter can be more salient than latency [41], but we are not aware of
an objective measure. Though, we can make an approximation using
acceleration. Figure 17 compares the histograms of accelerations for
all moving objects at the Server and Client 2 in the Room QoS trials. If
a distribution skews right compared to the server, it means the system
is rendering higher accelerations than are present in the true motion.
If it skews left it indidicates the rendered accelerations are smaller,
as if there was low-pass filtering of velocity. As can be seen, the
client distributions skew right compared to the server, indicating that
the system is distorting the dynamics in a way that could appear as
jitter. Additionally, the Hold-Last-Sample mode skews right compared
to the other predictor modes. This is expected as objects will jump
more between updates (see Figure 4). Predictor modes also affect the
dynamics of the server. This is also as expected, as Room is interactive.

We can quantify this distortion by measuring the skewness of the
client distribution compared to the server. This is a very coarse approxi-
mation, which cannot be used to quantify jitter, or how QoE is affected,
but for interests sake we show the measures for Room in Figure 18. The
measures are generally consistent with the overall coherency (Figure 9).
Predictor mode H shows lowest distortion; though the absolute skew
is highest for H in Figure 17, the relative skew between the client and
server is smaller than for L or G.

7 BANDWIDTH

There are limited message types so bandwidth can be easily estimated.
Messages are packed into UDP datagrams. Each UDP datagram is lim-
ited to 508 bytes to minimise fragmentation. There is a further overhead
of 8 bytes for our networking code. Figure 19 shows the bandwidth
requirements as a function of object count. Modern video streaming
solutions have bandwidths of between 3 and 144 mbps depending on
latency and quality [23] [47]. These guides are shown on Figure 19.

Condition 1 2 3 4 5 6 7 8 9 10 11 12

Client 1 & 2 Profile 1 1 1 1 1 1 1 1 1 1 1 1
Update Period 10 10 10 20 20 20 30 30 30 40 40 40
Predictor H L G H L G H L G H L G

Table 5: Update Rate Experimental Conditions, by Client Profile, Up-
date Period (ms) and Predictor (Hold-Last-Sample, Local and Global)



Fig. 14: M (y-axis) and Q (x-axis) components of each error in the Room QoS trials, by QoS profile and predictor mode.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

Fig. 15: Measured update periods (in s) of Room for each Update Rate
condition in Table 5. Additional colour coding of predictor modes as in
Figure 7.

1 2 3 4 5 6 7 8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

Fig. 16: Position errors (in m) of Room for each Update Rate condition
in Table 5. Additional colour coding of predictor modes as in Figure 7.

8 PERFORMANCE

Table 6 shows the execution time overhead for both scenarios. Only
time on the main thread is considered. Overhead is trivial, consisting
mainly of memory accesses. Message transmission is the most expen-
sive operation, because messages must be partitioned into sets of UDP
datagrams. These could be preallocated if desired. As the total number
of objects decreases, the relative overhead of handling the datagrams
increases, but in absolute terms it remains very low.

9 DISCUSSION

9.1 Prediction
The effects of prediction mode on consistency reinforces the need to
test on real networks, as we find the opposite results from our pre-trials.
Generally, our system is hindered more than helped by prediction.
Previous works have shown the benefits of higher-order predictors can
be outweighed by their noise [12], but we show this occurs even for
low-order predictors when subject to highly non-linear conditions in
real systems: namely, stochastic update-rates and user input.

The timescales over which simple predictors work are those which
the user is unlikely to notice anything, so long as a high message rate is
maintained. Recall that the interaction considered here is hand/object

0 2000 4000 6000 8000 10000
10

0

10
5

H

L

G

 --

 --

 -- 

Fig. 17: Histogram bin counts of accelerations (in m/s2) measured at
the Server (dotted) and Client 2 (solid) in the Room trials for conditions
4,5,6 (Table 3), by predictor mode.

1 2 3 4 5 6 7 8 9 101112 131415 161718 192021 222324 252627

1

2

3

4

H

L

G

 --

 --

 --

Fig. 18: Ratio (unitless) of acceleration histogram skew between the
Server and Client 2, for all conditions in the Room QoS trials.

interaction - head tracking is supported by the fast local loop. Edge-
computing configurations should support reliably high update rates,
but real systems will need benchmarking to confirm how consistent an
environment they can provide.

Low-order predictors do not have the accuracy necessary for inter-
active worlds. This was shown by Global mode having poorer perfor-
mance than Local. This suggests that the predictors are error prone, and
integrating over longer periods introduces more error. Local prediction
was less suspectible to this, but rarely offered any improvement. It may
then be better not to attempt to optimise consistency, but instead use
local prediction to negate salient motions, such as jerks, introduced by
transient interruptions.

Execution Times (ms)
Subway Room

Method Per Frame Per Object Per Frame Per Object

Receive 1.1133 0.0007 0.0947 0.0018
Transmission 4.3412 0.0027 0.1551 0.0029
Processing 0.3971 0.0002 0.0265 0.0005
Update 1.4771 0.0009 0.0741 0.0014
Predictive Update 1.7435 0.0010 0.1011 0.0019

Table 6: Execution times of the edge physics implementation by method



100 101 102 103 104

Number of Dynamic Objects

10-2

100

102

B
a
n
d
w

id
th

 (
m

b
p
s
)

0.01

0.015

0.03

0.04

0.05

Fig. 19: Bandwidth (mpbs) as a function of object count, with guide-
lines at the upper (144) and lower (3) bounds for render streaming with
H264 for VR, and our most complex scenario indicated (*).

9.2 Performance

Our implementation has very low overhead, and the most expensive
operation (transmission) takes place on the server. Compared to video,
the bandwidth of our most complex scene is one order of magnitude
lower than an H264 stream of equivalent quality, and we do not require
CPU or GPU resources to do encoding or decoding. Our implementa-
tion transmits all dynamic objects each frame. This is necessary with
prediction on as UDP is unreliable, and any lost updates may cause pre-
diction error to accumulate. With prediction off (or a fall-off in place)
the server would only need to transmit moving objects, reducing band-
width further. Our system is optimised for latency and the predominant
source of latency is frame-quantisation, even with artificial network
latencies of 10 ms. Irrespective of compute power, this potential for low
latency interaction with a global simulation could make edge-physics
attractive for co-located collaborative VR compared to traditional DVE
technologies.

9.3 Consistency and Limitations

The biggest gap in our evaluation is the effect on spatial jitter. Even if
error is low, it can be salient if it varies in a way that introduces jerk.
We are not aware of an objective measure of spatial jitter perception
however. Our acceleration approximation suggests there is dynamic
distortion, but not what the impact is. Work on jitter in the 3DUI
literature (e.g. [2]) could provide grounds to build such evaluations in
the future.

Our evaluation showed a clear difference between tangential and
phase errors as a consequence of prediction mode. In any multi-
threaded system there will be some phase error in object motion due to
time quantisation differences and cross-thread communication delays.
However, it is not so simple as phase error is acceptable, and non-phase
isn’t. Our evaluation showed that the largest errors occured at relatively
low speeds. If these were interpenetrations as suspected, they may be
highly salient. Our QoS profiles included some far below what would
be employed in an edge-computing configuration. While the ‘good’
profiles overwhelmingly had sub-mm precision, every profile had out-
liers due to transient latencies. It is not clear how salient large phase
errors may be, and any phase error will become salient if it changes
sufficiently quickly. Our MQ breakdown is a start, but to fully evalu-
ate any scene-synchronisation scheme will require developing more
comprehensive, perhaps perceptually based, motion metrics.

Our implementation was latency-optimised so our consistency re-
sults would generalise to a real system, but feature-wise it is only a
proof-of-concept. While we considered rigid-bodies, the same approach
could transfer any continous parameter, such as the vertex positions of
deformable meshes, animations or other scene graph parameters (e.g.
material settings). The major theoretical limitation is bandwidth, as
the more dimensions transferred per object, the fewer dynamic objects
that can be supported at an equivalent bandwidth. Practically, what
can be streamed will be dependent on what the engine makes available
programatically. It is likely a real implementation would not have fixed

messages but rather a way to address arbitrary properties. This would
have higher overhead than we show in Section 9.2 however.

10 CONCLUSION

In this paper we consider streaming VR for mobile headsets. The
necessary trade-off of compute power for ergonomics means developers
must reduce the richness of the experience on mobile HMDs, or offload
complexity to a server. Render streaming has been a popular approach
on desktops and consoles. HMDs however have far tighter latency
requirements than these. While popular, render streaming is far from
the only streaming approach in the literature. Instead, we propose re-
evaluating scene streaming - turning the mobile HMD into a thin client
analogous to a cluster render node. Such a client would keep the most
latency sensitive loops local to the device, always show a pixel-perfect
image, and maximise use of local compute resources.

Traditionally scene-graph synchronisation has been used for geo-
graphically distributed VEs, with accurate prediction and synchronsa-
tion schemes compensating for poor QoS. In contrast, edge physics
relies on link quality to reduce the computational load of the client
and offer the best load distribution for new headsets with power-walled
CPUs and increasingly powerful GPUs.

Scene-synchronisation for DVEs developed from cluster render-
ing. We suspect that treating a mobile headset as a rendering node in
an edge-computing configuration has the potential to facilitate high
quality VR on low power devices. While similar problems however,
edge-computing is not the same as cluster rendering. Edge clients are
heterogenous, with more autonomy than render nodes, running over
a network beyond the developer’s control, and so cannot be tightly
synchronised into a single system like a cluster. The potential of a
mobile headset to act as a dumb terminal, and how it will perform as
one, is unclear.

To investigate this, we implemented and tested a prototype system
in a number of conditions. We identified two forms of error that
should be general to remote visualisation of real-time multi-object
simulations (e.g. games, physics simulations, collaborative VR, etc)
and demonstrated asymmetrical sensitivites of each to configuration
and QoS. We showed our system could maintain very low absolute
error with the QoSs expected in edge-computing. The biggest hurdle for
edge physics is to handle transient drops in update rates in a transparent
way, as low-cost predictors are inaccurate over timescales beyond a few
10s of milliseconds.

Based on our results so far, compared to video streaming edge
physics has orders of magnitude less computational overhead, an order
of magnitude less bandwidth for typically sized scenes, and half as
much latency. The scene-graph representation has limited parameters,
simplifying the protocol and making it easy to create a highly optimised
implementation. We validate our implementation demonstrating the
advantages of edge computing. An Oculus Quest explores a scene too
complex for even a VR-desktop to render alone, but coupling both wih
edge-physics allows it to be seen comfortably at native frame-rates.

As we consider the progress of standalone HMDs in the context of
next generation communication technologies, it is still necessary to ask
what is best to stream. Our results begin to examine the potential of
scene-streaming for this. Additionally, our results apply to co-located
collaborative VR, which may be more easily supported with something
like edge physics than a traditional DVE.

REFERENCES

[1] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and S. Rangara-
jan. Accuracy in dead-reckoning based distributed multi-player games.
In Proceedings of ACM SIGCOMM 2004 workshops on NetGames ’04
Network and system support for games - SIGCOMM 2004 Workshops, p.
161. ACM Press, New York, USA, 2004. doi: 10.1145/1016540.1016559

[2] A. U. Batmaz and W. Stuerzlinger. Effects of 3D Rotational Jitter and
Selection Methods on 3D Pointing Tasks. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pp. 1687–1692. IEEE, 3
2019. doi: 10.1109/VR.2019.8798038

[3] Y. W. Bernier. Latency Compensating Methods in Client/Server In-game
Protocol Design and Optimization. Technical report, Valve, 2001.



[4] F. Chardavoine, S. Ageneau, and B. Ozell. Wolverine: A Distributed
Scene-Graph Library. Presence: Teleoperators and Virtual Environments,
14(1):20–30, 2005. doi: 10.1162/1054746053890297

[5] E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin. An efficient synchro-
nization mechanism for mirrored game architectures. Multimedia Tools
and Applications, 23(1):7–30, 2004. doi: 10.1023/B:MTAP.0000026839.
31028.9f

[6] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler. Toward Low-
Latency and Ultra-Reliable Virtual Reality. IEEE Network, 32(2):78–84,
2018. doi: 10.1109/MNET.2018.1700268

[7] S. Friston, E. Griffith, D. Swapp, A. Marshall, and A. Steed. Profiling
Distributed Virtual Environments by Tracing Causality. In 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pp. 238–245.
IEEE, 3 2018. doi: 10.1109/VR.2018.8446135

[8] Google. Stadia, 2020 (Accessed May 2020). https://stadia.
google.com/.

[9] A. Guéziec, G. Taubin, B. Horn, and F. Lazarus. A Framework for Stream-
ing Geometry in VRML. IEEE Computer Graphics and Applications,
19(2):68–78, 1999. doi: 10.1109/38.749125

[10] L. Gupta, R. Jain, and H. A. Chan. Mobile Edge Computing – An Impor-
tant Ingredient of 5G Networks, 2016.

[11] M. Halpern, Y. Zhu, and V. J. Reddi. Mobile CPU’s rise to power: Quan-
tifying the impact of generational mobile CPU design trends on perfor-
mance, energy, and user satisfaction. Proceedings - International Sym-
posium on High-Performance Computer Architecture, 2016-April:64–76,
2016. doi: 10.1109/HPCA.2016.7446054

[12] D. Hanawa and T. Yonekura. On the error modeling of dead reckoned data
in a distributed virtual environment. Advanced Modeling and Optimization,
7(1):85–98, 2005. doi: 10.1109/CW.2005.69

[13] D. Hanawa and T. Yonekura. A Proposal of Dead Reckoning Protocol in
Distributed Virtual Environment based on the Taylor Expansion. In 2006
International Conference on Cyberworlds, pp. 107–114. IEEE, 2006. doi:
10.1109/CW.2006.10

[14] D. Hanawa and T. Yonekura. Improvement on the accuracy of the polyno-
mial form extrapolation model in distributed virtual environment. In Visual
Computer, vol. 23, pp. 369–379, 2007. doi: 10.1007/s00371-007-0109-8

[15] G. Hesina, D. Schmalstieg, A. Furhmann, and W. Purgathofer. Distributed
Open Inventor. In Proceedings of the ACM symposium on Virtual reality
software and technology - VRST ’99, pp. 74–81. ACM Press, New York,
New York, USA, 1999. doi: 10.1145/323663.323675

[16] J. Hladky, H.-P. Seidel, and M. Steinberger. The camera offset space. ACM
Transactions on Graphics, 38(6):1–14, 11 2019. doi: 10.1145/3355089.
3356530

[17] J. Hnidek. Network protocols for applications of shared virtual reality.
19th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, WSCG 2011 - In Co-operation with
EUROGRAPHICS, Full Papers Proceedings, pp. 31–38, 2011.

[18] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and M. Satya-
narayanan. Quantifying the impact of edge computing on mobile applica-
tions. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys 2016. ACM Press, 2016. doi: 10.1145/2967360.2967369

[19] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: A scalable graphics system for clusters. In Proceedings of the
ACM SIGGRAPH Conference on Computer Graphics, pp. 129–140, 2001.

[20] L. N. Huynh, R. K. Balan, and Y. Lee. DeepSense: A GPU-based deep
convolutional neural network framework on commodity mobile devices. In
WearSys 2016 - Proceedings of the 2016 Workshop on Wearable Systems
and Applications, co-located with MobiSys 2016, pp. 25–30, 2016. doi:
10.1145/2935643.2935650

[21] J. Jerald and M. Whitton. Relating Scene-Motion Thresholds to Latency
Thresholds for Head-Mounted Displays. In Proceedings of the 2009 IEEE
Virtual Reality Conference, pp. 211–218. IEEE, 3 2009. doi: 10.1109/VR.
2009.4811025

[22] H. G. Kim and S. W. Kim. An improvement of dead reckoning algo-
rithm using Kalman filter for minimizing network traffic of 3D on-line
games. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3768
LNCS:676–687, 2005. doi: 10.1007/11582267

[23] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee. Furion: Engineer-
ing High-Quality Immersive Virtual Reality on Today’s Mobile Devices.
IEEE Transactions on Mobile Computing, 19(7):1586–1602, 7 2020. doi:
10.1109/TMC.2019.2913364

[24] E. Lamboray, S. Würmlin, and M. Gross. Real-time streaming of point-

based 3D video. In Proceedings - Virtual Reality Annual International
Symposium, pp. 91–98, 2004. doi: 10.1109/VR.2004.1310060

[25] R. W. Lau and K. Lee. On error bound estimation for motion prediction.
In Proceedings - IEEE Virtual Reality, pp. 171–178. IEEE, 2010. doi: 10.
1109/VR.2010.5444795

[26] J. J. LaViola. Double exponential smoothing: An alternative to Kalman
filter-based predictive tracking. In Proceedings of the Workshop on Vir-
tual Environments, EGVE’03, pp. 199–206, 2003. doi: 10.1145/769953
-769976

[27] S. Li, C. Chen, and L. Li. A new method for path prediction in network
games. Computers in Entertainment, 5(4):1–12, 2008. doi: 10.1145/
1324198.1324206

[28] N. H. Lin, T. H. Huang, and B. Y. Chen. 3D Model streaming based on
JPEG 2000. IEEE Transactions on Consumer Electronics, 53(1):182–190,
2007. doi: 10.1109/TCE.2007.339523

[29] B. MacIntyre and S. K. Feiner. A distributed 3D graphics library. In
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’98, pp. 361–370, 1998. doi: 10.
1145/280814.280935

[30] D. Margery, B. Arnaldi, and N. Plouzeau. A General Framework for
Cooperative Manipulation in Virtual Environments. In Proceedings of
the Eurographics Workshop in Vienna, Austria, May 31-June 1, 1999,
Eurographics, pp. 169–178. Springer Vienna, Vienna, 1999. doi: 10.1007/
978-3-7091-6805-9

[31] D. Meng, Y. P. Yao, and F. Yao. An enhanced dead reckoning algorithm
with hybrid extrapolation models (AisaSim 2016). International Journal
of Modeling, Simulation, and Scientific Computing, 8(2):1–14, 2017. doi:
10.1142/S1793962317500271

[32] A. H. P. Morice, I. A. Siegler, and B. G. Bardy. Action-perception patterns
in virtual ball bouncing: Combating system latency and tracking functional
validity. Journal of Neuroscience Methods, 169(1):255–266, 2008. doi:
10.1016/j.jneumeth.2007.11.020

[33] J. H. Mueller, P. Voglreiter, M. Dokter, T. Neff, M. Makar, M. Steinberger,
and D. Schmalstieg. Shading atlas streaming. ACM Transactions on
Graphics, 37(6):1–16, 1 2019. doi: 10.1145/3272127.3275087

[34] M. Naef, E. Lamboray, O. Staadt, and M. Gross. The blue-c distributed
scene graph. In Proceedings of the 2003 IEEE Virtual Reality Conference,
pp. 275–276. IEEE Comput. Soc, 2003. doi: 10.1109/VR.2003.1191157

[35] NVidia. NVidia Shield, 2020 (Accessed May 2020). https://www.
nvidia.com/en-us/shield/.

[36] J. Ohlenburg. Improving collision detection in distributed virtual en-
vironments by adaptive collision prediction tracking. In Proceedings -
Virtual Reality Annual International Symposium, pp. 83–90, 2004. doi: 10.
1109/VR.2004.1310059

[37] S. Olbrich and H. Pralle. Virtual reality movies-real-time streaming of
3D objects. Computer Networks, 31(21):2215–2225, 1999. doi: 10.1016/
S1389-1286(99)00097-3

[38] J. Orlosky, K. Kiyokawa, and H. Takemura. Virtual and Augmented Reality
on the 5G Highway. Journal of Information Processing, 25(0):133–141,
2017. doi: 10.2197/ipsjjip.25.133

[39] C. Ozcinar, J. Cabrera, and A. Smolic. Visual Attention-Aware Om-
nidirectional Video Streaming Using Optimal Tiles for Virtual Reality.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
9(1):217–230, 2019. doi: 10.1109/JETCAS.2019.2895096

[40] J. Park, P. A. Chou, and J. N. Hwang. Volumetric Media Streaming for
Augmented Reality. In 2018 IEEE Global Communications Conference,
GLOBECOM 2018 - Proceedings, pp. 1–6. IEEE, 2018. doi: 10.1109/
GLOCOM.2018.8647537

[41] K. Park and R. Kenyon. Effects of network characteristics on human
performance in a collaborative virtual environment. Proceedings of the
1999 IEEE Virtual Reality Conference, 1999.

[42] D. Pohl, S. Nickels, R. Nalla, and O. Grau. High quality, low latency
in-home streaming of multimedia applications for mobile devices. 2014
Federated Conference on Computer Science and Information Systems,
FedCSIS 2014, 2:687–694, 2014. doi: 10.15439/2014F42

[43] PolyStream. About Us, 2020 (Accessed May 2020). https://
polystream.com/about-us/.

[44] R. Pusch. Explaining how fighting games use delay-based and rollback
netcode. Ars Technica, 2019.

[45] S. Rossi and L. Toni. Navigation-aware adaptive streaming strategies
for omnidirectional video. 2017 IEEE 19th International Workshop on
Multimedia Signal Processing, MMSP 2017, 2017-Janua:1–6, 2017. doi:
10.1109/MMSP.2017.8122230

https://stadia.google.com/
https://stadia.google.com/
https://www.nvidia.com/en-us/shield/
https://www.nvidia.com/en-us/shield/
https://polystream.com/about-us/
https://polystream.com/about-us/


[46] G. Sankaranarayanan and B. Hannaford. Virtual Coupling Schemes for
Position Coherency in Networked Haptic Environments. In The First
IEEE/RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics, pp. 853–858. IEEE, 2006. doi: 10.1109/BIOROB.2006.
1639197

[47] S. Shi, V. Gupta, M. Hwang, and R. Jana. Mobile VR on edge cloud.
In Proceedings of the 10th ACM Multimedia Systems Conference, pp.
222–231. ACM, New York, NY, USA, 6 2019. doi: 10.1145/3304109.
3306217

[48] X. B. Shi, X. Wang, J. Bi, F. Liu, D. Yang, and X. Y. Liu. A DR algo-
rithm based on artificial potential field method. Multimedia Tools and
Applications, 45(1-3):247–261, 2009. doi: 10.1007/s11042-009-0296-6

[49] S. K. Singhal and D. R. Cheriton. Exploiting Position History for Efficient
Remote Rendering in Networked Virtual Reality. Presence: Teleoperators
and Virtual Environments, 4:169–193, 1995.

[50] F. Stakem and G. AlRegib. An adaptive approach to exponential smoothing
for CVE state prediction. In IMMERSCOM ’09: Proceedings of the 2nd
International Conference on Immersive Telecommunications, pp. 1–6.
ACM Press, 2009. doi: 10.4108/immerscom.2009.17

[51] A. Tumanov, R. Allison, and W. Stuerzlinger. Variability-Aware Latency
Amelioration in Distributed Environments. In Proceedings of the 2007
IEEE Virtual Reality Conference, pp. 123–130. IEEE, 2007. doi: 10.1109/
VR.2007.352472

[52] Valve. Steam Link, 2020 (Accessed May 2020). https://store.
steampowered.com/steamlink/about/.

[53] G. Voß, J. Behr, D. Reiners, and M. Roth. A multi-thread safe foun-
dation for scene graphs and its extension to clusters. In EGPGV ’02:
Proceedings of the Fourth Eurographics Workshop on Parallel Graphics
and Visualization, pp. 33–37, 2002. doi: 10.1145/569673.569679

[54] B. Zeleznik, L. Holden, M. Capps, H. Abrams, and T. Miller. Scene-
Graph-As-Bus: Collaboration between Heterogeneous Stand-alone 3-D
Graphical Applications. Computer Graphics Forum, 19(3):91–98, 2000.
doi: 10.1111/1467-8659.00401

[55] C. Zhou, Z. Li, and Y. Liu. A measurement study of oculus 360 degree
video streaming. In Proceedings of the 8th ACM Multimedia Systems Con-
ference, MMSys 2017, pp. 27–37, 2017. doi: 10.1145/3083187.3083190

A LINEAR MODEL (APPENDIX)
Previous works attempted to model expected error. We fit a linear model
to our data to see if we can make such predictions. Each predictor had
its own model fitted.

The model was defined1 as

error ∼ −1+ speed + latency : speed + jitter : speed + packetloss : speed

based on prior observations and pre-tests. We use the absolute error as
this is what previous works used.

Table 7 shows the statistically significant coefficients for each condi-
tion.

The low R2 values show the model is not of much use and so not
generally interesting. However there are some things worth remarking
on.

Sensitivity to latency decreases with reference time scope, as ex-
pected. Packetloss is insignificant; likely because we maintain high
update rates in general. The coefficients for jitter are negative. This may
seem erroneous, but our emulator uses the exact definition of variance
so can reduce latency as well as increasing it.

When we change the definition of latency from the network condition
to ‘experienced latency’, the packet loss does become significant. The
R2 values are not greatly affected, so the model is no more use. However
it does suggest there is potential to use the value for control purposes
(e.g. as per Meng et al [31]).

Predictor
Coefficient H L G
Speed 0.002 0.005 0.007
Speed:Jitter -3.195 -2.411 -2.971
Speed:Packetloss
Speed:Latency 0.511 0.413 0.384
R2 0.162 0.254 0.168

Table 7: Linear regression coefficients for all error measures for each
prediction condition

1in Wilkinson notation

https://store.steampowered.com/steamlink/about/
https://store.steampowered.com/steamlink/about/

	Introduction
	Related Works
	Streaming Virtual Reality
	Prediction
	Smart Clients
	Edge Computing

	Edge Physics
	Implementation
	Overview and Architecture
	Messaging
	Prediction
	Example

	Evaluation
	Environments
	Apparatus

	Network Quality
	Latency Breakdown
	Consistency
	Motion Thresholds
	Lifetime of an Object

	Update Rate
	Jitter

	Bandwidth
	Performance
	Discussion
	Prediction
	Performance
	Consistency and Limitations

	Conclusion
	Linear Model (Appendix)

