
A clinically interpretable convolutional neural network for the real time 
prediction of early squamous cell cancer of the esophagus; comparing 
diagnostic performance with a panel of expert European and Asian 
endoscopists 
 
Introduction 

Intrapapillary capillary loops (IPCLs) are microvascular structures that correlate with invasion depth of early squamous cell neoplasia (ESCN) 

and allow accurate prediction of histology. Artificial intelligence may improve human recognition of IPCL patterns and prediction of histology 

to allow prompt access to endoscopic therapy of ESCN where appropriate  
 

Background and Aims 

115 patients were recruited at two academic Taiwanese hospitals. ME-NBI videos of squamous mucosa were labelled as dysplastic or normal 
according to their histology and IPCL patterns classified by consensus of three experienced clinicians. A CNN was trained to classify IPCLs, 

using 67742 high quality ME-NBI by five-fold cross validation. Performance measures were calculated to give an average F1 score, accuracy, 

sensitivity and specificity. A panel of 5 Asian and 4 European experts predicted the histology of a random selection of 158 images using the 
JES IPCL classification – accuracy, sensitivity, specificity, positive and negative predictive values were calculated. 

 

Results 

Expert EU and Asian endoscopists attained F1 scores (a measure of binary classification accuracy) of 97.0% and 98% respectively. Sensitivity 

and accuracy of the EU and Asian clinicians was 97% and 98% and 96.9%, 97.1% respectively. The CNN average F1 score was 94%, 

sensitivity 93.7%  and accuracy 91.7%. Our CNN operates at video rate and generates class activation maps that can be used to visually 
validate CNN predictions. 

 

Conclusion 

 

We report a clinically interpretable CNN developed to predict histology based on IPCL patterns, in real-time, using the largest reported dataset 

of images for this purpose. Our CNN achieved diagnostic performance comparable to an expert panel of endoscopists.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Background and aims 
 
The application of artificial intelligence in diagnostic endoscopy, as well as other fields of 
medicine, is gathering pace. One such application of artificial intelligence is in the endoscopic 
diagnosis of early squamous cell neoplasia of the esophagus (ESCN). Esophageal cancer is the 
eighth most common cause of cancer worldwide; typically carrying a grim prognosis1,2. There 
is also a disproportionate geographic distribution of cases through Africa, the Middle East and 
into China and Japan2,3. 
 
Early detection and histologic diagnosis of ESCN is vital, in order to guide potentially curative 
therapy in patients who present prior to developing locally advanced or metastatic disease4,5. 
ESCN lesions confined to the mucosa exhibit low rates of local lymph node (LN) metastasis 
(<2%) compared to lesions which invade the submucosa (8-45.9%)4,5. As such these early 
lesions may be amenable to endoscopically delivered therapies such as endoscopic mucosal 
resection (EMR) or endoscopic submucosal dissection (ESD), both of which offer impressive 5 
year survival10–12. 
 
Despite recent advances in endoscopic imaging technology early detection of ESCN remains 
a diagnostic challenge. ESCN lesions are subtle and can be easily missed during endoscopy; 
one study reported high miss rates for esophageal cancers on endoscopy undertaken in the 
three years preceding diagnosis13–15. These deficiencies are further compounded by variable 
clinician experience in assessing ESCN, as well as other human factors such as inattention and 
fatigue. A well validated endoscopic marker for the presence of squamous dysplasia and ESCN 
are intrapapillary capillary loops (IPCLs)16,17. IPCLs are microvessels first characterised on 
magnification endoscopy (ME)18, which branch from the deep submucosal vessels and extend 
into the esophageal mucosa. As an ESCN develops there is a progressive distortion of IPCL 
patterns commensurate with the invasion depth of the lesion, hence the recognition of the 
changes in IPCL morphology allows clinicians to predict the histologic stage (fig 1 and table 
1).  
 
A number of classification systems for IPCL morphology and prediction of histology have been 
validated clinically 16,17,19. For this study we used the Japanese Endoscopic Society (JES) IPCL 
classification; a recently developed, simplified system for classifying morphologic changes in 
IPCLs in order to predict histologic stage and invasion depth of ESCN17. As summarised in table 
1; type A IPCLs correspond with normal mucosa or low grade dysplasia; type B1 with high 
grade dysplasia (HGD) or lamina propria invasion (LP); type B2 with invasion into the 
muscularis mucosa (MM) or first submucosal layer (SM1) and type B3 with invasion into the 
second submucosal layer (SM2) or beyond. 

 
The JES classification is concise and has been widely adopted in centres that treat high 
volumes of ESCN. It offers high diagnostic accuracy and good interobserver agreement 
compared to other classifications – with an average 90.5% accuracy for predicting all 
neoplastic histology (type B1-B3 IPCLs). The accuracy of histology prediction was 91.9%, 
93.4% and 95.9% for type B1, B2 and B3 IPCL patterns respectively17. Kim et al. also report 
excellent levels of interobserver agreement using the JES classification20. 
 



Computer-aided endoscopic diagnosis, using convolutional neural networks (CNNs) has the 
potential for use as an adjunct during endoscopy. CNNs used for this purpose typically need 
input data where specific visual features correspond with a classification.  The stereotyped 
morphological changes in IPCL patterns seen with progressive dysplastic lesions, provide this 
data and so can be used to train a CNN. Repetitive training of the CNN allows the development 
of feature recognition, to allow it to make predictions on the histology of a lesion with 
increasing accuracy. A validated CNN, could provide a useful diagnostic adjunct for 
endoscopists assessing ESCN lesions, particularly in settings where experience or training may 
be limited. 
 
We have previously reported a proof of concept study for the use of convolutional neural 
networks for the real time classification of ESCN lesions based on IPCL patterns21–23. 
Importantly our results were clinically interpretable, the use of class activation maps 
confirmed visually that the CNN was basing its classifications on IPCL patterns, as a clinician 
would during endoscopy.  In this study we have expanded our dataset significantly in order 
to capture a wider spectrum of disease and variability in IPCL patterns; generating a CNN that 
can identify dysplastic oesophageal mucosa which is both clinically valid and interpretable. 
This study aims to build the foundation for more complex CNNs that can predict histologic 
invasion depth. Furthermore, little is known about the utility of the JES classification outside 
of an expert, high volume setting, predominantly Asian centres managing patients with ESCN. 
We therefore report a comparison between the diagnostic performance of European 
endoscopists, with Asian endoscopists and our convolutional neural network in predicting the 
histology of ESCN lesions based on their IPCL patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Methods 
 
Patient recruitment 
 
Patients attending for endoscopic assessment at two ESCN referral centres in Taiwan were 
recruited (National Taiwan University Hospital and E-Da Hospital Kaosiung). In all included 
patients, pathological samples were acquired to confirm histologic diagnosis either by EMR, 
ESD or esophagectomy. Patients with active esophageal ulceration were excluded. Our study 
complied with the Declaration of Helsinki. The Institutional Review Board of E-Da Hospital 
approved this study (IRB number: EMRP-097-022. July 2017).   
 
 
Endoscopic procedures and video acquisition 
 
Gastroscopies were performed under conscious sedation or local anaesthesia by two expert 
endoscopists (WLW, HPW); an expert endoscopist was defined as a consultant 
gastroenterologist who has completed formal training and undertakes >50 ESCN assessments 
and resections per year. A solution of simethicone and water was applied to the esophageal 
mucosa prior to recording to remove mucus, food residue and blood and to facilitate clear 
visualisation of the esophageal mucosa and microvasculature. Endoscopies were performed 
using a high-definition magnification endoscope with narrow band imaging (HD ME-NBI) GIF-
H260Z (Olympus, Japan), in combination with an Olympus Lucera CV-290 processor (Olympus, 
Japan).  
 
 
Correlating imaged areas with histology 
 
For patients with dysplastic lesions the endoscopist identified the lesion in overview, the 
lesion border was then marked by the endoscopist using cautery forceps, prior to resection 
or biopsies. Magnification was undertaken in NBI mode at 80-100x magnification in order to 
interrogate the IPCL patterns within the lesion border. IPCL patterns within the imaged area 
were then classified according to the JES IPCL classification system by consensus of three 
expert endoscopists (WLW, HPW, RJH). IPCLs were classified as type A, B1, B2 or B3 in order 
to predict the worst case histology for the entire lesion. Lesions with only type A IPCLs were 
classified as normal, those with >B1 lesions, dysplastic. Lesions were then resected by either 
endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD), formalin 
fixed and reviewed by a gastrointestinal histopathologist. The worst case lesion histology was 
then reported based on the worst histologic changes seen within the whole lesion. For 
patients with normal mucosa an area was selected, imaged under ME-NBI, IPCL patterns were 
classified. A forceps biopsy of the imaged area was then acquired to confirm the imaging 
findings. 
 
 
Dataset overview 
 
Video sequences from patients were assigned a class of normal or dysplastic. Frames were 
extracted at a rate of 30fps. Frames were individually quality controlled by a clinician with 



experience in the endoscopic imaging of esophageal cancer (ME). Frames that were degraded 
by lighting or motion artefact, excessive mucus or blood were removed from the dataset 
where it was felt that it would not be possible for a clinician to make a decision based on IPCL 
patterns. Following quality control our total dataset comprised 114 patients (45 normal, 69 
dysplastic). 67742 images were included in our dataset (28,078 normal and 39,662 dysplastic) 
with an average of 593 frames per patient. Five-fold cross validation was used. For each fold 
patients were randomly assigned into a training group, validation group (used for 
hyperparameter training) and testing group in the ratio of 80%, 10% and 10% respectively. 
 
 
Convolutional neural network and class activation maps 
 
ResNet-18 was chosen as the underlying model for our proposed CNN and was also used as a 
baseline for result comparison. Although state-of-the-art, ResNet-18 provides good 
classification performance, but is not a clinically interpretable model.  
 
In our model21, the fully connected layer is removed as described by Zhou et al24. The 
computation of the class score predictions is reformulated (fig 2). Such reformulation is 
mathematically equivalent to the solution proposed by Zhou et al, but produces class 
activation maps during the forward pass of the network. Our input images are 256x256, which 
leads to an 8x8 feature tensor at the output of the encoder; this low resolution does not 
permit clinical interpretability as the IPCL patterns which informed the classification cannot 
be identified. Hence, the feature demonstrated in (fig 2) is connected as a side output 
(connected to the loss) to all encoder resolutions21 in order to produce class activation maps 
(CAMs). The entire workflow of our study is summarised in (fig 3). 
 
Clinician classification of images and statistical analysis 
 
A representative sample of 158 frames taken from all patients within the study were classified 
by a group of 9 expert endoscopists (5 Asian, 4 EU experts), none of whom were involved in 
the collection of videos. Diagnostic performance measures were calculated for individual 
endoscopists and for each geographical group. Accuracy, sensitivity and specificity were 
calculated; we report the average diagnostic performance for Asian endoscopists, EU 
endoscopists and our CNN. An F1 score, a measure of the diagnostic accuracy of binary 
classification algorithms, was also calculated. Interobserver agreement for clinicians was 
calculated using Krippendorf’s alpha and assessed using a modified Likert scale (Landis and 
Koch).  
 
We calculated the average per-frame diagnostic performance for our CNN (F1 score, 
accuracy, sensitivity and specificity) as well as an analysis of per-patient diagnostic 
performance. To establish a per-patient classification as normal or dysplastic, images were 
grouped by patient. Our network outputs a probability that each image shows dysplastic 
tissue, we set a threshold >0.5 as being positive that an image contains dysplasia. To establish 
a per-patient classification the probability outputs of each frame from that patient were used 
to compute an overall average probability of the presence of dysplasia. A threshold of >0.5 
average probability was used to classify that patient as dysplastic and <0.5 as normal, CNN 
predictions were compared with the ground truth of histologic analysis. 



Results 
 
 
Patient characteristics 
 
115 patients were included. 45 of these were determined to have a normal esophageal 
mucosa. 70 patients were determined to have dysplastic mucosa, with IPCL patterns ranging 
from type B1-B3 (table 2).  
 
Comparative diagnostic performance of EU and Asian expert endoscopists 

158 images were reviewed by a panel of 9 expert endoscopists, all blinded to the endoscopy 
procedure and histology results. Diagnostic performance of Asian and EU endoscopists were 
calculated respectively; F1 scores of 98% and 97%; accuracy of 97.1% and 96.9%; sensitivity 
of 96.9% and 98.9% and specificity of 97.6% and 91.5%. The pooled diagnostic performance 
of all expert endoscopists for F1 score, accuracy, sensitivity and specificity was 96.5%, 94.7%, 
97% and 88% respectively. The interobserver agreement of all endoscopists was regarded as 
substantial with a Krippendorf’s alpha of 76.7%. Performance measures are summarised in 
table 3 . Overall we demonstrate diagnostic performance using the JES classification system 
that either exceeds or is comparable to other reported work. Asian endoscopists had 
significantly higher specificity than EU endoscopists (97.6% vs 91.5% p=0.01) whereas EU 
endoscopists had significantly higher sensitivity than their Asian counterparts (98.9% vs 96.9% 
p=0.01).  

Diagnostic performance of convolutional neural network 

We report both per-frame analysis and per-patient analysis.  On a per-frame basis the 
diagnostic performance results of our CNN are summarised in table 4.  Across all folds we 
report an average F1 score, accuracy, sensitivity and specificity of 94.0%, 91.7%, 93.7% and 
92.4% respectively. The AUC of our system is 95.8%. 

We also assessed the per patient diagnostic performance of our CNN. Using five-fold cross 
validation we used 12 patients per fold for testing, using five folds gave a total of 60 
independent patients that were used to test the CNN classification. A true positive was 
determined if a patient with dysplasia was classified as such in >50% of the CNN predictions 
for images from that patient. We observed that for this CNN iteration our system failed to 
classify correctly overall in only one patient (patient 158), reporting a false positive result in 
two independent folds. A receiver operating characteristic curve demonstrates an AUC of 
0.96, suggesting a high level of diagnostic accuracy (fig 4). Figure 5 illustrates, for each fold, 
the images that were classified with highest probability by our network as either true positive 
(TP), true negative (TN), false positive (FP) or false negative (FN) and reflects how our network 
performs with diagnostically challenging images. 

Class activation maps and clinical interpretability 

Our network is able to classify, in real-time IPCL patterns as normal or abnormal. We 
demonstrate representative examples of class activation maps (fig 6). These are 



representations of what the CNN ‘sees’ when it classifies a frame of an endoscopy video. 
The output CAM is clinically interpretable, highlighting to the clinician which areas of IPCLs 
informed the classification.  
 
 
Discussion 
 
We report a comparison in diagnostic performance between a cohort of expert endoscopists 
based in Europe and Asia, with a clinically interpretable CNN designed to predict the histology 
of early squamous cell neoplasia of the esophagus based on IPCL patterns. 
 
Early identification and assessment of ESCN stage is vital, since lesions confined to the mucosa 
have low rates of metastasis to local lymph nodes and so may be curatively resected 
endoscopically. As discussed, ESCN lesions are subtle and can be easily missed; to aid 
clinicians several classification systems exist to assist the identification and characterisation 
of ESCN based on IPCL morphology16,17,19. To our knowledge almost all studies assessing the 
use of IPCL classifications focus on clinicians within high-volume referral centres, 
predominantly in Asia; little is known about the diagnostic performance in Western 
healthcare settings where clinician experience with ESCN is likely to be reduced.  
 
Artificial intelligence, using CNNs, may offer an adjunct to improve clinician recognition of 
IPCL patterns and thereby improve their identification of ESCN. Furthermore a validated 
system may improve triage of lesions that are either normal, require endoscopic resection, or 
that are not amenable to endoscopic treatment and require either surgical intervention or 
palliation. Such a system could improve the speed at which patients with ESCN receive the 
most appropriate therapy, as well as reduce the burden on histopathology services of 
processing normal biopsies. 
 
We have previously reported a proof of concept study that outlines the use of a CNN to 
classify esophageal mucosa as squamous or dysplastic22,23. This study aimed to further 
develop this CNN using an expanded dataset with greater variability of IPCL patterns. The 
diagnostic performance of our CNN is promising; demonstrating accuracy for the prediction 
of dysplasia of 91.7%, an F1 score of 94% and sensitivity of 93.7%. This compares favourably 
with an analysis of the diagnostic performance of expert clinicians using the JES classification 
by Oyama et al., which reported accuracy of 91.9 - 95.9% and sensitivities of 55% - 97.5%. Our 
CNN is able to classify images at video rate and was trained using consecutive, segmented 
frames from endoscopy videos, so has the potential for real-time use. Given that the use of 
CNNs in diagnostic endoscopy for this purpose is in its infancy there are few reported studies 
in the literature. Guo et al. propose a CNN capable of classifying dysplastic compared to 
normal tissue. Using a dataset of 6671 images they report sensitivities of 98%. As noted in our 
previous studies, while promising, relatively small datasets such as this may struggle to 
achieve such diagnostic performance when trained and tested on larger, more variable 
datasets25. Similarly Zhao et al. report a smaller dataset of 1383 images, with accuracies of 
87% for the detection of dysplastic IPCL patterns26. We note that this dataset was heavily 
skewed towards images containing type B1 IPCL patterns, which may again affect how well 
the CNN can generalise. The CNN we propose has been tested and trained on a larger dataset, 
with a balance of IPCL subtypes and maintains a high level of diagnostic accuracy. 



 
In order to assess the diagnostic performance of our CNN with clinicians, we assessed the 
performance of a cohort of Asian endoscopists with EU endoscopists on a representative 
sample of images from the same patients. Our endoscopists achieved high diagnostic 
accuracy using the JES system. The Asian endoscopists achieved an accuracy of 97.1%, F1 
score 98%, sensitivity of 96.9% and specificity of 97.6%. This was comparable with EU 
endoscopists who achieved an accuracy of 96.9%, F1 score 97%, sensitivity of 98.9% and 
specificity of 91.5%. The higher sensitivity of EU endoscopists for identifying dysplasia is likely 
related to them over-diagnosing dysplasia, as evidenced by the lower specificity. Our CNN 
achieves lower but comparable diagnostic performance when compared with the expert 
endoscopists in this study, we note that in some instances it performed better than some 
individual clinicians and that the diagnostic performance of our expert panel was higher than 
that reported in other studies using both the JES and other IPCL classifications. We suggest 
that our CNN shows promise and with further development could provide a useful diagnostic 
adjunct to clinicians involved in the endoscopic management of ESCN. Given that this study 
looked at expert clinicians we propose that compared to less experienced endoscopists our 
CNN may offer a further improvement in diagnostic accuracy.  
 
Although we used the JES IPCL classification system for this study, consideration should also 
be given to the performance of our CNN relative to other studies using a range of diagnostic 
classifications. Oyama et al. demonstrated an overall accuracy for histology prediction of 
90.5% using the JES classification17. In a retrospective analysis of patients with histologically 
confirmed ESCN who underwent ME-NBI assessment, Mizumoto et al. report diagnostic 
accuracy of 82% for the differentiation of lesions superficial to the LPM compared to those 
invading deeper than the MM using the JES classification27. Kim et al. report an overall 
accuracy for identifying dysplastic lesions using the JES system of 78.6%20. In our study, both 
the EU and Asian clinicians exceed this, with an overall diagnostic accuracy of 94.7 [CI: 83.9-
99.7]. Our CNN also demonstrated higher average accuracy of 91.7% for the prediction of 
dysplastic tissue. 
 
We recognise that for a CNN used for this application to have clinical utility it must be 
interpretable in real-time. To facilitate this we selected ResNet-18 as the underlying model 
for our proposed CNN. ResNet-18 provides good classification performance, but lacks an 
intrinsic mechanism that highlights what image features inform the class prediction estimated 
for a given input image. Class activation maps (CAMs) highlight areas of the input image that 
are considered to inform the class prediction (normal or dysplastic) by the CNN.  
 
The CAMs generated by our CNN serve two functions. First, they provide a key safety feature; 
by demonstrating informative features in the input data, we can ensure that successful 
predictions are not based on spurious features such as reflections, lighting or other features 
that may be biased in our dataset. Secondly CAMs may also facilitate the identification of new 
image features and endoscopic markers for ESCN that might exist but are not yet recognised 
by clinicians. This CNN model falls into a growing body of work which aims to produce CNNs 
that are able to both classify/predict and also explain the rational for their predictions in an 
interpretable manner.  
 



Further work should focus on training CNNs with datasets of increasing size and variability. 
While this remains in the future, in order to be used in clinical settings CNNs need to be 
rigorously validated against clinicians; although our CNN operates at video rate, further work 
will be needed to make it usable in real-time endoscopic assessment with unprocessed 
videos. The logical extension of this CNN will be to develop a system capable of predicting 
histologic invasion depth of lesions based on IPCL patterns;  such a system, if carefully 
validated, could be used to undertake ‘virtual biopsies’ and speed up triage to appropriate 
therapy of patients presenting with either normal or abnormal mucosa. We also envisage that 
a developed version of this system could be used to improve detection of abnormal 
oesophageal mucosa and thereby reduce the miss rate of oesophageal cancer on endoscopy. 
We suggest that further studies should aim to characterise the diagnostic performance of 
non-expert endoscopists based in high and low volume centres for the treatment of ESCN. 
This could provide a benchmark against which to assess the potential utility of our CNN as an 
adjunct to endoscopic assessment of ESCN by non-experts. A clinically validated  
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IPCL pattern  Neoplastic   Typical histology   
A No  Normal/LGD  

B1 Yes  HGD/LP  
B2 Yes MM/SM1 
B3 Yes SM2 or deeper 

 
Table 1: Summary of the JES classification of IPCL patterns 

 
 

Patient histology  
Number of patients 

in dataset   
Normal 45  

HGD/LPM 35  
MM/SM1 17 

>SM2 18 

 
Table 2: Breakdown of patient numbers recruited to the study by histologic stage of ESCN 

 

Endoscopist  Accuracy (%)  Sensitivity (%)  Specificity (%)  F1 score (%)  
EU 96.9  98.9  91.5  97.0  

Asian 97.1  96.9  97.6  98.0  

Pooled average  94.7  97.0  88.0  96.5  

 
Table 3: Summary of expert endoscopist performance statistics for detection of abnormal IPCL patterns 

 

Fold  Accuracy (%)  Sensitivity (%)  Specificity (%)  F1 score (%)  
1  92.5  99.6  81.3  94.1  
2  92.4  91.3  95.1  94.4  
3  97.4  98.3  96.6  97.0  
4  94.5  98.9  89.3  95.1  
5  81.9  80.5  99.8  89.2  

Average  91.7  93.7  92.4  94.0  

 
Table 4: Summary of CNN performance statistics for per frame detection of abnormal IPCL patterns 

 
 
 
 
 
 
 
 
 



 
Figure legends 
 
Figure 1: Representative ME-NBI images used in this study of different IPCL patterns seen in 
each of the JES (Japanese Endoscopic Society) subtypes. Green arrows show normal IPCLs. 
Red circumscribed areas denote abnormal IPCL patterns. 
 
Figure 2: Summary of the CNN side output incorporated to allow clinical interpretability of 
class activation maps (CAMs). 
 
Figure 3: Schematic representation of study workflow 
 
Figure 4: ROC curve for the diagnostic performance of our CNN (adapted from 21) 
 
Figure 5: Images the CNN classified with the highest certainty for each fold, that were 
subsequently identified as true positives (TP), true negatives (TN), false positives (FP) and 
false negatives (FN) for dysplasia). 
 
Figure 6: Representative images of normal and abnormal IPCL patterns seen at endoscopy 
(left) with the corresponding CAMs generated by our CNN (right). 


