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Abstract

We study an extension of a treatment effect model in which an observed discrete classifier

indicates which one of a set of counterfactual processes occurs, each of which may result in the

realization of several endogenous outcomes. In addition to the classifier indicating which process

was realized, other observed outcomes are delivered by the particular counterfactual process.

Models of the counterfactual processes can be incomplete in the sense that even with knowledge

of the values of observed exogenous and unobserved variables they may not deliver a unique

value of the endogenous outcomes. Thus, relative to the usual treatment effect models, coun-

terfactual outcomes are replaced by counterfactual processes. The determination of endogenous

variables in these counterfactual processes may be modeled by the researcher, and impacted by

observable exogenous variables restricted to be independent of certain unobservable variables

as in instrumental variable models. We study the identifying power of models of this sort that

incorporate (i) conditional independence restrictions under which unobserved variables and the

classifier variable are stochastically independent conditional on some of the observed exogenous

variables and (ii) marginal independence restrictions under which unobservable variables and a

subset of the exogenous variables are independently distributed. Building on results in Chesher

and Rosen (2017), we characterize the identifying power of these models for fundamental struc-

tural relationships and probability distributions of unobservable heterogeneity.
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1 Introduction

In a treatment effect model a discrete classifier indicates which one of a set of counterfactual

outcomes is observed. The counterfactual outcomes and the discrete classifier may not be inde-

pendently distributed because decision makers with beliefs about the counterfactual outcomes may

strive to end up in desirable situations. Often little is known about either how the classifier variable

is chosen - equivalently how treatment is assigned - or about the relationship between observed and

counterfactual outcomes. Functionals of the distribution of treatment effects may then not be point

identified, but are typically partially identified. See for instance Manski (1990) as well as Manski

(2007) and references therein for several examples.

Many treatment effect models impose a conditional independence restriction, sometimes referred

to as unconfoundedness or selection on observables, that counterfactual outcomes and the classi-

fier are independently distributed (unconfounded) conditional on some set of observed exogenous

variables.1 Under some additional restrictions these models can point identify the marginal distri-

butions of the counterfactual outcomes and thus average treatment effects and quantile treatment

effects.

In this paper we consider an extension of such models to settings in which the classifier deter-

mines which of multiple counterfactual processes occur. The econometrician observes each decision

maker engaging in one and only one of the counterfactual processes and observes only the real-

izations of the endogenous outcomes delivered by that process. In contrast to the usual potential

outcomes framework, the econometrician may be willing to impose some prior knowledge of the

determination of endogenous variables through use of a structural model for the counterfactual

processes. Wary of basing inference on highly restrictive models, the econometrician may however

come to data with incomplete models of the counterfactual processes that restrict the determination

of endogenous outcomes to a possibly non-unique set of values. It is this case that is center stage

in this paper.

The models of counterfactual processes specify the role of observed exogenous variables and

unobservable variables in the genesis of endogenous outcome variables, as is done in papers that

provide partial identification analysis using structural econometric models. Conditional on observed

exogenous variables, the unobservables produce stochastic variation in counterfactual processes

which deliver the values of outcomes that the econometrician observes.

Given the presence of both a classifier variable and counterfactual processes associated with

each realization of the classifier, we consider a combination of restrictions on unobservable variables

appearing in the program evaluation and structural econometrics literatures as follows.

1. Conditional independence restrictions. The unobservable variables appearing in the counter-

factual processes and the classifier are independently distributed conditional on the observed

1For example the models studied in Rubin (1974) and Rosenbaum and Rubin (1983).
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exogenous variables. This sort of condition is often used in treatment effect models, commonly

referred to as unconfoundedness or selection on observables.

2. Marginal independence restrictions. The unobservable variables appearing in the counterfac-

tual processes and a possibly vector-valued function of the exogenous variables are stochas-

tically independent. In the absence of selection this is a common restriction in instrumental

variable models.

The models we study thus contain a combination of conditional and marginal independence re-

strictions. Our analysis brings together strands from structural econometrics and analysis of causal

inference. A contribution of the paper is to provide a characterization of the (sharp) identified

sets delivered by models which may be incomplete and embody such a combination of conditional

and marginal independence restrictions. Our analysis thus enables the application of a selection

on observables restriction with regard to the classifier in conjunction with instrumental variable

restrictions with respect to each counterfactual process. Some of the variables that motivate selec-

tion on unobservables may also be instruments in the counterfactual processes, but the two sets of

variables generally will not coincide because some of the variables considered necessary for selection

on unobservables may not be exogenous to the determination of outcomes in each counterfactual

process.

Here are examples of cases in which the results of this paper can be applied.

1. Some unemployed workers participate in a training program, others do not. Assignment to

the program may not be random. Subsequently the workers engage in one of two counter-

factual labor market processes, corresponding to whether or not training was received, and

endogenous outcomes such as unemployment duration and wage on re-employment, job tenure

and so forth are observed.

2. In a generalization of the Roy model, individuals decide in which of a number of occupa-

tions to work whereupon we observe multiple endogenous outcomes that arise in the chosen

occupation.

3. Firms decide whether or not to operate in markets distinguished by regulatory regimes and

various endogenous outcomes that ensue are observed.

The research reported here is a first step on the way to the study of a broad class of incomplete

models that involve a blend of conditional and marginal independence conditions that follow from

a combination of selection on observables and instrumental variable restrictions. Possible gener-

alizations in several respects may be fruitful. These are discussed further in the conclusion. The

key distinction here, relative to the common use of the potential outcomes framework, is that each

possible realization of the treatment may be associated with not just a counterfactual outcome,
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but a counterfactual process by which a collection of endogenous variables are determined. The

determination of endogenous variables in each counterfactual process may happen by way of an

incomplete model.

The models studied in this paper impose few restrictions on the determination of the state

in which individuals are found. There is just a conditional independence restriction requiring

unobservable variables and the classifier variable to be independently distributed conditional on

some observed exogenous variables. The way in which the classifier variable is determined is not

specified in the models studied in this paper.

2 Structures, Models and Data

This section introduces notation and constructs employed in the rest of the paper.

Notation. We write RA to denote the support of random vector A, and RAB to denote the

joint support of random vectors A and B. For any random vectors A,B, RA|b denotes the support

of A conditional on B = b. For random variables A and B, A ‖ B indicates that A and B are

independently distributed. The symbol ∅ denotes the empty set. Script font (S) is reserved for sets,

and sans serif font (S) is reserved for collections of sets. For any set S, ∂S denotes the boundary

of S, cl (S) denotes the closure of S, and Sc denotes the complement of S. The sign ⊆ is used to

indicate nonstrict inclusion so “A ⊆ B” includes A = B. R denotes the real line. 1 [E ] denotes the

indicator function, taking the value 1 if the event E occurs and 0 otherwise.

Throughout Y denotes a list of observable endogenous variables, Z denotes a list of observ-

able exogenous variables and U denotes a list of unobservable exogenous variables. Each of these

variables may be vector-valued and the observable variables may be discrete or continuous. The

variables have support RY ZU on a subset of Euclidean space. Lower case y, z and u denote values

of these variables.

With M counterfactual processes there are M components in U , thus: U = (U1, . . . , UM ) with

only Um delivering stochastic variation in the mth counterfactual process. Each Um may be a

random variable or vector. Notation U−m denotes U with component Um omitted.

Some econometric selection models impose the restriction U1 = · · · = UM . Examples are given

in Heckman and Robb (1985). A number of papers study econometric selection models without

this restriction. Such models are described in Heckman, Urzua, and Vytlacil (2008) as models

with “essential heterogeneity”. Examples can be found in Heckman and Vytlacil (2007) and the

references therein. In these econometric selection models it is common to find a discrete choice

specification of the determination of the classifier variable and instrumental variable restrictions,

see for example Heckman and Vytlacil (2005).

In this paper we study models which have no detailed specification of the determination of the

classifier variable. In this respect, like treatment effect models, they are incomplete, and as in
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those models there is a conditional independence condition. Our models also allow incompleteness

in the specification of the processes that deliver counterfactual outcomes, and this specification

may include instrumental variable restrictions.

2.1 Structural functions

A model specifies a structural function h(y, z, u) : RY ZU → R such that

h(Y, Z, U) = 0, almost surely. (2.1)

This representation of structural functions, used in Chesher and Rosen (2017), will be convenient

when models of counterfactual processes are incomplete.

Here the structural function h specifies a composite process composed of a collection of M

counterfactual processes. There is a particular discrete component of Y denoted Y∗ taking values

in {1, . . . ,M}. This classifier variable is the “treatment”, “selection”, or “process” indicator. It in-

dicates which of the M counterfactual processes obtains.2 In many applications it will be correlated

with U .

There are additionally M structural functions, hm(y, z, u) : RY ZU → R, one for each counter-

factual process. The relation between the structural function of the composite process and those

of the counterfactual processes is given by

h(y, z, u) =

M∑
m=1

1[y∗ = m]× hm (y, z, u) . (2.2)

Each function hm is invariant with respect to changes in u−m, holding um fixed, and invariant with

respect to changes in y∗. If Y∗ were exogenously assigned the value m then (2.1) would become

hm (Y, Z, U) = 0, almost surely

which, in view of (2.2), is equivalent to

h(Ỹ , Z, U) = 0, almost surely,

where Ỹ is the random variable Y with its classifier component replaced by m. Due to the role of

the classifier in (2.2), a realization of (Y,Z) delivered by the mth counterfactual process is observed

if and only if Y∗ has the realized value m. In the language of Heckman and Pinto (2015), setting

Y∗ = m exogenously is equivalent to “fixing” a variable in a structural model for the purpose of

counterfactual analysis as considered by Haavelmo (1943, 1944). In the nomenclature of Pearl

2In examples 1-3 below, the classifier variable is the last component of Y .
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(2009), each of the counterfactual processes given by hm(y, z, u) = 0, m ∈ {1, . . . ,M}, corresponds

to a particular submodel of (2.1).

Associated with the structural function are the zero-level sets

Y(u, z;h) ≡ {y : h(y, z, u) = 0},

U(y, z;h) ≡ {u : h(y, z, u) = 0},

which are those values of y and u that satisfy the structural relation h(y, z, u) = 0 for given values

of (z, u) and (y, z), respectively.

Likewise, associated with each of the M structural functions are the zero-level sets

Ym(u, z;h) ≡ {y : hm(y, z, u) = 0 ∧ y∗ = m}

Um(y, z;h) ≡ {u : hm(y, z, u) = 0}

 , m ∈ {1, . . . ,M}.

The level set Ym(u, z;h) contains the values of y that may arise in the mth counterfactual process

when Z = z and U = u. In other words, the set Ym(u, z;h) is the set of feasible counterfactual

outcomes obtained by exogenously shifting the classifier variable y∗ to m while holding (z, u) fixed.

We allow counterfactual processes to be incomplete, so these sets need not be singleton. Every

element y ∈ Ym(u, z;h) has y∗ = m and the set Ym(u, z;h) is invariant with respect to changes in

u−m.

The level set Um(y, z;h) gives the values of u that can give rise to the value y of Y in the mth

counterfactual process when Z = z. This set comprises all vectors u ∈ RU with mth component

um such that hm(y, z, u) = 0, each such value coupled with every possible value of u−m.

With no restrictions placed on the determination of the classifier Y∗, the zero-level set Y(u, z;h)

for the composite structural function may be written

Y(u, z;h) ≡ {y : h(y, z, u) = 0} =

M⋃
m=1

Ym(u, z;h),

since any one of the level sets Ym(u, z;h) may be realized. Given a value (y, z) just one of the

sets Um(y, z;h) is realized, which one being determined by the value y∗ of the treatment indicator

variable (an element of y), so there is the representation

U(y, z;h) ≡ {u : h(y, z, u) = 0} = Uy∗(y, z;h).

In this paper we do not consider restrictions placed on the selection of the M counterfactual

processes, but suitable restrictions could be added. Models that place restrictions on selection
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among the counterfactual processes incorporate further information from the particular value of y∗

observed. For example, in the Roy Model, the observed value of y∗ corresponds to that value of m

that achieves the maximum payoff or utility among the M available alternatives.

Example 1. Treatment effects. The binary treatment effect model studied in Rosenbaum and

Rubin (1983) has counterfactual outcomes U1 and U2 and a binary indicator Y2 equal to 1 if U1 is

observed and equal to 2 if U2 is observed so that

Y1 = 1[Y2 = 1]× U1 + 1[Y2 = 2]× U2

is the observed outcome. This treatment effect model has classifier variable Y∗ = Y2 and

hm(y, z, u) = y1 − um, m ∈ {1, 2}

with singleton y-level sets:

Y1(u, z;h) = {(u1, 1)},

Y2(u, z;h) = {(u2, 2)},

and non-singleton u-level sets:

U1(y, z;h) = {(y1, u2) : u2 ∈ RU2} ,

U2(y, z;h) = {(u1, y1) : u1 ∈ RU1} .

Exogenous variables are excluded from the counterfactual structural functions which involve neither

unknown parameters nor unknown functions. There is the following composite structural function:

h(y, z, u) = 1[y2 = 1]× (y1 − u1) + 1[y2 = 2]× (y1 − u2).

�

Example 2. Supermarket choice and demand. A household is observed to shop in one of

M supermarkets. In a household’s supermarket of choice the endogenous variables: share of total

expenditure on food, Y1, and log total expenditure, Y2, are observed. For each supermarket, indexed

by Y3 ∈ {1, . . . ,M}, there is an incomplete linear model with structural functions as follows.

hm(y, z, u) = y1 − αm − βmy2 − γmz1 − um, m ∈ {1, . . . ,M}

Define U ≡ (U1, . . . , UM ) and Y ≡ (Y1, Y2, Y3). There may be exogenous variables Z2 and a

restriction U ‖ (Z1, Z2) and a conditional independence restriction U ‖ Y3|Z where Z ≡ (Z1, Z2, Z3).
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For example Z1 may denote various household characteristics, Z2 earnings of the head of household

as used in Blundell, Chen, and Kristensen (2007) for estimation of Engel curves, and Z3 may

denote the location of the household. Location may be an essential determinant in the household’s

choice of supermarket, important for invoking the conditional independence restriction, but may

be considered potentially correlated with household expenditure on food.

There are level sets as follows for each m ∈ {1, . . . ,M}:

Ym(u, z;h) = {(αm + βmy2 + γmz1 + um, y2,m) : y2 ∈ RY2} ,

Um(y, z;h) = {u ∈ RU : um = y1 − αm − βmy2 − γmz1} .

The classifier variable Y∗ = Y3 and there is the following composite structural function:

h(y, z, u) =
∑

m∈{1,...,M}

1[y3 = m]× (y1 − αm − βmy2 − γmz1 − um) .

�

Example 3. Training and labor market processes. An unemployed worker either does

(Y3 = 1), or does not (Y3 = 2), take part in a training program. A binary outcome Y1 is observed,

equal to one if employment is found within one year and zero otherwise. For each state there are

incomplete threshold crossing-type models for this binary outcome with structural functions.

hm(y, z, u) = y1 ×max(gm(y2, z1)− um, 0) + (1− y1)×max(um − gm(y2, z1), 0), m ∈ {1, 2},

such that in each process m ∈ {1, 2} employment is found if Um > gm(Y2, Z1).
3 Here Y2 is a

possibly endogenous, binary variable, for example an indicator of receipt of unemployment benefit,

and z1 is a component of a vector z whose elements are values of observed exogenous variables.4

There are y-level sets:

Ym(u, z;h) = {y ∈ RY : (2y1 − 1)(um − gm(y2, z1)) ≥ 0 ∧ y3 = m} .

There are u-level sets for each m ∈ {1, 2}:

Um(y, z;h) =

{ {
u ∈ R2 : um ∈ (−∞, gm(y2, z1)]

}
, y1 = 0.{

u ∈ R2 : um ∈ [gm(y2, z1),∞)
}

, y1 = 1.

3If Um = gm(Y2, Z1) either value of Y1 is allowed.
4State-specific threshold crossing models such as this can arise using mixed proportionate hazard models of un-

employment duration (see Example 1 in Chesher (2009)) with state-specific heterogeneity and baseline hazards.
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The classifier variable is Y∗ = Y3 and the structural function for the composite process is

h(y, z, u) = 1[y3 = 1]× (y1 ×max(g1(y2, z1)− u1, 0) + (1− y1)×max(u1 − g1(y2, z1), 0))

+ 1[y3 = 2]× (y1 ×max(g2(y2, z1)− u2, 0) + (1− y1)×max(u2 − g2(y2, z1), 0)) .

An assertion of selection on observables with regard to participation in the training program,

yields U ‖ Y∗|Z. It may not however be plausible to assume that all observable exogenous variables

Z = (Z1, Z2, Z3) are independent of unobservable heterogeneity in employment prospects Um in

each counterfactual process. For example Z3 could denote years of education prior to the training

program, while Z1 denotes local job market conditions and Z2 denotes other demographic variables

that do not affect employment prospects but which may affect eligibility for employment benefits.

�

2.2 Distributions of unobservables

Conditional on Z = z the unobserved random variables U ≡ (U1, . . . , UM ) have joint probability

distribution GU |Z (·|z) and marginal distributions GUm|Z (·|z), m ∈ {1, . . . ,M}. There are collec-

tions of conditional probability distributions as follows:

GU |Z ≡ {GU |Z (·|z) : z ∈ RZ},

and

GUm|Z ≡ {GUm|Z (·|z) : z ∈ RZ}, m ∈ {1, . . . ,M}.

Here RZ denotes the support of the observed exogenous variables and for any set S ⊆ RU |z,

GU |Z(S|z) denotes the probability mass placed on the set S by the conditional probability distri-

bution GU |Z(·|z).
Each counterfactual process is associated with a counterfactual structure

(
hm,GUm|Z

)
and a

composite process is associated with a composite structure (h,GU |Z).

Models comprise restrictions which limit the set of admissible structures. In the models studied

here there are restrictions on structural functions and two types of restrictions on the probability

distribution of unobservable variables. Recall Y∗ is the element of Y which has the role of selection

or classifier variable. This is Y2 in Example 1 and Y3 in Examples 2 and 3.

1. Conditional independence restrictions. U ‖ Y∗|Z.

2. Marginal independence restrictions. There is a function e(·) such that U ‖ e(Z).
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The function e(Z) is brought into play because conditional independence is required to hold

conditional on one set of exogenous variables and marginal independence is required to hold for a

different set of exogenous variables. One reason this is desirable is that restricting U ‖ Y∗|Z and

U ‖ Z (that is setting e(Z) = Z) implies Y∗ ‖ U which, in many cases, does not capture essential

features of a problem. Specifying e(Z) = Z1, a selection of the elements of Z, may be a common

choice.5 In Example 1 it is common to impose U ‖ Y2|Z. In Examples 2 and 3 one might have

reason to impose the conditional independence restriction U ‖ Y3|Z and the marginal independence

restriction U ‖ (Z1, Z2).

2.3 Data

We consider cases in which realizations of (Y,Z) are obtained via an observation process such that

the joint distribution of these variables, FY Z , is identified. Of particular importance will be the con-

ditional distributions of Y given Z and Y given (Y∗, Z). For any set T ⊆ RY |z, FY |Z (T |z) denotes

the probability mass placed on the set T by the conditional probability distribution FY |Z (·|z) and

FY |Y∗Z (T |y∗, z) denotes the probability mass placed on the set T by the conditional probability

distribution FY |Y∗Z (·|y∗, z). The cumulative distribution function of Y given Z = z evaluated at a

point t is

P[Y ≤ t|Z = z] = FY |Z({y : y ≤ t} |z).

Likewise

P[Y ≤ t|Y∗ = y∗ ∧ Z = z] = FY |Y∗Z({y : y ≤ t} |y∗, z).

3 Identification

We ask: what characterizes the set of structures (h,GU |Z) admitted by a model, M, that can

deliver the joint distribution of FY Z? This set, denotedM∗(FY Z), is the identified set of structures

delivered by the model when presented with FY Z . Identified sets of structural features may be

obtained as projections of the identified set of structures. We obtain characterizations of identified

sets of structures under conditional and marginal independence restrictions building on the results

in Chesher and Rosen (2017), henceforth CR17.6 Our analysis employs random set theory, also used

for partial identification analysis in Beresteanu, Molchanov, and Molinari (2011, 2012), Chesher,

Rosen, and Smolinski (2013), and Chesher and Rosen (2012a, 2012b, 2013b). This is the first paper

explicitly applying these tools in models with conditional independence restrictions. Moreover, we

5There is the possibility that conditional independence could be conditional on some function of Z, d(Z), but that
is not considered here.

6We use the term identified set to refer to the collection of all structures
(
h,GU|Z

)
∈ M that can generate the

joint distribution FY Z . This set is sharp in that there is no structure
(
h,GU|Z

)
belonging to the identified set that

can be distinguished from one generating FY Z on the basis of modeling restrictions and observed data.
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are unaware of previous papers featuring the combination of conditional and marginal independence

restrictions with regard to the joint distribution of unobserved heterogeneity and observed variables

in the class of models considered.

3.1 Restrictions

We impose Restrictions A1 - A3 throughout. These are as in CR17 where they are presented and

discussed in Section 2 of that paper.7 Restriction A4 below extends Restriction A4 of CR17 to the

particular cases considered in this paper, while also ensuring that relevant random sets are closed.

Restriction A1: (Y, Z, U) are random vectors defined on a probability space (Ω, L,P), endowed

with the Borel sets on Ω. The support of (Y, Z, U) is a subset of a finite-dimensional Euclidean

space. �

Restriction A2: The joint distribution of (Y, Z), FY Z , is identified by the sampling process. �

Restriction A3: There is an L-measurable function h (·, ·, ·) : RY ZU → R such that

P [h (Y, Z, U) = 0] = 1

and there is a collection of conditional distributions

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. �

Restriction A4: The pair
(
h,GU |Z

)
belongs to a known set of admissible structures M. The

model M contains restrictions as follows. One element of Y , denoted Y∗, only takes values in

{1, . . . ,M} and U has M components, U = (U1, . . . , UM ), each of which may be vectors. The

structural function has the form

h(y, z, u) =
M∑

m=1

1[y∗ = m]× hm(y, z, u),

such that the zero-level sets Y(U,Z;h) and U(Y,Z;h) are closed almost surely. �

With regard to Restriction A3, the collection of admissible distributions specified may include

7Restriction A2 in CR17 requires that a collection of conditional distributions

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
is identified by the sampling process. The identification of conditional distributions FY |Z (·|z) for all z ∈ RZ and
identification of FZ(·) is equivalent to identification of the joint distribution of Y and Z.

In this paper conditional independence restrictions will require conditioning on components of Y together with
Z in places, rather than conditioning on Z alone. This makes the statement of Restriction A2 involving the joint
distribution FY Z more natural in the present context.
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restrictions on conditional distributions GU |Y∗Z (·|y∗, z), each (y∗, z) ∈ RY∗Z , where for all S ⊆
RU |y∗z, GU |Y∗Z (S|y∗, z) ≡ P [U ∈ S|y∗, z]. In this case the components of GU |Z are restricted to be

such that there exists for each z ∈ RZ conditional distributions GU |Y∗Z (·|y∗, z) satisfying

GU |Z (·|z) =

∫
y∗∈RY∗

GU |Y∗Z (·|y∗, z) dFY∗|Z (y∗|z) .

Notation

GU |Y∗Z ≡
{
GU |Y∗Z (·|y∗, z) : (y∗, z) ∈ RY∗Z

}
is used to denote a collection of such conditional distributions where required.

Restriction A4 places restrictions on structural functions hm (·, ·, ·) through the specification

of admissible pairs
(
h,GU |Z

)
, which may include parametric or shape restrictions. There will in

general also be restrictions on the covariation of observable and unobservable exogenous variables

embodied in admissible GU |Z . The requirement that the sets Y(u, z;h) and U(y, z;h) are closed is

a mild restriction that is easily satisfied and is not restrictive in most econometric applications.

It should be noted that Restriction A4 places no restriction on the determination of y∗ from the

M counterfactual processes. For now we leave this selection process completely unspecified, noting

that restrictions on the selection process may be added.

3.2 Identification: foundational results from CR17

This Section extends results given in CR17 in order to provide the basis for the identification

analysis to follow. The distinguishing features of these results stems from the need to work with

conditional independence restrictions of the sort U ‖ Y∗|Z. This requires results to be stated

conditional on realizations of exogenous variables Z as well as the classifier variable Y∗, rather than

conditional on Z alone as in CR17. All of these results apply to the class of models considered in

this paper when Restrictions A1 - A3 hold.

Our first result, Theorem 1, proven in the Appendix, builds on Theorem 2 of CR17. This

Theorem gives a characterization of identified sets in terms of a selectionability property of the

distributions of unobservable variables admitted by a model.8 Recall that the random set U(Y, Z;h)

which appears in the theorem is defined as

U(Y, Z;h) ≡ {u ∈ RU : h(Y,Z, u) = 0}.

Theorem 1. Let Restrictions A1-A3 hold. Then the identified set of structuresM∗(FY Z) are those(
h,GU |Z

)
admitted by the model M such that for almost every z ∈ RZ and each y∗ ∈ {1, ...,M}

8The probability distribution, FA, of a point valued random variable is selectionable with respect to the probability
distribution of a random set, A, if there exists a random variable, A, distributed FA and there exists a random set
A∗ with the same probability distribution as A, such that P[A ∈ A∗] = 1. See Molchanov (2005).
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there exist conditional distributions GU |Y∗Z (·|y∗, z) defined on measurable subsets of RU such that

1. GU |Z (·|z) =

∫
y∗∈RY∗

GU |Y∗Z (·|y∗, z) dFY∗|Z (y∗|z).

2. GU |Y∗Z (·|y∗, z) is selectionable with respect to the conditional distribution of random set U (Y, Z;h)

given (Y∗ = y∗ ∧ Z = z) induced by the distribution of Y conditional on (Y∗ = y∗ ∧ Z = z) as given

by FY Z .

The following Corollary gives an alternative characterization of the identified set in terms of

moment inequalities. This result follows from using Artstein’s (1983) Inequality which gives nec-

essary and sufficient conditions for selectionability in terms of containment functionals of random

sets. This result is the analog of Corollary 1 in CR17, which uses Artstein’s Inequality to produce

moment inequalities conditional on realizations of Z rather than on realizations of both Y∗ and

Z. The proof is a straightforward consequence of the selectionability statement in Theorem 1 and

Corollary 1 of CR17 and is omitted.

Corollary 1. Under Restrictions A1-A3 the identified set can be written

M∗ (FY Z) ≡



(
h,GU |Z

)
∈M : ∃GU |Y∗Z s.t. ∀S ∈ F (RU ) ,

C (S, h|y∗, z) ≤ GU |Y∗,Z (S|y∗, z) a.e. (y∗, z) ∈ RY∗Z ,

and GU |Z (S|z) =

∫
y∗∈RY∗

GU |Y∗Z (S|y∗, z) dFY∗|Z (y∗|z) a.e. z ∈ RZ

 , (3.1)

where F (RU ) denotes the collection of all closed subsets of RU and

C (S, h|y∗, z) ≡ P [U (Y,Z;h) ⊆ S|y∗, z]

is the conditional containment functional of the random set U (Y,Z;h) applied to set S.

The collection of sets F (RU ) is too large to inspect in practice. Theorem 2 below provides a

smaller collection of core-determining sets, a concept introduced in Galichon and Henry (2011).

Again where CR17 provided results conditional on exogenous variables Z, we provide results con-

ditional on Z and the discrete classifier Y∗, as required for consideration of core-determining sets

under conditional independence restrictions involving Y∗ and Z. This turns out to be a simple

generalization of Theorem 3 of CR17, with a formal statement given in Theorem 2. Subsequent re-

sults in Section 3.3 will provide further refinement of collections of core-determining sets that apply

under the restrictions imposed in this paper. The formal statement of Theorem 2 and its Corol-

lary are thus provided as a foundation for this refinement, and in order to make its development

transparent.9

9The proof of this Theorem and its Corollary are identical to those of CR17 Theorem 3 and its Corollary upon
substituting “y∗, z” for “z” in that paper and are therefore omitted.
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First to state the results it is necessary to define two collections of sets, U (h, y∗, z): the condi-

tional support of the random set U (Y, Z;h) given (Y∗ = y∗ ∧ Z = z) and U∗ (h, y∗, z): the collection

of the unions of these sets.

Definition 1. Under Restrictions A1-A3, the conditional support of random set U (Y, Z;h)

given (Y∗ = y∗ ∧ Z = z) is

U (h, y∗, z) ≡
{
U ⊆ RU : ∃y ∈ RY |y∗z such that U = U (y, z;h)

}
.

The collections of all sets that are unions of elements of U (h, y∗, z) is denoted

U∗ (h, y∗, z) ≡
{
U ⊆ RU : ∃Y ⊆ RY |y∗z such that U = U (Y, z;h)

}
.

In the definition of U∗ (h, y∗, z) we employ the following notation.

∀Y ⊆ RY , U (Y, z;h) ≡
⋃
y∈Y
U (y, z;h)

In the statement of Theorem 2 we use the notation

H(M) ≡
{
h :
(
h,GU |Z

)
∈M for some GU |Z

}
.

We also define for any set S ⊆ RU and any (h, y∗, z) ∈ H(M)×RY∗ ×RZ ,

US (h, y∗, z) ≡ {U ∈ U (h, y∗, z) : U ⊆ S} ,

which are those sets on the support of U (Y, Z;h) given (Y∗ = y∗ ∧ Z = z) that are contained in S.

Theorem 2. Let Restrictions A1-A3 hold. Fix (h, y∗, z) ∈ H(M)×RY∗ ×RZ and a distribution

GU |Y∗Z (·|y∗, z). Let Q (h, y∗, z) ⊆ U∗ (h, y∗, z) be such that for any S ∈ U∗ (h, y∗, z) with S /∈
Q (h, y∗, z), there exist nonempty collections S1,S2 that are both subsets of US (h, y∗, z) with S1∪S2 =

US (h, y∗, z) such that

S1 ≡
⋃
T ∈S1

T , S2 ≡
⋃
T ∈S2

T , and GU |Y∗Z (S1 ∩ S2|y∗, z) = 0, (3.2)

with S1,S2 ∈ Q (h, y∗, z). Then C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) for all S ∈ Q (h, y∗, z) implies that

C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) holds for all S ⊆ RU , and in particular for S ∈ F (RU ), so that

the collection of sets Q (h, y∗, z) is core-determining.

Finally, Corollary 2 gives conditions under which a core determining set delivers a moment

equality rather than a moment inequality.
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Corollary 2. Define

QE (h, y∗, z) ≡ {S ∈ Q (h, y∗, z) : GU |Y∗Z(∂S|y∗z) = 0 and

∀y ∈ RY |y∗z either U (y, z;h) ⊆ S or U (y, z;h) ⊆ cl(Sc)}.

Then, under the conditions of Theorem 2, the collection of equalities and inequalities

C (S, h|y∗, z) = GU |Y∗Z (S|y∗, z) , all S ∈ QE (h, y∗, z) ,

C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) , all S ∈ QI (h, y∗, z) ≡ Q (h, y∗, z) \QE (h, y∗, z) .

holds if and only if C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) for all S ∈ Q (h, y∗, z).

A consequence of Corollary 2 is that all members of a collection Q(h, y∗, z) deliver equalities

when the structural function h is such that either (i) every set on the conditional support of

Y(U,Z;h) is singleton and/or (ii) every set on the conditional support of U(Y,Z;h) is singleton.

3.3 Moment inequalities absent restrictions on selection of Y∗

A further simplification of the core determining sets obtains when, in addition to Restrictions A1-

A3, Restriction A4 is also imposed, absent further restrictions on the determination of Y∗. Without

such restrictions, all sets U of the form U (y, z;h) for some (y, z) ∈ RY Z are such that for all

components m ∈ {1, ...,M} with m 6= y∗, Um = RUm . To state this formally, we define

Um (y, z;h) ≡
{
u∗m ∈ RUm|z : ∃u s.t. um = u∗m ∧ h (y, z, u) = 0

}
as the projection of U (y, z;h) onto RUm|Z . Then we have the simplification that

∀m 6= y∗, Um (y, z;h) = RUm|Z . (3.3)

The conditional support of the random set Um (Y,Z;h) conditional on (Y∗ = m ∧ Z = z) is

Um (h, z) ≡
{
Um (y, z;h) : y∗ = m ∧ y ∈ RY |y∗z

}
.

The projection of any set S ⊆ RU onto RUm|z is

Sm ≡
{
u∗m ∈ RUm|z : ∃u ∈ S s.t. um = u∗m

}
.

From Theorem 2 we have that all core determining sets, S ∈ Q (h, y∗, z) are unions of sets on

the support of U (y, z;h). Thus from (3.3) a collection of core-determining sets Q (h, y∗, z) can be
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supplied such that each S ∈ Q (h, y∗, z) satisfies

∀m 6= y∗, Sm = RUm . (3.4)

Consideration of the conditional containment functional applied to such sets then gives

C (S, h|m, z) ≡ P [U (Y, Z;h) ⊆ S|Y∗ = m, z] = P [Um (Y,Z;h) ⊆ Sm|Y∗ = m, z] , (3.5)

which is the probability, conditional on (Y∗ = m ∧ Z = z), that the projection of U (Y,Z;h) onto

its mth component is contained in the projection of S onto its mth component. Consequently,

the identified set M∗ (FY Z) can be succinctly characterized through inequalities involving only

containment functionals for projection level sets Um (Y,Z;h) applied to projections of test sets S.

We thus define containment functionals for projections of level sets for any test set Sm ⊆ RUm as

Cm (Sm, h|y∗, z) ≡ P [Um (Y,Z;h) ⊆ Sm|y∗, z] . (3.6)

Likewise we have from (3.4) that

∀S ∈ Q (h, y∗, z) , GU |Y∗Z (S|m, z) = GUm|Y∗Z (Sm|m, z) . (3.7)

Implications (3.5) and (3.7) together enable us to work in a lower dimensional space, namely

that of RUm in the construction of core-determining sets, rather than RU . Specifically, we have

that for any (y∗, z) ∈ RY∗Z and any test set S ∈ Q (h, y∗, z), the containment functional inequality

C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) , (3.8)

appearing in Corollary 1 holds if and only if

Cm (Sm, h|m, z) ≤ GUm|Y∗Z (Sm|m, z) . (3.9)

From Sm = RUm for all m 6= y∗, (3.8) ⇒(3.9) is immediate. The reverse implication is formally

proven in the proof of Theorem 3.

Lemma 1 characterizes a collection of core-determining sets on the lower dimensional space RUm

sufficient to guarantee (3.9) holds for all closed Sm ⊆ RUm . Before stating the lemma we require

the following definitions for any (h,m, z) ∈ H(M)×RY∗ ×RZ .

U∗m (h, z) ≡ {Um ⊆ RUm : Um is a union of elements of Um (h, z)} ,
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and for any set Sm ⊆ RUm ,

USm (h, z) ≡ {U ∈ Um (h, z) : U ⊆ Sm} ,

which are those sets on the conditional support of Um (Y,Z;h) conditional on (Y∗ = m ∧ Z = z)

that are contained in Sm. With this notation in hand, the proof of the following lemma is a

straightforward extension of Theorem 2 and is omitted.

Lemma 1. Let Restrictions A1-A4 hold. Fix (h,m, z) ∈ H(M) × RY∗ × RZ and a distribution

GU |Y∗Z (·|y∗, z). Let Qm (h, z) ⊆ U∗m (h, z), such that for any Sm ∈ U∗m (h, z) with Sm /∈ Qm (h, z),

there exist nonempty collections Sm1,Sm2 that are both subsets of USm (h, z) with Sm1 ∪ Sm2 =

USm (h, z) such that

Sm1 ≡
⋃
T ∈Sm1

T , Sm2 ≡
⋃
T ∈Sm2

T , and GU |Y∗Z (Sm1 ∩ Sm2|y∗, z) = 0, (3.10)

with Sm1,Sm2 ∈ Qm (h, z). Then Cm (Sm, h|m, z) ≤ GUm|Y∗Z (Sm|m, z) for all Sm ∈ Qm (h, z)

implies that Cm (Sm, h|m, z) ≤ GUm|Y∗Z (Sm|m, z) holds for all Sm ⊆ RUm, and in particular for

Sm ∈ F (RUm), so that the collection of sets Qm (h, z) is core-determining.

The following Theorem, proven in the Appendix, uses this lemma en route to characterizing

the identified set M∗ (FY Z) under Restrictions A1-A4 through conditional containment functional

inequalities defined on RUm , m ∈ {1, ...,M}. The inequalities constrain the structural function

h and the marginal distributions of each Um conditional on (m, z) and z, but provide no further

constraint on the joint distribution of any Um and Un, n 6= m.

Theorem 3. Let Restrictions A1-A4 hold, with no further restrictions imposed on the determina-

tion of the classifier Y∗. Given collection of conditional distributions GU |Y∗Z we have that

∀S ∈ F (RU ) , C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) a.e. (y∗, z) ∈ RY∗Z

if and only if

∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) , Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) a.e. (y∗, z) ∈ RY∗Z .

Hence

M∗ (FY Z) =



(
h,GU |Z

)
∈M : ∃GU |Y∗Z s.t. ∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) a.e. z ∈ RZ , and

GUm|Z (S|z) =

∫
y∗∈RY∗

GUm|Y∗Z (S|y∗, z) dFY∗|Z (y∗|z) a.e. z ∈ RZ

 .
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3.4 The identifying power of a conditional independence restriction

The models studied in this paper include a conditional independence Restriction CI.

Restriction CI. Let Y∗ be the classifier element of Y . Random variables U and Y∗ are indepen-

dently distributed conditional on Z = z for every z ∈ RZ .

Restriction CI places restrictions on the collection of distributions GU |Z , namely that for all sets

S ⊆ RU |Z , the conditional distribution of U given (Y∗, Z), GU |Y∗Z (·|y∗, z), satisfiesGU |Y∗Z (S|y∗, z) =

GU |Z (S|z) a.e. (y∗, z) ∈ RY∗Z . A consequence is equality of the conditional support of unobserved

heterogeneity and its components, that is that RU |y∗z = RU |z and RUm|y∗z = RUm|z, for all

m ∈ {1, . . . ,M}.
In Theorem 4, proven in the Appendix, we build on Theorem 3 to develop a characterization

of the identified set when there is a conditional independence condition.

Theorem 4. Let Restrictions A1-A3 hold. A model M which embodies Restriction A4 and the

conditional independence restriction CI has an identified set M∗ (FY Z) which can be written as

M∗ (FY Z) ≡
{(
h,GU |Z

)
∈M : ∀m ∈ {1, . . . ,M}, ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Z (S|z) , a.e. z ∈ RZ

}
.

Here S ⊆ RUm|z, and Qm (h, z) is a collection of closed subsets of RUm|z comprising unions of sets

on the conditional support of Um(Y,Z;h) given Z = z and Y∗ = m defined in Lemma 1.

Regarding the collections of distributions GU |Z , the identified set in Theorem 4 only places

restrictions on the distributions, GUm|Z (·|z), m ∈ {1, . . . ,M}. Data is never informative about the

covariation of Um and Um′ , for any m 6= m′, although the joint distribution of Um and Um′ can be

bounded using information on their marginal distributions using for instance the Fréchet-Hoeffding

bounds as in Heckman, Smith, and Clements (1997).

Example 1 continued. In this classical treatment effect model the projected u-level sets Um (Y,Z;h)

are singleton sets and a small modification to the argument that leads to Corollary 2 leads to the

conclusion that the inequalities in the definition of M∗ (FY Z) in Theorem 4 reduce to equalities.

For any set S ⊆ Qm (h, z),

GUm|Z(S|z) = FY1|Y2,Z (S|m, z)

and it follows that for m ∈ {1, . . . ,M} each conditional distribution function of Um given Z =

z is point identified by the conditional distribution function of Y1 given Y2 = m and Z = z.

Consequently, each marginal distribution function of Um is point identified by the expected value

with respect to Z of the conditional distribution function of Y1 given Y2 = m and Z = z, leading

directly to familiar results on point identification of the Average and Quantile Treatment Effects.

Without further restrictions the joint distribution of potential outcomes and various functionals
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thereof are generally not point identified but are partially identified, see for example results of

Heckman, Smith, and Clements (1997) as well as Fan, Guerre, and Zhu (2017) using covariates to

tighten the identified set. �

3.5 The additional identifying power of marginal independence conditions

Theorem 4 provides a characterization of the identified set of structures delivered by a model of

counterfactual processes embodying Restriction A4 and the conditional independence restriction

CI. Models featuring counterfactual processes more complex than found in the treatment effects

case may additionally feature marginal independence restrictions. We consider Restriction MI.

Restriction MI. Let e(Z) be a vector-valued function of Z. Random variables Um and e(Z) are

independently distributed for each m ∈ RY∗ .

Restriction MI restricts the set of admissible structures
(
h,GU |Z

)
∈M to be those with Um and

e(Z) independently distributed for all m ∈ {1, . . . ,M}. The function e(·) could for example be a

function that selects certain elements from Z, for example, with Z = (Z1, Z2), e(Z) = Z1.
10 In

the classical treatment effect model in which there is no conditional independence restriction and

an instrumental variable is independently distributed of each potential outcome Kitagawa (2020)

characterizes sharp bounds on the marginal distribution of each potential outcome.11

Theorem 5 provides a characterization of the identified set delivered by a model embodying the

conditional and marginal independence restrictions CI and MI.

Theorem 5. Let Restrictions A1-A3 hold. A model M which embodies Restriction A4 and the

independence restrictions CI and MI has an identified setM∗(FY |Z) which can be written as follows.

M∗ (FY Z) ≡

{ (
h,GU |Z

)
∈M : ∀m ∈ {1, . . . ,M}, ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Z (S|z) , a.e. z ∈ RZ

}
,

where Qm (h, z) is the collection of core determining sets defined in Lemma 1.

This characterization appears the same as that of Theorem 4, but it differs because now admis-

sible structures
(
h,GU |Z

)
∈M are required to be such that GU |Z satisfies Restriction MI in addition

to Restriction CI. Thus the identified set of Theorem 5 is subset of that of Theorem 4 because the

conditional containment inequality must hold for some
(
h,GU |Z

)
in this more restrictive collection

of admissible structures.

Sharpness is immediate because for any S ∈ RUm , under Restriction CI

Cm (S, h|m, z) ≤ GUm|Z (S|z)⇒ Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) .

10It would be easy to relax the marginal independence restriction to Um
‖ em(Z), m ∈ {1, . . . ,M}.

11Kitagawa (2020) additionally considers the identifying power of the pair of potential outcomes being jointly
independent of the instrument, as well as a monotonicity restriction.
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This is required to hold for all (m, z) and for all core-determining sets, so the selectionability

statement of Theorem 1 is satisfied. Again, the difference with Theorem 4 is that the distributions

GUm|Z are now required to belong to more restrictive collections of conditional distributions, namely

we have as a requirement of admissible structures that for each e ∈ Re(Z),

GUm|Z (S|Z ∈ Ze) = GUm (S) , where Ze ≡ {z : e (Z) = e} . (3.11)

The characterization of M∗ (FY Z) in Theorem 5 produces interesting observable implications

that may not appear immediate, but which provide bounds on
(
h,GU |Z

)
, potentially non-sharp

in isolation. These implications may prove beneficial in developing sufficient conditions for point

identification of
(
h,GU |Z

)
or features of

(
h,GU |Z

)
in particular models. Two such implications

follow.

1. For any m ∈ RY∗ , e ∈ Re(Z), and any S ⊆ RUm ,

E [Cm (S, h|m,Z) |e(Z) = e] ≤ GUm (S) . (3.12)

This follows from integrating both sides of the inequality

Cm (S, h|m, z) ≤ GUm|Z (S|z) (3.13)

as follows. First, starting with the left hand side of (3.13),

1

FZ (Ze)

∫
z∈Ze

Cm (S, h|m, z) dFZ (z) = E [Cm (S, h|m,Z) |Z ∈ Ze]

= E [Cm (S, h|m,Z) |e (Z) = e] .

Then likewise multiplying the right hand side of (3.13) by 1
FZ(Ze)

and integrating we obtain

1

FZ (Ze)

∫
z∈Ze

GUm|Z (S|z) dFZ (z) = GUm|Z (S|Z ∈ Ze) = GUm (S) ,

where the final equality follows from Restriction MI.

It is interesting to note that the expression E [Cm (S, h|m,Z) |e(Z) = e] is a conditional ex-

pectation of the containment functional Cm (S, h|m,Z) holding m fixed, which may in general

differ from Cm (S, h|Y∗ = m, e(Z) = e).

2. For any m ∈ RY∗ , e ∈ Re(Z), and any S ⊆ RUm ,

Cm (S, h|Z ∈ Ze) ≤ GUm|Z(S|Z ∈ Ze) = GUm (S) ,
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by Restriction MI.

Remarks

1. Since the bounded probabilities GUm(S) = GUm|Z(S|Z ∈ Ze) do not depend on the value e

of e(Z), for each value m and S only the supremum of the lower bounding expression over

values e ∈ Re(Z) is instrumental in (3.12).

2. In the common case in which Z = (Z1, Z2) and e(Z) = Z1 is a selection of the elements in Z,

EZ [·|e(Z) = e] = EZ2 [·|Z1 = e] .

3. Applying the inequalities appearing in the characterization of M(F ∗Y Z), to both S and its

complement Sc a two-sided inequality is obtained:

EZ [Cm (S, h|m, z) |e(Z) = eL] ≤ GUm (S) ≤ 1− EZ [Cm (Sc, h|m, z) |e(Z) = eU ] ,

which must hold for all (eL, eU ) ∈ Re(Z).

Example 3 continued. In this example the structural function h(y, z, u) is characterized by

the collection of parameters θ ≡ {(g1(0, z1), g1(1, z1), g2(0, z1), g2(1, z1)) : z1 ∈ RZ1}, which is the

collection of threshold values for determination of the binary employment outcomes across both

values of m ∈ {1, 2}, both values of the endogenous variable Y2, and all values of z1 on the support

of Z1. Recall m = 1 for people who attend a training program and m = 2 for people who do not.

Thus, g1(0, z1) is the threshold parameter for a person with Z1 = z1 who does attend a training

program and is not in receipt of benefit payment (Y2 = 0). We can normalize the threshold

functions so that each Um is marginally uniformly distributed on the unit interval and then there

is the following representation.12

In state m: Y1 =


0 , 0 ≤ Um ≤ gm(Y2, Z1)

1 , gm(Y2, Z1) ≤ Um ≤ 1

.

The setup here is similar to that in Chesher and Rosen (2013) and Section 8.2 of Chesher and

Rosen (2020), but in those analyses there was only one state, such that U1 = U2 (denoted U) and

g1(y2, Z1) = g2(y2, Z1). Additionally, in both earlier studies there was no conditional independence

restriction but there was a marginal independence restriction U ‖ Z in an IV model for a binary

outcome.

12As noted previously, if Um = gm(Y2, Z1) then either value of Y1 is permitted.
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Here, we similarly think of employment Y1 as a binary outcome of interest for which there

is an endogenous included variable Y2 such as receipt of unemployment benefits and Z1 and Z2

as included and excluded exogenous variables in its determination. There are however additional

observable variables Z3 important for motivating the conditional independence restriction U ‖ Y3|Z,

or selection on observables for selection into the training program, where Z = (Z1, Z2, Z3). These

additional variables Z3 are not however restricted to be independent of unobservable variables Um.

To illustrate the roles of the two different types of restrictions, define conditional probabilities

consistently estimable from data, as follows.

fij(z,m) ≡ P[Y1 = i ∧ Y2 = j|Y3 = m,Z = z], (i, j) ∈ {0, 1} × {0, 1}, m ∈ {1, 2}, z ∈ RZ .

Applying Theorem 4, under the conditional independence restriction alone, (U1, U2) ‖ Y3|Z, the

identified set of structures (θ,GU |Z) is characterized by the following inequalities which hold for

m ∈ {1, 2} and almost every z ∈ RZ .

If gm(0, z1) ≤ gm(1, z1) then

f00(z,m) ≤ GUm|Z ([0, (gm(0, z1)]|z) ≤ f00(z,m) + f01(z,m), (3.14)

f00(z,m) + f01(z,m) ≤ GUm|Z ([0, (gm(1, z1)]|z) ≤ 1− f11(z,m), (3.15)

while for gm(0, z1) ≥ gm(1, z1)

f00(z,m) + f01(z,m) ≤ GUm|Z([0, gm(0, z1)]|z) ≤ 1− f10(z,m), (3.16)

f01(z,m) ≤ GUm|Z([0, gm(1, z1)]|z) ≤ f00(z,m) + f01(z,m). (3.17)

There are two separate pairs of inequalities for each z according to whether the threshold gm(·, z1)
is weakly increasing in its first argument. This is because the inequalities implied by the general

characterization given in Theorem 4 simplify as such according to the change in the direction of

the threshold. Note that the change in the direction of the threshold corresponds to the opposite

sign of the conditional on z average treatment effect gm(0, z1)− gm(1, z1).

The reduction of the characterization of the identified set into two different sets of inequalities

depending on the sign of the treatment effect also occurs in the IV binary outcome models studied

in Chesher and Rosen (2013) and Section 8.2 of Chesher and Rosen (2020). However, those invoke

marginal independence restrictions but not conditional independence restrictions. So while the form

of the inequalities appears similar, they are different. To compare to the inequalities obtained in

the IV binary outome model in those prior analyses, consider the inequalities obtained for a single

fixed m, since those analyses did not feature a classifier taking multiple values. In those models

the unobservable U (= Um here) is independent of Z. With the normalization in place imposing

uniformly distributed U there is GUm|Z([0, gm(·, z1)]|z) = gm(·, z1). By contrast, the conditional
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independence restriction that (U1, U2, U3) ‖ Y3|Z used to obtain inequalities (3.14)-(3.17) allows

for the conditional distribution of each unobservable GUm|Z(·|z) to vary with respect to z. So while

the uniform normalization implies that EZ

[
GUm|Z((−∞, t]|Z)

]
= t for all t ∈ [0, 1], evaluation

of the conditional distributions in the middle of the inequalities in (3.14)-(3.17) do not simplify.

Substantively, with only Restriction CI, the conditional distributions of unobservable heterogeneity

in each of the m processes can vary with the value of Z conditioned upon.

Now consider imposing Restriction MI in addition to Restriction CI. Restriction MI asserts that

within each counterfactual process there are observable variables Z1 and Z2 that are independent of

unobservable heterogeneity specific to that process. The former variables Z1 are included exogenous

variables in the process and Z2 are excluded exogenous instruments. Restriction MI is however silent

regarding Z3, which are variables that may be important for asserting selection on observables with

regard to the classifier, but which may not be suitable instruments in the counterfactual process,

such as perhaps years of education prior to the rollout of the job training program.

Thus Restriction MI additionally asserts further to the conditional independence restriction that

for each m, Um
‖ (Z1, Z2). The inequalities (3.12) then deliver the following additional inequalities

which hold for m ∈ {1, 2} and almost every (z1, z2) ∈ R(Z1,Z2).

If gm(0, z1)) ≤ gm(1, z1) then

EZ3 [f00(Z,m)|z1, z2] ≤ gm(0, z1) ≤ EZ3 [f00(Z,m) + f01(Z,m)|z1, z2] , (3.18)

EZ3 [f00(Z,m) + f01(Z,m)|z1, z2] ≤ gm(1, z1) ≤ EZ3 [1− f11(Z,m)|z1, z2] , (3.19)

while if gm(0, z1) ≥ gm(1, z1)

EZ3 [f00(Z,m) + f01(Z,m)|z1, z2] ≤ gm(0, z1) ≤ EZ3 [1− f10(Z,m)|z1, z2] , (3.20)

EZ3 [f01(Z,m)|z1, z2] ≤ gm(1, z1) ≤ EZ3 [f00(Z,m) + f01(Z,m)|z1, z2] . (3.21)

Relative to the implications (3.14)-(3.17) under the conditional independence assumption alone,

these implications can be seen to hold by integrating the expressions in each inequality with respect

to the conditional distribution of Z3 given (Z1, Z2) = (z1, z2). Under Restriction MI for each

m ∈ {1, 2} the conditional distribution of Um given (Z1, Z2) = (z1, z2) is the same for all values

(z1, z2), and under the normalization that Um is uniformly distributed on [0, 1] it follows that

GUm|Z([0, gm(t, z1)]|z1, z2) simplifies to gm(t, z1) for any t with 0 ≤ gm(t, z1) ≤ 1.

The characterization delivered by the implications (3.14)-(3.17) and (3.18)-(3.21) almost surely

for each m differ from those of the binary outcome IV models studied in Chesher and Rosen (2013)

and Section 8.2 of Chesher and Rosen (2020), each of which had no classifier variable and no

conditional independence restrictions. Nonetheless, while the precise inequalities in this example

differ, they share similar structure to those obtained in the prior analyses, and similar methods
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from the literature on estimation and inference using moment inequalities could be used in an

application, such as inference methods from Chernozhukov, Lee, and Rosen (2013) used in Chesher

and Rosen (2020).

4 Concluding remarks

We have presented an extension of a treatment effect model in which a discrete classifier variable

indicates in which one of a number of counterfactual processes an individual engages. While it is

common in treatment effect models for a value of a discrete classifier to give rise to a counterfactual

outcome, here the discrete classifier gives rise to a counterfactual process that may deliver values

of multiple endogenous variables. The modeling of such processes can be beneficial when the

researcher asserts a model for these counterfactual processes incorporating observed realizations of

endogenous and exogenous variables.

Regarding selection of the discrete classifier, we have allowed the possibility that the researcher

invokes a selection on observables assumption as is widely used in the study of treatment effects.

With regard to each counterfactual process, we have allowed for the specification of models for the

determination of endogenous variables, as is done in structural econometric modeling, incorporating

instrumental variable restrictions to deal with issues of endogeneity.

We have thus provided identification analysis for models that incorporate a blend of conditional

independence restrictions and marginal independence restrictions. This combines the use of se-

lection on observables restrictions from the treatment effects literature with instrumental variable

restrictions from structural econometrics. Both types of restrictions may be useful, but their im-

plications differ. In applications, the variables used in support of selection on observables will not

always be the same as those that are exogenous with respect to the ensuing counterfactual process.

Consequently the results in this paper are developed for cases in which conditional independence

and marginal independence restrictions are invoked with respect to different collections of observed

exogenous variables.

Using tools from random set theory and building in particular on CR17, we have developed

characterizations of the (sharp) identified sets delivered by these models. The identification analysis

here can serve as a starting point for applications in which there is a model for counterfactual

processes subsequent to determination of a classifier, and in which the distinction between those

variables required to justify unconfoundedness at the selection stage and those exogenous to the

counterfactual processes is important.

We have considered models of counterfactual processes which may be incomplete, but our

results also apply when the counterfactual models are complete. Incompleteness can arise when

these processes feature endogenous variables whose determination cannot be completely specified,

as in incomplete IV models, when the determination of outcomes involves multiple equilibria and
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no equilibrium selection mechanism is specified, when a process is defined by inequality restrictions

as in some auction models, and when only some parts of a simultaneous equations system that

determines values of endogenous variables are specified.

The models considered place no structure on the determination of the classifier variable but

impose a conditional independence restriction requiring the unobservable variables that deliver

stochastic variation in the counterfactual processes and the classifier variable to be independently

distributed conditional on some observed exogenous variables.

Several further avenues for analysis are possible. One may for example aim to exploit economic

restrictions on the determination of the process in which an individual is engaged, for example a

model of choice. There may be settings featuring a continuum of processes rather than the discrete

classification considered here, and/or a researcher may wish to consider conditional independence

restrictions involving endogenous and exogenous variables as in control function models. Future

research building upon the framework herein may additionally entail study of the identifying power

of alternative covariation restrictions, such as conditional mean and quantile independence.
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A Proofs

Proof of Theorem 1. Theorem 2 of CR17 states that under Restrictions A1-A3 of that paper,

identical to Restrictions A1-A3 here, the identified set of structures
(
h,GU |Z

)
are those such that

GU |Z (·|z) - U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ , (A.1)

where “-” means “is selectionable with respect to the distribution of”, as in CR17. This statement

has the following interpretation. (1) There exists a random vector Ũ such that for almost every

z ∈ RZ , Ũ ∼ GU |Z (·|z) conditional on Z = z. (2) There exists a random variable Ỹ such that

for almost every z ∈ RZ , Ỹ ∼ FY |Z (·|z) conditional on Z = z. (3) Ũ and Ỹ reside on probability

space (Ω, L,P) and P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
= 1 a.e. z ∈ RZ .

To prove the theorem it is required to show that (A.1) is equivalent to the existence of a

collection of conditional distributions GU |Y∗Z ≡
{
GU |Y∗Z (·|y∗, z) : (y∗, z) ∈ RY∗Z

}
such that:

A: For almost every z ∈ RZ :

GU |Z (·|z) =

∫
y∗∈RY∗

GU |Y∗Z (·|y∗, z) dFY∗|Z (y∗|z) , and (A.2)

B: For almost every (y∗, z) ∈ RY∗Z :

GU |Y∗Z (·|y∗, z) - U (Y, z;h) when Y ∼ FY |Y∗Z (·|y∗, z) . (A.3)

To show this start with (A.1), from which we have, that there exist Ũ and Ỹ with

1 = P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
=

∫
RY∗|z

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Ỹ∗ = y∗, Z = z

]
dFY∗|Z (y∗|z) ,

where Ỹ ∼ FY |Z (·|z) conditional on Z = z. This can hold if and only if

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Ỹ∗ = y∗, Z = z

]
= 1 a.e. (y∗, z) ∈ RY∗Z ,

with Ỹ ∼ FY |Z (·|z).
Now define GU |Y∗Z (·|y∗, z) such that for any S ∈ RU ,

GU |Y∗Z (S|y∗, z) ≡ P
[
Ũ ∈ S|Ỹ∗ = y∗, Z = z

]
.
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Consequently, from Restriction A3 and the first consequence of (A.1) above,

GU |Z (S|z) = P
[
Ũ ∈ S|Z = z

]
,

and then from the law of total probability (A.2) holds. Then we have that (A.3) holds since

1. There exists a random vector Ũ such that for almost every z ∈ RZ , Ũ ∼ GU |Z (·|z) conditional

on Z = z, and such that for almost every (y∗, z) ∈ RY∗Z , Ũ ∼ GU |Y∗Z (·|y∗, z) conditional on

Z = z, Y∗ = y∗.

2. There exists a random variable Ỹ such that for almost every z ∈ RZ , Ỹ ∼ FY |Z (·|z) condi-

tional on Z = z.

3. Ũ and Ỹ belong to probability space (Ω,F ,P) and P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Ỹ∗ = y∗, Z = z

]
= 1

a.e. (y∗, z) ∈ RY∗Z .

That (A.2) and (A.3) imply (A.1) is immediate, and so equivalence is proved. �

Proof of Theorem 3. Fix (m, z) ∈ RY∗Z . From Lemma 1 we have that

∀S ∈ Qm (h, z) , Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z)

implies that

∀S ∈ F (RUm) , Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) .

We need to show that (3.9),

Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) , (A.4)

for all S ∈ F (RUm) implies that (3.8),

C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) .

for all S ∈ F (RU ).

To show this, start with

C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) . (A.5)

for an arbitrary S ∈ F (RU ).

First suppose that it does not hold that the projection of S onto its nth component, Sn, n 6= m,

is equal to RUn . All elements of the support of U (Y, Z;h) conditional on (Y∗, Z) = (m, z) have

Un (Y,Z;h) = RUn , implying that C (S, h|m, z) = 0 and (A.5) is trivially satisfied.
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We now turn to sets S with nth projection Sn, n 6= m, equal to RUn . In this case C (S, h|m, z) =

Cm (Sm, h|m, z) and GU |Y∗Z (S|m, z) = GUm|Y∗Z (Sm|m, z), so that (A.5) is in fact equivalent to

(A.4), completing the proof. �

Proof of Theorem 4. We start with the characterization given in Theorem 3:

M∗ (FY Z) =



(
h,GU |Z

)
∈M : ∃GU |Y∗Z s.t. ∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) a.e. z ∈ RZ , and

GUm|Z (S|z) =

∫
y∗∈RY∗

GUm|Y∗Z (S|y∗, z) dFY∗|Z (y∗|z) a.e. z ∈ RZ

 .

Using Restriction CI GUm|Y∗Z (Sm|m, z) = GUm|Z (Sm|z) so we obtain

M∗ (FY Z) =

{ (
h,GU |Z

)
∈M : ∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Z (S|z) a.e. z ∈ RZ

}
,

equivalently

M∗ (FY Z) =

{(
h,GU |Z

)
∈M : sup

(m,z)∈RY∗Z

sup
S∈Qm(h,z)

Cm (S, h|m, z)−GUm|Y∗Z (S|z) ≤ 0

}
. �

Proof of Theorem 5. The Theorem is proved using the same argument as in the proof of

Theorem 4 but now with structures
(
h,GU |Z

)
required to belong to a more restrictive set such that

Restriction CI and Restriction MI both hold. Thus the set of structures
(
h,GU |Z

)
satisfying these

restrictions (i.e. those such that
(
h,GU |Z

)
∈ M) and also satisfying the condition stated in the

Theorem, namely

∀m ∈ {1, . . . ,M}, ∀S ∈ Qm (h, z) , Cm (S, h|m, z) ≤ GUm|Z (S|z) , a.e. z ∈ RZ

are by Theorem 3 precisely those
(
h,GU |Z

)
∈M satisfying

∀S ∈ F (RU ) , C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) a.e. (y∗, z) ∈ RY∗Z ,

where the conditional distribution of U given (Y∗, Z) satisfies the conditional independence re-

striction GU |Y∗Z (S|m, z) = GU |Z (S|z). Application of Artstein’s Inequality as in Corollary 1

then gives that this collection of
(
h,GU |Z

)
∈ M satisfies the selectionability criteria of Theo-

rem 1, namely that GU |Y∗Z (·|m, z) is selectionable with respect to the conditional distribution of

random set U (Y,Z;h) given (Y∗ = m ∧ Z = z) induced by the distribution of Y conditional on

(Y∗ = m ∧ Z = z) as given by FY Z , a.e. (m, z) ∈ RY∗Z . Thus M∗ (FY Z) is the identified set of

structures
(
h,GU |Z

)
. �
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